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Abstract
We propose a mathematical optimization model and its solution for joint chance constrained
DC Optimal Power Flow. In this application, it is particularly important that there is a high
probability of transmission limits being satisfied, even in the case of uncertain or fluctuating
feed-in from renewable energy sources. In critical network situations where the network risks
overload, renewable energy feed-in has to be curtailed by the transmission system operator
(TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed
optimization model minimizes curtailment while ensuring that there is a high probability of
transmission limits being maintained. The latter is modeled via (joint) chance constraints
that are computationally challenging. Thus, we propose a solution approach based on the
robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced
by robust constraints with suitably defined uncertainty sets constructed from historical data.
The ability to discretely control the power feed-in then leads to a robust optimization problem
with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables.
We propose an equivalent mixed-integer linear reformulation for box uncertainties with the
exact linearization of bilinear terms. Finally, we present numerical results for different test
cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment
of solar feed-in, for which we use real-world weather and network data. The experimental tests
demonstrate the effectiveness of this method and run times are very fast. Moreover, on average
the calculated robust solutions only lead to a small increase in curtailment, when compared to
nominal solutions.

Keywords: OR in energy, optimal power flow, chance constrained programming, robust op-
timization, decision-dependent uncertainty

1 Introduction
The current transition towards sustainable energy places complex demands on the operation
of power grids. The proportion of power provided by renewable energies such as solar or wind
energy is constantly increasing and it can be assumed that this trend will continue in the
future. However, this constitutes a challenge for the operation of electricity power networks.
Due to changes in the weather, renewable energy sources are uncertain and subject to strong
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fluctuations. To guarantee network stability, curtailment of renewable feed-in often cannot be
avoided. This entails using only a fraction of the feed-in to avoid overloading transmission lines.
However, curtailment should clearly be minimized as far as possible. In addition, regulating
feed-in leads to potential compensation payments from the transmission system operator (TSO)
to the energy producers. Based on the current network status and using available short-term
weather forecasts, the risk of critical network situations is assessed and appropriate interventions
are carried out. As a consequence, it may be necessary to curtail feed-in at some network nodes.
In practice, this process is frequently not yet fully automatized, but guided by dispatchers. In
this work, we will approach this issue from a mathematical perspective.

The primary tool used to model the operation of electrical power networks is the Optimal
Power Flow (OPF) problem. Traditionally, it calculates the minimum-cost production and op-
timal distribution of electrical power in an electricity network. It is a non-linear non-convex
optimization problem [19]. Several methods have been developed for its solution. Due to its
computational difficulty, they are predominantly based on local solution methods (e.g. interior
point algorithms [18]), on the construction of relaxations [40, 61] or on approximation tech-
niques. Local algorithms often generate solutions for large instances within a relatively short
computational time period. However, quality statements cannot always be made for these solu-
tions and they may be far from an optimal solution. The performance also depends on the choice
of an initial starting value. It is not guaranteed that these methods always deliver a feasible
or (local) optimal solution. However, global methods that lead to solutions with demonstrable
quality guarantee are usually computationally very expensive and therefore only applicable for
small networks. In order to be able to derive efficient solution approaches, approximations are
often applied directly to modeling the underlying laws of physics, see [42] for further information.

One of the widely accepted approximations of OPF is the DC Optimal Power Flow (DC OPF)
[21]. This approximation assumes fixed voltage magnitudes and small phase angle differences in
the network. The reactive part of electrical power is neglected. This results in a power model
consisting of linear constraints. Typically, the objective functions modeling power generation
costs are linear or convex quadratic. The resulting optimization problem can therefore be solved
efficiently by currently available state-of-the-art solvers, even for large network topologies. In
general, solutions generated by DC OPF are not feasible for AC OPF. However, due to its
algorithmic tractability, this convex approximation is heavily used and of great value in practice.
For many questions, it provides a heuristic solution that can be used and processed by power-
system operators.
An additional difficulty in power-flow problems is that electricity networks are largely affected
by uncertainties. In particular, feed-in from renewable energy sources is difficult to predict
and fluctuates heavily due to weather effects. To guarantee network stability, the treatment of
uncertain parameters must be included in the optimization models.

For optimization problems including uncertainty, two principal approaches are adopted. Stochastic
optimization traditionally involves stochastic quantities (e.g. expectation value or probability),
under the assumption of certain probability distributions. Robust optimization is generally
used to protect against all possible realizations of unknown parameters from a predefined un-
certainty set. Both paradigms usually lead to models that are hard to solve. Only in a few
exceptional cases an algorithmically tractable equivalent reformulation exists. The reason is as
the calculation of stochastic quantities may involve multidimensional integration with respect
to the underlying probability distributions. Due to the worst-case consideration of uncertain
parameters in robust optimization, these problems have a bilevel structure, frequently rendering
them computationally intractable. However, for several large classes of problems (e.g. linear,
convex or combinatorial), algorithmically tractable robust counterparts can be derived. For a
broad overview of these two paradigms, we refer the reader to [9, 27] and [49].
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In the power network application, it is important to ensure that there is a sufficiently high
probability (chosen beforehand) that all transmission limits are satisfied. This can be modeled
with joint chance constraints that enforce the simultaneous satisfaction of several constraints
with a predefined probability. From a practical perspective, protection through probabilistic
constraints is suitable. Short-term overloads in the electricity network are acceptable. In the
event of larger or longer lasting overloads, countermeasures will need to be taken, where a TSO
will need to (re-)optimize interventions in order to stabilize the network.
In our model, curtailment limits the output of renewable power production to a specific percent-
age proportion of the installed power. According to the German Renewable Energy Sources Act,
these curtailment options realizes in discrete steps in Germany. Due to the nature of the prob-
lem, the model consists of two stages. In the first stage, the nominal network operating solution,
including generator output, (discrete) curtailment, power flows and voltage angles, has to be
decided before the realization of uncertainty is revealed (here-and-now). After the uncertain
parameters manifest themselves, the two-stage variables react to them. In the second stage, the
network response to fluctuation ensures that there is a high probability of transmission limits
are maintained.

We approximate the probabilistic optimization problem using robust constraints within a ro-
bust safe approximation, see [46]. By a suitable choice of the uncertainty set we can ensure that
all robust feasible solutions are also feasible for the stochastic optimization problem. The con-
straints of the robust approximation thus lead to sufficient conditions for the chance constraints
being satisfied. Therefore, we are able to make quality statements about the approximate solu-
tions. We derive a mixed-integer reformulation for the robust counterpart using box uncertainty
sets. Thus, by solving only one mixed integer optimization program, a robust solution can be
calculated that is feasible for the chance constrained problem. We adapt the procedure from
[41], where the respective uncertainty sets are computed with the help of the scenario approach
[15], which uses available historical data. In this approach, we do not need to make any concrete
assumptions on the unknown distribution and can rely on real-world data.

The combination of discrete decision variables for curtailment and the robust safe approxima-
tion leads to robust constraints with decision-dependent (or endogenous) uncertainty sets. This
means that the shape and size of the uncertainty sets are altered by choices of decision variables.
In our application, the uncertainty sets shrink with increasing curtailment.
For linear robust optimization problems with decision-dependent uncertainty, two general frame-
works exist in the literature. These introduced reformulations are based on duality arguments
with linearizations of bilinear products using mixed-integer linear constraints (big-M) [47] or
implication constraints [38]. In both approaches it is generally not possible to derive an equi-
valent algorithmic tractable reformulation. Only in the special case of binary control of upper
bounds in the uncertainty set can an estimation of exact linearizations be given under non-
negativity assumptions. In this work, we show that these assumptions can be dropped in the
case of decision-dependent box uncertainty sets with discrete linear dependencies. We present
an exact reformulation into an algorithmically tractable mixed-integer optimization problem
and show that our curtailment model is appropriate in this setting.

For the consideration of decision-dependent uncertainty in stochastic optimization problems, one
can distinguish between two types of models in the literature: decisions impacting the timing
and realization of information in stochastic processes and decision-dependent probability dis-
tributions. For example the authors of [28] propose a mixed-integer disjunctive programming
model incorporating decision-dependent information discovery in stochastic processes. Basciftci
et al. [6] formulate a mixed-integer linear program for finite processes in capacity expansion
problems along with approximation algorithms. In the context of decision-dependent distribu-
tions, we refer exemplarily to [5] and [7] where mixed-integer reformulations are used for the
operation scheduling in power systems and facility location planning. An overview of recent
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studies for this class of problems can be found in [31].
The discrete curtailment of solar feed-in impacts the realization of uncertainty, and therefore
this paper is related to stochastic problems with decision-dependent probability distributions.

Contribution The key contributions of our work are:

Chance Constrained DC OPF with Discrete Decision-Dependent Uncertainty: We propose a
new stochastic optimization model for DC OPF with chance constraints involving decision-
dependent uncertainties and discrete variables.
Robust Approximation: We derive an inner approximation that is a robust optimization problem
with decision-dependent uncertainties. Suitable uncertainty sets are constructed from historical
data.
Reformulation for Decision-Dependent Uncertainty: We prove that the robust approximation
with box uncertainties has an equivalent algorithmically tractable reformulation with the exact
linearization of bilinear products.
Computational Results: We provide a computational study on benchmark instances from the
NESTA test case archive [22] as well as on a real world problem example. In both cases our
approach is able to compute robust solutions with a relatively small increase in costs compared
to nominal solutions.

Outline This paper is structured as follows. First, we review the current state of the art
and refer to related literature in Section 2. In Section 3 we introduce the two-stage stochastic
optimization problem. We start our considerations from the model of [12] and integrate cur-
tailment options, thus obtaining a joint chance constrained DC OPF with discrete decisions.
To ensure a tractable problem formulation, Section 4 focuses on a robust safe approximation
of the stochastic optimization problem. Suitable uncertainty sets are constructed using the
scenario approach, as well as a nearest-neighbour selection of historical data points. For the
resulting robust counterpart with decision-dependent box uncertainty sets, we present an equi-
valent linear reformulation that is algorithmically tractable. We formulate the generalization of
this reformulation for general box uncertainties in Section 4.2.1. Numerical results in Section
5 demonstrate the effectiveness of our approach. For selected benchmark instances and for
the distribution network of N-ENERGIE GmbH, solutions of the robust approximation can be
calculated very quick and efficiently. All solutions fulfill the chance constraints (with a high
confidence) and lead to a relatively small cost increase in comparison to the nominal solution.
Thus, the robust approximation in combination with the scenario approach is well suited to
determine best-possible curtailment of renewables in the DC OPF model.

2 Overview of Optimization under Uncertainty for the DC OPF
Problem

In this section, we will review related literature and explain how to classify this work in terms
of the state of art of stochastic and robust optimization. One possibility for the stochastic
treatment of uncertain parameters in optimization problems is the use of chance constraints.
Here it is assumed that the parameter ω : Ω→ Rn is a continuous random vector defined on a
probability space (Ω,F , P). The feasibility of a variable y ∈ Rm with respect to a constraint
g : Rm ×Rn → R is ensured with a given probability 1− ε ∈ [0, 1] via

P(g(y,ω) ≤ 0) ≥ 1− ε.

Despite their wide usage in modeling, the resulting models are typically hard to solve. Even
the combination of linear models with probabilistic constraints, where g is linear (linear chance
constraints) often leads to non-convex optimization problems. There are only a few cases
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in which a tractable equivalent reformulation is possible [16] or convexity statements for the
resulting problems can be made [34, 56].
In many situations, the uncertain parameter ω is contained in several constraints gj : Rm ×
R
n → R for j = 1, ...,J and J ∈ N. For probabilistic constraints, it is necessary to differentiate

a model containing several single constraints of the form

P(gj(y,ω) ≤ 0) ≥ 1− εj ∀j ∈ {1, ..,J}

with 1− εj ∈ [0, 1] for j = 1, ..,J from joint chance constraints

P (gj(y,ω) ≤ 0 ∀j ∈ {1, ...,J}) ≥ 1− ε.

The latter enforces simultaneous fulfillment of all constraints with a certain probability. Single
chance constraints allow the separate consideration of the individual inequalities and therefore
joint stochastic constraints are more restrictive and represent stronger safety conditions.

There are many successful approaches and applications for models involving (joint) chance con-
straints that exploits specific problem structures. For example in the cases of finite discrete
probability distributions, joint chance constraints can be equivalently rewritten with determ-
inistic mixed-integer constraints, see [24]. Based on that, the authors of [37] studied strong
extended formulations and valid inequalities for mixing sets with knapsack constraints for such
reformulations. For two-stage stochastic models efficient combinatorial (e.g. [33]) and decom-
position (e.g. [1, 39]) algorithms exist in the literature. The mathematical properties of linear
joint chance constraints with continuous distributions were examined in [44]. Despite the in-
sightful theory and methods in the literature, in general the resulting optimization models are
difficult and challenging. Unfortunately in some cases (especially with continuous multivariate
distributions), for these constraints even the evaluation of a potential solution y can be numer-
ically intractable. As in our setting, exact solution approaches are not applicable for models
with an unknown probability distributions.

Due to their difficulty, a wide range of approximation techniques has been developed to tackle
(joint) chance constraints, such as sampling methods like Monte Carlo methods [35] and the
sample average approximation [36]. The application of the sample average approximation of
chance constraints has been studied, notably in [48]. The authors analyzed the convergence
properties of this approximation when the sample number goes to infinity and showed how to
construct good approximate solutions. They demonstrated that sample average approximation
can be used to approximate chance constraints and also derived recommendations for practical
implementations. These approximations usually grow linear in size with the number of data
samples. Therefore, we aim for a data-driven approximation model with constant problem size.

At this point, we want to note that if the probability distribution is unknown or is itself uncer-
tain, models with distributionally robust stochastic constraints are also used in the literature
and in practical applications. Typically, the stochastic optimization problem is protected in a
worst-case sense against all uncertain distribution functions from a predefined ambiguity set.
This set of probability distributions usually contains momentum information [25] or is con-
structed from historical data [59]. For some cases exact solution approaches for distributionally
robust chance constraints are known, e.g. right-hand side or technology vector uncertainty un-
der Wasserstein ambiguity [32]. However, an equivalent algorithmically tractable reformulation
for the distributionally robust treatment of (joint) chance constraints only exists under strong
modeling assumptions. In our setting, we consider joint chance constraints under decision-
dependent uncertainty which we solve approximately. Therefore, the additional complexity by
incorporating distributionally robust constraints is out of scope in this work. We refer the
reader to [51] for further literature on distributionally robust optimization.
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In contrast to stochastic optimization, no probabilistic quantities are considered in classical
robust optimization problems. In its basic form, robust optimization is used for a protection
in a worst-case sense against all possible realizations of the unknown parameter ω ∈ Rn from a
predefined uncertainty set U ⊆ Rn with n ∈ N. The robust feasibility of a variable y ∈ Rm,m ∈
N with respect to constraint function g : Rm ×Rn → R is schematically given by

g(y,ω) ≤ 0 ∀ω ∈ U
⇔ max

ω∈U
g(y,ω) ≤ 0.

This is relevant for problems with a high desired level of security. In robust optimization, prior
knowledge of the distribution of uncertain quantities is not necessary.

One approximation technique for chance constrained optimization problems that uses a robust
treatment of uncertainty is robust approximation [46]. Hereby, (joint) chance constraints are
replaced by robust constraints

max
ω∈U

gj(y,ω) ≤ 0 ∀j = 1, ...,J ,

with the usage of a suitable uncertainty set U . In this context, suitable means that

P(ω ∈ U) ≥ 1− ε.

The uncertainty set are constructed such that it has a probability measure of at least of the
security level of the initial chance constraint. In this case, it follows

max
ω∈U

gj(y,ω) ≤ 0 ∀j = 1, ...,J ⇒ P (gj(y,ω) ≤ 0 ∀j ∈ {1, ...,J}) ≥ 1− ε. (1)

The main advantage of doing this is the fact that by construction any robust feasible solution
is also fulfilling the original probabilistic constraints. However, this is generally not true for
the reverse situation. There are solutions that meet the chance constraints and are not feasible
for the robust approximation. Therefore, the robust constraint is an inner approximation and
may be more conservative than the probabilistic inequality but solution techniques from robust
optimization can be applied. Additionally, the realizations of uncertainty for which a robust
solution is guaranteed to be feasible are known beforehand as elements of the uncertainty set.

If some form of duality holds, the derivation of an equivalent algorithmically tractable robust
counterpart is often possible using duality arguments, see [8] and [10]. Therefore, a feasible
solution for the chance constraint model can be computed by solving the tractable reformulation
of the robust approximation. Geometries commonly used for the uncertainty set are polyhedral
and ellipsoidal sets. For the application of convex duality (e.g. Fenchel duality), more general
convex uncertainty sets are also possible. For example, the combination of a robust linear
constraint and a polyhedral uncertainty set can easily be reformulated using duality for linear
optimization problems. For more details, we refer the reader to [29].

An additional question is how to construct uncertainty sets for the robust approximation in
order to obtain sufficient constraints for the chance constraints. With no prior knowledge of
the distribution, the uncertainty set can be estimated from data as proposed by [41]. The
procedure is based on the scenario approach from stochastic programming, see [15]. Hereby, a
certain number of samples is chosen randomly from the data set and the resulting uncertainty
set is determined such that it contains all drawn scenarios. If the number of drawn data samples
is sufficiently large, quality statements about the probability measure of the constructed set are
satisfied. It is possible to ensure that the uncertainty set has the correct size with respect to
the unknown probability distribution with a high confidence [17]. Likewise, the authors of [11]
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provide data-driven construction schemes for uncertainty sets that imply certain probability
guarantees under more specific assumptions on the distribution.

The OPF problem with uncertain parameters is a very active research area. Due to the nature of
the problem, two-stage stochastic models are predominantly used to protect against uncertain-
ties. The goal is to calculate an optimal network operating point (first-stage) that stays feasible
under uncertainty with a predefined probability. The nominal operating point is a here-and-
now decision before the uncertainty manifests. With chosen first-stage variables, wait-and-see
decisions have to react to any potential realization of uncertainty. The network reaction to
realizations of uncertain parameters is modeled in the second-stage and often contains chance
constraints. Due to the non-convexity of the nominal AC OPF, only approximate solutions as
in [20, 23, 52] can be achieved for a robust or stochastic treatment of uncertainties.
An essential assumption to handle optimization problems with unknown or uncertain para-
meters is that it is possible to solve the underlying nominal problem efficiently. This is why
the consideration of DC OPF under uncertainties is suitable and of great interest. These op-
timization problems are usually tackled by reformulating under concrete assumptions of the
underlying distribution function or using approximation techniques from stochastic program-
ming. We refer the reader to [12, 54]. In [60], the authors considered the application of so
called two-sided chance constraints to the DC OPF. This special class of chance constraints
ensure the feasibility of an inequality involving absolute values with a specific probability. They
assumed first and second order momentum information about the distribution and enforced the
two-sided chance constraint for the worst-case distribution. This belongs to the class of distri-
butionally robust optimization. They were able to provide an equivalent conic reformulation.
Their solutions could be calculated efficiently and were fairly stable to input parameters.

Networks with a large proportion of feed-in from renewable energy sources are particularly af-
fected by strong fluctuations. An excessively large feed-in can lead to an overload or even to a
failure of the network. These critical situations must be avoided. Therefore, curtailment of re-
newable power is used in practice to reduce the feed-in of renewable energy sources, maintaining
network stability and avoiding transmission line overloads. However, great care should also be
taken to ensure that no unnecessarily large amounts of energy are lost. Otherwise, power will
be wasted, potentially leading to compensation payments by the electricity network operators.
This concept has also been considered in several OPF models. Examples in the literature can
be found in [23, 26, 50, 53, 58]. There are two principal types of curtailment, which are usually
modeled by continuous decision variables or fixed parameters. The first and more common type
of curtailment uses output capacities, which limit the maximum feed-in. This limit cannot be
exceeded and any potential power production above the limit is cut off. The second type of
curtailment reduces feed-in by a constant. The produced energy is reduced by a fixed value re-
gardless of how high the feed-in amount is. Chance constraints in combination with curtailment
are usually tackled by sampling techniques from stochastic optimization already mentioned. To
the authors’ knowledge, the treatment of discrete curtailment decisions in this context has not
yet been studied in the literature.

In the next section, we will introduce the stochastic DC OPF and extend it to include the
possibility of discretely controlling the uncertain feed-in.

3 Power System Modeling under Uncertainty
We model the electrical power network as an undirected graph G = (N ,L) with node set N
and edge set L ⊆ N ×N . In the context of power system optimization, nodes are also called
buses and edges are also called (transmission) lines. Further, let N (k) ⊆ N denote the set of
adjacent nodes of k ∈ N . Without loss of generality, we assume that each bus is connected to a
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generation unit (generators) and is also supplied with uncertain power feed-in. Otherwise, the
energy production on a bus without generators is set to zero.

3.1 DC Optimal Power Flow

In the following, we introduce the DC approximation of AC optimal power flow as it is typically
studied in the literature. The aim in DC OPF is to compute the cost minimal production
and transportation of power through an electrical network respecting physical, operational and
technical constraints. The following Table 1 displays the notation used for variables and input
parameters. The model reads

Symbol Variable

PGk ∈ R generator output on bus k
θk ∈ R voltage angle on bus k
pkl ∈ R power flow on line (k, l)

Symbol Parameter

PDk ∈ R power sink/sources on bus k
bkl > 0 line susceptance of line (k, l)
PUk ≥ 0 uncertain feed-in on bus k
PG,min
k ∈ R lower generator bounds on bus k
PG,max
k ∈ R upper generator bounds on bus k
dmax
kl > 0 transmission limits of line (k, l)

Table 1: Notation for decision variables and input parameters

min
PG,θ,p

∑
k∈N

ck(P
G
k )

s. t. PGk + PUk − PDk =
∑

l∈N (k)

pkl ∀k ∈ N , (2a)

pkl = bkl(θk − θl) ∀(k, l) ∈ L, (2b)

PG,min
k ≤ PGk ≤ P

G,max
k ∀k ∈ N , (2c)

− dmax
kl ≤ pkl ≤ dmax

kl ∀(k, l) ∈ L, (2d)
PG, θ ∈ R|N |, p ∈ R|L|.

Decision variables are generator output PG ∈ R|N |, voltage angles θ ∈ R|N | and power flows
p ∈ R|L|. Equality constraints (2a)-(2b) model the active power flow, which is determined
by Kirchhoff’s first law and the power flow equations. The power on each node has to be
balanced. This means that on each node the active power production PGk + PUk ∈ R from
generators and renewables equals the demand PDk ∈ R plus the active power sent to adjacent
nodes

∑
l∈N (k) pkl ∈ R. The active power flow on transmission line (k, l) ∈ L is the product of

voltage angle differences θk − θl ∈ R and susceptance bkl > 0. The generator output PG can
be continuously controlled within the generator bounds (2c). The resulting power flows are not
allowed to exceed transmission limits, as stated in (2d). Further, we assume that there is a
reference node k̃ ∈ N with θk̃ = 0.
The objective modeling power generation cost is usually a separable linear or convex quadratic
function of PG. Therefore, (2) is a linear or convex quadratic program and can be solved
efficiently with standard techniques.

3.2 Modeling of Uncertainty

In practice, the power production PU is initially unknown. In addition renewable power, for
example, is subject to high fluctuations and is therefore an uncertain parameter. Based on
a network operating point that is computed by ignoring uncertainties, a sudden fluctuation of
renewable energy can lead to overloads in the electricity network. In the worst case, this can lead

8



to the failure of network elements owing to cascade effects. To prevent this, the model has to be
protected against such fluctuations, and individual feed-in units may have to be regulated. At
the same time, the TSO has to ensure that curtailment is as small as possible. In the following
we will include these considerations in the optimization model.
As in [12], we represent the uncertain feed-in as the sum of a nominal forecast value PF ∈ R|N |
and a random vector ω : Ω→ R|N | (defined on a probability space (Ω,F , P)) via

PUk = PFk + ωk ∀k ∈ N . (3)

We need to determine a nominal operating solution PG, θ, p that is feasible for the nominal
feed-in value PF (corresponding to ω = 0). The variables have to fulfill constraints (2a)-(2d)
with (3) and ω = 0. We require that there is a high probability that the network reaction
to fluctuating feed-in remains feasible. To model the network reaction we define duplicates
PG,ω, θω ∈ R|N | and pω ∈ R|L| of decision variables that can be adjusted, depending on the
realization of ω. Realizations of ω may lead to a changed distribution of energy in the network.
The generators then change their output to PG,ω in order to balance the total active network
power. The other state variables θω, pω are adjusted to ensure feasibility of the solution. In
the setting of a two-stage stochastic optimization problem, the variables PG, θ, p refer to first-
stage (or here-and-now) decisions. They must be decided for the nominal feed-in value (ω = 0),
before the uncertainty is revealed. For fixed first-stage variables, any realization of the uncertain
parameter ω leads to a reaction of the network by choosing optimal second-stage (or wait-and-
see) variables PG,ω, θω, pω.
In the context of OPF, adjustments in the second stage fulfill

PG,ω
k + PFk + ωk − PDk =

∑
l∈N (k)

pωkl ∀k ∈ N , (4a)

pωkl = bkl(θ
ω
k − θωl ) ∀(k, l) ∈ L. (4b)

The reaction of generator output PG,ω in an electrical network is given by the Automatic
Generation Control [14]. This adjustment policy defines how the generation units respond to
the total power imbalance Ω :=

∑
k∈N ωk induced by the realization of ω. Here, we follow the

modeling of [12]. To this end, the mismatch Ω is divided among all generators according to
participation factors αk ≥ 0, k ∈ N such that

∑
k∈N αk = 1. For each individual generator at

node k, the participation factor αk determines what proportion of Ω the generator compensates.
The second-stage generator output depends on the uncertainty and on the values of the first-
stage variables. It reads

PG,ω
k = PGk − αkΩ ∀k ∈ N . (5)

In the context of two-stage optimization under uncertainty, the question of how the individual
stages are coupled arises. This is often modeled by decision rules. The second-stage decisions
are written as a function of the uncertainty and first-stage variables as an ansatz function. Not
only can decision rules be used to model problem-specific relationships of different stages, they
can also be used as modeling simplifications to solve problems that would otherwise not be
algorithmically tractable. For (affine) linear decision rules, this functional relationship is linear
and so leads to algorithmically tractable reformulations. Therefore, (5) can be interpreted as
a special affine decision rule. The values for participation factors α can either be decided by
the optimizer, or may be fixed and given by the TSO. In short-term planning, they are often
fixed. If they can be decided by the optimizer, they are decided in the first-stage and integrated
into the set of here-and-now decision variables. For problems with a longer time horizon (e.g.
network expansion, generator design) the factors can indeed be used for optimization. In the
following sections, participation factors are considered as continuous first-stage variables.

The authors of [12] showed that second-stage variables PG,ω, θω, pω are uniquely determined
by (4)-(5). Hereby, θω

k̃
= θk̃ = 0 is assumed for a reference node k̃ ∈ N . For fixed first-stage
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variables, the authors proved the existence of a unique solution of equation system (4) for any
realization of ω. In the following section we will extend this result so that it also can be applied
to the curtailment model.

3.3 Modeling of Curtailment

So far, in (2) the full renewable power production is fed into the network. However, if the
fluctuations are too large, the network stability cannot be guaranteed for a nominal feed-in that
ignores uncertainties. In practice, if necessary, the feed-in is curtailed to a certain percentage
of the installed capacity P inst

k , k ∈ N . The installed capacity is the intended full-load sustained
energy production on each node. To do this, we introduce additional first-stage decision variables
βk ∈ Sk ⊂ [0, 1], k ∈ N , which we refer to as curtailment factors from the discrete set Sk of
curtailment options. In practice, sets with few discrete levels are common. Sets of such discrete
steps may be used are for example {0, 0.3, 0.6, 1} or {0, 0.1, ..., 0.9, 1} at each node. At a node
k ∈ N , the power fed into the network cannot exceed βkP inst

k . Any potential feed-in above this
value is cut off. This changes uncertain feed-in (3) to

PUk (βk,ωk) = min(PFk + ωk,βkP instk ) =

{
PFk + ωk if PFk + ωk ≤ βkP instk ,
βkP

inst
k otherwise.

To integrate curtailment into the two-staged modeling we split the curtailed feed-in into the
nominal part (ω=0) and a curtailed uncertain part.

Proposition 3.1. The curtailed uncertain feed-in PU
k (βk,ωk) can be rewritten as

PUk (βk,ωk) = min(PFk ,βkP instk )︸ ︷︷ ︸
curtailed forecasted value (nominal part)

+ hk(βk,ωk)︸ ︷︷ ︸
curtailed fluctuation (uncertainty)

,

where
hk(βk,ωk) := min(PFk + ωk,βkP instk )−min(PFk ,βkP instk ).

The introduced curtailment function hk is piecewise linear and increasing in ωk for every k ∈ N .
Rather like to Section 3.2, we next show that first-stage operating solution PG, θ, p together with
curtailment values βk ∈ Sk, k ∈ N are feasible for the nominal feed-in value min(PFk ,βkP instk )
(corresponding to ω = 0).
Realizations of the uncertainty ω lead to a power imbalance in the network. The total power
generation mismatch with curtailed feed-in fluctuation reads Ω̃ :=

∑
k∈N hk(βk,ωk), which

defines the second-stage generator output in the Automatic Generation Control scheme as

PG,ω
k = PGk − αkΩ̃ (6)

for every k ∈ N and fixed first-stage. The adjustment of voltage angles θωk and flows pωkl are
implicitly given as the solution of the power flow equations

PG,ω
k + min(PFk ,βkP instk ) + hk(βk,ωk)− PDk =

∑
l∈N (k)

pωkl ∀k ∈ N , (7a)

pωkl = bkl(θ
ω
k − θωl ) ∀(k, l) ∈ L. (7b)

For the reference angle node k̃ ∈ N , we assume that θω
k̃
= θk̃ = 0. Analogous to [12], we now

show that the second stage variables are uniquely determined by the assignment of first stages
and by realizations of ω.

Proposition 3.2. Second stage variables PG,ω, θω, pω are uniquely given by (6), (7) for fixed
values of first-stage decisions α,β,PG, θ, p and fixed realization of ω.
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Proof. Combining the equality constraints (7a) and (7b), we obtain the system

Bθω = PG,ω + PU − PD, (8)

where B ∈ R|N |×|N | with

Bk,l =


−bkl (k, l) ∈ L,∑
j∈N (k) bkj k = l,

0 otherwise.

Matrix B is the graph Laplacian for the graph G = (N ,L) with edges weighted by the vector
of line susceptances b ∈ R|L|. For a broader overview of the theory of such matrices, see [45].
It is known that for connected graphs G we have rank(B) = |N | − 1. As the reference node k̃
with θk̃ = θ̃k̃ = 0 is given and the sum of components on the right-hand side of the system (8)
equals zero, the solution θ can be given explicitly and is unique. Thus, there exists a matrix
B̃ ∈ R|N |×|N | such that

θω = B̃(PG,ω + PU − PD). (9)

The matrix B̃ can be calculated by striking row k̃ and column k̃ of B, inverting the resulting
submatrix and inserting a row and a column with zeros at the same index k̃, see [12].
To prove that the right-hand sides components add up to zero, we calculate∑

k∈N

(
PGk − αkΩ̃ + min(PFk ,βkP instk ) + hk(βk,ωk)− PDk

)
=
∑
k∈N

(
PGk + min(PFk ,βkP instk )− PDk

)
− Ω̃

∑
k∈N

αk +
∑
k∈N

hk(βk,ωk)

=
∑
k∈N

(
PGk + min(PFk ,βkP instk )− PDk

)
=
∑
k∈N

∑
l∈N (k)

pkl =
∑
k∈N

∑
l∈N (k)

bkl(θk − θl) = 0.

The last equality holds as every line appears in the summation twice with a different sign and
hence the summands cancel out.

Equation (9) can be rewritten by computing

θωl =
∑
k∈N

B̃lk
(
PG,ω
k + PUk − PDk

)
=
∑
k∈N

B̃lk
(
PGk − αkΩ̃ + min(PFk ,βkP instk ) + hk(βk,ωk)− PDk

)
=
∑
k∈N

B̃lk
(
PGk + min(PFk ,βkP instk )− PDk

)
+
∑
k∈N

B̃lk
(
−αkΩ̃ + hk(βk,ωk)

)
= θl +

∑
k∈N

B̃lk
(
hk(βk,ωk)− αkΩ̃

)
.

For fixed first-stage variables, (6) defines the reaction of PG,ω to any realization of the uncer-
tainty as a function of ω. Combining this with (9), the assignment of θω is given. Together with
equation (7b), the power flow reacting to ω can be computed. Since all second stage variables
are determined by the realization of the uncertainty, PG,ω, θω, pω are themselves random vari-
ables. Thus we can drop the structure of a two-stage optimization problem since no decisions
are made in the second stage. Ordinarily, from an algorithmic point of view this is easier to
handle than general two-stage stochastic problems as no additional optimization problems need
to be solved at the second stage.
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3.4 Chance Constrained DC Optimal Power Flow with Discrete Curtailment

By construction, generator output PG,ω
k and flows pωkl are random variables that depend on the

realization of the uncertainty ω and on the values of first-stage variables. We wish the automatic
generation control scheme to yield solutions that satisfy generator limits of type (2c) with a
probability of at least 1− ε1 ∈ [0, 1] as well as transmission capacities (2d) with a probability
of at least 1− ε2 ∈ [0, 1]. As in [12, 52], the parameter 1− ε1 for the generator bounds will
be chosen close to 1. The reason is that generator limits are usually impossible to exceed in
practice and a probabilistic two-stage model should prevent these violations.
We model this requirement by two joint chance constraints in order to guarantee network sta-
bility. This means that the desired compliance probabilities for all generators and transmission
limits are simultaneously met. As an alternative, one could also choose ε1 = ε2 or integrate
both set of constraints in one joint chance constraint. We could also think of using individual
chance constraints, as they are easier to handle from an algorithmic perspective. However, they
secure each line individually against failure. In contrast, from a practical point of view, the
usage of two joint chance constraints is much more appropriate, as it ensures that the entire
network is protected against overloading with a certain probability and ensures with an even
higher probability that the second-stage solutions do not violate generator bounds. Combining
all model elements of the previous sections, we formulate the joint chance constrained DC OPF
problem with discrete curtailment as

min
α,β,PG,θ,p

∑
k∈N

fk(P
G
k ,βk)

s. t. PGk + min(PFk ,βkP instk )− PDk =
∑

l∈N (k)

pkl ∀k ∈ N , (10a)

pkl = bkl(θk − θl) ∀(k.l) ∈ L, (10b)

PG,min
k ≤ PGk ≤ P

G,max
k ∀k ∈ N , (10c)

pkl ≤ dmax
kl ∀(k, l) ∈ L, (10d)

P
(
PG,min
k ≤ PG,ω

k ≤ PG,max
k ∀k ∈ N

)
≥ 1− ε1, (10e)

P (−dmaxkl ≤ pωkl ≤ dmaxkl ∀(k, l) ∈ L) ≥ 1− ε2, (10f)
αk ≥ 0 ∀k ∈ N ,

∑
k∈N

αk = 1,

α,PG, θ ∈ R|N |, p ∈ R|L|, βk ∈ Sk ∀k ∈ N ,

where PG,ω
k and pωkl are determined by (6), (7a) and (7b).

Constraints (10a)-(10d) state the feasibility of here-and-now decisions corresponding to the
nominal curtailed power feed-in. The chance constraints (10e) and (10f) ensure there is a high
probability of the network stability constraints are met even under fluctuation. The objective
should include the original production costs

∑
k∈N ck(P

G
k ) of (2). At the same time, we aim for

a minimal curtailment of discretely controllable units. This can be modeled with the minimiz-
ation of

∑
k∈N (1− βk)P instk . This ensures that the curtailment levels β are selected as high as

possible in order to curtail as little power as possible. If it is necessary to limit the feed-in, this
should be done in a cost minimal way. A weighting of these discrete steps is performed in our
model with the installed capacity at the considered network node. This results in a minimal
curtailment of the installed capacity.
Other choices of objective functions for optimization problem (10) can be made. A minimization
of the expected value for curtailment or other risk measures usually used in stochastic optimiz-
ation are possible. For example, the objective function

∑
k∈N max(0,PFk − βkP instk ) minimizes

the nominal curtailment of forecast feed-in PF . The disadvantage of such a function is that it
can lead to multiple cost optimal assignments for βk. In this example every feasible βk with
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βkP
inst
k ≥ PFk has the same objective value of 0 and cannot be further minimized. In order

to select the largest possible value for this type of adjustment, we decided to use objective∑
k∈N (1− βk)P instk . We use a weighting parameter λ ∈ [0, 1] to set up a function containing

both features, writing

fk(P
G
k ,βk) := λck(P

G
k ) + (1− λ)(1− βk)P instk

for all k ∈ R|N |.

Ordinarily, optimization problem (10) is algorithmically challenging. Even under concrete as-
sumptions for the probability distribution this problem would usually be nonlinear and non-
convex. Even testing feasibility of a solution cannot be done efficiently. The evaluation of
constraint (10e) or (10f) involves the multi-dimensional integration of random vectors. As an
additional difficulty, it contains decision-dependent uncertainty in from of discrete variables
that impact the realizations of uncertain parameters. Therefore, approximation techniques are
suitable for generating (approximate) solutions to this optimization problem.

In the next section, we will derive an algorithmically tractable reformulation for the robust
approximation.

4 Robust Approximation of the Chance Constrained OPF
The optimization problem (10) introduced in Section 3.4 cannot be solved easily. Some ap-
proximation techniques for joint chance constraints exist in the literature, e.g. scenario based
sampling approaches [57] or solving relaxations [4]. These methods often generate solutions
that are approximately feasible for the probabilistic constraints. The methodology we chose to
solve optimization problem (10) is the robust approximation of chance constraints, see [46]. The
probabilistic constraints (10e) and (10f) are replaced by a worst-case protection via robust con-
straints using uncertainty sets U1,U2 ⊆ R|N |, respectively. For each joint chance constraint, we
use a separate uncertainty set because the probability levels can differ (ε1 < ε2). To guarantee
the validity of the resulting approximation, we require that

P(ω ∈ U1) ≥ 1− ε1, P(ω ∈ U2) ≥ 1− ε2. (11)

The robust approximation of (10) is given by the following robust optimization problem

min
PG,α,β,θ,p

∑
k∈N

fk(P
G
k ,βk)

s. t. PGk + min(PFk ,βkP instk )− PDk =
∑

l∈N (k)

pkl ∀k ∈ N ,

pkl = bkl(θk − θl) ∀(k, l) ∈ L,

PG,min
k ≤ PGk ≤ P

G,max
k ∀k ∈ N ,

pkl ≤ dmax
kl ∀(k, l) ∈ L,

max
ω∈U1

PG,ω
k ≤ PG,max

k , min
ω∈U1

PG,ω
k ≥ PG,min

k ∀k ∈ N , (12a)

max
ω∈U2

pωkl ≤ dmaxkl , min
ω∈U2

pωkl ≥ −dmaxkl ∀(k, l) ∈ L. (12b)

αk ≥ 0 ∀k ∈ N ,
∑
k∈N

αk = 1,

PG, θ ∈ R|N |, p ∈ R|L|, βk ∈ Sk ∀k ∈ N ,

where PG,ω
k and pωkl are determined by (6), (7a) and (7b).

Because of implication (1) one can verify that under assumption (11) every feasible solution of
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this robust optimization problem is also feasible for (10). This is because a robust solution will
stay feasible for every possible fluctuation from the constructed uncertainty sets. Therefore, the
probability of fulfilling these constraints is given by the probability measure of the uncertainty
sets. By construction via (11), they have a sufficient size. An additional advantage of a robust
approximation is that one knows the realizations of uncertainty for which robust solutions are
guaranteed to be feasible as the elements of the uncertainty set.
To note, there may be solutions that satisfy the chance constraints (10e) and (10f) that are,
however not included in the feasible set of the robust approximation. For this reason, the ro-
bust approximation belongs to so-called safe (or inner) approximation techniques for solving
chance constrained optimization problems. The feasible set of problem (10) is reduced, while
the required probability properties are preserved. In some cases, the conservatism of the solu-
tions increases when compared to the original probabilistic formulation. The solution quality
strongly depends on the uncertainty sets U1, U2 satisfying (11). The larger the set, the stronger
the reduction of the feasible set, which can also lead to unnecessarily conservative and costly
solutions. To avoid this, attention must be paid to the construction of uncertainty sets. Ap-
propriate choices leading to only a mild increase in conservatism will be addressed in the next
section.

4.1 Construction of Uncertainty Sets from Historical Data

An obvious question that must be addressed is how to construct appropriate uncertainty sets
U ⊆ R|N | for a given probability level 1− ε ∈ [0, 1]. The uncertainty sets must be large enough
to guarantee the claimed probabilistic assumption

P(ω ∈ U) ≥ 1− ε. (13)

At the same time, it is necessary to ensure that the sets are not unnecessarily large. In this
section, we explain two means of accomplishing this task for the case where historical data is
available. Under concrete assumptions for the distribution of an uncertain vector ω, uncertainty
sets can be computed with classical confidence regions or with alternative statistical methods
(See, e.g., [3, 11, 43]).
We do not make specific assumptions about the probability distribution of the uncertain vector
ω with realizations in R|N |. In order to achieve an efficient reformulation, we fix the geometry
of the sets for the robust approximation to box uncertainty sets

U = [l,u] ⊆ R|N |,

where l,u ∈ R|N | ∪ {±∞} denote the lower and upper bounds of the box, respectively. This
special geometry enables us to derive an equivalent linear reformulation for the robust approx-
imation of the chance constrained DC OPF (10). In the next two subsections, we explain two
different methodologies to construct such an uncertainty set U for a given probability. These
construction methods can also be applied for more general convex geometries of uncertainty
sets. Polyhedral or ellipsoidal sets are most common in robust optimization. A fixed geometry
restricts the modeling possibilities and may lead to more conservative robust solutions as in
comparison to other geometries. However in this work, we focus on box uncertainties because
this geometry is suitable for the further computations in Section 4.2.

4.1.1 Scenario Approach for the Construction of Uncertainty Sets

First, we apply the idea of [41] and formulate the estimation of a convex uncertainty set as
an auxiliary probabilistic optimization problem. For this problem with chance constraints we
apply the scenario approach [15] from stochastic programming. The latter replaces chance con-
straints by finite constraints given by samples drawn randomly from the unknown distribution.
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Instead of ensuring feasibility with a certain probability, the resulting scenario program enforces
feasibility for all drawn realizations of uncertainty. If the number of samples is sufficiently large,
quality statements can be made about the computed uncertainty set.
We want to mention that one can think of associating the scenario approach directly to the
chance constrained model (10). Unfortunately, this leads to very large mixed-integer optimiz-
ation problems as the size of the scenario program grows linear with number of data samples.
In contrast, the reformulated robust approximation can be solved efficiently. Therefore, the
association of the scenario approach to the robust approximation is preferable in our setting.

The auxiliary optimization problem in its general form consists of a chance constraint modeling
the enclosure of a probability mass of at least 1− ε ∈ (0, 1) via constraint (13). At the same
time, this problem should aim for an uncertainty set of minimal size. The auxiliary problem is
given schematically by

min
U⊆R|N |

size(U)

s.t. P(ω ∈ U) ≥ 1− ε,

where function size with size(U) ∈ R models the size of the uncertainty set (e.g. volume,
diameter, perimeter). In order to apply the scenario approach, the uncertainty set must be
parameterized in finite dimensional variables. Furthermore, the objective function and the
constraints modeling “ω ∈ U” involved in the chance constraint must be convex, see Theorem
1 in [41]. The scenario approach can be used to compute more general convex uncertainty
sets if the auxiliary problem fulfills these convexity assumptions and works also for possibly
unbounded random variables. To estimate box uncertainties U = [l,u] ⊆ R|N |, we use the
probabilistic optimization problem

min
l,u∈R|N |

∑
k∈N

(uk − lk) (15a)

s.t. P(l ≤ ω ≤ u) ≥ 1− ε. (15b)

To control the set’s size, we minimize the sum of interval lengths in every dimension. In contrast,
if minimization of the box volume were used instead, this would lead to a non-convex objective.
In this case, the scenario approach is no longer applicable. Although the solution of (15) does
not necessarily minimize the box volume, the solution of the following scenario program does.
This is why this choice of objective is suitable. We further explain this after introducing the
scenario program.
Assume N > 0 samples are drawn randomly from an unknown probability distribution. Instead
of (15b), in the scenario approach we must ensure that these N scenarios are included in the
uncertainty set. The resulting scenario program for computing U = [l,u] is given by

min
l,u∈R|N |

∑
k∈N

(uk − lk) (16a)

s.t. l ≤ ωi ≤ u ∀i = 1, . . . ,N . (16b)

The solution of this optimization problem can be written explicitly as (l∗,u∗), where l∗k :=
mini=1,...,N (ωik) and u∗k := maxi=1,...,N (ωik) for every vector component k. The set U∗ := [l∗,u∗]
also minimizes the volume over all sets enclosing samples ωi, i = 1, ...,N . Although the solution
of problem (15) generally does not calculate boxes with minimal volume, this does results for
the scenario expanded problem (16).
If N is large enough, probabilistic guarantees can be made. The next Theorem adapted from [17]
is valid for more general chance constrained optimization problems involving convex functions.
We formulate the mathematical statement specifically applied to (15) and (16).
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Theorem 4.1 (Scenario Approach, see [17]). Let 1− ε ∈ (0, 1). The optimal solution (l∗,u∗)
of (16) fulfills the chance constraint of (15b) with a probability of at least 1− δ if N is chosen
such that

2|N |−1∑
j=0

(
N

j

)
εj(1− ε)N−j ≤ δ.

The necessary number of samples N for a given confidence level 1− δ is given implicitly. An
explicit sufficient condition was derived in [2] and reads as

N ≥
⌈1
ε

e

e− 1

(
2|N | − 1 + ln 1

δ

)⌉
. (17)

4.1.2 Empirical Quantiles

A heuristic way to construct uncertainty sets from historical data is to use the empirical dis-
tribution. In order to do this, we select (1− ε) · 100% of all samples in the multi-dimensional
data set and enclose them by a smallest box U = [l,u] ⊆ R|N | that contains all these samples.
The corresponding samples are chosen as the nearest neighbours to the nominal scenario 0 ∈
R|N | measured in the infinity norm ‖ · ‖∞ of R|N |. Different geometries and vector norms are
also applicable here. It is only necessary to make sure that the uncertainty set contains the
scenarios. At the same time, the set should be constructed to be as small as possible to avoid
unnecessarily conservative solutions.
Although we cannot make quality statements about the size of the uncertainty for an unknown
distribution, the resulting uncertainty set has an empirical probability measure of 1− ε with
respect to the empirical distribution function induced from the historical data. According to the
law of large numbers, the empirical distribution function converges towards the actual function
when the number of data points goes to infinity, and so does the probability measure of the
uncertainty set computed with the nearest neighbour algorithm.

4.2 Equivalent Reformulation into Tractable Robust Counterpart

In this section, we introduce an algorithmically tractable reformulation for constraints of the
form (12). To do this, we first derive an equivalent reformulation for decision-dependent box
uncertainties with discrete linear decision dependencies. We show afterwards that problem (12)
fits in this setting with box uncertainties and give the resulting reformulation. Since the discrete
curtailment of the feed-in restricts possible realizations of uncertainty, the robust optimization
problem can be rewritten with decision-dependent uncertainty sets. The box bounds can be
expressed in linear dependence of the curtailment levels. In this application, curtailing feed-in
in discrete steps reduces the uncertainty.

4.2.1 Reformulation for General Endogenous Box Uncertainties

Let y ∈ Y ⊂ Rn1 denote bounded continuous variables and z ∈ Z ⊂ Rn2 denote bounded
discrete variables of a mixed-integer linear optimization problem with n1,n2 ∈ N. We consider
decision-dependent robust constraints as semi-infinite constraints that we subsequently rewrite
as a finite maximization problem:

a(y, z)>ω− b(y, z) ≤ 0 ∀ω ∈ {ω ∈ Rn | l̃(z) ≤ ω ≤ ũ(z)}

⇔

max
ω∈Rn

a(y, z)>ω− b(y, z)

s. t. l̃(z) ≤ ω ≤ ũ(z)

 ≤ 0, (18)
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where a, b : Rn1 ×Rn2 → R
n are linear in both arguments and l̃, ũ : Rn2 → R

n are linear
functions. Further, we assume that l̃(z) ≤ ũ(z) for all z ∈ Z, as otherwise the uncertainty set
could be empty. For each fixed assignment of the discrete variable, this forms a classical robust
constraint with a box uncertainty set. Therefore, linear duality applies to the maximization
problem. Further modeling and similar reformulations of robust constraints with decision-
dependent uncertainty can be found in [47] and [38]. However, it is generally not guaranteed in
these publications whether the reformulations are equivalent. Therefore we clarify this issue in
our setting with the next theorem and following remarks.

Theorem 4.2. Assume that a is bounded from above, i. e. there exists an a ∈ Rn such that
a(y, z) ≤ a holds component-wise for all feasible y ∈ Y ⊂ Rn1 and z ∈ Z ⊂ Rn2. Then, robust
constraints of the form (18) are equivalent to

(ũ(z)− l̃(z))>ζ + a(y, z)> l̃(z)− b(y, z) ≤ 0, (19a)
ζ ≥ a(y, z), (19b)
â ≥ ζ ≥ 0, (19c)

where ζ ∈ Rn denotes a (dual) vector and â := max(a, 0) ∈ Rn.

Proof. As a first step, we reformulate the maximization problem on the left-hand side of (18)
by introducing shifted variables ω̃ = ω− l̃(z) ∈ Rn. We then obtain the optimization problem

max
ω̃∈Rn

a(y, z)>(ω̃+ l̃(z))− b(y, z)

s. t. 0 ≤ ω̃ ≤ ũ(z)− l̃(z).

Introducing the dual variable ζ ∈ Rn, the dual program reads as

min
ζ∈Rn

(ũ(z)− l̃(z))>ζ + a(y, z)> l̃(z)− b(y, z)

s. t. ζ ≥ a(y, z),
ζ ≥ 0.

As ũ(z)− l̃(z) ≥ 0 for all z, the optimal solution of the dual program is ζ∗ = max(a(y, z), 0).
The equality holds component-wise. We use the upper bound a of a(y, z) to derive an upper
bound for the optimal solution ζ∗. It holds that

ζ∗ = max (a (y, z) , 0) ≤ max(a, 0) = ã

for all y, z. Hence, we can insert this bound in the dual optimization problem without cutting off
the optimal solution. The minimum can be dropped because this does not affect the inequality
of (18).

To retrieve a tractable reformulation, constraints (19a)-(19c) need to be linearized. This can be
accomplished using mixed-integer linear constraints. Due to the linearity of l̃ and ũ, the term
(ũ(z)− l̃(z))>ζ can be rewritten as

(ũ(z)− l̃(z))>ζ =
(
Aũ −Al̃)>z + (bũ − bl̃)

)>
ζ =

n2∑
i=1

n∑
j=1

Kijziζj +
n∑
j=1

kiζi

for some Aũ, Al̃ ∈ Rn2×n, bũ, bl̃ ∈ Rn and some constants Kij , ki ∈ R for i ∈ {1, ...,n2}
and j ∈ {1, ...,n}. This contains bilinear products ziζj of the discrete variable z and the
continuous variable ζ. Such bilinear products can be equivalently linearized with mixed-integer
linear constraints if the continuous variable is bounded. In Theorem 4.2, we are able to prove
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bounds for the continuous dual variable. To carry out the linearization one substitute the
discrete variable as sum of auxiliary binaries combined with special ordered sets constraints (of
type one). For the resulting bilinear terms one can apply the McCormick inequalities which
are known to be exact in this setting. For more details about the linearization of bilinear
expressions involving discrete variables, see [13] and [55]. Due to the linearity of the bounded
term a(y, z), the expression a(y, z)> l̃(z) can also be linearized. Hence, a full linearization of
(19) with mixed-integer linear constraints can be carried out.
Theorem 4.2 is used in the next section to reformulate the robust optimization problem (12).

4.2.2 Reformulation for Robust DC OPF

We now show that (12) can be written as a robust optimization problem with decision-dependent
uncertainties. We then use Theorem 4.2 to obtain an equivalent algorithmically tractable re-
formulation.
The robust constraints in (12) are given by

max
ω∈U1

PG,ω
k ≤ PG,max

k , min
ω∈U1

PG,ω
k ≥ PG,min

k ∀k ∈ N ,

max
ω∈U2

pωkl ≤ dmaxkl , min
ω∈U2

pωkl ≥ −dmaxkl ∀(k, l) ∈ L,

where PG,ω
k and pωkl are determined by (6), (7a) and (7b). In Section 3.3, we derived explicit

formulas for PG,ω, pω given by

PG,ω
k = PGk − αk

∑
k∈N

hk(βk,ωk),

pωkl = bkl(θ
ω
k − θωl ),

θωk = θk +
∑
l∈N

B̃kl

(
hl(βl,ωl)− αl

∑
m∈N

hm(βm,ωm)
)

.

To see that every robust constraint in (12) can be written in form of (18), we set y = (PG,α, θ)
and z = β. Further, we define the functions a, b : R3|N | ×R|N | → R

|N | corresponding to
Table 2 for each robust constraint, where 1 ∈ R|N | denotes a vector consisting of ones, b̆kl =
bkl
(
B̃·,k − B̃·,l

)
, B̆kl = bkl1

(
B̃·,k − B̃·,l

)> with B̃ being the inverted graph Laplacian as in
Section 3.3.

constraint a(y, z) b(y, z)

generation (12a) lower bound αk1 PGk − P
G,min
k

generation (12a) upper bound −αk1 PG,max
k − PGk

transmission (12b) lower bound B̆klα− b̆kl bkl(θk − θl)− dmax
kl

transmission (12b) upper bound b̆kl − B̆klα dmax
kl − bkl(θk − θl)

Table 2: Decision-dependent constraints

Using these definitions, the robust constraints (12a) and (12b) can be written in the form of
max
ω∈R|N |

∑
k∈N

ak(y, z)hk(βk,ωk)− b(y, z)

s. t. l ≤ ω ≤ u

 ≤ 0, (20)

To see that these constraints are decision-dependent in the sense that the uncertainty set changes
with decisions made in advance as in (18), we derive an equivalent reformulation of (20).
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Lemma 4.3. Robust constraints as in (20) can be restated equivalently as
max
ω∈R|N |

a(y, z)>ω− b(y, z)

s. t. l ≤ ω ≤ u
l̂(β) ≤ ω ≤ û(β)

 ≤ 0, (21)

where l̂k(β) = min(lk + PFk − βkP instk , 0) and ûk(β) = max(βkP instk − PFk , 0) for k ∈ N .

Proof. We need to show that for every fixed curtailment option β and for all components k ∈ N ,
the sets

M1 := {hk(βk,ωk) | lk ≤ ωk ≤ uk} ⊆ R,
M2 := {ωk | l̂k(β) ≤ ωk ≤ ûk(β) ∧ lk ≤ ωk ≤ uk} ⊆ R

are equal. Since hk(βk, ·) is monotonically increasing for all fixed βk, it holds that

M1 = {ωk | hk(βk, lk) ≤ ωk ≤ hk(βk,uk)}.

For the following steps, we recall that hk(βk,ωk) = min(PFk +ωk,βkP instk )−min(PFk ,βkP instk ).

If βkP installk − PFk ≤ lk ≤ 0 ≤ uk, then M1 = {ωk | 0 ≤ ωk ≤ 0} =M2.
If lk ≤ βkP instk − PFk ≤ 0 ≤ 0, then M1 = {ω | lk − βkP instk + PFk ≤ ωk ≤ 0} =M2.
If lk ≤ 0 ≤ βkP instK − PFk ≤ uk, then M1 = {ωk | lk ≤ ωk ≤ βkP instk − PFk } =M2.
If lk ≤ 0 ≤ uk ≤ βkP instk − PFk , then M1 = {ωk | lk ≤ ωk ≤ uk} =M2.

Defining l̃(β) = max(l, l̂(β)) and ũ(β) = min(u, û(β)) component-wise, it is apparent that (21)
and (18) are equivalent. Lastly, to obtain a tractable reformulation of the robust DC OPF
problem (10), Theorem (4.2) needs to be applied to (21).

The terms l̃(β) and ũ(β) only contain linear, minimum and maximum expressions depending on
a discrete variable. Therefore, these terms can be linearized by introducing auxiliary variables
and additional linear constraints. Combining duality and linearization techniques results in
a mixed-integer reformulation of (12) with linear constraints. This problem formulation can
ultimately be solved with a standard MIP solver, e.g. Gurobi [30]. As result of the optimization
we obtain a global optimal solution to (12).

In the next section we test our model and show its practical suitability by means of numerical
tests.

5 Experimental Results
For our numerical experiments we calculate robust curtailment strategies for different test ex-
amples and analyze their quality. The basis for this is real-world data from the network operator
N-ERGIE GmbH (NNG) and the German Weather Service (DWD). We test our optimization
models on selected benchmark instances and on an excerpt of the real distribution network of
NNG. In this section we first explain the available data and how we extract information for
our optimization approach. We then calculate uncertainty sets from this data. Subsequently,
we consider different power grids and calculate robust solutions for them. An analysis of these
results shows the practical applicability of our methods.
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5.1 Generation of Uncertainty Sets

Our experimental results are based on historical solar feed-in data covering the months May
to July 2015-2018 between 8 a.m. and 6 p.m., provided by the electrical distribution network
operator N-ERGIE Netz GmbH, and the corresponding radiation forecast data, provided by the
Deutscher Wetterdienst (DWD). The feed-in data consists of quarter-hourly averaged produced
solar power (in MW) for 11 different grid nodes. All feed-in values are given relative to the
installed capacity. For each feed-in value at every node, we match the corresponding radiation
forecast (in kJ/m2). To obtain data on solar feed-in forecast values and errors for parameters in

Figure 1: Obtaining feed-in forecast error data for a feed-in point with a solar radiation forecast
of 275 kJ/m2 (left), resulting scatter plots for three nodes (right).

(3), we use a linear regression model, which we fit to the data from the year 2015 for each node
independently. For a given solar radiation forecast, the regression delivers a feed-in forecast
value PFk for each node k. To generate forecast error data, we use all data points in the years
2016 to 2018 with a maximum solar radiation forecast deviation of 100 kJ/m2 for every node
and take the difference of the corresponding feed-in values and the solar feed-in forecast by the
regression model.

Figure 1 shows an example of the procedure for obtaining solar feed-in forecast error data for
one feed-in point, as well as the resulting scatter plots for three grid nodes. The graph on the left
shows that solar radiation forecast of DWD and measured solar feed-in are linearly correlated.
In order to simulate a sunny day in the numerical tests, we choose the solar radiation at 275
kJ/m2. The linear regression model yields a certain feed-in forecast PF for this value, marked
by the dotted line. To obtain samples for the fluctuation ω, we calculate the distance from
measured points to PF . This results in the middle picture of the scatter plot on the right hand
side. This procedure is performed for all 11 solar feed-in nodes. From the graph on the right
hand side it can also clearly be seen that our data is not normally distributed. Therefore, this
assumption so frequently made in stochastic optimization cannot be used.

We calculate uncertainty sets for the robust approximation of chance constraints using the scen-
ario approach from Section 4.1.1. This method depends on randomly drawn samples and every
usage of the scenario approach can result in a slightly different uncertainty set. For our numer-
ical results, we use the average uncertainty set resulting from applying the scenario approach
100,000 times. Thus our numerical results are reproducible because the average uncertainty
set no longer changes. In addition, we determine empirical uncertainty sets respective to the
empirical distribution given by the data set by finding the necessary number of nearest neigh-
bours to the nominal scenario 0 ∈ R|N | in the infinity norm and enclosing them with a box as
described in Section 4.1.2.
Figure 2 shows the box measure of such calculated uncertainty sets for different probability
levels 1− ε. In practice, a security probability of about 90% is usually required.The size is com-
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Figure 2: Size and number of drawn samples for calculated uncertainty sets with varying security
levels (1− ε) for the scenario approach with δ = 0.01 and empirical uncertainty sets

puted by counting the number of scenarios inside the set, relative to all data points. Therefore,
the size of uncertainty sets shown in Figure 2 equals the empirical probability measure. The
amount of data after filtering for a solar radiation forecast of 275 kJ/m2 as shown in Figure
1 is about 4000. In addition, the number of data points required for the confidence level of
1− δ = 0.99 for the scenario approach is displayed. The confidence level 1− δ describes the
probability that the number of samples drawn for the scenario approach is sufficient to determ-
ine a correct uncertainty set, see Theorem 4.1.
It can be seen that the scenario approach generates larger uncertainty sets than the nearest
neighbour algorithm. In return, the scenario approach provides quality statements that must
be paid in the form of larger sets. For small probability levels, the scenario approach is much
more conservative in the determination of uncertainty sets corresponding to the resulting box
size. Thus, for a required security of 20%, it generates a box measure of more than 80%. This is
mainly due to the high required confidence probability of 99%. However, one can also see from
this graph that the difference between the two box measures becomes smaller as the required
security level increases. From a practical point of view, probability levels greater than 80% are
more relevant than smaller values. According to equation (17), the number of samples that
are sufficient for the scenario approach increases proportionally to 1

ε . But relative to the total
amount of data points, this number is comparatively small. Even for a desired protection with
probability of 90%, less than 20% of all samples (about 800) have to be chosen.

5.2 Robust Curtailment on Electricity Networks

More important than the size of the computed uncertainty sets is the quality of solutions
obtained by the robust approximation using these sets by solving (12). For all tests we use the
solar feed-in data as previously described, which is real data obtained for a realistic network
topology for which we will evaluate our methods later in this section.

In addition to the real network below, we perform numerical experiments on three instances
from the NESTA test case archive [22]: case9-wscc–api, case39-epri–api, case118-ieee–api. We
considered Active Power Increase (api) instances because they are constructed with binding
transmission line capacities. Other instances often contain very high or no transmission limits.
Since we robustify the DC OPF to avoid overload, these instances are already robust. More
network manipulation would be necessary to generate additional suitable test cases. We choose
these three instances in particular because they belong to different size classes and have linear
generator production costs. Results for additional topologies would be comparable because for
every instance we need to use the same solar feed-in data.

The solution approach was also tested on a real subnetwork of the N-ERGIE (NNG) Netz GmbH
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distribution network, together with its corresponding real solar feed-in data.
The codes are written in the Python language with Gurobi [30] as a MIP solver. For all
experiments, we used a 64-bit computer with Intel Corei4 CPU 3.50 GHz processor and 32 GB
RAM. These results are presented in a subsequent section.

We choose βk ∈ {0, 0.3, 0.6, 1} as the set of curtailment options. These are the common cur-
tailment levels used by NNG for the feed-in management of solar power. We implement these
discrete variables as sum of auxiliary binaries combined with special ordered set constraints of
type one. In our numerical tests we fix the probability level 1− ε1 = 0.99 for the probabilistic
generator constraints as the violation of generator limits is usually impossible in practice and
should be avoided in the model. This parameter was not set to 1 because the scenario approach
only works for probability levels 1− ε < 1. The constraints we focus on in our numerical ex-
periments are transmission limits (10f) affected by parameter ε2. For the scenario approach,
we again set the confidence level 1− δ = 0.99. We omit tests with varying confidence level.
This would lead to smaller uncertainty sets, but the quality of these sets also decreases. There
would no longer be a 99% confidence probability that the calculated solutions meet the chance
constraints.

To weight generator costs as approximately similar to curtailment costs, we choose a heuristic
value for the cost weighting parameter λ. Full curtailment of all solar plants should be as
expensive as the same amount of power produced by generators, i. e. λ

∑
k∈N ck(P

total/|N |) =
(1−λ)P total, where P total =

∑
k∈N P

inst
k . Further experiments showed that the choice of λ only

affects our results for λ = 0 and λ = 1. For these values the solutions are not useful. Either
generator production costs or curtailment costs are ignored. This leads to unrealistic solutions
in practical terms. For the considered instances the weighting factor is always approximately
λ ≈ 0.6. However, the following results turn out to be independent of this parameter as long as
0 < λ < 1.

The instances from the NESTA test case archive do not yet contain any solar feed-in. To ex-
amine the effectiveness of our methods, we add solar plants to some network nodes. Of course,
for the NNG network it is not necessary to add additional solar feed-in because the solar data
was measured in this network.
Based on our data, we scale the installed solar power such that the total solar feed-in forecast
equals a certain percentage of the total demand. We use a scaling factor γ > 0 such that∑
k∈N p

F
k = γ

∑
k∈N p

D
k . Computational experiments show that a good choice for the demon-

stration of numerical results for the NESTA instances is γ = 1.5 and for the NNG network is
γ = 2.5. It turns out that smaller utilization than the chosen values (e.g. γ = 1) leads to no
curtailment and no overload. Larger values for γ result in critical network situations where a
complete curtailment of feed-in can be necessary. We thus do not report details about these
alternate results.
We add two solar plants in the 9-bus instance and 11 solar plants in the other two benchmark
instances, evenly distributed among the nodes.

To investigate the quality of solutions of (12), we calculate the objective value of the robust
formulation relative to the nominal problem (1− ε2 = 0) and an empirical constraint satisfaction
probability (or adherence) by Monte Carlo experiments counting samples from the data set not
leading to any constraint violation. The relative cost comparison of the robust solution to the
nominal one can be interpreted as the cost of robust safe approximation. Also the optimal
solution of the chance constraint optimization problem would lead to more costly solutions in
comparison to the nominal problem. Since we cannot calculate this solution, we compare the
result of the robust safe approximation with the nominal solution.

The left hand side of Figure 3 shows the percentage cost increase relative to the nominal solution
for different probability levels. On the right side, we see the calculated empirical adherence
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Figure 3: Objective value of the robust formulation relative to the nominal problem (left),
empirical security level (right) for uncertainty sets calculated by the scenario approach and
empirically for different values of ε2 for the 9-bus, 39-bus and 188-bus instances.

probabilities of the robust solutions. These are calculated by hand by counting the number of
scenarios which does not lead to an overload for the robust solution. Every row belongs to one
of the three benchmark instances. Every plot displays the results for the scenario approach and
for empirical uncertainty sets.
Considering the 9-bus network, one can see that the scenario approach for small security levels
generates slightly more costly solutions. However, above the probability of 0.4, solutions using
the empirical uncertainty set are more expensive. However, the cost increases are very small
for this test example. Even in the case of a 99% protection, the solutions are only about 1%
more expensive than the nominal solution. Looking at the profile of the empirical probability
for transmission limit adherence, the conservatism of the scenario approach for small security
levels is again striking. The uncertainty sets calculated by this approach lead to very robust
solutions in comparison to the empirical set. But here again, the trend is reversed with a
desired probability level greater than 0.50 that is also more realistic in practical applications.
The next two rows, which consider the 39-bus and 118-bus instances, look similar. The scenario
approach starts more conservatively regarding costs and empirical protection for small desired
adherence probability. From the practically relevant required security levels of 0.9 and above,
no significant difference in performance can be seen between the two uncertainty sets.
The graphs on the right hand side indicate that the scenario approach leads to solutions that
are protected against uncertainties. This is also accompanied by the size of the uncertainty
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quantity considered in Figure 2. For higher levels of security, the difference in adherence is no
longer significantly large. The non-monotonic behavior of the empirical adherence probability
is explained as no guarantees can be made for samples outside the uncertainty set. The cost
trend is similar. For low security levels the scenario approach leads to more expensive solutions.
However, the difference decreases with increasing security levels. In some cases the difference is
reversed.
In conclusion, the results show that the scenario approach for the considered instances and
the underlying database is a good choice. Although larger uncertainty sets are calculated on
average, they are well suited for robust approximation and generate good solutions especially
for practical relevant values for 1− ε2. To produce these results, a mixed-integer optimization
problem was solved for each network and each security level. The computing times depend
strongly on the network size, but vary slightly for different security levels. The computing
times are very low. Indeed, the average computation times for the individual examples in
seconds are 0.03s (9-bus), 85.8s (39-bus) and 1143.7s (118-bus), with a maximal run time of
0.03s (9-bus), 140.4s (39-bus) and 2393.6s (118-bus).

Results for Historical Data and a Realistic Electricity Network The following nu-
merical results consider the real-world distribution network of the N-ERGIE Netz GmbH. The
34-bus subnetwork of the N-ERGIE Netz GmbH slightly differs from the previous test instances.
This network contains (slack-) generators on boundary nodes (denoted with + in Figure 4). On
these nodes it is possible both to insert power into the network and to extract power from it.
There are no costs affiliated with these interactions. Hence, there are no generator production
costs and different values for the cost weighting parameter λ result in equivalent objective func-
tions. The presented results are therefore identical for λ ∈ [0, 1). For λ = 0, the results are not
realistic due to a missing objective. Moreover, the participation factors are fixed values given
by the TSO (α31 = α34 = 0.05, α32 = α33 = 0.45). Symbol ∗ in Figure 4 indicates the position
of solar feed-in points. We vary the utilization factor γ and observe the relative curtailed power

Figure 4: Sketch of N-ERGIE subnetwork Figure 5: Varying utilization paramater

in Figure 5 for a security level of 0.9. Naturally, the amount of curtailed capacity increases in
proportion to the amount of power produced. It can be observed that the quality of solutions
produced using the scenario approach is similar to those obtained using empirical uncertainty
sets. On average, the scenario approach results in an curtailment capacity increase of about
13% to the non-robust solution. However, the solutions generated by empirical uncertainty sets
differ from this by only 0.06% curtailed capacity.

Finally, we compare as in Figure 3 the quality of solutions varying 1− ε2 while γ = 2.5 via
Monte Carlo simulation. In Figure 6 the same characteristics can be observed as in Figure 3.
To calculate these results, again the run times are very small, on average 1.4s with a maximal
run time of 3.0s. Solving each MIP took about the same amount of time.
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Figure 6: Objective value of the robust formulation relative to the nominal problem (left),
empirical security level (right) for uncertainty sets calculated by the scenario approach and
empirically for different values of ε2 for the N-ERGIE instance.

For this real-world instance, the scenario approach is also a high-quality method to generate
uncertainty sets for the robust approximation. Due to the short computing times, our meth-
odology can also be used to optimize larger real-world networks. For our networks, the cost
increase due to the conservatism of the robust approximation is relatively small for realistic
values of 1− ε2.

Overall System Reliability If one is interested in a robust approximation for the probab-
ilistic DC OPF (10) wit one joint chance constraint

P

(
PG,min
k ≤ PG,ω

k ≤ PG,max
k ∀k ∈ N ,

−dmaxkl ≤ pωkl ≤ dmaxkl ∀(k, l) ∈ L

)
≥ 1− ε, (22)

instead of (10e) and (10f) to ensure a overall system reliability of at least 1− ε ∈ (0, 1), one has
to construct only one uncertainty set U ⊆ R|N | with P(ω ∈ U) ≥ 1− ε. The robust approxim-
ation results in the problem (12) with U = U1 = U2 and can again be equivalently reformulated
and solved as a tractable mixed-integer linear problem with techniques presented in Section 4.2.
However, the results in our numerical experiments do not change significantly for this setting.
The cost of robust protection and the empirical adherence probability is exemplarily displayed
in Figure 7 for the NESTA instance case9-wscc–api and varying probability level 1− ε for the
one joint probabilistic constraint. In comparison to the plots in Figure 3 about this testcase
for two joint chance constraints (with 1− ε1 = 0.99), one can observe very similar character-
istics although the robust solutions for the problem with one chance constraint are slightly less
conservative. One potential reason is that the robust solutions in the considered instances have
binding transmission limits and they are more safety-critical than the generator bounds. The
second-stage variables for the power production from generators violate the operational limits
only in extreme cases. Therefore, the impact of integrating generator bounds into one joint
chance constraint instead of using a separate joint chance constraint with high security level
is small in our experiments. This shows that our robust approximation together with the un-
certainty set design is also suitable for one joint chance constraint ensuring an overall system
reliability.

In addition, one can also guarantee the overall system reliability of robust solutions for two sep-
arate chance constraints 10e and (10f), if U2 ⊆ U1 holds in (12). In all our numerical experiments
with a security level of 1−ε1 = 0.99 for generator bounds and 1−ε2 ∈ {0.01, 0.05, 0.1, ..., 0.95, 0.99}
for transmission limits, we observed that our uncertainty sets resulting from the scenario ap-
proach (with confidence 1− δ = 0.99) fulfill U2 ⊆ U1. We want to note, that this does not
need to hold true in general for all parameters 1− ε1 ≥ 1− ε2 and other uncertainty set design
strategies. However, in the case that U2 ⊆ U1 holds, any solution of the robust approxima-
tion (12) yields the overall system reliability (22) with confidence of at least 1− δ = 0.99 in
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Figure 7: Optimal objective value of the robust approximation relative to the nominal problem
(left), empirical security level (right) for uncertainty sets calculated by the scenario approach and
empirically for different values of 1− ε2 for case9-wscc–api with one joint chance constraint(22).

addition to feasibility for the two joint chance constraints (10e) and (10f). The reason is that
the robust protection in (12) ensures feasibility of second stage variables for all operational
limits simultaneously for all realizations ω ∈ U2 if U2 ⊆ U1. Inequality (22) follows then from
the fact that P(ω ∈ U2) ≥ 1− ε2 with confidence probability of at least 1− δ = 0.99.

6 Extension of the Proposed Methods in Applications
The reformulation proposed in this paper is independent of the underlying data. To be applied
to other network situations or for e.g. day-ahead planning or network expansion planning, a
TSO will need to construct a feed-in forecast. This could simply be a linear regression model to
generate a feed-in forecast based on historical data, as was used here. Any further improvement
on forecasting weather dependent feed-in values can be considered. Depending on the concrete
application, this leads to a multitude of options, for example the use of advanced stochastic
modeling or techniques from machine learning. In this work, we focused on solar radiation fore-
cast of DWD and feed-in values to generate the solar power feed-in forecast. The integration
of additional aspects in the form of additional data could give more precise predictions and
will lead to new research questions. For example, temperature or air pressure measurements
could be included to improve the forecast of solar feed-in. The consideration of different energy
sources would also be easy to integrate.
In order to apply our method to electricity network operation, our approach could be imple-
mented as follows. Based on the data set and a forecast value, an uncertainty set around the
forecast feed-in must be constructed for a chosen probability level. In this work, we presented
two possibilities for achieving this, one is represented by the scenario approach, the other by
empirical quantiles using the nearest neighbour algorithm. Both compute such uncertainty sets
without prior knowledge of the underlying distributions. Further knowledge or several concrete
assumptions about the probability of fluctuations around the forecast value could make this task
easier. A TSO could also pick concrete scenarios directly from historical data and construct
problem-specific uncertainty sets.
Our reformulations enable the TSO to transform the robust problem (12) into an equivalent
mixed-integer linear optimization problem that can be solved with standard state-of-the-art
software.

7 Conclusion
In this paper, we extended the chance constrained DC Optimal Power Flow problem with the
possibility to curtail uncertain feed-in in discrete steps. We approximated the chance con-
straints with robust constraints. We constructed the required uncertainty sets from histor-
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ical data. After further reformulation we ended up with a robust optimization problem with
decision-dependent uncertainty sets. In the case of discrete linear dependent box uncertainties
we were able to provide an equivalent mixed-integer linear reformulation. Our numerical results
demonstrated the applicability of our model and its reformulation.

Future research could add further features and investigate questions arising from the applica-
tion, for example adding optimal transmission switching under uncertainty or including storage
elements. From a mathematical point of view, it would be interesting to study different geomet-
ries for decision-dependent uncertainty sets. The major challenge is to find assumptions where
an equivalent reformulation for such problems is possible.
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