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Abstract

Potential-based flows provide a simple yet realistic mathematical model of trans-
port in many real-world infrastructure networks such as, e.g., electricity, gas, or
water networks, where the flow along each edge is controlled via the (difference of)
potentials at its end nodes. A potential-based flow network is robust if the maximal
difference of node potentials needed to satisfy a set of demands cannot increase
if demands are decreased. This notion of robustness is motivated by infrastruc-
ture networks where users first make reservations for certain demands that may be
larger than the actual amounts sent later on. Here node potentials correspond to
physical quantities such as the pressures or the voltages and must be guaranteed to
lie within a fixed range, even if the actual amounts are smaller than the previously
reserved demands. Our main results are a precise characterization of such robust
networks for the case of point-to-point demands via forbidden node-labeled graph
minors, as well as an efficient algorithm for testing robustness.

1 Introduction
A common feature of many infrastructure networks such as water, gas, electricity,
telecommunication, and road networks is that their load heavily fluctuates due to
changes in the demands of the transported commodities. As a consequence, the ro-
bustness of these networks with respect to changes in the demands is a major issue
for network operators that has been studied extensively in the robust optimization lit-
erature; see, e.g., [2]. Informally, a network is robust if it is feasible for a prescribed
range of demand scenarios rather than a single situation only. Naturally, the robust-
ness of a flow network depends on the set of scenarios considered. One of the earliest
robust network flow problems—the so-called network synthesis problem—asks for the
robustness of a flow network for a given list of single-source and single-sink routing
demands [9, 18, 19, 20, 25, 35]; see also [29] for a multi-commodity flow variant with
discrete scenario set. Other works consider robustness of single-commodity networks
with respect to a set of demands given by a full-dimensional polyhedron [1, 7, 8] or a
lower dimensional polyhedron in so-called Hose-demand sets [8, 14, 21, 24].
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All these works above have in common that they consider a single commodity in
the classical flow model of Ford and Fulkerson [16] with hard capacities on the edges.
While obviously important (e.g., as a model for telecommunication networks) they fail
to capture the flow in energy and gas distribution networks due to the more complex
physical properties of the flow; see, e.g., the discussion in [8].

In addition, many infrastructure networks are controlled by a network operator who
sells the right to ship a certain maximal amount of flow between a prescribed set of
network nodes [22, 27]. Even in the simplest such model where network users acquire
the transmission rights between pairs of distinct nodes, the set of actual demands below
these maximal transmissions gives rise to a lower-dimensional set of demand scenarios
that fundamentally differs from Hose scenarios and, to the best of our knowledge, has
not been studied in the literature yet.

In this paper, we close both gaps, i.e., we study the robustness of infrastructure
networks with respect to a natural model for physical flows under a natural robustness
concept that requires robustness against all flows satisfying given maximal flow con-
straints. We adopt the classical potential-based flow model [5, 11, 23, 28, 31]. From
a mathematical point of view, potential-based flows are particularly interesting, and
also challenging, since they combine combinatorial network structures and non-linear
optimization methods.

In this single-commodity model, edges are undirected and are endowed with a po-
tential loss function that describes the flow on an edge as a function of the differ-
ence of the potentials at its endpoints. Choosing appropriate potential loss functions,
potential flows model the underlying physics of stationary gas, electricity, and water
networks. Specifically, a potential flow network is an undirected graph G = (V,E)
where each edge e = {u, v} is endowed with a strictly increasing potential loss func-
tion ψu,v : R → R with ψu,v(0) = 0 as well as a resistance βe (in gas networks, for
example, ψu,v(xu,v) = xu,v · |xu,v| [36]). Under mild assumptions on the potential loss
functions, a potential vector π ∈ RV induces a unique flow x ∈ RV×V via the equations

βeψu,v(xu,v) = πu − πv for all edges e = {u, v} ∈ E;

see Section 2 for details. In physical networks, the potentials correspond to physical
quantities like the pressures or the voltages at the nodes. Thus, the maximal potential
difference among all nodes is a measure for the stress on a network.

Routing demands are given by a finite set (si, ti)i∈I of source-sink pairs each spec-
ifying a flow demand di. A flow x satisfies the demand vector d = (di)i∈I if, for all
nodes u, it holds ∑

v∈V : {u,v}∈E

xu,v =
∑

i∈I:u=si

di −
∑

i∈I:u=ti

di.

Notice that the functional dependency of the potentials needed to satisfy a given set of
demands is non-monotonic in the following sense: decreasing the demand di between
some nodes si and ti may increase the maximal potential difference; see Figure 1 and
the discussion in Section 1.1. This is critical for the operators of infrastructures such
as electricity, water, and gas networks as they usually issue the right to send maximal
demands of flows between designated sets of nodes to network users [22, 27]. For safety
reasons, they need to ensure that the maximal potential difference (corresponding to
voltages or pressure differences in these networks) is within given bounds. Due to the
non-monotonicity of the potentials, the non-fulfillment of the demand by some network
user may violate the potential bounds and put the network at risk.
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Figure 1: Non-robust potential flow networks.

1.1 Our results and techniques
Motivated by the discussion above, we call a potential flow network G with source-
sink pairs (si, ti)i∈I robust if the maximal potential difference is non-increasing as the
demand decreases. That is, whenever there is a demand vector d satisfied by a flow x
with maximal potential difference π̄ and a demand vector d′ with d′i ≤ di for all i ∈ I,
then there exists a flow x′ satisfying d′ with maximal potential difference π̄′ ≤ π̄.

In this paper, we give a full characterization of such robust networks. To give some
intuition, consider the two networks depicted in Figure 1. The network in Figure 1a
consists of a single edge and two routing requests in opposite directions. This network is
not robust: Suppose there is a demand of one unit between s1 and t1 as well as another
unit demand between s2 = t1 and t2 = s1. Since the requests cancel out, no flow has to
be actually sent and, as ψs1,t1(0) = 0, no potential difference is needed. On the other
hand, decreasing either of the demands requires an actual flow and, thus, a non-zero
potential difference between the end nodes; see Lemma 8.

Moreover, consider the network in Figure 1b. A slightly more complicated reasoning
shows that also this network is not robust. For ease of exposition assume that all three
edges have the same potential loss function and resistance. By symmetry, to send one
unit of flow from si to ti for all i ∈ {1, 2, 3}, we can choose a potential vector π such
that πs1 = πs2 and πt1 = πt3 . On the other hand, if there is no demand between s2

and t2, we need πs2 = πt2 to prevent flow on the edge {s2, t2}. One can show that this
inevitably leads to an increase of the maximal potential difference in the network; see
Lemma 9.

As our main result, we show that these type-1 and type-2 networks in Figure 1
are essentially the only two networks that are non-robust for potential flow networks.
For a formal statement of this result, we use the notion of node-labeled graph minors
introduced by Friedman, Robertson, and Seymour [17] that extends the usual notion of
a graph minor. To this end, we label each node with a subset of source labels si and
sink labels ti with i ∈ I. A graph is a minor of some other graph if it can be constructed
from it by a sequence of edge contractions, edge deletions, and label deletions, where an
edge contraction is defined such that the new node receives the union of the labels of its
endpoints. With this definition, we show that a potential flow network is robust if and
only if it does neither contain a type-1 nor a type-2 network as a (node-labeled) minor;
see Theorem 14. As an immediate corollary of our result, we obtain that networks with
a single source or a single sink are robust; see Corollary 16.

To exhibit the explanatory power of our characterization, we demonstrate its con-
sequences for tree and cycle networks. Tree networks are particularly relevant since in
the non-robust setting all minimal network designs are cycle-free. We show that a tree
network is robust if and only if after contracting all edges that do not lie on an si-ti-path,
the remaining edges can be oriented such that all paths from a source si to a target ti
follow the orientation, and along every path in the tree the orientation of the edges
flips at most once; see Theorem 24. We further give a characterization of robust cycle
networks in terms of the ordering of the node labels along the cycle; see Theorem 26.

Motivated by the process of capacity nomination in the European gas market [22, 27],

3



we further study a situation where routing demands can specify b-vectors rather than
just source-sink pairs. Specifically, we assume that the network nodes are partitioned
into potential sources S and potential sinks T , and that every routing demand is a
b-vector with the additional property that demands are non-positive for sources and
non-negative for sinks. We show that in this model, a network is robust if and only of
there is an articulation node that separates the sources from the sinks; see Theorem 30.

Finally, we give a polynomial time algorithm that determines whether a network
topology is robust; see Theorem 32.

1.2 Related work
The first investigation of robust network flows is for the network synthesis problem
defined by Chien [9]. Given an undirected network with demands between pairs of
nodes, the problem asks for minimal edge capacities such that for each pair of nodes
there is a feasible flow satisfying the demand. The problem can be reformulated as a
robust flow problem in the sense of Ben-Tal and Nemirowski [3] with a discrete scenario
set by introducing a scenario for each pair of vertices. There are several polynomial
algorithms known for this problem [18, 20, 25, 35]. The problem also admits a linear
programming formulation of polynomial size [19]. The integer version of the problem,
where edge capacities are required to be integral, is studied in [10, 26, 33].

Buchheim et al. [7] consider a generalization of the integer problem where the scenario
set is discrete but each scenario is an arbitrary b-flow. They show that the problem is
NP-hard and propose a branch-and-cut-algorithm; see also [1, 8] for further heuristics
and exact algorithms. Without the integrality constraint, the problem is solvable by
linear programming techniques [32]. When the set of scenarios is a polytope, even
deciding the feasibility of a point is co-NP-complete. For a multi-commodity variant of
this problem, see [4, 29].

Given upper bounds on the incoming and outgoing demands for each node, the Hose
polytope contains all demand matrices obeying these bounds [13, 15]. When the routing
has to be fixed before the scenario is released and the scenario set is a Hose polytope,
the network design problem is known as virtual private network design. The optimal
solution for such a problem is always a tree [21, 24].

In recent, but unpublished work, Szabó [34] analyzed how the maximum potential
difference in a potential flow network changes when inserting an additional edge. In
particular it is shown that, while maintaining the demands at every node, inserting an
edge may increase the stress, a phenomenon that resembles Braess’s paradox [6].

2 Preliminaries
Let G = (V,E) be an undirected graph. We assume that G is simple and connected. For
a finite index set I, let D = (Di)i∈I with Di = (si, ti) ∈ V × V be a set of source-sink
pairs. We call the tuple (G,D) a network topology. A flow in G is a vector x ∈ RV×V
with xu,v = −xv,u for all u, v ∈ V and xu,v = 0 for all u, v ∈ V with {u, v} /∈ E. A
positive value xu,v indicates a movement of flow particles along edge {u, v} from u to v,
while a negative value models flow along this edge in the opposite direction from v to u.
Let

F :=
{
x ∈ RV×V : xu,v = −xv,u for all u, v ∈ V ,

xu,v = 0 for all u, v ∈ V with {u, v} /∈ E
}

denote the set of all flows in G. The balance vector bal(x) ∈ RV of a flow x ∈ F
is defined by bal(x)u :=

∑
v∈V xu,v for all u ∈ V . Similarly, for a vector of demands
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d ∈ RI≥0, the balance vector bal(d) ∈ RV is defined as

bal(d)u :=
∑

i∈I:u=si

di −
∑

i∈I:u=ti

di for all u ∈ V .

We say that a flow x satisfies a vector of demands d if bal(x) = bal(d).
The flows considered in this paper are based on potential vectors π ∈ RV . For

each edge e = {u, v} ∈ E, we are given potential loss functions ψu,v and ψv,u : R → R

and a resistance βe ∈ R>0. The potential loss functions ψu,v and ψv,u model opposite
orientations of the same physical principles. Thus, we have ψu,v(z) = −ψv,u(−z) for all
{u, v} ∈ E and z ∈ R. Intuitively, the potential loss functions and resistances describe
the physics of the underlying network. Recall the references in the introduction for
applications of this model. Throughout this paper, we impose the following assumptions
on the potential loss functions.

Assumption 1. For each {u, v} ∈ E, the potential loss function ψu,v : R→ R satisfies
the following properties:

1. ψu,v is continuous,
2. ψu,v is strictly increasing,
3. ψu,v(0) = 0.

The first two assumptions are natural in the physical context and also appear in [5].
Moreover, the third assumption is equally natural and will turn out to be essential for
the characterization of robust networks.

We denote the family of all functions satisfying Assumption 1 by Ψ. We say that a
flow x is induced by π if, for each edge e = {u, v}, the difference of the node potentials
of the end nodes equals the potential loss induced by the flow along e, i.e.,

βeψu,v
(
xu,v

)
= πu − πv. (1)

Since the right-hand side of (1) is a difference of node potentials, uniformly shifting
the entries of a potential vector π ∈ RV has no effect in terms of (1). Since the
potential loss functions ψu,v are one-to-one, for a given potential vector π ∈ RV with
(πu−πv)/βe ∈ ψu,v(R) for all e = {u, v} ∈ E, there is a unique flow x(π) ∈ F satisfying
(1). For such a flow x(π), the corresponding balance vector bal(x(π)) can be computed
as

bal
(
x(π)

)
u

=
∑
v∈V

xu,v(π) =
∑

v∈V :{u,v}∈E

ψ−1
u,v

(
πu−πv

β{u,v}

)
(2)

for all u ∈ V .
Let B :=

{
b ∈ RV :

∑
v∈V bv = 0

}
be the set of node balances that sum to 0, and

let

Πv0 :=
{
π ∈ RV : (πu − πv)/β{u,v} ∈ ψu,v(R) for all {u, v} ∈ E, πv0 = 0

}
be the set of potential vectors for which (without loss of generality) the potential of
some node v0 ∈ V is fixed to 0. Under the above conditions on G and the potential loss
functions ψu,v, for all v0 ∈ V , the function f : Πv0 → B defined as f(π) :=

(
fu(π)

)
u∈V

with

fu(π) :=
∑

v∈V :{u,v}∈E

ψ−1
u,v

(
πu−πv

β{u,v}

)
(3)
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is bijective and continuous. In particular, the inverse function f−1 : B → Πv0 exists and
is also continuous; see, e.g., Birkhoff and Diaz [5]. This implies that there is a one-to-one
correspondence between node balances b ∈ B and potentials π ∈ Πv0 .

An important measure is the stress on a network G which is defined as the maximal
potential difference of the nodes; see, e.g., [31, 34], where the influence of modifications
of the underlying network on the stress is analyzed. For a potential vector π ∈ Πv0 , we
write

strG(π) := max
v∈V

πv −min
v∈V

πv.

Using a slight overload of notation, we define for a balance vector b ∈ B the stress strG(b)
of the corresponding potential vector π = f−1(b) as

strG(b) := max
v∈V

(
f−1(b)

)
v
−min
v∈V

(
f−1(b)

)
v
.

Further overloading the notation, we write for a demand vector d ∈ RI≥0

strG(d) := strG(bal(d)).

It is straightforward to see that the stress of a balance vector b ∈ B is invariant under
the choice of v0. If the network G is clear from the context, we omit the subscript and
simply write str(π), str(b), and str(d).

3 Robust networks
In this section we introduce the concept of robustness of a network topology and give a
full characterization of robust network topologies. We call a network topology robust if
a component-wise decrease of a demand vector d never leads to an increase of the stress.

Definition 1. A network topology (G,D) together with potential loss functions ψu,v ∈
Ψ, for {u, v} ∈ E, is called robust if, for all β ∈ RE>0, the function str : RI≥0 → R≥0 is
non-decreasing, i.e., for all d′, d ∈ RI≥0 with d′ ≤ d (component-wise), we have str(d′) ≤
str(d).

Remark 2. One may also want to consider a stronger form of robustness, where the
monotonicity of the stress even holds for all potential loss functions ψu,v, {u, v} ∈ E.
We call a network topology strongly robust if, for all β ∈ RE>0 and for all ψu,v ∈ Ψ,
{u, v} ∈ E, the function str : RI≥0 → R≥0 is non-decreasing. As a byproduct of our
analysis below, we prove that a network topology is robust if and only if it is strongly
robust.

For our characterization of robust network topologies, we need the concept of aminor
of a network topology, which is a node-labeled graph minor in which the labels form
a quasi-order as introduced by Friedman, Robertson, and Seymour [17]. To this end,
consider a node-labeled graph GL with label set L := {si : i ∈ I}∪{ti : i ∈ I}, and define
`(v) ⊆ L to be the subset of labels attached to node v ∈ V . The graph is well-labeled if,
for all i ∈ I,

|{v ∈ V : si ∈ `(v)}| = |{v ∈ V : ti ∈ `(v)}| ∈ {0, 1},

i.e., labels si and ti are used pairwise or not at all.
There is a bijection between network topologies and well-labeled graphs: For a given

network topology (G,D), each node v obtains the label set `(v) = {si : i ∈ I with si =
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Figure 2: Original network topology (G,D) and one of its minors (Ḡ, D̄). A possible
sequence of contractions and deletions is as follows: contraction of edge e7, deletion of
edge e4, deletion of edge e2, contraction of edge e1 and deletion of labels s1, t1.

v} ∪ {ti : i ∈ I with ti = v}. Conversely, each well-labeled graph defines a network
topology using those node pairs (si, ti) with si ∈ `(si) and ti ∈ `(ti).

For a well-labeled graph, the contraction of an edge e = {u,w} ∈ E is the operation
that deletes e, merges u and w into a single node, and gives this node the label set
`(u) ∪ `(w). We can delete a label pair si, ti by deleting the labels si and ti from both
L and the label sets they are contained in, and deleting i from I. Deletion of edges is
defined analogously to the unlabeled case. A labeled graph ḠL̄ is a minor of a labeled
graph GL, if the former can be constructed from the latter by a finite sequence of edge
contractions, edge deletions, and label deletions.

Definition 3. Let (G,D) be a network topology and GL the corresponding well-labeled
graph. Then a network topology (Ḡ, D̄) is a minor of (G,D) if its corresponding well-
labeled graph ḠL̄ is a minor of GL and if Ḡ is connected and simple.

Figure 2 depicts an example of a minor of a network topology. The facilitating
requirement in Definition 3 that a minor must be connected and simple is, for our
purposes, without loss of generality as the two minors occurring in our main result are
indeed connected and simple; see Figure 1. Due to their one-to-one correspondence,
throughout this paper we use the notions of network topologies and well-labeled graphs
interchangeably.

If (Ḡ, D̄) is a minor of (G,D), then, in particular, Ḡ is an (ordinary unlabeled)
minor of G; see, e.g., Diestel [12]. In particular, any node in a minor corresponds to a
connected subgraph in the original graph, and any two such connected subgraphs are
disjoint, a fact that turns out to be useful later.

Lemma 4 ([12, Section 1.7]). Let (G,D) be a network topology and (Ḡ, D̄) a minor,
where G = (V,E) and Ḡ = (V̄ , Ē). For v̄ ∈ V̄ , let V (v̄) ⊆ V be the subset of nodes
in V contracted into v̄ when creating the minor. Then, for every v̄ ∈ V̄ , the induced
subgraph G[V (v̄)] is connected, and for any two v̄1, v̄2 ∈ V̄ with v̄1 6= v̄2, we have
V (v̄1) ∩ V (v̄2) = ∅.

The sequence of operations to obtain a minor (Ḡ, D̄) of (G,D) can always be chosen
such that all intermediate graphs are connected and simple. This follows from the obser-
vation that, whenever an edge contraction results in a loop, one can instead delete the
loop edge before the contraction. Moreover, no intermediate graph can be disconnected
as otherwise also Ḡ is disconnected. As a consequence, when constructing a minor, we
only need to consider the following basic operations.

Definition 5. For a network topology (G,D) the following are basic operations:
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(a) deletion of an edge which lies on a cycle;
(b) contraction of an edge which does not lie on a triangle (cycle of length three);
(c) deletion of a pair of labels si, ti.

We show that every minor of a robust network topology (G,D) is robust. In order
to prove this result, we need the following lemma. It states that, for each of the three
operations above, we can adapt the vector of edge resistances β such that the stress on
the original network and the stress on the minor network are arbitrarily close to each
other. The intuition behind the proof is that deletion or contraction of an edge can
be approximated by giving the edge a very high or very low resistance, respectively.
For given node potentials, this approximation distorts the node balances only by a very
small amount. Then, by continuity, one only needs to change the potentials (and thus,
in particular, the stress on the network) by a very small amount to restore the original
node balances.

Lemma 6. Let (G,D) be a network topology and (Ḡ, D̄) with Ḡ = (V̄ , Ē) and D̄ =
(D̄i)i∈Ī a minor obtained by one basic operation. Then, for every d̄ ∈ RĪ , β̄ ∈ RĒ>0, and
ε > 0, there exists β ∈ RE>0 with βe = β̄e for all e ∈ Ē ⊆ E such that

|strG(d)− strḠ(d̄)| < ε,

where d ∈ RV≥0 is defined as di := d̄i for all i ∈ Ī and di := 0 for all i ∈ I \ Ī.

Proof. The proof is trivial for the case that the basic operation deletes a pair of labels,
so we only discuss the remaining two cases. Let d̄ ∈ RĪ , β̄ ∈ RĒ>0, and ε > 0. Let
e∗ ∈ E \ Ē be the edge which is deleted or contracted by the basic operation. Let
β ∈ RE with βe = β̄e for all e ∈ Ē and βe∗ arbitrary. The value of βe∗ will be
determined later, depending on the basic operation performed to produce the minor. Let
v0 ∈ V ∩ V̄ , and let f : Πv0 → B and f̄ : Π̄v0 → B̄ be the functions mapping potentials
to balances as defined in (3) for the original graph G and its minor Ḡ, respectively. Let
π := f−1

(
bal(d)

)
and π̄ := f̄−1

(
bal(d̄)

)
be the potentials corresponding to d and d̄,

respectively. We show that one can choose βe∗ such that

|strG(d)− strḠ(d̄)| = |strG(π)− strḠ(π̄)| < ε.

We distinguish two cases depending on the conducted basic operation on e∗.

First case: e∗ is deleted (and thus lies on a cycle). Then, Ē = E\{e∗} and V̄ = V
and, by construction of d, bal(d) = bal(d̄). For the potential vector π̄ = f̄−1

(
bal(d̄)

)
,

inserting edge e∗ = {u,w} into graph Ḡ only changes the balances of nodes u and w,
namely by the amount of flow along edge e∗. For b := f(π̄) we get

‖b− bal(d)‖∞ = ‖b− bal(d̄)‖∞ = ‖f(π̄)− f̄(π̄)‖∞ =

∣∣∣∣ψ−1
u,w

(
π̄u − π̄w
βe∗

)∣∣∣∣ .
Since ψu,w is continuous with continuous inverse and ψu,w(0) = 0, we obtain that
‖b− bal(d)‖∞ → 0 for βe∗ → ∞. Since f−1 is continuous as well, one can choose βe∗
large enough such that

‖π − π̄‖∞ = ‖f−1
(
bal(d)

)
− f−1(b)‖∞ < 1

2ε,

and hence |strG(π)− strḠ(π̄)| < ε.
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Second case: e∗ is contracted (and thus does not lie on a triangle). For
e∗ = {u,w}, nodes u and w are contracted into a single node denoted by v∗. We have
bal(d)v = bal(d̄)v for all v ∈ V \ {u,w} and bal(d̄)v∗ = bal(d)u + bal(d)w. Consider the
potential vector π1 ∈ RV defined as

π1
v :=

{
π̄v∗ if v ∈ {u,w},
π̄v otherwise,

and note that
strG(π1) = strḠ(π̄). (4)

Let b1 := f(π1). Then b1v = bal(d)v for all v ∈ V \ {u,w} and b1u + b1w = bal(d̄)v∗ =
bal(d)u + bal(d)w. It is without loss of generality to assume that b1w ≤ bal(d)w and,
thus, b1u ≥ bal(d)u. In order to restore the balances at u and w, we send a flow of value
bal(d)w − b1w from w to u along edge e∗ = {u,w}, by decreasing the potential at u. To
this end, let π2 ∈ RV be defined as

π2
v :=

{
π1
u − βe∗ψw,u

(
bal(d)w − b1w

)
if v = u,

π1
v otherwise.

Note that
π2 → π1 for βe∗ → 0. (5)

Let b2 := f(π2). By construction, we have

b2w = bal(d)w and b2v = bal(d)v for all v ∈ V \ (N(u) ∪ {u}), (6)

where N(u) := {v ∈ V : {u, v} ∈ E} is the set of neighbors of node u. However, by
having decreased the potential at u, the balance of all neighbors of u has increased. For
v ∈ N(u) \ {w} we have

b2v − bal(d)v = b2v − b1v

= ψ−1
v,u

(
π2
v − π2

u

β{v,u}

)
− ψ−1

v,u

(
π1
v − π1

u

β{v,u}

)
(5)−→ 0 for βe∗ → 0, (7)

by continuity of ψ−1
v,u. Furthermore, since∑

v∈V

(
b2v − bal(d)v

)
=
∑
v∈V

b2v −
∑
v∈V

bal(d)v = 0− 0 = 0,

we have

b2u − bal(d)u = −
∑

v∈V \{u}

(
b2v − bal(d)v

)
(6)
= −

∑
v∈N(u)\{w}

(
b2v − bal(d)v

) (7)−→ 0 for βe∗ → 0. (8)

Equations (6), (7), and (8) imply b2 − bal(d)→ 0 as βe∗ → 0 and, hence,

π − π2 = f−1
(
bal(d)

)
− f−1(b2)→ 0 for βe∗ → 0, (9)

by continuity of f−1. Altogether, by (4), (5), and (9), we get for βe∗ small enough

|strG(π)− strḠ(π̄)|
= |strG(π)− strG(π2) + strG(π2)− strG(π1) + strG(π1)− strḠ(π̄)| < ε,

which completes the proof.
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We are now in the position to show that robustness of a network topology is closed
under the minor operation.

Lemma 7. Every minor of a robust network topology is robust.

Proof. Let (G,D) be a robust network topology. By contradiction, assume there is a
non-robust minor (Ḡ, D̄) with Ḡ = (V̄ , Ē) and D̄ = (D̄i)i∈Ī . Since (Ḡ, D̄) is obtained
by a sequence of basic operations, by considering the last minor in the sequence that is
robust, we may assume that (Ḡ, D̄) is obtained from (G,D) by one basic operation.

As (Ḡ, D̄) is not robust, there are β̄ ∈ RĒ>0 and d̄ ≤ d̄′ ∈ RĪ≥0 for which

strḠ(d̄) ≥ strḠ(d̄′) + ε (10)

for some ε > 0.
For the network topology (G,D) with G = (V,E) and D = (Di)i∈I consider the

demand vectors d, d′ ∈ RI≥0 with di = d̄i, d′i = d̄′i for all i ∈ Ī and di = d′i = 0 for all
i ∈ I\Ī. By construction, d ≤ d′. Lemma 6 implies the existence of β ∈ RE with βe = β̄e
for all e ∈ Ē ⊆ E such that |strG(d)− strḠ(d̄)| < ε/2 and |strG(d′)− strḠ(d̄′)| < ε/2.
Due to (10) it follows that strG(d) > strG(d′), contradicting the robustness of (G,D).

We proceed to show that a network topology is robust if and only if it contains
neither of two special minors, called type-1 and type-2 networks depicted in Figure 1.
Before we prove the full characterization of robustness, we show that type-1 and type-2
network topologies are not robust.

Lemma 8. The type-1 network topology is not robust.

Proof. Consider the network in Figure 1a with a demand vector d such that d1 = d2 > 0.
Then there is no flow on the only edge e = {s1, t1}, and since ψs1,t1(0) = 0, it follows
that str(d) = 0. Consider the demand vector d′ with d′1 = d1 and d′2 = 0, such that
d′ ≤ d. Since bal(d′)s1 = −bal(d′)t1 = d1 > 0, ψs1,t1(0) = 0, and ψs1,t1 is strictly
increasing, a positive potential difference between the two nodes is necessary in order to
enforce a flow, which implies str(d′) > 0.

Lemma 9. The type-2 network topology is not robust.

Proof. Consider the type-2 network in Figure 3a. Let βe1 := 1/ψv1,v2(1), βe2 :=
1/ψv3,v2(1), βe3 := 1/ψv3,v4(1), and consider the demand vector d with di = 1 for
i = 1, 2, 3. Let π := f−1

(
bal(d)

)
. Then str(π) = 1; see Figure 3b. The flow x induced

by π satisfies xv1,v2 = xv3,v4 = 1 and xv2,v3 = −1. Next, consider the demand vector d′
with d′1 = d′3 = 1 and d′2 = 0. Let π′ := f−1

(
bal(d′)

)
. Then str(π′) = 2; see Figure 3c.

(Note that the flow x′ induced by π′ satisfies xv1,v2 = xv3,v4 = 1 and xv2,v3 = 0.) Hence,
the type-2 network is not robust.

We proceed to characterize the network topologies that have a type-1 network as
a minor. To this end, we introduce the following notation. For an undirected graph
G = (V,E), a path P is a sequence of pairwise distinct nodes (v1, . . . , vk) such that
{vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}. We denote by V (P ) := {v1, . . . , vk} and
E(P ) :=

{
{vi, vi+1} : i ∈ {1, . . . , k − 1}

}
the node and edge set of P , respectively. Two

paths P and P ′ are called node-disjoint if V (P ) ∩ V (P ′) = ∅. For two nodes u, v ∈ V ,
we call a path (v1, . . . , vk) a u-v-path if v1 = u and vk = v. We denote the set of all
u-v-paths in G by PGu,v.

Furthermore, for a network topology (G,D) and two labels u, v ∈ L (of the corre-
sponding well-labeled graph GL), a u-v-path is a u-v-path, where u and v are the nodes
labeled by u and v, respectively, i.e., u ∈ `(u) and v ∈ `(v). Correspondingly, we set
PGu,v := PGu,v. If the graph G is clear from the context, we sometimes omit the superscript
and simply write Pu,v and Pu,v.
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Figure 3: The type-2 network with node potentials satisfying demands d and d′.
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Figure 4: Node-disjoint paths P ∈ Psi,tj and P ′ ∈ Psj ,ti imply the existence of a type-1
minor.

Lemma 10. Let (G,D) be a network topology, (Ḡ, D̄) a minor, and u1, v1, u2, v2 ∈
L̄ ⊆ L labels. If there exist two node-disjoint paths P̄1 ∈ PḠu1,v1

and P̄2 ∈ PḠu2,v2
in the

minor Ḡ, then there also exist two node-disjoint paths P1 ∈ PGu1,v1
and P2 ∈ PGu2,v2

in G.

Proof. Let P̄1 ∈ PḠu1,v1
and P̄2 ∈ PḠu2,v2

be node-disjoint paths. Denote the node sets of
P̄1 and P̄2 by V̄1 and V̄2, respectively. By Lemma 4, V1 :=

⋃
v̄∈V̄1

V (v̄) ⊂ V and V2 :=⋃
v̄∈V̄2

V (v̄) ⊂ V are disjoint, and both G[V1] and G[V2] are connected. Furthermore,
u1, v1 ∈

⋃
v∈V1

`(v) and u2, v2 ∈
⋃
v∈V2

`(v). Hence, there exist node-disjoint paths
P1 ∈ PGu1,v1

and P2 ∈ PGu2,v2
in G.

Lemma 11. A network topology (G,D) contains a type-1 minor if and only if there
exist i, j ∈ I with i 6= j and two node-disjoint paths P ∈ PGsi,tj and P ′ ∈ PGsj ,ti .

Proof. “⇐”: Suppose there are i, j ∈ I with i 6= j and two node-disjoint paths P ∈ PGsi tj
and P ′ ∈ PGsj ,ti . Since G is connected, there exists a path Q connecting P and P ′

with |V (Q) ∩ V (P )| = |V (Q) ∩ V (P ′)| = 1; see Figure 4a. Consider the minor (Ḡ, D̄)
which is obtained from (G,D) as follows: all edges in E \

(
E(P ) ∪ E(P ′) ∪ E(Q)

)
are

deleted and all edges in E(P )∪E(P ′) and all edges in E(Q) except for a single one are
contracted. Further, all labels except si, ti, sj , and tj are deleted. This yields a type-1
network; see Figure 4b.

“⇒”: Let (G,D) contain a type-1 minor (Ḡ, D̄). The type-1 network obviously
contains node-disjoint-paths P̄ ∈ PḠsi,tj and P̄ ′ ∈ PḠsj ,ti , namely paths consisting only of
a single node. Therefore, by Lemma 10, also the original network contains node-disjoint
paths P ∈ PGsi,tj and P ′ ∈ PGsj ,ti .

In order to prove the general characterization of robust networks we need some
preparation. For a graph G = (V,E) and s, t ∈ V with s 6= t, we call a flow x ∈ F an
s-t-flow if bal(x)s = − bal(x)t ≥ 0 and bal(x)v = 0 for all v ∈ V \ {s, t}. Furthermore,
for two disjoint subsets U , W ⊂ V , let [U,W ] := {{u,w} ∈ E : u ∈ U,w ∈ W} be the
cut between U and W .
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Lemma 12. Let G = (V,E) be a connected graph, x ∈ F an s-t-flow, and π ∈ RV such
that

sgn(xu,v) = sgn(πu − πv) for all {u, v} ∈ E. (11)

Then the following holds:

(a) πs ≥ πv ≥ πt for all v ∈ V .

(b) The flow x can be decomposed into a sum of positive flows along a set of s-t-paths
P ⊆ Ps,t, such that for every path (v1, . . . , vk) ∈ P we have xvi,vi+1 > 0 for all
i ∈ {1, . . . , k − 1}.

(c) For all c ∈ R, both the subgraph induced by V +
c := {v ∈ V : πv ≥ c} and the subgraph

induced by V −c := {v ∈ V : πv < c} are connected.

Proof. We first show (a). Let π̄ := maxv∈V πv and assume by contradiction that πs < π̄.
Let V̄ := {v ∈ V : πv = π̄}. Since s /∈ V̄ and G is connected, there is {u, v} ∈ E with
u ∈ V̄ and v ∈ V \ V̄ . By the maximality of πu and (11), we have xu,w ≥ 0 for all w ∈ V
and xu,v > 0. Therefore,

bal(x)u =
∑
w∈V

xu,w ≥ xu,v > 0,

contradicting the fact that x is an s-t-flow. Similarly, one can conclude that πt =
minv∈V πv.

To show (b), note that by classical flow decomposition the s-t-flow x decomposes
into a sum of positive flows along a set of s-t-paths P and a set of cycles C, such that all
edges carry positive flow in the direction of the path or cycle. Assume by contradiction
that C 6= ∅ and (v1, . . . , vk, v1) ∈ C. Then (11) implies πv1 > πv2 > · · · > πvk > πv1 , a
contradiction.

To prove (c), we only need to consider values c with minv∈V πv < c ≤ maxv∈V πv,
since V +

c or V −c is empty otherwise. Let C := [V +
c , V

−
c ] ⊆ E be the cut between V +

c

and V −c . Consider u, v ∈ V +
c and P ∈ Pu,v. We are done if all nodes of P are contained

in V +
c . Otherwise, P contains at least two edges of the cut C. Let eα = {α+, α−} and

eω = {ω+, ω−} with α+, ω+ ∈ V +
c and α−, ω− ∈ V −c be the first and the last edge of

P contained in C. For σ ∈ {α, ω} we have πσ+ > πσ− and thus xσ+,σ− > 0. By (b)
this implies the existence of an s-t-path Pσ ∈ P containing edge {σ+, σ−}. The path Pσ
does not contain any other edge of C, since all edges in C carry positive flow from V +

c

to V −c . Therefore, Pσ contains a subpath from s to σ+ whose nodes are all contained in
V +
c . It follows that there exists a path from u to α+, from α+ to s, from s to ω+, and

from ω+ to v only using nodes in V +
c . Thus, the subgraph induced by V +

c is connected.
Analogously, one can show that the subgraph induced by V −c is connected.

The following lemma gives a necessary condition on the potential vectors of flows in
type-1-free networks.

Lemma 13. Let (G,D) be a network topology without a type-1 minor, let x ∈ F be an
sj-tj-flow for some j ∈ I, and let π ∈ RV fulfill (11). Then, πsi ≥ πti for all i ∈ I.

Proof. By contradiction, suppose that πti > πsi for some i ∈ I \ {j}. By Lemma 12a
it follows that πsj ≥ πti > πsi ≥ πtj . Let V + := {v ∈ V : πv ≥ πti} and V − :=
V \ V +. Then, sj , ti ∈ V + and tj , si ∈ V −. By Lemma 12c, both G[V +] and G[V −]
are connected. Therefore, there exist node-disjoint paths P ∈ Psi,tj and P ′ ∈ Psj ,ti . By
Lemma 11, (G,D) contains a type-1 minor, a contradiction.

We can now prove the main result of this section.
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Theorem 14. A network topology (G,D) is robust if and only if it does neither contain
a type-1 nor a type-2 minor.

Proof. “⇒”: If (G,D) contains a type-1 or type-2 minor, then, by Lemmas 8 and 9,
(G,D) has a minor that it not robust. Lemma 7 implies that (G,D) is not robust.

“⇐”: For the reverse direction assume that (G,D) is not robust, i.e., there exist
β ∈ RE>0 and d, d′ ∈ RI≥0 with d ≤ d′ such that str(d′) < str(d). We can assume without
loss of generality that there is j ∈ I such that dj < d′j and di = d′i for all i ∈ I \ {j};
otherwise, move from d′ to d by successively decreasing the demands d′i to di, one at a
time, and identify a step which strictly increases the stress.

Let π := f−1
(
bal(d)

)
, π′ := f−1

(
bal(d′)

)
, and let x := x(π), x′ := x(π′) be the

corresponding flows. Then, ∆x := x′ − x is an sj-tj-flow of value d′j − dj > 0. Due
to Equation (1) and Assumption 1, the flow ∆x and the vector of potential differ-
ences ∆π := π′ − π satisfy

sgn(∆xu,v) = sgn(x′u,v − xu,v)
= sgn

(
ψ−1
u,v(π

′
u − π′v)− ψ−1

u,v(πu − πv)
)

= sgn
(
(π′u − π′v)− (πu − πv)

)
= sgn(∆πu −∆πv) for all {u, v} ∈ E.

(12)

Let Vmax and Vmin be the node sets of an arbitrary connected component ofG[argmaxv∈V πv]
and G[argminv∈V πv], respectively. Note that xu,v > 0 for all edges {u, v} ∈ E with
u ∈ Vmax and v /∈ Vmax, and xu,v < 0 for all {u, v} ∈ E with u ∈ Vmin and v /∈ Vmin.
Furthermore, we claim that

∆πu < ∆πv for all u ∈ Vmax, v ∈ Vmin. (13)

Assume by contradiction that ∆πu ≥ ∆πv for u ∈ Vmax, v ∈ Vmin. Since str(π) =
πu − πv, we get

str(d′) = str(π′) ≥ π′u − π′v = str(π) + ∆πu −∆πv ≥ str(π) = str(d),

a contradiction.
Let c := minv∈Vmin

∆πv,

V +
∆ := {v ∈ V : ∆πv ≥ c}, and V −∆ := V \ V +

∆ .

Due to (12), Lemma 12 implies that both G[V +
∆ ] and G[V −∆ ] are connected. By definition

we have Vmin ⊆ V +
∆ , and (13) implies Vmax ⊆ V −∆ . In particular, it follows that Vmax ∩

V +
∆ = ∅. Let Ū be the set of nodes containing V +

∆ and all nodes that can be reached from
V +

∆ without visiting any node of Vmax. Let U := V \ Ū . Then we have Vmax ⊆ U ⊆ V −∆ ;
see Figure 5.

Claim 1. G[U ] is connected.

of the claim. Let u, v ∈ U , P ∈ Pu,v, and assume that P contains some node in Ū . Let
{α, ᾱ} and {ω, ω̄}, with α, ω ∈ U and ᾱ, ω̄ ∈ Ū , be the first and last edge of P in the
cut [U, Ū ] between U and Ū . Then, α, ω ∈ Vmax since otherwise α or ω could be reached
from Ū without passing any node of Vmax, contradicting α, ω /∈ Ū and the definition
of Ū . But since G[Vmax] is connected, there is a path from u to v via α and ω by only
using nodes within U .

Similarly, let Ū ′ be the set of nodes which contains V −∆ and all nodes that can be
reached from V −∆ without visiting any node of Vmin, and define U ′ := V \ Ū ′. Then,
Vmin ⊆ U ′ ⊆ V +

∆ . By the same line of arguments as before, G[U ′] is connected. Note
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Figure 5: Illustration of the different node sets in the proof of Theorem 14.

that, for every {u, v} ∈ E with u ∈ U and v ∈ Ū , we have that u ∈ Vmax and v ∈ V \Vmax,
and thus xu,v > 0. Similarly, for every edge {u, v} ∈ E with u ∈ U ′ and v ∈ Ū ′, we have
xu,v < 0. Hence, ∑

v∈U
bal(x)v > 0 and

∑
v∈U ′

bal(x)v < 0. (14)

As a consequence, there exists a source si ∈ U ⊆ V −∆ with ti /∈ U . Similarly, there exists
a sink tk ∈ U ′ ⊆ V +

∆ with sk /∈ U ′.
In the following, assume that (G,D) does not contain a type-1 minor. Then, due to

(12), Lemma 13 implies
∆πs` ≥ ∆πt` for all ` ∈ I. (15)

Since si ∈ V −∆ and tk ∈ V +
∆ , (15) implies that ti ∈ V −∆ and sk ∈ V +

∆ . Therefore, (14)
implies that U ( V −∆ and U ′ ( V +

∆ . Let W1, . . . ,Wq be the node sets of the connected
components of the graph G[V \ (U ∪U ′)]. From the connectedness of G[V +

∆ ] and G[V −∆ ]
it follows that [U,Wr] 6= ∅ and [U ′,Wr] 6= ∅ for all r = 1, . . . , q; see Figure 5.

Claim 2. The graph G[V \ (U ∪ U ′)] is connected, that is, q = 1.

of the claim. Assume by contradiction that q ≥ 2. Let R be a subset of {1, . . . , q} of
maximal cardinality such that, for every r ∈ R, there exists an ` ∈ I with s` ∈ U and
t` ∈Wr. We claim that for every r ∈ R it holds that

s`′ /∈Wr for all `′ ∈ I with t`′ /∈Wr. (16)

Otherwise, there exists `′ ∈ I with t`′ /∈ Wr and s`′ ∈ Wr and, since r ∈ R and by
definition of R, there exists ` ∈ I with s` ∈ U and t` ∈ Wr. But since q ≥ 2, the
subgraph G[V \Wr] is connected, and hence there exist node-disjoint paths P ∈ Ps`,t`′
and P ′ ∈ Ps`′ ,t` . Thus, by Lemma 11, (G,D) contains a type-1 minor, a contradiction.

Let WR :=
⋃
r∈RWr and UR := WR ∪ U . Then, since xu,v > 0 for every {u, v} ∈ E

with u ∈ UR and v /∈ UR, we have ∑
v∈UR

bal(x)v > 0.

Therefore, there exists a source s` ∈ UR with t` /∈ UR; in particular, t` /∈ WR. Thus,
(16) implies s` /∈ WR, and hence s` ∈ U . Due to the maximality of R, t` /∈ Wr for all
r ∈ {1, . . . , q}, and hence t` ∈ U ′. Therefore, ∆πt` > ∆πs` , a contradiction to (15).
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Figure 6: Construction of a type-2 network in the proof of Theorem 14.

Recall that there exists a source si ∈ U ⊂ V −∆ with ti ∈ V −∆ \U and a sink tk ∈ U ′ ⊂
V +

∆ with sk ∈ V +
∆ \U ′. By the above claim it follows that ti ∈ V −∆ ∩W1 and sk ∈ V +

∆ ∩W1.
Moreover, due to (12), the fact that ∆x is an sj-tj-flow, and the definitions of V +

∆ and
V −∆ , Lemma 12 implies that sj ∈ V +

∆ and tj ∈ V −∆ .
We use our insights to construct a type-2 minor; see Figure 6. Let P be an sk-ti-path

which neither contains si nor tk (such a path exists since sk, ti ∈ W1 and si, tk /∈ W1)
and which uses a minimal number of edges of the cut [V +

∆ , V −∆ ]. Let P+ := P∩G[V +
∆ ] and

P− := P∩G[V −∆ ] be the parts of P which are contained inG[V +
∆ ] andG[V −∆ ], respectively.

Furthermore, let P 1
+, . . . , P

m
+ and P 1

−, . . . , P
m
− be the connected components of P+ and

P−, where P 1
+ contains sk and Pm− contains ti; see Figure 6.

Due to the connectedness of G[V +
∆ ], there exists a path from tk to P r+ for every

r ∈ {1, . . . ,m}. By the minimality of P , for every r, r′ ∈ {1, . . . ,m} with r 6= r′, any
path connecting P r+ and P r

′

+ in G[V +
∆ ] contains tk.

Let Ptk ⊂ G[V +
∆ ] be a path from tk to P 1

+, and let Psj ⊂ G[V +
∆ ] be a path from sj

to P+ ∪ Ptk . Then Psj ends in P 1
+ since otherwise there exist node-disjoint sj-tk- and

sk-tj-paths, which would imply the existence of a type-1 minor. Let Psi ⊂ G[V −∆ ] be a
path from si to Pm− , and let Ptj ⊂ G[V −∆ ] be a path from tj to P− ∪ Psi . By a similar
argument as before, it follows that Ptj ends in Pm− .

Let ei ∈ E(Psi), ej ∈ E(P ) ∩ [V +
∆ , V −∆ ], and ek ∈ E(Ptk). Then, deleting all labels

except for si, ti, sj , tj , sk, tk, deleting all edges in E except for the ones in the tree
T := P ∪Ptk ∪Psj ∪Psi ∪Ptj , and afterwards contracting all edges in E(T ) \ {ei, ej , ek}
yields a type-2 minor. This completes the proof.

As mentioned in Remark 2, as a consequence of Theorem 14, robustness and strong
robustness are in fact equivalent.

Corollary 15. A network topology is robust if and only if it is strongly robust.

Proof. By Theorem 14, a network topology is robust if and only if it neither contains a
type-1 nor a type-2 minor. This condition is independent of the choice of the functions
ψu,v, {u, v} ∈ E.

Furthermore, we can conclude that every network topology containing only a single
soure or a single sink is robust.

Corollary 16. Let (G,D) be a network topology with a single source or a single sink,
i.e., |

⋃
i∈I{si}| = 1 or |

⋃
i∈I{ti}| = 1. Then (G,D) is robust.
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Proof. Every type-1 and every type-2 network contains at least two distinct sources and
two distinct sinks. Thus, (G,D) does not contain a type-1 or type-2 network as a minor.
By Theorem 14, (G,D) is robust.

To conclude this section, we prove two lemmas which turn out to be useful later.
The first one states that in a network topology, edges which are not contained in any
si-ti-path never carry any flow. Based on this fact, the second lemma concludes that
contracting these edges has no influence on the robustness of the network topology.

Lemma 17. Let (G,D) be a network topology, d ∈ RI≥0, π = f−1
(
bal(d)

)
, and x = x(π)

the flow satisfying demands d. If xu,v 6= 0 for some e = {u, v} ∈ E, then e is contained
in an si-ti-path for some i ∈ I.

Proof. We proceed by induction on p(d) := |{i ∈ I : di > 0}|. If p(d) = 0, then x = 0
and there is nothing to show. Now assume p(d) > 0, and consider {u, v} ∈ E with
xu,v 6= 0. Let j ∈ I with dj > 0 and define d′ ∈ RI≥0 by d′j := 0 and d′i := di for all
i ∈ I \ {j}. Let π′ := f−1

(
bal(d′)

)
and x′ := x(π′) the flow satisfying demands d′. Note

that p(d′) = p(d) − 1. If x′u,v 6= 0, then, by induction, edge {u, v} is contained in an
si-ti-path for some i ∈ I. Thus, we can assume that x′u,v = 0. Let ∆x := x − x′ and
∆π := π − π′. Then ∆x is an sj-tj-flow of value dj > 0 and, due to Equation (1) and
Assumption 1, sgn(∆xu,v) = sgn(∆πu − ∆πv) for all {u, v} ∈ E. Furthermore, since
xu,v 6= 0 and x′u,v = 0, we have ∆xu,v 6= 0. Hence, by Lemma 12(b) we conclude that
edge {u, v} is contained in some sj-tj-path.

Lemma 18. Let (G,D) be a network topology and (Ḡ, D̄) its minor obtained by con-
tracting all edges e ∈ E that are not contained in any si-ti-path, i ∈ I. Then (G,D) is
robust if and only if (Ḡ, D̄) is robust.

Proof. “⇒”: This direction follows directly from Lemma 7.
“⇐”: Let d ∈ RI≥0, π := f−1

(
bal(d)

)
, and x := x(π) be the flow satisfying demands d.

By Lemma 17, xu,v = 0 and thus πu = πv for all edges e = {u, v} ∈ E which are not
contained in any si-ti-path, i ∈ I. Therefore, contracting these edges does not alter the
stress on the network, i.e., strG(d) = strḠ(d). Thus, due to the robustness of (Ḡ, D̄),
for every d′ ∈ RI≥0 with d′ ≤ d, we have strG(d′) = strḠ(d′) ≤ strḠ(d) = strG(d). Hence
(T,D) is robust.

4 Robustness for special graph classes
For certain special classes of graphs, such as trees and cycles, we can give more explicit
characterizations of robustness.

4.1 Robust tree topologies
For the case that the network is a tree, it turns out that robustness is closely related
to the possibility to give an orientation to each edge of the tree such that the resulting
directed graph is a so-called bi-arborescence (see Figure 7) and the unique paths from a
source to the corresponding sink follow this orientation.

We use the following terminology: A directed graph is an arc-tree if its underlying
undirected graph is a tree. Furthermore, for a directed graph (V,A), a sequence of pair-
wise distinct nodes P = (v1, . . . , vk) is a path if (vi, vi+1) ∈ A or (vi+1, vi) ∈ A for all
i = 1, . . . , k− 1, and P is a directed path if (vi, vi+1) ∈ A for all i = 1, . . . , k− 1. Denote
the arc set of P by A(P ). For two nodes u, v ∈ V , a (directed) path (v1, . . . , vk) is a
(directed) u-v-path if v1 = u and vk = v.

16



r

(a)

r

(b)

r

(c)

Figure 7: Three examples of bi-arborescences.

Definition 19. An arc-tree (V,A) is called a bi-arborescence if there exists a node
r ∈ V , called the root, such that, for every v ∈ V , there exists a directed v-r-path or a
directed r-v-path.

See Figure 7 for an illustration. Note that any arborescence is also a bi-arborescence.
In contrast to arborescences, however, the root of a bi-arborescence is not necessarily
unique.

We give an alternative characterization of bi-arborescences in terms of changes of
edge orientations along a path. To that end, for a directed graph (V,A) and a node
v ∈ V , let δ+(v) ⊆ A be the set of arcs that start in v, and let δ−(v) ⊆ A be the set of
arcs that end in v.

Definition 20. Let (V,A) be a directed graph and P a path. A node v ∈ V with
|δ−(v) ∩A(P )| = 2 or |δ+(v) ∩A(P )| = 2 is called a flipping node of P . Moreover, the
number

ϕ(P ) := |{v ∈ V : v is a flipping node of P}|

is called the number of flips of path P .

Lemma 21. An arc-tree (V,A) is a bi-arborescence if and only if every path in (V,A)
has at most one flip.

Proof. “⇒”: If (V,A) is a bi-arborescence, then, for any path P , the only possible flipping
node of P is the node with minimal graph-theoretic distance to the root r.

“⇐”: If |δ−(v)| ≤ 1 for all v ∈ V , then (V,A) is an arborescence and thus a bi-
arborescence. Otherwise, among all nodes u with |δ−(u)| ≥ 2 choose one such that
there is no directed path from u to any other such node (this node exists due to the
acyclicity of the graph). We call this node r and argue that (V,A) is a bi-arborescence
with root r: For any node v ∈ V such that the first arc on the unique r-v-path is in δ+(r),
this path is directed by our choice of r. Moreover, for any node v ∈ V such that the
first arc on the unique r-v-path is in δ−(r), the reverse path is a directed v-r-path, since
otherwise adding the other arc in δ−(r) to the r-v-path yields a path with at least two
flips, a contradiction.

We proceed to give a characterization of robust trees. It will depend on the possibility
to turn the tree into a bi-arborescence such that each si-ti-path follows this orientation,
i.e., each si-ti-path is directed.
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si ti tj sj sk tk

ai aj ak

Figure 8: An arc-tree containing a type-2 minor, as described in the proof of Theorem 24.

Definition 22. For a simple undirected graph (V,E), a set of arcs A ⊂ V ×V is called an
orientation of E if |A| = |E| and E = {{u, v} : (u, v) ∈ A}. A network topology (T,D)
is called tree topology if T = (V,E) is a tree. A tree topology is regular if there exists
an orientation A of E such that (V,A) is a bi-arborescence with a directed si-ti-path for
every i ∈ I.

Lemma 23. Every minor of a regular tree topology is regular.

Proof. Let (T,D) be a regular tree topology. Note that contracting an edge e ∈ E or
deleting a pair of labels si, ti does not destroy the regularity of the network topology.
Since T is a tree, every minor of (T,D) can be obtained by a finite sequence of edge
contractions and label pair deletions. By induction, every minor of (T,D) is regular.

For a tree topology (T,D) denote by PTi the unique si-ti-path in T , i ∈ I. We can
now give a characterization of robust tree topologies.

Theorem 24. Let (T,D) be a tree topology and let (T̄ , D̄) be the minor that is obtained
from (T,D) by contracting all edges e ∈ E with e /∈

⋃
i∈I E(PTi ). Then (T,D) is robust

if and only if (T̄ , D̄) is regular.

Proof. By Lemma 18, (T,D) is robust if and only if (T̄ , D̄) is robust. Thus, it remains
to show that (T̄ , D̄) is robust if and only if it is regular.

“⇒”: We show the contraposition. First, assume that there is no orientation Ā of
Ē such that the arc-tree (V̄ , Ā) contains a directed si-ti-path for every i ∈ I. Then,
there exist i, j ∈ I and an edge e ∈ E(P T̄i )∩E(P T̄j ) such that e is traversed in opposite
directions when going from si to ti and from sj to tj , respectively. Thus, contracting
every edge in Ē \ {e} and deleting all labels except for si, ti, sj , tj yields a type-1 minor.
By Theorem 14, (T̄ , D̄) is not robust.

Second, assume there is an orientation Ā of Ē such that, for every i ∈ I, the arc-tree
(V̄ , Ā) contains a directed si-ti-path, but (V̄ , Ā) is not a bi-arborescence. By Lemma 21,
(V̄ , Ā) contains a path P with two flipping nodes. Thus, as depicted in Figure 8, there
are three arcs ai, aj , ak ∈ A(P ) such that, when traversing P ,
• ai is traversed before aj ,
• aj is traversed before ak,
• ai and ak are traversed along their orientation,
• aj is traversed against its orientation.

Furthermore, by the construction of the arc-tree (V̄ , Ā), there exist i, j, k ∈ I such that,
for every ` ∈ {i, j, k}, the arc a` is contained in the directed s`-t`-path. Let ei, ej , ek ∈ Ē
be the edges corresponding to the arcs ai, aj , ak ∈ Ā. Within (T̄ , D̄), contracting all
edges in Ē \ {ei, ej , ek} and deleting all labels except for si, ti, sj , tj , sk, tk yields a
type-2 minor. By Theorem 14, (T̄ , D̄) is not robust.

“⇐”: Assume (T̄ , D̄) is regular. Then, by Lemma 23, every minor of (T̄ , D̄) is regular.
But then (T̄ , D̄) can neither contain a type-1 nor a type-2 minor, since these minors are
clearly not regular. By Theorem 14, (T̄ , D̄) is robust.
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Figure 9: The cycles in (a) and (b) are robust, whereas the cycles in (c) and (d) are not
robust. The cycle in (c) violates Property (a) in Theorem 26. The cycle in (d) violates
Property (b) since s3 ≺Pu

s2 and t2 ≺Pv
t3.

4.2 Robust cycles
Next, we give a characterization of robust cycles. We start by considering a necessary
condition for robustness.

Lemma 25. Let (G,D) be a network topology such that G is a cycle. If (G,D) is robust,
then, for all i, j ∈ I, every si-tj-path contains sj or ti.

Proof. If there exists an si-tj-path which neither contains sj nor ti, then there also exists
an sj-ti-path which neither contains si nor tj . Thus, by Lemma 11, (G,D) contains a
type-1 minor and is therefore not robust.

We can now give a full characterization of robust cycles. To that end, for a path
P = (v1, . . . , vk) we write vi ≺P vj if i < j.

Theorem 26. Let (G,D) be a network topology such that G is a cycle and si 6= ti for
all i ∈ I. Then (G,D) is robust if and only if both of the following two conditions hold:

(a) There exist two edges {u1, v1}, {u2, v2} ∈ E and two node-disjoint paths Pu ∈ Pu1,u2 ,
Pv ∈ Pv1,v2 with {si : i ∈ I} ⊆ V (Pu), {ti : i ∈ I} ⊆ V (Pv).

(b) Moreover, there is no pair i, j ∈ I such that si ≺Pu
sj and tj ≺Pv

ti.

Figure 9 shows examples of robust and non-robust cycles.

of Theorem 26. “⇒”: By contradiction, first assume that (a) holds, but (b) does not
hold. Then there exist i, j ∈ I with si ≺Pu sj and tj ≺Pv ti. Consequently, there exist
node-disjoint paths P ∈ Psi,tj and P ′ ∈ Psj ,ti . By Lemma 11, (G,D) contains a type-1
minor and is thus not robust, a contradiction.

Next, assume that (a) does not hold. Thus, there exist i, j, k ∈ I such that the cycle
G can be decomposed into the concatenation of four paths: P1 ∈ Psi,tj , P2 ∈ Ptj ,sk ,
P3 ∈ Psk,ti , and P4 ∈ Pti,si ; see Figure 10.

Applying Lemma 25 to si and tj implies that sj ∈ V (P1). Applying Lemma 25 once
more to sk and tj implies that tk ∈ V (P2). But then there exists an si-tk-path which
neither contains sk nor ti, contradicting Lemma 25.
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Figure 10: A cycle violating Property (a) of Theorem 26.

si ti tj sj sk tkP1 P2 P3 P4 P5

P6

(a)

si tj sj tiP1 P2 P3

P4

(b)

si tj ti sjP1 P2 P3

P4

(c)

Figure 11: The possible cases for non-robust cycles. In (a) the cycle contains a type-2
minor. In (b) and (c) it contains a type-1 minor.

“⇐”: Assume by contradiction that (G,D) is not robust. By Theorem 14, it contains
a type-1 or a type-2 minor. First assume that (G,D) contains a type-2 minor. Then G
is of the form shown in Figure 11a where each of the paths P2 and P4 might be of length
zero, whereas all of the paths P1, P3, P5, and P6 contain at least one edge. Consequently,
Property (a) is not satisfied. Now, assume (G,D) contains a type-1 minor. Then G has
one of the forms shown in Figure 11b and Figure 11c, where each of the paths P1 and
P3 might be of length zero, whereas both of the paths P2 and P4 contain at least one
edge. In the first case, Property (a) is violated. In the second case, if P1 or P3 has
length zero, then Property (a) is violated, otherwise Property (b) is violated.

5 Robustness in the entry-exit model
Let G = (V,E) be an undirected graph, and let S, T ⊂ V be nonempty disjoint sets of
sources and sinks, respectively. We call (G,S, T ) an entry-exit topology. In this section
we define robustness for entry-exit topologies and give a complete characterization of the
class of robust entry-exit topologies by exploiting the results on robustness of network
topologies proved in the previous sections.

The set of possible balance vectors is

B(S, T ) :=
{
b ∈ RV : bs ≥ 0 for all s ∈ S, bt ≤ 0 for all t ∈ T,∑

v∈V
bv = 0, bv = 0 for all v ∈ V \ (S ∪ T )

}
.

For b, b′ ∈ B(S, T ) we write b � b′ if |bv| ≤ |b′v| for all v ∈ V .

Definition 27. An entry-exit topology (G,S, T ) together with potential loss functions
ψu,v ∈ Ψ, for {u, v} ∈ E, is called robust if, for all β ∈ RE>0, the function str : B(S, T )→
R≥0 is non-decreasing with respect to �, i.e., for all b, b′ ∈ B(S, T ) with b � b′ we have
str(b) ≤ str(b′).
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We will show that robustness of an entry-exit topology is equivalent to robustness
of a certain corresponding network topology. To that end, let

D(S, T ) :=
(
(s, t) : (s, t) ∈ S × T

)
be the tuple of all source-sink pairs with sources in S and sinks in T . Sticking to the
notation of the previous sections, this means that D(S, T ) = (Di)i∈I , where I = S × T ,
and for i ∈ I we have Di = (si, ti). We state the following classic observation:

Observation 1. For each b ∈ B(S, T ) there is a d ∈ RS×T≥0 with bal(d) = b.

Lemma 28. For every b, b′ ∈ B(S, T ) with b � b′, there exist d, d′ ∈ RS×T≥0 with d ≤ d′
such that bal(d) = b and bal(d′) = b′.

Proof. Let b, b′ ∈ B(S, T ) with b � b′ and set ∆b := b′− b ∈ B(S, T ). By Observation 1,
let d, ∆d ∈ RS×T≥0 with bal(d) = b and bal(∆d) = ∆b, and set d′ := d + ∆d ∈ RS×T≥0 .
Then d ≤ d′ and bal(d′) = bal(d) + bal(∆d) = b+ ∆b = b′.

Lemma 29. An entry-exit topology (G,S, T ) is robust if and only if the network topology(
G,D(S, T )

)
is robust in the sense of Definition 1.

Proof. “⇒”: Assume that (G,S, T ) is robust, and let d ≤ d′ ∈ RS×T≥0 . Then,

bal(d)s =
∑
t∈T

d(s,t) ≤
∑
t∈T

d′(s,t) = bal(d′)s for all s ∈ S,

bal(d)t = −
∑
s∈S

d(s,t) ≥ −
∑
s∈S

d′(s,t) = bal(d′)t for all t ∈ T,

bal(d)v = 0 = bal(d′)v for all v ∈ V \ (S ∪ T ).

Thus, bal(d) � bal(d′) and bal(d), bal(d′) ∈ B(S, T ). Since (G,S, T ) is robust, it follows
that str(d) = str

(
bal(d)

)
≤ str

(
bal(d′)

)
= str(d), showing that

(
G,D(S, T )

)
is robust.

“⇐”: Assume that
(
G,D(S, T )

)
is robust, and let b, b′ ∈ B(S, T ) with b � b′. By

Lemma 28 there exist d, d′ ∈ RS×T≥0 with d ≤ d′, bal(d) = b, and bal(d′) = b′. Since(
G,D(S, T )

)
is robust, it follows that str(b) = str

(
bal(d)

)
≤ str

(
bal(d′)

)
= str(b′),

showing that (G,S, T ) is robust.

As our main result of this section, we provide a complete characterization of robust-
ness for entry-exit topologies. The following theorem states that an entry-exit topology
is robust if and only if there is an articulation node separating sources from sinks, i.e.,
there exists a node r ∈ V such that removing r from G disconnects G into two subgraphs
GS and GT with S \ {r} ⊆ V (GS) and T \ {r} ⊆ V (GT ).

Theorem 30. An extry-exit topology (G,S, T ) is robust if and only if G contains an
articulation node which separates the sources from the sinks.

Proof. By Lemma 29 it suffices to show that the network topology
(
G,D(S, T )

)
is robust

if and only if G contains an articulation node that separates the sources from the sinks.
“⇒”: Assume that there is no articulation node separating the sources from the sinks.

Applying Menger’s Theorem to S and T yields the existence of s, s′ ∈ S, t, t′ ∈ T such
that there are two node-disjoint paths P ∈ Ps,t and P ′ ∈ Ps′,t′ . For i := (s, t′) ∈ I and
j := (s′, t) ∈ I, we have that Ps,t = Psi,tj and Ps′,t′ = Psj ,ti . Consequently, Lemma 11
implies that

(
G,D(S, T )

)
contains a type-1 minor. By Theorem 14,

(
G,D(S, T )

)
is not

robust.
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“⇐”: Assume that
(
G,D(S, T )

)
is not robust. Then Theorem 14 implies that(

G,D(S, T )
)
contains a type-1 or a type-2 minor. First, assume that

(
G,D(S, T )

)
contains a type-1 minor. By Lemma 11, there exists i = (s, t′) ∈ I and j = (s′, t) ∈ I
and node-disjoint paths P ∈ Psi,tj = Ps,t and P ′ ∈ Psj ,ti = Ps′,t′ . Consequently, there
exists no articulation node between the sources and the sinks.

Next, assume that
(
G,D(S, T )

)
contains a type-2 network (Ḡ, D̄) as a minor; see

Figure 1b. This type-2 minor contains node disjoint paths P̄ ∈ PḠsi,ti and P̄
′ ∈ PḠsk,tk . By

Lemma 10, also
(
G,D(S, T )

)
contains node-disjoint paths P ∈ PGsi,ti and P

′ ∈ PGsk,tk and
can therefore not contain an articulation node separating the sources from the sinks.

6 Algorithmically determining the robustness of a net-
work

After having fully characterized robust network topologies theoretically, we show in this
section that the robustness of a network topology can be decided in polynomial time.
Referring to Theorem 14, deciding the robustness of a network is equivalent to deciding
whether a network has a type-1 or type-2 network as a minor. In this context, Robertson
and Seymour [30] showed that, for a fixed graph Ḡ, there is an algorithm which decides
whether Ḡ is a minor of larger graph G in time polynomial in the size of G. Their result,
however, is only known to hold for unlabeled graph minors, and a generalization of their
result to labeled graph minors is beyond the scope of this work. Instead, to show that
we can efficiently decide whether a graph has a type-1 or type-2 minor, we will use the
following result of Robertson and Seymour [30].

Lemma 31 (Robertson and Seymour [30]). Let G = (V,E) be an undirected graph, k
a fixed natural number, and A = {(u1, v1), . . . , (uk, vk)} ⊆ V × V . Then, the existence
of node-disjoint paths P1 ∈ Pu1,v1 , . . . , Pk ∈ Puk,vk can be decided in time polynomial in
the size of G.

For a set of node pairs A = {(u1, v1), . . . , (uk, vk)} ⊆ V × V , we call paths P1 ∈
Pu1,v1 , . . . , Pk ∈ Puk,vk internally node-disjoint if, for all i, j ∈ {1, . . . , k} with i 6= j,
we have

(
V (Pi) \ {ui, vi}

)
∩ V (Pj) = ∅, i.e., all nodes in V (Pi) and V (Pj) are pairwise

distinct, except for possibly {ui, vi}∩{uj , vj} 6= ∅. Note that deciding whether a graph G
contains internally node-disjoint paths Pi ∈ PGui,vi , for i = 1, . . . , k, can be easily reduced
in polynomial time to deciding whether a certain slightly modified graph Ĝ contains
node-disjoint paths P̄i ∈ PĜûi,v̂i

, where (ûi, v̂i) are corresponding copies of the pairs
(ui, vi), i = 1, . . . , k. Let (Internally)NodeDisjointPaths(A) be the polynomial
algorithm that decides whether there exist (internally) node-disjoint paths Pi ∈ Pui,vi ,
for i = 1, . . . , k.

Theorem 32. Deciding whether a network topology (G,D) is robust can be done in
time polynomial in the input size of (G,D).

Proof. By Lemma 11, (G,D) contains a type-1 minor if and only if there exist i, j ∈
I with two node-disjoint paths P ∈ Psi,tj and P ′ ∈ Psj ,ti . This can be decided in
polynomial time by calling NodeDisjointPaths

(
{(si, tj), (sj , ti)}

)
for all i, j ∈ I with

i 6= j.
Moreover, if (G,D) does not contain a type-1 minor, we claim that the polynomial

algorithm ContainsType2Minor correctly decides whether (G,D) contains a type-2
minor. To prove this claim, assume that (G,D) contains a type-2 minor (Ḡ, D̄), but no
type-1 minor. Denote the three edges of Ḡ by ei, ej , and ek; see Figure 12. By Lemma 4,
G contains a subtree for which contracting all edges except ei, ej , and ek, and deleting
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Algorithm 1: ContainsType2Minor
Input: Network topology (G,D) without a type-1 minor
Output: Decision whether (G,D) contains a type-2 minor

1 for (si, ti), (sj , tj), (sk, tk) ∈ D such that si, ti, sj , tj , sk, tk are pairwise distinct
except for possibly ti = tj and/or sj = sk do

2 U ← V \ {si, ti, sj , tj , sk, tk}
3 for ui, uj ∈ U ∪ {ti, tj} do
4 for vj, vk ∈ (U \ {ui, uj}) ∪ {sj , sk} do

/* the different possibilities for the si-tk-path P */
5 A1 ← {(si, uj), (uj , vj), (vj , tk)}
6 A2 ← {(si, ui), (ui, uj), (uj , vj), (vj , tk)}
7 A3 ← {(si, uj), (uj , vj), (vj , vk), (vk, tk)}
8 A4 ← {(si, ui), (ui, uj), (uj , vj), (vj , vk), (vk, tk)}

/* connecting P to ti and tj */
9 for ` = 1, 3 do

10 A` ← A` ∪ {(uj , ui), (ui, ti), (ui, tj)}
11 for ` = 2, 4 do
12 A` ← A` ∪ {(ui, ti), (uj , tj)}

/* connecting P to sj and sk */
13 for ` = 1, 2 do
14 A` ← A` ∪ {(vj , vk), (vk, sj), (vk, sk)}
15 for ` = 3, 4 do
16 A` ← A` ∪ {(vj , sj), (vk, sk)}
17 for ` = 1, 2, 3, 4 do
18 if InternallyDisjointPaths(A`) then
19 return true
20 return false

si ti

tj

sk

sj

tkei ej ek

Figure 12: The type-2 minor in the proof of Theorem 32.

all labels except for si, ti, sj , tj , sk, tk yields (Ḡ, D̄). Within this tree, let P be the path
from si to tk, let Ptj and Psj be the paths from tj to P and from sj to P , respectively,
and let Pti and Psk be the paths from ti to P ∪Ptj and from sk to P ∪Psj , respectively.
Finally, let uj ∈ V (Ptj ) ∩ V (P ), vj ∈ V (Psj ) ∩ V (P ), ui ∈ V (Pti) ∩ V (P ∪ Ptj ), and
vk ∈ V (Psk) ∩ V (P ∪ Psj ); see Figure 13 for an illustration. Four cases can occur:

1. ui /∈ V (P ) and vk /∈ V (P ),
2. ui ∈ V (P ) and vk /∈ V (P ),
3. ui /∈ V (P ) and vk ∈ V (P ),
4. ui ∈ V (P ) and vk ∈ V (P ).

If ui ∈ V (P ), then ui �P uj , since otherwise there exist node-disjoint si-tj- and sj-ti
paths, and hence (G,D) would contain a type-1 minor. Similarly, vk ∈ V (P ) implies vj �
vk. Therefore, for the `-th case, there exist internally node-disjoint paths for all pairs
in A`, ` ∈ {1, 2, 3, 4}, as defined in lines 5–16 of Algorithm ContainsType2Minor.
Thus, the algorithm returns true.

On the other hand, assume that the algorithm returns true, and let A`, ` ∈
{1, 2, 3, 4}, be the set of pairs that led to this output. Let T ′ be the union of the
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tk
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Figure 13: Example of a tree T containing a type-2 minor. Here, ui /∈ V (P ) and
vk ∈ V (P ). Thus, T is the union of internally node-disjoint paths for the pairs in A3.

internally node-disjoint paths between the pairs in A`, and let T ⊆ T ′ be a spanning
tree of T ′. Let P be the si-tk-path in T , let ei and ek be the first and the last edge of
P , respectively, and let ej be an edge of the uj-vj-path in T . Then, deleting from G
all edges in E \E(T ), afterwards contracting all edges in E(T ) \ {ei, ej , ek}, and finally
deleting all labels except for si, ti, sj , tj , sk, tk yields a type-2 minor.
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