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Abstract

Potential-based flows constitute a basic model to represent physical behavior in networks.
Under natural assumptions, the flow in such networks must be acyclic. The goal of this
paper is to exploit this property for the solution of corresponding optimization problems.
To this end, we introduce several combinatorial models for acyclic flows, based on binary
variables for flow directions. We compare these models and introduce a particular model
that tries to capture acyclicity together with the supply/demand behavior. We analyze
properties of this model, including variable fixing rules. Our computational results show
that the usage of the corresponding constraints speeds up solution times by about a factor
of 3 on average and a speed-up of a factor of almost 5 for the time to prove optimality.

1 Introduction

Potential-based flows form a basic model for physical networks. Such flows are necessarily
acyclic, which we will exploit in this article. To introduce the basic idea, let D = (V,A) be
a simple directed graph without anti-parallel arcs. For all arcs a ∈ A, there is a continuous,
strictly increasing potential function ψa : R ! R with ψa(0) = 0 as well as a resistance
βa > 0. Each node v ∈ V has an associated potential πv. Under mild assumptions on the
potential functions and given demand on the nodes, the defining equations

βa ψa(xa) = πu − πv ∀ a ∈ A, (1)

induce a unique flow x ∈ RA and unique potential differences (see Section 2). For physical
networks, the potentials πu correspond to quantities like squared pressure or voltage. Note
that a directed instead of undirected graph D is used to define a direction of the flow and (1).
Thus, flow values can also be negative, indicating flow in the opposite direction of the arc.

A flow x ∈ RA defines a directed graph D(x) = (V,A(x)) with

A(x) :={(u, v) ∈ V × V : (u, v) ∈ A with x(u,v) > 0}
∪{(v, u) ∈ V × V : (u, v) ∈ A with x(u,v) < 0}.

If x satisfies (1), this graph is always acyclic. To see this, assume that there would exist a
directed cycle C ⊆ A(x). Then splitting the arcs in C into forward arcs, i.e., those contained
in the original graph, and backward arcs, i.e., those which have the opposite direction to the
original graph, we obtain∑

(u,v)∈C∩A

β(u,v) ψ(u,v)(x(u,v))−
∑

(u,v)∈C\A

β(v,u) ψ(v,u)(x(v,u))

=
∑

(u,v)∈C∩A

πu − πv +
∑

(u,v)∈C\A

πu − πv = 0,
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where we use that C is a cycle and thus the alternating sum of the potentials vanishes.
However, since the resistances βa are positive and each ψa is strictly increasing with ψa(0) = 0,
we have βa ψa(xa) > 0 if xa > 0 and βa ψa(xa) < 0 if xa < 0. Thus, the value of the first line
is positive, leading to a contradiction. This shows that D(x) is acyclic, corresponding to the
physical property of having a conservative potential.

Uniqueness and acyclicity are two important physical properties that are captured by
potential-based flows. Moreover, this model class is important for handling energy net-
works; see Section 2 for examples. Such networks often contain active network elements like
switches/valves, allowing to close a connection, or generators/pumps/compressors, which can
increase the potential on certain arcs. These elements allow to control flow and potentials.
Their presence may violate acyclicity, which provides more freedom to control the network.
However, the passive components remaining after removal of active elements satisfy acyclicity.

Using the degrees of freedom of active elements, several different optimization problems
over such networks are interesting, e.g., energy minimal operation under the assumption that
a flow demand is satisfied. When solving such optimization problems to global optimality,
one can exploit the fact that the passive components of the network still have an acyclic
flow. This is the main idea of this article. We will demonstrate how to enhance existing
mixed-integer nonlinear programing (MINLP) formulations using binary variables for the flow
directions and constraints that enforce acyclicity. To this end, we introduce a nested sequence
of polytopes that encode the directions of the flows, relaxing more and more constraints of
the nonlinear model of potential-based flows along the way. Each of these polytopes provides
a combinatorial model of acyclic flows. We investigate a particular model that provides a
good compromise between the nonlinear model and the so-called acyclic subgraph polytope
in more detail. We then add the corresponding inequalities to a potential-based network
optimization problem for gas network examples. We demonstrate that this approach leads
to an improvement of the solving time by about a factor of 3 on average and a significant
speed-up for the time to prove optimality by almost a factor of 5.

This article is structured as follows. In Section 2 we discuss potential-based flows in
more detail and provide examples. Section 3 first introduces the sequence of combinatorial
models. Their relation is studied in Section 3.1. In Section 3.2 we investigate a model solely
based on acyclic directions and the corresponding computational complexity. Section 3.3
then introduces our main model, exploiting both acyclicity and the fact that one needs to
connect sources and sinks. This model is investigated in Sections 3.4 and 3.5 in more detail.
Then Section 4 presents the computational results. We close with a conclusion and some
open questions in Section 5.

Literature Review Potential-based flows have been used in many different contexts. Hen-
drickson and Janson [18] provide an overview. We will refer to more literature in Section 2
and also discuss examples. The special case of gas transport will be used in our computations
in Section 4.

The topic of acyclic flows for potential-based flow has been investigated by Becker and
Hiller in four articles [19, 2, 3, 4]. Their motivation is similar to ours and they also test their
methods on gas networks. The main combinatorial model of these articles is based on so-
called acyclic source transshipment sink (ASTS) orientations. We will arrive at an equivalent
definition through a polyhedral approach in Section 3.3. Their contributions can be briefly
summarized as follows. A characterization of the cases in which an ASTS orientation exists
is given in [3]. Moreover, various decomposition results based on 2-connected components are
presented in [2, 4]. This allows to preprocess the networks [2, Section 3]. The enumeration
of ASTS orientations is discussed in [2, 4]. This is used in a Dantzig-Wolfe type approach to
strengthen potential-based flow formulations for gas networks [2, 4].

Our results differ from the ones by Becker and Hiller in the following way. We embed the
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common combinatorial model in a sequence of polytopes, which we investigate polyhedrally.
We use a different binary encoding, provide a different setup, investigate complexity results,
and add the inequalities to the model instead of using enumeration of the configurations.

The ideas of this article were used for the computations of [17] and we provide the back-
ground in this article. Apart from the mentioned literature, we are not aware of any other
works concerning combinatorial models for acyclic flows.

2 Potential-based Flows

Potential-based flows have been studied repeatedly in the literature. It seems that the first
appearance is in Birkhoff and Diaz [6]. A general treatment appears in Rockafellar [33].
Before referring to more results in the literature, we first complete the setting of potential-
based flows.

Recall that we assume that A contains at most one of (u, v) and (v, u) for every pair of
nodes u, v ∈ V. For a subset U ⊆ V, we write δ+(U) := {(u,w) ∈ A : u ∈ U, w /∈ U} for
the outgoing arcs and δ−(U) := {(w, u) ∈ A : u ∈ U, w /∈ U} for the ingoing arcs. We use
the abbreviation δ+(v) := δ+({v}) and δ−(v) := δ−({v}) for v ∈ V.

For every node v ∈ V, there are lower and upper pressure bounds πv and πv ∈ R,
respectively, with πv ≤ πv. Additionally, for every arc a ∈ A, there are lower and upper flow
bounds xa and xa ∈ R, respectively, with xa ≤ xa. Let b ∈ RV be a supply and demand
vector that is balanced, i.e.,

∑
v∈V bv = 0. A node v ∈ V is called source node if bv > 0, sink

node if bv < 0, and inner node if bv = 0. Then (x, π) ∈ RA×RV is a (passive) potential-based
flow if it satisfies the the following constraints:∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V, (2a)

πu − πv = βa ψa(xa) ∀ a = (u, v) ∈ A, (2b)
πv ≤ πv ≤ πv, ∀ v ∈ V, (2c)
xa ≤ xa ≤ xa, ∀ a ∈ A. (2d)

We call x ∈ RA a b-flow if it satisfies (2a).
Throughout this paper, we will assume that each potential function ψa : R ! R, a ∈ A,

is continuous and strictly increasing with ψa(0) = 0. For some results in the literature,
additional requirements on the potential functions are needed, e.g., that they are odd (i.e.,
ψa(x) = −ψa(−x)), positively homogeneous (i.e., ψa(λx) = λrψa(x) for all x ∈ R and λ > 0
with some constant r > 0) or that they are the same for every arc, see, e.g., [15].

One important result, see Maugis [27], Collins et al. [8], and Ríos-Mercado et al. [32] is
the following: Assume that D is weakly connected, there are no bounds on the potentials
and flows, for a given node s ∈ V the potential πs is fixed, and the potential functions are
continuous and strictly increasing. Then there exists a unique feasible potential-based flow
(x, π). Consequently, System (2) with a fixed potential πs is either infeasible or has a unique
solution. One tool for proving uniqueness is a cost minimal flow problem with a strongly
convex objective, whose dual multipliers provide the potentials, see [27], [33], and [15] for
more information and a discussion of the corresponding Lagrange dual.

Example 1. Several interesting applications can be modeled as potential-based flows, see,
e.g., Hendrickson and Janson [18]. We present three energy network examples:

1. Stationary Gas Transport Networks: Here arcs correspond to pipe(lines), the potentials
are the squares of pressures, and flows are gas mass flows. One common approximation
of gas flow is (1) with ψa(xa) = |xa|xa. The positive arc-specific constant βa depends on
the pipe diameter, length, and roughness of its inner wall. More details on stationary
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Figure 1: An s–t-flow which can be decomposed into two paths (indicated by dashed/dotted
arcs) each with flow value 1, but is not acyclic.

gas flow in pipeline networks are given in the book [22] and the references therein.
The above model assumes constant heights of the network, but one can use scaling to
incorporate different heights, see [15].

The computational results in Section 4 are based on gas networks, extended by active
elements like valves and compressors.

2. Water Networks: Here potentials correspond to hydraulic heads. Common potential
function are ψa(xa) = sgn(xa) |xa|1.852, see, e.g., Larock et al. [25], or ψa(xa) = |xa|xa,
see, e.g., Burgschweiger et al. [7].

3. Lossless DC Power Flow Networks: In this case, the potentials are voltages and the
potential function is linear ψa(xa) = xa. For more information about power flow
network planning, we refer to [5].

3 Combinatorial Models for Acyclic Flows

To study acyclic flows, we first introduce some basic notation. Consider the simple and
weakly connected directed graph D without anti-parallel arcs. Note that these assumptions
are without loss of generality: Loops always have a zero flow and can be removed, anti-parallel
arcs can be reoriented to be parallel and parallel arcs can be merged into one arc with adapted
β-value. Moreover, each weakly connected component can be treated separately.

We will use ~a to denote the reverse arc of some arc a ∈ A, i.e., if a = (u, v), then
~a := (v, u). Furthermore, let ~A := { ~a : a ∈ A} be the set of the reversed arcs. Note that for

a given flow x, we can also write

A(x) = {a ∈ A : xa > 0} ∪ { ~a ∈ ~A : xa < 0},

and the digraph D(x) = (V,A(x)) is a reorientation of the subgraph consisting of arcs with
nonzero flow such that all arcs point in the direction of the flow. We say that x is an acyclic
flow if D(x) is acyclic. An alternative definition for acyclic flows is given by Hiller and
Becker [19, Definition 1].

Remark 2. Note that being an acyclic s–t-flow is not related to having a flow decomposition
which only consists of paths and no cycles. On the one hand, the sum of flow along paths
can contain a cycle. For example, consider the flow network given in Figure 1. The s–t-flow
depicted in this figure can be decomposed into the flows x1 (dashed) and x2 (dotted). Both
x1 and x2 are flows along paths and therefore acyclic, nevertheless their sum is not, since
D(x1 + x2) contains the directed cycle C = (u, v, w, u). On the other hand, the sum of flows
along paths and cycles can be acyclic. For example consider flow x3 with value −1 along C.
Then, D(x1 + x2 + x3) is acyclic.

The following example shows how flow directions can depend on the resistances βa.
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Figure 2: A diamond shaped network, with source s and sink t and arc labels 1 to 5.

Example 3. Consider the potential network given in Figure 2 with source s and sink t and
bs = −bt > 0. Let bu = bv = 0.

By constraint (2a), it is clear that x1 + x2 = x4 + x5 = bs > 0 has to hold for every
potential flow (x, π). Furthermore, x1, x2, x4 and x5 have to be nonnegative: Assume that
one of them is negative. We can assume w.l.o.g. x2 < 0 by symmetry. Then x1 > 0 by flow
conservation. Having x3 > 0 would close the cycle (s, u, v, s). Thus, x3 ≤ 0 and by flow
conservation x5 < 0. Since also x4 > 0, this closes a cycle (s, u, t, v, s).

Thus, except for arc (u, v), all flow directions for this potential network are fixed, inde-
pendent of the ψa and the β-values. However, the flow direction of (u, v) depends on the ψa
and the β-values. Indeed, if all β-values and all ψ = ψa are equal, then the corresponding
flow is x3 = 0. Moreover, consider the case β1 > β2 = · · · = β5 and assume x3 ≥ 0. Then
πu ≥ πv holds by (2b). Further, β1 > β2 implies x2 > x1. Due to flow conservation also
x5 > x4. This gives

πt = πu − β4 ψ(x4) > πv − β5 ψ(x5) = πt,

which is a contradiction. Hence, x3 < 0. Furthermore, by symmetry β1 < β2 = · · · = β5
implies x3 > 0.

To express acyclicity, for each arc a ∈ A, we introduce binary variables z+a and z−a that
model the flow direction as follows:

sgn(xa) = z+a − z−a , z+a + z−a ≤ 1, (3)

where sgn(xa) = −1 if xx < 0, sgn(xa) = 0 if xa = 0, and sgn(xa) = 1 if xa > 0. Thus, these
constraints imply that z+a = 1 if xa > 0, z−a = 1 if xa < 0, and z+a = z−a = 0 if xa = 0.

The total model for potential-based flows is the following:∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V,

πu − πv = βa ψa(xa) ∀ a = (u, v) ∈ A,
πv ≤ πv ≤ πv ∀ v ∈ V,
xa ≤ xa ≤ xa ∀ a ∈ A,
z+a − z−a = sgn(xa) ∀ a ∈ A,
z+a + z−a ≤ 1 ∀ a ∈ A,
z+a , z

−
a ∈ {0, 1} ∀ a ∈ A.

(PBF)

Define the feasible set X := {(x, π, z+, z−) feasible for (PBF)} ⊂ RA×RV ×{0, 1}2A. More-
over, for (z+, z−) ∈ {0, 1}2A we define

A(z+, z−) := {a ∈ A : z+a = 1} ∪ { ~a ∈ ~A : z−a = 1}

and the corresponding subgraph D(z+, z−) :=
(
V,A(z+, z−)

)
of
 !
D := (V,

 !
A), where

 !
A :=

A ∪ ~A. Then (z+, z−) is acyclic if D(z+, z−) is acyclic in the directed sense.
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In order to exploit acyclicity of potential-based flows, we will investigate purely combi-
natorial models of acyclicity, i.e., polytopes that are only based on the variables z+a and z−a .
There are several possibilities for such models, depending on how many properties of the
potential-based flow are used. We present four polytopes in the following and one model in
Section 3.3. The main goal is to derive inequalities that can be added to (PBF) in order to
improve the computational solving performance.

Projected Potential-Based Flows The most specific model considers the projection of
feasible points of (PBF) for a given network with given balanced b ∈ RV and yields the
polytope of potential-based flow directions

PPF := conv

{(
z+

z−

)
: ∃ (x, π) ∈ RA ×RV with (x, π, z+, z−) ∈ X

}
.

Note that since the flows are unique, (z+, z−) is also unique. The only possible variation is
whether PPF is empty or not. Since it is an NP-hard problem to decide whether there exists
a potential-based flow for the case of DC-flows, see Lehmann et al. [26], and for the case of
gas networks, see Szabó [38], it is an NP-hard problem to decide whether PPF is empty.

Projected Universal Potential-Based Flows Example 3 shows that the flow directions
can depend on the values of β. We therefore investigate a model in which the resistances β
are allowed to vary.

Consider the asymptotic behavior of β−1a (πu − πv) = ψa(xa) for βa ! ∞. For fixed
potentials and βa !∞ we get xa ! 0. Thus, we identify (2b) for βa =∞ with the constraint
xa = 0 and decoupled potentials πu, πv. This has the same effect as if arc a = (u, v) would
not exist. In the following we denote the extended real line with R̄ := R ∪ {−∞,∞}.

Again given a digraph D with balanced b ∈ RV , we define the polytope of universal
potential-based flow directions for (PBF) as

PUPF := conv

{(
z+

z−

)
: ∃β ∈ R̄A>0, (x, π) ∈ RA ×RV with (x, π, z+, z−) ∈ X

}
.

By allowing the resistances β to vary, PUPF abstracts from the particular network to some ex-
tent. Note that the polytope is universal in the sense that changes in β allow a corresponding
change of direction of some arcs as in Example 3.

Acyclic Flows The polytope of acyclic flow directions is

PAF := conv

{(
z+

z−

)
∈ {0, 1}2A : ∃x ∈ RA s.t. (2a), (2d), (3), D(x) acyclic

}
.

Note that the potential equation (2b) of (PBF) is relaxed. Because of (3), we could replace
the requirement that D(x) is acyclic by acyclicity of D(z+, z−).

Acyclic Subgraphs The polytope that abstracts the most from potential-based flows is
the polytope of acyclic subgraphs

PAS := conv

{(
z+

z−

)
∈ {0, 1}2A : D(z+, z−) is acyclic

}
. (4)

Note that acyclicity of D(z+, z−) implies z+a + z−a ≤ 1 for each arc a ∈ A. In Section 3.3, we
will refine this model by using knowledge of sources, sinks, and inner nodes.
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Remark 4. There are two alternatives to using (3). The first one is

xa z
−
a ≤ xa ≤ xa z+a , z+a + z−a ≤ 1. (5)

These constraints form a relaxation of (3), since the direction variables z+a and z−a can be
chosen freely if xa = 0 (as long as z+a + z−a ≤ 1). For (x, π, z+, z−) ∈ X this would allow
D(z+, z−) to have cycles although D(x) is acyclic. Thus, PPF and PUPF would include
(z+, z−) that do not correspond to potential-based flows. Note that this model is only valid if
x ≤ 0 ≤ x, because positive bounds x or negative bounds x would be overruled when setting
z+ = 0 or z− = 0.

The second alternative for (3) is

xa z
−
a ≤ xa ≤ xa z+a , z+a + z−a = 1.

This would require to assign a direction to a 0-flow arc, which and would make the following
analysis more difficult.

3.1 Relations among Combinatorial Models

We begin with the obvious observation that

PPF ⊆ PUPF ⊆ PAF ⊂ PAS.

In fact, Example 3 shows that in general the first inclusion is strict. The last inclusion is
always strict: on the one hand, if b 6= 0, then 0 6∈ PAF, but we always have 0 ∈ PAS, on the
other hand, if b = 0 then PAF = {0}, but we can always set a single direction to 1 in PAS.
Moreover, we have:

Lemma 5. If there are no potential bounds then PUPF = PAF holds.

Proof. If suffices to show PAF ⊆ PUPF. To this end, suppose that b = 0. Then the only
acyclic flow satisfying (2a) is x = 0. Thus, if x = 0 satisfies the flow bounds (2d), z+ = z− = 0
is the only possible solution and PUPF = PAF = {0} holds.

Otherwise, let b 6= 0 be balanced and consider any acyclic x ∈ RA that satisfies flow
conservation (2a) and the bounds (2d). We first possibly reorient the graph and invert x
such that x ≥ 0. Define z+a = 1 iff xa > 0 and z−a = 0 for all arcs a. Thus, (x, z+, z−)
satisfies (3) and we want to show that (z+, z−) ∈ PUPF, i.e., there exists potentials πv that
satisfy (2b) for appropriately chosen βa.

We first compute potentials πv such that πu − πv ≥ xa for all arcs a = (u, v) ∈ A and
πu − πv = 0 if xa = 0. This can be done by adding an artificial node r and arcs (r, v) with
weight 0 for all v ∈ V. The weights on the other arcs are given by −x. The graph does
not contain negative cycles, because x is acyclic. Thus, the Moore-Bellman-Ford algorithm
computes the shortest distances πv from r to v ∈ V with πv ≤ πu − xa for all a = (u, v) ∈ A,
see, e.g., Korte and Vygen [23]. Note that one can shift the potentials such that π ≥ 0 holds.

We now choose β-values such that πu − πv = βa ψa(xa) holds for each arc a ∈ A with
xa > 0. Choosing βa := (πu − πv)/ψa(xa) > 0 works, since πu − πv ≥ xa > 0. If xa = 0
and πu = πv, any βa ∈ R works. Otherwise, if xa = 0 and πu 6= πv, we have to choose
βa =∞.

This yields the following result.

Corollary 6. If no potential bounds are present, PPF ⊆ PUPF = PAF ⊂ PAS and the two
inclusions are strict in general.
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The following results justify the choice of βa = ∞ in PUPF. Therefore, given a weakly
connected digraph D = (V,A) and a balanced supply and demand vector b ∈ RV , we define
the set of all potential-based flows

Xx :=
{
x ∈ RA : ∃β ∈ RA>0, π ∈ RV with (x, π) satisfy (2a), (2b)

}
.

We first show that in the absence of flow and potential bounds the closure of Xx is given by
permitting βa =∞. Note that Xx is never empty.

Proposition 7. Let the potential function ψ be continuous and strictly increasing. Consider
a weakly connected digraph D = (V,A) and a balanced supply and demand vector b ∈ RV .
The closure of potential-based flows is given by

cl(Xx) =
{
x ∈ RA : ∃β ∈ R̄A>0, π ∈ RV with (x, π) satisfying (2a), (2b)

}
. (6)

Proof. In the case b = 0, both sets only contain x = 0. Thus, it suffices to consider the
case b 6= 0. In the following, we denote the set on the right of (6) by X∞.

We first show cl(Xx) ⊆ X∞. We assume there exists x∗ ∈ cl(Xx)\Xx as otherwise there is
nothing to show. To prove x∗ ∈ X∞, we have to construct resistances β ∈ R̄A>0 and potentials
π∗ such that (x∗, π∗) satisfy (2a) and (2b). If x∗ is acyclic, we can use the procedure in the
proof of Lemma 5. Thus, we have to show that A(x∗) is acyclic.

Suppose that A(x∗) contains a directed cycle C and w.l.o.g. assume that x∗a > 0 for all
a ∈ C. Let (xk)k∈N ⊂ Xx converge to x∗. Then for some k0, xk0a > 0 holds for all a ∈ C,
which contradicts xk0 being a potential-based flow. Hence, x∗ is acyclic and we conclude that
the inclusion cl(Xx) ⊆ X∞ holds.

We now show the reverse inclusion X∞ ⊆ cl(Xx). Let x∗ ∈ X∞ with corresponding
resistances β∗ ∈ R̄A>0 and potentials π∗. If β∗ ∈ RA>0, then we are done due to definition.
Therefore, assume that βa =∞ for at least one arc a ∈ A. We have to construct a sequence
(xk)k∈N ⊂ Xx converging to x∗ to finish the proof. We construct this sequence as follows:

1. We choose any sequence (αk)k∈N ⊂ R>0 with αk !∞.

2. We define a sequence of resistances (βk)k∈N ⊂ RA>0, by using βka = β∗a for all arcs a with
β∗a <∞ and βka = αk otherwise.

3. Choose a source s ∈ V and fix πks = π∗s for all k ∈ N.

4. Since there are no flow or potential bounds, there exists a unique solution (xk, πk) for
every k ∈ N.

We claim that the sequence xk constructed this way converges to x∗. To see this, consider
the subgraph D∞ = (V∞,A∞) of D, which results from removing all arcs with β∗a =∞ and
all resulting isolated nodes.

Due to flow conservation and the acyclicity of potential-based flows, we can derive lower
and upper bounds on the flow of each arc, e.g., the flows are bounded by the sum of inflows.
These flow bounds together with (2b) then define a lower and an upper bound on the potential
difference between the nodes of each weakly connected component in D∞.

Let a = (u, v) ∈ A\A∞ and suppose that xka does not converge to 0. Then (a subsequence
of) the sequence βka ψa(xka) converges to ±∞. If u, v are in the same connected component of
D∞, this contradicts the potential differences of each component being bounded. Otherwise,
note that due to flow conservation there can only be flow from one connected component to
another, if there is also flow to the first component from another component, and vice versa.
Thus, there exists a “cycle” of arcs in A\A∞ connecting different components of D∞. Hence,
if the flow on these arcs does not converge to 0, the potential differences of the nodes where
the flow enters and leaves the different components converges to ±∞, which is a contradiction
as before. Therefore, xk ! x∗ holds, which concludes the proof.
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The previous result can also be extended to the case with flow bounds.

Corollary 8. Using the assumptions of Proposition 7, the following holds. Given flow bounds
x ≤ x, we define X[x] := Xx ∩ [x, x]. If X[x] 6= ∅, then the closure of X[x] is

cl(X[x]) =
{
x ∈ RA : ∃β ∈ R̄A>0, π ∈ RV with (x, π) satisfying (2a), (2b), (2d)

}
.

Proof. The inclusion “⊆” holds by the same arguments as before. To see “⊇”, we use the
same construction to define the sequence (xk, πk)k∈N. After possibly choosing a subsequence,
all elements of the sequence either satisfy the flow bounds, or all violate the flow bounds.
That is, the sequence is either contained in cl(X[x]) or cl(Xx) \ cl(X[x]). In the first case, we
are done. Otherwise, note that the flow bounds are satisfied in the limit and thus the limit
is not contained in the complement of cl(X[x]) but in the intersection of the closures.

Remark 9.
• Combining Lemma 5 and Corollary 8 yields that in the absence of potential bounds, acyclic
flows coincide with the closure of potential-based flows.

• Instead of taking the closure of the flows only, we could also consider

X(x,π) := {(x, π) ∈ RA ×RV : ∃β ∈ RA>0 s.t. (x, π) satisfy (2a), (2b)}.

Then the closure satisfies

cl(X(x,π)) (
{

(x, π) ∈ RA ×RV : ∃β ∈ R̄A≥0 s.t. (x, π) satisfy (2a), (2b)
}
,

where additionally βa = 0 is permitted. Here, the reverse inclusion is in general not true,
because when using βa = 0, flow in a cycle is possible, while potential-based flows are
always acyclic.

• Note that taking the closure of potential-based flows together with the corresponding direc-
tions defined by (3) does not yield the same results as defining the directions after taking
the closure of the flows, e.g., consider Figure 2. We have seen that x1 > 0 for all β1 ∈ R>0,
and thus z+1 = 1. But in the closure, x1 = 0 is possible, while still z+1 = 1 holds, that
is, (3) is violated.

• For energy networks βa =∞ can be interpreted as if the arc is combined with a switch/valve
which is turned off/closed.

3.2 Acyclic Subgraphs and Computational Complexity

We next obtain a complete description of PAS if the graph is planar by using known results
from the literature. Indeed, acyclic (z+, z−) ∈ {0, 1}2A correspond to acyclic subgraphs of
the digraph

 !
D = (V,

 !
A). The corresponding acyclic subgraph problem was investigated by

Grötschel et al. [16]. The acyclic subgraph polytope is the convex hull of incidence vectors of
acyclic arc sets in a given digraph. Grötschel et al. showed that for planar graphs a complete
description of the acyclic subgraph polytope is given by the variable bounds and so-called
dicycle inequalities. These inequalities are based on the set of all dicycles (directed cycles)
in
 !
D :

C := {C ⊆
 !
A : C directed cycle}.

Note that the anti-parallel arcs {a, ~a} form a particular dicycle in
 !
D . Thus, translated to

our setting, we obtain the following:

Corollary 10 (Grötschel et al. [16]). If
 !
D is planar then

PAS =
{

(z+, z−) ∈ [0, 1]2A :
∑
a∈C

z+a +
∑
~a∈C
z−a ≤ |C| − 1 ∀C ∈ C

}
. (7)

9



Note that planarity is a reasonable assumption for real world physical networks. In general
networks, however, optimizing over PAS (in fact, over all four polytopes) is NP-hard.

Lemma 11. Linear optimization over PAS is NP-hard.

Proof. Grötschel et al. [16] already observed that linear optimization over the acyclic digraph
polytope is NP-hard, since finding a maximum acyclic subdigraph is NP-hard – this problem
is complementary to the feedback arc set, which has been proven to be NP-hard by Karp [21].
We note the graph in the reduction is simple and does not contain anti-parallel arcs. When
optimizing over PAS and considering

 !
D , we can choose the weight to be 0 for either a or ~a,

depending on which direction is present in the original digraph. Thus, optimization over the
acyclic subgraph polytope is equivalent to optimization over PAS.

Lemma 12. Given a directed graph with flow bounds and supplies/demands b, it is NP-
complete to decide whether there exists an acyclic b-flow.

Proof. If there exists an acyclic flow, there exists one with polynomial encoding length in
the size of the instance. Moreover, acyclicity can be checked in polynomial time. Thus, the
problem is in NP.

Consider an instance of the independent set problem: Given an undirected graph G =
(V,E) and an integerK, the question is whether there exists an independent subset of nodes of
size at least K, i.e., no two selected nodes are connected by an edge. Construct the following
directed graph D = (V,A). The node set is V = {s, t} ∪ {v′ : v ∈ V } ∪ {v′′ : v ∈ V },
where s and t are two new nodes and v′, v′′ are distinct copies of v ∈ V . The arcs in A are
constructed as follows: For each edge {u, v} ∈ E we add two arcs (u′′, v′) and (v′′, u′); the
corresponding flow bounds are such that the flow on these arcs is fixed to 1. Moreover, for
each node v ∈ V , we add arcs (v′, v′′) as well as arcs (s, v′) and (v′′, t); the flow on these
arcs is restricted to lie in [0, 1]. Moreover, we set bv′′ = −bv′ = deg(v) for each original node
v ∈ V and bs = −bt = K.

Note that because of the flow bounds, the direction of the flows is fixed. However, xa can
still be 0 on arcs of type a = (v′, v′′).

Consider an independent set S ⊆ V of size K in G. Then there exists an acyclic flow in
D: For each v ∈ S, the arcs (s, v′), (v′, v′′), and (v′′, t) have a flow value of 1. The arcs (s, v′),
(v′, v′′), and (v′′, t) for v /∈ S have flow 0. The flow on all other arcs is fixed to 1. It is easy
to see that this forms a b-flow. Moreover, it is acyclic. Indeed, because of the flow bounds,
the only directed cycles are (u′, u′′, v′, v′′, u′) for an edge {u, v} ∈ E. Since S is independent,
the flow on either (v′, v′′) or (u′, u′′) is 0. Thus, in each cycle there is at least one arc with
zero flow.

Conversely, let x ∈ RA be a feasible acyclic b-flow and define S := {v ∈ V : x(v′,v′′) > 0}.
Because of the demand of −K at t and the flow bounds, we have |S| ≥ K. Moreover, S is
independent. Indeed, if there would exist an edge {u, v} ⊆ S, then x would contain a cycle
(u′, u′′, v′, v′′, u′).

As a consequence, we cannot expect to obtain tractable linear descriptions for PAS and
PAF in general graphs.

Obviously, acyclic subgraphs are not an accurate model for the feasible flow directions,
for instance, since proper disconnected subgraphs might not even support a feasible flow.
Nevertheless, the acyclic subgraph polytope is well investigated and provides a relaxation.

3.3 Acyclic Subgraphs with Sources and Sinks

To obtain a polytope contained in PAS, but closer to PAF, we use the knowledge of sources
and sinks in the network. For b ∈ RV , define the set of sources V+ := {v ∈ V : bv > 0}, the
set of sinks V− := {v ∈ V : bv < 0}, and the inner nodes V0 := {v ∈ V : bv = 0}. Then

10



V = V+∪̇V−∪̇V0. In the following, for some arc set S ⊆ A we use the shorthand notation
z+(S) =

∑
a∈S z

+
a and z−(S) =

∑
a∈S z

−
a .

For s ∈ V+, there has to exist at least one arc with flow away from the source s. Similarly,
for t ∈ V−, there exists at least one arc with flow towards t. This can be expressed via the
valid inequalities

z+
(
δ+(s)

)
+ z−

(
δ−(s)

)
≥ 1, (8a)

z−
(
δ+(t)

)
+ z+

(
δ−(t)

)
≥ 1. (8b)

Furthermore, for every inner node v ∈ V0 in- and outflow have to be balanced, because
of (2a), that is, there has to exist flow to v if there is flow from v to another node, and vice
versa. Thus, if there is an arc (u, v) ∈ A(z+, z−), there has to exist another node w with
(v, w) ∈ A(z+, z−) as long as z+a = z−a = 0 if xa = 0. There are several possibilities to
represent this by linear inequalities. We introduce two options, which differ in their strength
and number of added inequalities.

Given a node v ∈ V0, the first option is to add an inequality for both directions of every
arc incident to v. The inequalities are

z+a ≤ z−
(
δ+(v) \ {a}

)
+ z+

(
δ−(v)

)
∀ v ∈ V0, a ∈ δ+(v), (9a)

z−a ≤ z+
(
δ−(v) \ {a}

)
+ z−

(
δ+(v)

)
∀ v ∈ V0, a ∈ δ−(v), (9b)

z−a ≤ z+
(
δ+(v) \ {a}

)
+ z−

(
δ−(v)

)
∀ v ∈ V0, a ∈ δ+(v), (9c)

z+a ≤ z−
(
δ−(v) \ {a}

)
+ z+

(
δ+(v)

)
∀ v ∈ V0, a ∈ δ−(v). (9d)

Here, the first two inequalities imply that if arc a incident to v is oriented away from v,
then there has to exist another arc that is oriented towards v. The other two inequalities
imply the converse. This discrete representation of flow conservation requires 2

∑
v∈V0 deg(v)

inequalities.
Another option is to aggregate the first two inequalities and the last two inequalities,

which yields

z+
(
δ+(v)

)
+ z−

(
δ−(v)

)
≤ (deg(v)− 1)

(
z−
(
δ+(v)

)
+ z+

(
δ−(v)

))
, (10a)

z−
(
δ+(v)

)
+ z+

(
δ−(v)

)
≤ (deg(v)− 1)

(
z+
(
δ+(v)

)
+ z−

(
δ−(v)

))
. (10b)

Again the first inequality implies that if there is an outgoing arc of node v, there has to exist
an incoming arc, while the second inequality implies the converse. This representation usually
has fewer inequalities: 2 |V0| instead of 2

∑
v∈V0 deg(v). However, while both variants allow

for the same integral points, the following example shows that they differ in the strength of
their LP-relaxations.

Example 13. Consider again the graph shown in Figure 2. Here, z+1 = 1, z+3 = 1
2 , z

+
5 = 1,

and the remaining variables equal to 0 is feasible for the inequalities (10). In fact, it is a
vertex of the LP-relaxation of (7) with the additional constraints (8) and (10). However, this
solution is not feasible for (9). Furthermore, all feasible solutions of (9) are feasible for (10).
This shows that the first option yields tighter LP-relaxations.

Note that for this and subsequent examples we used polymake [1, 13] to compute vertices,
dimension, affine hull, and facets of polytopes.

In the following we will therefore concentrate on (9) and investigate the formulation given
by these inequalities as well as the dicycle inequalities∑

a∈C
z+a +

∑
~a∈C
z−a ≤ |C| − 1 ∀C ∈ C. (11)
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We define the polytope of acyclic flows with sources and sinks as

PAS± := conv
{

(z+, z−) ∈ {0, 1}2A : (z+, z−) is feasible for (8), (9), (11)
}
. (12)

We will also need the LP-relaxation corresponding to PAS±:

PAS±
LP :=

{
(z+, z−) ∈ [0, 1]2A : (z+, z−) satisfying (8), (9), (11)

}
.

The model derived here turns out to be equivalent to the one investigated by Becker and
Hiller [19, 2, 3], which can be seen using the analysis in the next section.

3.4 Analysis of Acyclic Subgraphs with Sources and Sinks

In this section we analyze the polytope PAS±. We start by proving a key insight, which helps
to derive several results in the following. Note that we define paths to be simple, i.e., no node
appears twice in the path. We call a directed path a source-sink-path if it starts in V+ and
ends in V−.

Proposition 14. Let (z+, z−) ∈ PAS± ∩ {0, 1}2A. For every arc in A(z+, z−), there exists
a directed source-sink-path containing this arc. In particular, D(z+, z−) contains at least one
path leaving each node in V+ and at least one path entering each node of V−. Moreover, if
b = 0, then PAS± = {0}.

Proof. Consider an arbitrary arc a = (u, v) ∈ A(z+, z−). We construct a path from v to V−
and a path from V+ to u, which together with a yield the desired path. Note that these three
paths are necessarily simple, since otherwise A(z+, z−) contains a cycle.

Starting at node v, by the constraints (9c) and (9d), there exists an outgoing arc a1 =
(v, v1) ∈ A(z+, z−) for some node v1 ∈ V \ {v}. Repeating this argument produces a path
(v, v1, v2, . . . , vk) in A(z+, z−) until vk ∈ V−. This process terminates, since the graph is
finite and we cannot produce cycles. Similarly, going backwards from u, by (9a) and (9b)
there exists an arc (u1, u) ∈ A(z+, z−) for some u1 ∈ V \ {u}. Repeating yields a path
(ur, . . . , u1, u) until ur ∈ V+.

If b 6= 0, by (8a) there exists at least one path leaving each node in V+ and by (8b) there
exists at least one path entering each node in V−.

Finally, let b = 0. Then there are no sources and sinks, i.e., the construction above would
either terminate at a node with degree 1 or produce a cycle, which contradicts either (9)
or (11). Thus, PAS± = {0} if b = 0.

We obtain the following first consequence:

Theorem 15. Suppose that |V+| = 1 or |V−| = 1. Then, if there are no flow bounds,

PAS± = PAF.

Proof. In the case b = 0, we have PAS± = PAF = {0}. Hence, we only have to consider the
case b 6= 0.

We first show that PAF ⊆ PAS±. (Note that we do not need any assumption on the
flow bounds or on the sizes of V+ and V− for this direction and that it suffices to prove the
inclusion for all integer points.) Let (z+, z−) ∈ PAF ∩ {0, 1}2A with corresponding acyclic
b-flow x ∈ RA. Since b 6= 0, x is nonzero. This implies that there is at least one path with
nonzero flow leaving each node in V+ and at least one path with nonzero flow entering each
node in V−. Thus, constraints (8) are satisfied. Due to flow conservation, (9a) – (9d) hold.
Further, since x is acyclic (11) holds.

We continue by proving the other direction, i.e., PAS± ⊆ PAF. The proof works for the
single sink case V− = {t}, since the single source case is analogous. Let V+ = {s1, . . . , sk},

12



s1

s2

t1

t2

2

1

−1

−2

Figure 3: The graph shows that Theorem 15 does not hold for |V+|, |V−| ≥ 2: Suppose that
bs2 , bt2 6= 0 and bs2 < −bt2 , then the flow on at least one of the arcs (s1, s2) and (t1, t2) has
to be positive. Nevertheless, if bt1 6= 0, they need not be used in PAS±, i.e., PAS± 6⊆ PAF.

and let (z+, z−) ∈ PAS± be a binary vector. We first construct an acyclic flow x ∈ RA with
xa < 0 if z−a = 1, xa > 0 if z+a = 1, and xa = 0 otherwise. By scaling, we will obtain a b-flow.

Start with the zero-flow x = 0 and define P1 = · · · = Pk = ∅. We then pick an arc
a′ ∈ A with either z+a′ = 1 or z−a′ = 1 and xa′ = 0. Then by Proposition 14 there exists a
path P from a source si to the sink t in D(z+, z−) containing a′ (if z+a′ = 1) or ~a′ (if z−a′ = 1).
Add P to the set Pi and augment x along P by one unit, by increasing xa by 1 for every arc
a ∈ A ∩ P and decreasing xa by 1 for every arc a ∈ A such that ~a ∈ P . For a ∈ A define
∆(P )a = 1 if a ∈ P and ∆(P )a = −1 if ~a ∈ P and ∆(P )a = 0 otherwise. Then the new flow
is x + ∆(P ). Since A(z+, z−) does not contain both a′ and ~a′, xa can only be increased (if
a ∈ A(z+, z−)) or decreased (if ~a ∈ A(z+, z−)) by augmenting flow along another path, even
for another source-sink pair. Therefore, we can iterate augmenting flow for the remaining
arcs with no flow and thereby construct a flow with the desired flow directions. Note that

x =

k∑
i=1

∑
P∈Pi

∆(P ).

We still have to scale the flow such that it is a b-flow. First consider each i ∈ {1, . . . , k}
in which Pi = ∅. By Proposition 14 there exists an si–t-path P in D(z+, z−). Then set
Pi = {P}. We now define the scaled flow

k∑
i=1

bsi
|Pi|

∑
P∈Pi

∆(P ).

Since bsi and |Pi| > 0, the scaling is valid, does not change flow directions, and yields a
b-flow.

Remark 16. Figure 3 shows that Theorem 15 does not hold with more than one source and
sink.

Proposition 14 also helps to determine the structure of integer points in PAS±. For a
subset S ⊆

 !
A, let χ(S) be the incidence vector (χ−, χ+) ∈ {0, 1}2A defined by χ+

a = 1 if
a ∈ S ∩ A, χ−a = 1 if ~a ∈ S ∩ ~A and 0 otherwise.

Corollary 17. Each integer point (z+, z−) ∈ PAS± is the incidence vector of a union of
source-sink-paths in

 !
D that does not contain cycles and conversely.

Proof. For each a ∈ A(z+, z−) there exists a source-sink-path Pa in A(z+, z−) that contains a
by Proposition 14. Then each arc in A(z+, z−) is covered by ∪aPa and the union does not
contain cycles. Thus (z+, z−) = χ(∪aPa).

Conversely, the incidence vectors of a union of source-sink-paths that does not contain
cycles clearly satisfies (8), (9), as well as (11) and is therefore contained in PAS±.
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Note that the union of source-sink-paths can contain cycles, even in the single source and
sink case, see the example in Figure 1.

Another consequence of Proposition 14 is that z+a and z−a can be fixed to 0 or 1 in
some cases. We first need the following definition. Recall that we assume that D is weakly
connected and consider two arcs a1 and a2 ∈ D such that neither is a bridge and D−{a1, a2}
has exactly two weakly connected components D1 and D2. Then {a1, a2} is called a cut-pair.
Assume that D2 contains neither source nor sink and that a1 enters and a2 leaves D2 (by
reorientation). We call D2 input-output subgraph. Note that D2 might have no arcs, in which
case a1 and a2 form a directed path.

Lemma 18. Let D be the given weakly connected, simple digraph with sources V+ and
sinks V−. Then the following holds for every (z+, z−) ∈ PAS±.

1. If there is no source-sink-path in
 !
D containing a ∈ A ( ~a ∈ ~A) then z+a = 0 (z−a = 0).

2. Let a be a bridge, i.e., D − a is not weakly connected. Then the following holds for each
of the two connected components induced by B ⊆ V.
(a) Assume B∩V+ = ∅ and B∩V− = ∅. Then z−a = z+a = 0. Furthermore, z−a′ = z+a′ = 0

holds for all arcs in the induced subgraph a′ ∈ D[B].
(b) Assume B ∩V+ 6= ∅ and B ∩V− = ∅. If a ∈ δ+(B), then z+a = 1 and if a ∈ δ−(B),

then z−a = 1 holds.
(c) Assume B ∩V+ = ∅ and B ∩V− 6= ∅. If a ∈ δ+(B), then z−a = 1 and if a ∈ δ−(B),

then z+a = 1 holds.

3. Let there exist an input-output subgraph of D with entering arc a and leaving arc a′. Then
z+a = z+a′ and z

−
a = z−a′ .

Proof. In all cases, it suffices to consider integer points (z+, z−) ∈ PAS±, since the statement
then holds for the convex hull PAS±.
1. Suppose that there is no source-sink-path in

 !
D containing a ( ~a). By Proposition 14,

A(z+, z−) cannot contain a ( ~a). Thus, z+a = 0 (z−a = 0).

2. In case (2a), B contains neither a source nor a sink. Since the paths are simple and
D(z+, z−) is acyclic, no path can enter B. In case (2b), at least one source-sink-path has
to enter B. In case (2c), at least one source-sink-path has to leave B.

3. Every union of source-sink-paths using a1 also has to use a2. This implies the given
equations.

Remark 19.
1. The results in Lemma 18 are similar to the ones by Becker and Hiller [2, 3], but in a

different notation.

2. The existence of a node of degree 2 is a special case of Part 3 of Lemma 18.

3. It is an open question whether the conditions of Lemma 24 define the affine hull of PAS±;
but see Proposition 28.

A natural question is how the conditions in Lemma 24 can be checked. It turns out that
the condition of Part 1 is hard to check, even for the single source and sink case.

Proposition 20. Given a directed graph with source node s, sink node t and some arc a =
(u, v), it is NP-complete to decide whether there exists a (simple) s–t-path that contains a.

Proof. Consider the k-vertex disjoint paths problem, which consists of finding vertex disjoint
paths from si to ti for a given set of node pairs (s1, t1), . . . , (sk, tk). Obviously, finding an
s–t-path that uses a is the special case of finding 2-vertex disjoint paths between (s, u) and
(v, t). Fortune et. al [10] proved that the vertex disjoint paths problem on general directed
graphs is NP-complete even for fixed k ≥ 2.
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Figure 4: The graph D(z+, z−) associated with a vertex of PAS±
LP applied to the network of

Figure 2.

Corollary 21. Linear optimization over PAS± is NP-hard, even if there is a single source s
and sink t.

Proof. Consider the linear function that maximizes z+a for some arc a over PAS±. The
optimal value is 1 if and only if there exists an s–t-path through a. The results then follows
by NP-hardness of determining the latter by Proposition 20.

Remark 22. Schrijver [35] showed that for fixed k and planar graphs, an s–t-path that
contains a given arc can be found in polynomial time. Recently, Fakcharoenphol et al. [9]
showed that one can compute the set of all arcs that are not contained in an s–t-path of a
planar graph in linear time.

Remark 23. With respect to Parts 2 and 3 of Lemma 18 the following holds. Bridges in
graphs can be found in linear time, see Tarjan [39]. Moreover, checking whether a source
and sink are in the same connected component can be done by breadth-first search in linear
time, see, e.g., Korte and Vygen [23]. Moreover, after bridges have been removed, the linear
time algorithm of Mehlhorn et al. [28] outputs a cut-pair if one exists. More input-output
subgraphs can be produced using this algorithm iteratively.

3.5 Analysis of the Single-Source and Sink Case

In this section, we provide a further analysis for the special case of a single source s and
sink t. This implies that the balanced b ∈ RV satisfies bs = −bt ≥ 0 and bv = 0 for all
v ∈ V \ {s, t}. To simplify notation, we orient the arcs incident to the source s and sink t
such that δ−(s) = ∅ and δ+(t) = ∅ holds.

Lemma 24. Let D be the given weakly connected, simple digraph with source s and sink t.
Then for every (z+, z−) ∈ PAS±, z−a = 0 holds for every a ∈ δ+(s) and for every a ∈ δ−(t).

Proof. First consider an integer point (z+, z−) ∈ PAS±. Assume the statement does not
hold, and let a = (s, v) with z−a = 1. Then going backwards from v similarly to the proof of
Proposition 14, there exists an s–v-path. This would close a cycle, hence, z−a = 0 holds for
all a ∈ δ+(s). For a ∈ δ−(t) we can argue analogously. Since PAS± is the convex hull of the
integer points, the statement holds.

Remark 25. Let S ⊂ V with s ∈ S, t /∈ S and consider the s–t-cut inequalities

z+(δ+(S)) + z−(δ−(S)) ≥ 1.

Because of Corollary 17 these inequalities are valid for all integer points in PAS± and thus
for their convex hull. However, they are weaker than the inequalities (8) and (9). Indeed,
the s–t-cut inequalities together with nonnegativity provide a complete linear description of
the dominant of the s–t-path polytope, see, e.g., Schrijver [36, Thm. 13.1]. Moreover, as
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an example consider the incidence vector of the union of (at least) one s–t-path and some
node-disjoint disjoint arc. This vector is feasible for the s–t-cut inequalities, but not for (8)
and (9). However, these inequalities can be strengthened as follows.

Lemma 26. Let D be a simple connected digraph with source s and sink t. Let S ⊂ V with
s ∈ S, t /∈ S. Then the inequalities

z+(δ+(S)) + z−(δ−(S)) ≥ 1 + z−a ∀a ∈ δ+(S) (13a)
z+(δ+(S)) + z−(δ−(S)) ≥ 1 + z+a ∀a ∈ δ−(S) (13b)

are valid for PAS±.

Proof. Inequality (13a) is satisfied by all solutions in PAS± with z−a = 0 by Remark 25.
Let (z+, z−) ∈ PAS± be an integral solution with z−a = 1. By Proposition 14, D(z+, z−)
contains an s–t-path P that uses ~a. Then P has to cross the cut at least twice and therefore
z+(δ+(S)) + z−(δ−(S)) ≥ 2. Thus, (13a) holds for the convex hull of these integer points,
i.e., PAS±. The validity of (13b) can be seen similarly.

Remark 27. Note that (13a) for S = {s} yields (8a), since z−a = 0 for all a ∈ δ+(s) by
Lemma 24.

We can prove the following concerning the affine hull of PAS±.

Proposition 28. Assume that in
 !
D there exist two arc-disjoint s–t-paths and for every

arc a ∈
 !
A \ { ~a : a ∈ δ+(s) ∪ δ−(t)}, there exists two s–t-paths that are arc-disjoint except

for a. Then
dimPAS± = |

 !
A| − deg(s)− deg(t),

where δ+, δ− and deg are with respect to the original digraph D.

Proof. Consider an equation (c+)>z+ + (c−)>z− = γ that is valid for PAS±, i.e., PAS± ⊂
{(z+, z−) : (c+)>z+ + (c−)>z− = γ}. Let c = (c+, c−).

By assumption there exist two arc-disjoint s–t-paths P1 and P2. Then χ(P1), χ(P2), and
χ(P1 ∪ P2) are contained in PAS±. Thus, c>χ(P1) = c>χ(P2) = γ and c>χ(P1 ∪ P2) =
c>χ(P1) + c>χ(P2) = γ. Adding the first two equations yields c>χ(P1) + c>χ(P2) = 2 γ.
This implies γ = 0.

Consider an arbitrary arc a ∈
 !
A \ (δ−(s) ∪ δ+(t)). By assumption there exist two s–t-

paths P1 and P2 that are arc-disjoint, except for a. Let P̂1 := P \ {a} and P̂2 := P \ {a}.
Then for i ∈ {1, 2}:

c>χ(Pi) = c>χ(P̂i) + ca = 0.

Moreover,
c>χ(P1 ∪ P2) = c>χ(P̂1) + c>χ(P̂2) + ca = 0.

Adding the first two equations yields

c>χ(P̂1) + c>χ(P̂2) + 2 ca = 0.

This implies ca = 0, and therefore no equation can be active for a.
Thus, the only possible equations are the ones of Lemma 24. Together, they reduce the

dimension by |δ−(s)|+ |δ+(t)|, which shows the claim.

Note that the assumptions of Proposition 28 rule out bridges as well as input-output
subgraphs. Moreover, note that the assumptions also rule out the existence of an s–t-arc,
since the only s–t-path using this arc would be the arc itself. Nevertheless, we could relax this
condition for an s–t-arc, but then, if (s, t) ∈

 !
A, the formula would have to be dimPAS± =

|
 !
A| − deg(s)− deg(t) + 1 due to double counting.
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Figure 5: A graph for which dicycle inequalities (11) define facets of PAS±.

Example 29. Consider again the graph given in Figure 2. This example shows that the
LP-relaxation PAS±

LP is not integral, i.e., PAS± ( PAS±
LP . Indeed, Figure 4 depicts a graph

associated with a vertex of PAS±
LP .

Example 30. Again consider the graph in Figure 2. Lemma 24 implies that

z−1 = z−2 = z−4 = z−5 = 0

holds for all points in PAS±. Furthermore, the other variables can take either value and these
equations define the affine hull. Thus, in this example we have dimPAS± = |

 !
A| − |δ−(s)| −

|δ+(t)|, although the assumptions of Proposition 28 are not satisfied for arc 3.
Most facets of PAS± are already part of the defining system of PAS±

LP : the variable bounds
z+1 , z

+
2 , z

+
4 , z

+
5 ≤ 1 and z−3 , z

+
3 ≥ 0, the inequalities 1 ≤ z+1 + z+2 , 1 ≤ z+4 + z+5 (see (8a)

and (8b)) and z−3 + z+3 ≤ 1 (see (11)), and the node conditions (9a) – (9d) at nodes u and v:

z+1 ≤ z
+
3 + z+4 , z+2 ≤ z

−
3 + z+5

z−3 ≤ z
+
4 , z−3 ≤ z

+
2 ,

z+3 ≤ z
+
1 , z+3 ≤ z

+
5 ,

z+4 ≤ z
+
1 + z−3, z+5 ≤ z

+
2 + z−3 .

The only facets that are given by other inequalities are

1 + z−3 ≤ z
+
2 + z+3 + z+4 ,

1 + z+3 ≤ z
+
1 + z−3 + z+5 ,

(14)

which arise from (13a) and (13b).

Example 31. Interestingly, in the previous example there are no facets defined by the
dicycle inequalities (11). Note that this does not hold in general, e.g., consider the graph in
Figure 5. Here the dicycle inequalities defined by the cycles {(v1, v2), (v2, v3), (v3, v1)} and
{(v1, v3), (v3, v2), (v2, v1)} define facets of PAS±.

4 Numerical Results

To demonstrate the effect of our method to handle acyclic flows via PAS±, we describe
computational experiments for gas networks. As mentioned in the introduction, gas networks
can contain additional active elements. We first very briefly describe how the elements of a
gas network are handled in our experiments and refer to [22, 31] for (much) more details on
gas network optimization.
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4.1 Model Implementation

Recall from Example 1 that in stationary gas transport, the potentials are the squares of the
pressures at the nodes. Since some of the models of network elements other than pipes cannot
be (linearly) expressed in terms of the potentials, our model includes pressure variables pu
for all nodes u ∈ V, which are coupled with the potentials through the equation p2u = πu.
To avoid unnecessary nonlinear equations, our model only contains the potential variables,
where they are actually needed. Note that this was a modeling choice and one could also
only introduce the pressure variables as needed.

• Pipes are handled in the way described in Example 1 with ψ(xa) = |xa|xa and the
resistances given by

βa =

(
4

π

)2 La
D5
a

Rs Tm zm λa, λa :=
(

2 log10

(Da

ka

)
+ 1.138

)−2
,

where La and Da are the length and diameter of the pipe a = (u, v) ∈ A, respectively,
Rs is the specific gas constant, Tm is the temperature (assumed to be constant), zm is the
constant z-factor, and λa the friction coefficient using the formula of Nikuradse [29, 30],
where ka is the roughness of the pipe. The z-factor is computed using the formula of the
American Gas Association

z(p, T ) = 1 + 0.257
p

pc
− 0.533

p

pc

Tc
T
,

see Králik et al. [24], where pc and Tc denote the pseudocritical pressure and pseudocritical
temperature of the gas. Then zm := z(pm, Tm) with the mean pressure value

pm := 1
2 max{p

u
, p
v
}+ 1

2 min{pu, pv}

derived from the pressure bounds at nodes u and v.

• Valves control the gas flow. For open valves, the pressures on both sides are equal. For
closed valves, the flow is 0 and the pressures are decoupled. These conditions are modeled
using a binary variable in a straight-forward way.

• Compressors can increase gas pressure. Several compressors are often connected by piping
and valves in compressor stations. We approximate the operation states of such stations
by polyhedra in terms of flow, input and output pressure, see Hiller and Walther [20]. The
operation modes of compressors are modeled using binary variables: the compressor can
be turned on/off or it can be in bypass, i.e., flow can bypass the compressor or can flow in
the opposite direction. The possible modes are: compressor on/bypass closed, compressor
off/bypass open and compressor off/bypass closed.

• Control valves, resistors, and short pipes are modeled as described in [22, 31].

• As objective function we chose the maximization of the sum of pressures. Several other
objective choices exist, see, e.g., [17].

For handling acyclic flows we add the variables z+, z− which are coupled with the flows
by using the linear relaxation (5) instead of (3). For all pipes a = (u, v) ∈ A they are coupled
with the pressure variables by inequality

(p
u
− pv)z−a ≤ pu − pv ≤ (pu − pv)z

+
a .

Moreover, they can be integrated in some of the other network elements in a straightforward
way, e.g., binary variables for valves are coupled with the direction variables, such that
z+a = z−a = 0 if the valve is closed. Depending on the model variant, we add the binary
representation of flow conservation given by the inequalities (8) and (9).
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Table 1: Statistics on the flow bounds after presolving of 39 pipes in network GasLib-40 for
all model variants.

variant #fixed flows #fixed dirs xmean xmean

NFD 13 2 −189.23 245.10
AC 13 17 −60.72 74.58
FLC 13 12 −98.25 111.73
FLC+CB 13 20 −41.39 54.33
FLC+AC 13 20 −41.24 54.33

The dicycle inequalities (11) can be added for a cycle basis or for all cycles. Therefore,
a cycle basis is computed as follows: after computing a spanning tree by breadth-first-search,
each non-tree arc defines a cycle in our cycle basis. The possible combinations of these
cycles are then enumerated. Two cycles can be combined into a new cycle, if their symmetric
difference induces a connected subgraph, where all nodes have degree two. Note that the
enumeration and checking if two cycles can be combined, takes only a fraction of a second
for the networks considered here.

Note that we forbid flow in cycles over compressor stations, because such cycles would
significantly increase the temperature of the gas. This could only be controlled in transient
models where the temperature of the gas is kept under control as well.

4.2 Results

In order to test the effects of the different conditions we performed computations with the
following model variants:

NFD no binary variables to represent flow directions;

AC dicycle inequalities (11) for all cycles;

FLC binary flow conservation (8) and (9);

FLC+CB as variant FLC plus dicycle inequalities for a cycle basis;

FLC+AC as variant FLC plus dicycle inequalities for all cycles.

We use instances GasLib-40 and GasLib-582 from [12, 34]. The GasLib-40 network has
40 nodes, 39 pipes, and 6 compressor stations. The GasLib-582 network has 582 nodes, 278
pipes, 5 compressor stations, 23 control valves, 8 resistors, 26 valves, and 269 short pipes.
In total there are 4227 different scenarios for network GasLib-582, arising from different
distributions of the loads.

The computations were performed on a cluster with 3.5 GHz Intel Xeon E5-1620 Quad-
Core CPUs, having 32 GB main memory and 10 MB cache running Linux. We used SCIP-
7.0.0 [11, 37] with a one hour time limit and we used CPLEX-12.10.0 as LP-solver.

Since the GasLib-40 instance is rather small, the solving time for all models is less than
a second (and hence not reported in detail). Thus, this does not allow to draw conclusions
on the different model variants. Nevertheless, the instance gives insight on some advantages
of using the flow direction variables. Table 1 shows statistics on the flow bounds of the pipes
after presolving. Column “#fixed flows” shows the number of pipes with fixed flow, column
“#fixed dirs” the number of pipes with fixed flow direction, and columns “xmean” and “xmean”
the mean arithmetic lower and upper bounds of the flows. While the number of fixed flows
is the same for all models, and mainly depends on the graph and the position of sources and
sinks, the number of fixed directions and the mean arithmetic flow bounds can be improved
by using the flow direction variables. This is also illustrated by Figure 6, which compares
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Figure 6: The presolved network GasLib-40 corresponding to variants NFD (left) and
FLC+AC (right). The scenario has 3 sources (diamonds) and 29 sinks (circles). Pipes
with fixed flow are depicted by �, fixed flow directions are shown by !, and the remaining
pipes (with unfixed flows/directions) are dashed.

Table 2: Aggregated results for GasLib582 scenarios for all model variants.

variant optimal feasible limit infeasible inf-presol

NFD 218 966 864 2179 2168
AC 767 1278 3 2179 2174
FLC 1818 220 10 2179 2168
FLC+CB 1883 164 1 2179 2170
FLC+AC 2015 30 3 2179 2174

models NFD and FLC+AC. The figure distinguishes pipes with fixed flow, fixed direction
and the remaining pipes.

Note that we do not use optimality-based bound tightening (OBBT) in our experiments,
see, e.g., Gleixner et al. [14] and the references therein. Indeed, Becker and Hiller used
OBBT [3] to further strengthen flow bounds.

The above results show that the mean arithmetic flow interval for model NFD is more
than four times as large as the flow interval of model FLC+AC. Since tighter variable bounds
typically lead to smaller branch-and-bound trees, this positive effect on the flow bounds will
also be reflected in the solving times of larges instances as can be seen by the following results
for the GasLib-582 network.

The results of each model variant on the GasLib-582 network are given in Tables 2, 3, and
4 aggregated over all 4227 scenarios. In Table 2, column “optimal” gives the number of feasible
scenarios solved to optimality, “feasible” the number of scenarios for which a feasible solution
could be found, but could not be solved to optimality, “limit” the number of scenarios running
into the time limit, “infeasible” the total number of scenarios that have been determined to be
infeasible, and “inf-presol” the number of instances that have been determined to be infeasible
during presolving.

Table 3 provides statistics on the (geometric mean) running times of the model variants.
Here, column “to optimality” is the mean geometric time it took to prove optimality, the
column “to first” gives the mean geometric time until the first feasible solution was found,
“infeasible” the geometric time to proof infeasibility, “totalgeometric” the total geometric
time, and “totaltime” show the total computational time in hours.

In Table 4 similar statistics to Table 1 are given. Here, the results are averaged over all
scenarios. Additionally, the columns “#min dirs” and “#max dirs” show the minimal and
maximal number of fixed flow directions over all scenarios.

Remark 32. The numerical results shown in Table 2 are consistent in the sense that all
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Table 3: Geometric means of solving times in seconds and total run time in hours for all
model variants for the GasLib582 scenarios.

variant to optimality to first infeasible totalgeometric totaltime [h]

NFD 1435.02 892.10 1.01 50.59 1948.68
AC 1313.93 81.12 1.00 44.12 1627.08
FLC 549.28 113.09 1.01 23.69 641.43
FLC+CB 465.97 103.53 1.01 21.36 537.70
FLC+AC 290.98 68.04 1.00 15.94 270.28

Table 4: Statistics on the flow bounds after presolving of 278 pipes in network GasLib-582
for all model variants.

variant #fixed flows #fixed dirs #min dirs #max dirs xmean xmean

NFD 152.95 44.44 23 64 −111.03 174.98
AC 152.43 53.14 25 104 −98.09 150.40
FLC 151.74 50.39 21 87 −103.41 166.69
FLC+CB 152.40 55.10 21 93 −94.53 162.76
FLC+AC 152.23 56.59 21 102 −84.63 135.68

variants identify the same 2179 infeasible scenarios. Moreover, for all other scenarios feasible
solutions were found by at least one model variant. In fact, only 20 scenarios could not be
solved to optimality. For these instances, at least one model variant found a feasible solution
with optimality gap 0.4% or better.

The results clearly show that determining infeasibility seems to be easy in most cases.
With all model variants, almost all infeasible scenarios could already be identified during
presolving. That is, our acyclic flow models only slightly improve the computations here.
The numbers for feasible instances, however, show a completely different picture. Comparing
the solving times in Table 3 for the basic model without any binary direction variables (i.e.,
NFD) with the model enhanced by PAS± (i.e., FLC+AC) shows a speed-up factor of ∼ 4.9
in geometric time to prove optimality, and a speed-up factor of ∼ 7.2 in the total running
times. Moreover, Table 2 shows that with model NFD for almost half of the feasible instances
no feasible solution has been found, while with model FLC+AC almost all feasible instances
could be solved to optimality.

A partial explanation for the performance improvement is as follows. With the flow
direction variables and the additional constraints we represent properties of feasible solutions,
which are otherwise not included in the initial model/relaxation. Moreover, the heuristics
and presolving techniques can detect more variable fixings, implications and reductions based
on the flow conservation and the flow direction variables. For example, in diving heuristics,
it is easier to detect infeasibility based on the binary variables without having to consider
the nonlinear physics. This then leads to tighter variable bounds (after presolving), which
can be seen for the flow variables in Tables 1 and 4. Since having tight variables bounds is
important to derive good relaxations for the nonlinearities, the LP-relaxations are already
stronger early in the branch-and-bound tree. Moreover, tighter variable bounds (typically)
lead to smaller branch-and-bound trees, since the search space is smaller. Indeed, we can
observe this effect for the computations on the network GasLib582. The arithmetic mean
number of branch-and-bound nodes (rounded up) for the optimally solved (feasible) scenarios
with model variant NFD is 168 970, while it is 35 330 with model FLC+AC. That is, in model
NFD it takes about 4.8-times as many nodes in comparison with variant FLC+AC, which is
almost the same ratio as the speed-up of the geometric solving times for these scenarios.
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Table 5: Aggregated results for GasLib582 scenarios for the ODE model.

variant optimal feasible limit infeasible inf-presol

NFD 41 93 2042 2051 2038
FLC+AC 1784 349 0 2094 2080

Table 6: Geometric means of solving times in seconds and total run time in hours for the
GasLib582 scenarios for the ODE model.

variant to optimality to first infeasible totalgeometric totaltime [h]

NFD 864.49 1233.67 1.02 67.46 2149.23
FLC+AC 720.42 73.75 1.02 31.91 829.31

Remark 33. The fact that potential-based flows are acyclic does not only hold for this alge-
braic model for stationary gas flows. It also applies to the stationary model based on ordinary
differential equations used in [17]. Moreover, we also used the model FLC+AC to derive
the computational results there. In particular, the results for the ODE model show an even
stronger effect of using FLC+AC; see Tables 5 and 6. Note that for these computations,
OBBT was used to strengthen bounds of the flow variables.

With model NFD, almost half of the scenarios ran into the time limit without a feasible
solution. Only 41 scenarios could be solved optimally and feasible solutions were found for
only 93 further scenarios. In contrast, with model FLC+AC all scenarios were either proven
to be infeasible or a feasible solution was found. Moreover, 84% of the feasible instances were
solved optimally.

5 Conclusions and Open Questions

In this article we have investigated the usage of the property that potential-based flows are
acyclic. We derived combinatorial models and investigated their properties. One of the main
goals was to use these models to speed-up optimization problems over potential-based flows.
Indeed, our computational results show a speed-up of at least a factor of 3 if cycle information
and knowledge on sources and sinks is used. The time to prove optimality shows a speed-up
factor of almost 5, and the total running time speed-up of about 7.

In our computations we added the dicycle inequalities up front. It would be interesting
to compare the performance of an algorithm that dynamically separates dicycle inequalities.

There are several open questions that we plan to investigate in the future. One open
question is whether the conditions in Lemma 24 suffice to define the dimension of PAS±.
Obtaining facets of PAS± would be interesting, in order to possibly further strengthen the
formulation of potential-based flows. Such facets might be transferred from the acyclic sub-
graph polytope. This seems to be difficult, though. Moreover, it would be interesting to
investigate whether the property of unique flows could be exploited in combinatorial models
as well.
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