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Abstract

Currently, there are few theoretical or practical approaches available for general
nonlinear robust optimization. Moreover, the approaches that do exist impose restric-
tive assumptions on the problem structure. We present an adaptive bundle method
for nonlinear and non-convex robust optimization problems with a suitable notion of
inexactness in function values and subgradients. As the worst case evaluation requires
a global solution to the adversarial problem, it is a main challenge in a general non-
convex nonlinear setting. Moreover, computing elements of an ε-perturbation of the
Clarke subdifferential in the `2-norm sense is in general prohibitive for this class of
problems. In this article, instead of developing an entirely new bundle concept, we
demonstrate how existing approaches, such as Noll’s bundle method for non-convex
minimization with inexact information (Computational and analytical mathematics
50: 555-592, 2013) can be modified to be able to cope with this situation. Extending
the non-convex bundle concept to the case of robust optimization in this way, we prove
convergence under two assumptions: Firstly, that the objective function is lower C1 and
secondly, that approximately optimal solutions to the adversarial maximization prob-
lem are available. The proposed method is hence applicable to a rather general setting
of nonlinear robust optimization problems. In particular, we do not rely on a specific
structure of the adversary’s constraints. The considered class of robust optimization
problems covers the case that the worst-case adversary only needs to be evaluated up to
a certain precision. One possibility to evaluate the worst case with the desired degree
of precision is the use of techniques from mixed-integer linear programming (MIP).

We investigate the procedure on some analytic examples. As applications, we study
the gas transport problem under uncertainties in demand and in physical parameters
that affect pressure losses in the pipes. Computational results for examples in large
realistic gas network instances demonstrate the applicability as well as the efficiency of
the method.

1 Introduction

In this work, we consider nonlinear optimization problems that shall be protected against
uncertainties. Indeed, an optimization problem may be affected by parameter uncertainties,
for example due to the fact that in a real-world application not all parameters can be
measured or they may fluctuate. In order to protect against such uncertainties, here we
follow a robust optimization approach. A solution vector is called robust if it is feasible
regardless of which parameter value is realized within an a priori defined uncertainty set.
Such a solution is called robust optimum if it leads to the best guaranteed solution value
among all robust solutions.
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For nonlinear robust optimization, one of the main challenges consists in the evaluation
of the worst case, which requires solving an adversarial problem to global optimality that
includes, in general, nonlinearities and non-convexities.
Comprehensive reviews of the state-of-the-art of robust optimization including reformula-
tion approaches for special cases such as robust linear and convex optimization are provided
in [BEN09; GYH15; GS16]. ,In general, nonlinear robust optimization problems are in-
tractable in theory and very difficult to solve in practice. A survey and outer approximation
method for this class of problems is presented in [Ley+20]. Another outer approximation
approach, using derivative-free optimization, is proposed in [MW20]. Further approximation
techniques for nonlinear robust optimization include e.g. a method employing linearization
[DBK06] or a convexification method [HD13].
In this paper, we consider nonlinear robust optimization problems that are covered by the
following minimax formulation:

min
x∈Rn

max
u∈U

v(x, u), (1)

with a compact uncertainty set U and a jointly locally Lipschitz continuous function v :
Rn × Rm → R that is lower C1 [Spi81]. In the setting of (1), the inner maximization
problem corresponds to an adversarial worst case evaluation on a compact uncertainty set
U . In Section 3, we detail the classes of nonlinear robust optimization problems that are
covered by the problem statement (1). It should already be noted here that we neither
impose a convexity assumption on v with respect to x nor a concavity assumption on v with
respect to u.
Restrictive assumptions on robust optimization problems, such as linearity or convexity of
the involved functions, or uncertainty sets of a tractable structure, allow for reformulation
approaches [BHV15]. However, without such assumptions, one has to directly tackle the
resulting minimax problem. The concept of bundle methods is particularly suited for the
solution of the latter [Mäk02].
However, in the general non-convex situation, this is not a fully straightforward task. The
main reason is that realistically, we can only assume that we have access to approximate
solutions to the inner maximization problem of (1). The reason for this assumption is that
we aim to find a globally optimal solution to the adversarial maximization problem. How-
ever, due to possible non-convexities, this is in general not tractable. A viable approach to
compute at least an approximation of a global solution to the inner problem is to approxi-
mate nonlinearities by piecewise linear relaxation and then solve the problem up to arbitrary
exactness using techniques from mixed-integer linear optimization (MIP). It is noted that
relaxing the set of feasible solutions in the adversarial problem in this way, we strengthen
the adversary and hence robust protection against uncertainties can be maintained. On the
other hand such a relaxation however may lead to a more conservative solution. In this
article, we overcome this drawback by adaptively refining the relaxations throughout the
algorithm.
But this is not the only issue. Another difficulty is that having only access to approximate
maximizers of the adversarial problem, we can in general neither compute an element of the
exact Clarke subdifferential of the optimal value function

f(x) := max
u∈U

v(x, u), (2)

nor an element of an ε-perturbation of the latter. However, ε-perturbations of ∂f(x) of the
type ∂f(x)+εB(0, 1) with B(0, 1) being the Euclidean norm ball, are the basis of essentially
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all non-convex bundle methods able to work with inexact information. Instead, the only
information which we can - in general - afford to compute is an approximate evaluation f(x)
with a prescribed error εf along with an element of the set

∂̃af(x) = conv{∂xv(x, ux) | ux ∈ U , v(x, ux) ≥ max
u∈U

v(x, u)− εf}. (3)

It is readily seen that the latter is only an outer approximation of the exact subdifferential.
Moreover, given the rather weak assumptions we have imposed for the function v, nothing
can be said about the Euclidean distance of an element of ∂̃af(x) to the exact subdifferential
∂f(x).
Keeping this in mind, in the following we briefly comment on the applicability of bundle
methods from the literature to robust optimization problems of type (1).
A special situation worth to mention is the case in which the optimal value function f is
convex. In this case, it is a straightforward exercise to show that ∂̃af(x) is a subset of
the convex ε-subdifferential with ε = εf . Having this said, a straightforward consequence
is that in principal any convex bundle method able to work with inexact information (in
both, function values and subgradients) can be applied. Such methods were first proposed
by Kiwiel in [Kiw85] and were later further developed in additional studies. We refer to
[OSL14] and references therein for a unified framework and overview. [MOZ17; NB10]
for example analyze the case of inexact function value and subgradient evaluations with
additional noise. From a theoretical point of view all these methods can be applied to
minimax problems without additional convexity assumptions for the inner maximization
problem in (1). However, from a practical point of view there is a big difference: while in
the convex case, i. e. v(x, ·) concave and U convex, almost arbitrarily precise function values
and ε-subgradients can be computed using modern convex optimization tools without much
effort, in the general situation each single (approximate) evaluation of the optimal value
function can be a challenge. This is why, in this case, the use of an adaptive bundle method
such as in [Kiw85] should be preferred over a convex bundle method working with a fixed ε
such as in [Kiw06].
Still the situation is more involved in the fully non-convex case, i. e. when we neither
impose convexity of f nor convexity of the inner maximization problem. In the literature,
generalizations of bundle methods to the case of non-convex functions are discussed in e.g.
[HS10; LV98; SZ92]. Here, a key element to deal with non-convexities in the objective
function is the so-called downshift mechanism for cutting planes which was first proposed in
[SZ92]. While in [SZ92] the authors were still assuming the availability of exact information,
nowadays there are also a few non-convex bundle methods available that can deal with
inexact function values and subgradients [Nol13; HSS16; LPM18; HU19]. It is however
important to understand that essentially all these approaches assume that – for a given ε > 0
– an element of the perturbed Clarke subdifferential ∂f(x) + εB(0, 1) is available. Thus,
none of these algorithms can be applied for solving (1) without further modification. On
the other hand, many elements of these algorithms can be reused for the efficient solution of
problem (1). This is the reason why, rather than coming up with a completely new bundle
concept, in this article, we demonstrate, how the non-convex inexact bundle method by
Noll in [Nol13] can be turned into an adaptive bundle method for the solution of robust
optimization problems of type (1). As such, our algorithm can also be seen as an extension
of earlier work by Noll et al. [ANP08; ANP09; Nol10; NPR08], which constitutes the basis
for the techniques described in [Nol13]. While we formally start from the concept of Noll, our
ideas may – with moderate additional effort – be combined with other non-convex inexact
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bundle concepts such as described in [HSS16], where a different downshift mechanism is
employed or in [HU19], where a generalization of Noll’s bundle method to the case of an
infinite-dimensional Hilbert space setting is proposed.
In summary, one of the major contributions of this article is the extension of non-convex
bundle methods to render them applicable to nonlinear robust optimization with inexact
worst case evaluations and the subdifferential approximation (3). In this, the required
approximation error εf is dynamically decreased, depending on the current distance of trial
and serious iterates. As we are able to allow for large errors in early iterations that are
refined iteratively, an efficient algorithm is obtained. We also prove convergence for the
resulting adaptive bundle method. The underlying formal assumption is as follows:

Assumption 1.1. We assume that for any x ∈ Rn and any choice of εf > 0, we have
access to a ux ∈ U with v(x, ux) ≥ maxu∈U v(x, u) − εf . Further, we assume that we have
access to v(x, ux) and to a gx ∈ ∂xv(x, ux).

We would like to comment that this assumption essentially only says that we have to be
able to solve the inner maximization problem with a given precision. Moreover it does in
no way restrict the choice of the tool for the solution of the latter.
We finally note that minimax problems themselves constitute an important class of opti-
mization problems. A review of the theory of discrete and continuous minimax problems
as well as methods to solve them can be found in [RH02; DM90] and references therein.
In contrast to existing approaches, our method requires neither differentiability nor low-
dimensionality, for which case e.g. discretization approaches are suitable. Problem (1) can
be reformulated to include uncertainties in the constraints and thus be understood as an
optimization problem with infinitely many constraints. Thus, our algorithm could also be
of interest for this field. We refer to [Ste12] and references therein for a general overview of
semi-infinite optimization and a description of how this field relates to robust optimization.
How techniques from this field can be used for minimax problems is addressed in [ŽR03]. In
the context of combining these two fields, we also refer to the bundle method in [Fud+15;
GGM06] which treats the convex case with inexact solutions to the inner maximization
problem.
This work is structured as follows. In Section 2, we introduce the approximate convexity
concepts and subdifferentials used, and in Section 3, we detail the considered setting of
nonlinear robust optimization with the corresponding notion of inexactness. The adaptive
bundle algorithm and convergence results are presented in Section 4. We thereby first obtain
convergence of the inner and then of the outer loop. This section concludes with some notes
on stopping criteria. In Section 5, we show that the algorithm is applicable to the robust
protection of the gas transport problem under uncertainty. This task is in fact a two-stage
robust optimization problem with a non-convex second stage. Exploiting the fact that the
second-stage solution is unique, we demonstrate that the required properties for correctness
of the algorithm are satisfied. We thereby approximately solve the non-convex adversarial
problem using an adaptively refined piecewise linear relaxation. We also briefly outline the
applicability of the method for robust protection of electricity networks in the alternating
current power model. Finally, in Section 6, we demonstrate the practical applicability and
efficiency of our method by presenting numerical results for an analytical example and
realistic gas network instances.
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2 Preliminaries

In the following, we develop the proposed methodology for nonlinear robust optimization
problems. To prove convergence of the adaptive bundle method, we will assume the locally
Lipschitz objective function to be lower C1 and hence approximate convex. We clarify the
term of approximate convexity by stating the definition with the help of the concept of
ε′-convexity:

Definition 2.1. (ε′-convex functions, [JLT98]) A function f : X → R∪{±∞} with X ⊆ Rn
is ε′-convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ε′λ(1− λ)‖x− y‖ (4)

for each x, y ∈ X and λ ∈ [0, 1]. This implies that for any subgradient g ∈ ∂f(x) and any
y ∈ X:

gT (y − x) ≤ f(y)− f(x) + ε′‖x− y‖. (5)

Definition 2.2. (approximate convex functions, [VLT00]) Let f : X → R ∪ {+∞} with
X ⊆ Rn be lower semi-continuous and for any δ > 0 let the function fδ be defined by
fδ(x) = f(x) if x ∈ B(x̄, δ), and +∞ otherwise. f is approximate convex at x̄ ∈ X if for
every ε′ > 0, there exists a δ > 0 such that fδ is ε′-convex.

The above definition and terminology suggest the assumption of approximate convexity to
be relatively restrictive. However, for the case of locally Lipschitz functions, the following
definition and equivalence result show that approximate convexity covers the large class of
lower C1 functions.

Definition 2.3. (lower C1 functions, [Spi81]) A function f : Rn → R is lower C1 (LC1) if
for any x̄, there are a neighborhood U 3 x̄, a compact set Y and a function v : U × Y → R
with v and ∇xv jointly continuous in x and y, such that for every x ∈ U ,

f(x) = max
y∈Y

v(x, y).

Proposition 2.4. ([DG04]) A locally Lipschitz function f : Rn → R is lower C1 if and
only if it is approximate convex.

Note that in this paper we work with locally Lipschitz functions, so that we use either the
approximate convex property or the equivalent LC1 property. In the following, when we
refer to subdifferential, we mean the Clarke subdifferential:

Definition 2.5. ([Cla90]) The generalized directional derivative of a locally Lipschitz con-
tinuous function f : Rn → R is defined by

f◦(x; d) = lim sup
x′→x,
t↓0

f(x′ + td)− f(x′)

t
. (6)

The generalized gradient, called Clarke subdifferential, is defined by

∂f(x) =
{
g ∈ Rn | gT d ≤ f◦(x; d) ∀d ∈ Rn

}
. (7)

In the remainder of this paper, we also make use of the following results:
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Lemma 2.6. ([Cla90]) The following properties hold for the Clarke subdifferential ∂f(x) of
a locally Lipschitz function f : Rn → R:

1. For x ∈ Rn, ∂f(x) is nonempty, convex and compact.

2. The mapping ∂f(·) is locally bounded.

3. The mapping ∂f(·) is upper semi-continuous.

Lemma 2.7. ([Cla75; Roc82] If a function f : Rn → R is lower C1, then it is subdiffer-
entially regular, which means that for every x ∈ Rn and d ∈ Rn the directional derivative,

f ′(x; d) = lim sup
t↓0

f(x+ td)− f(x)

t
, (8)

exists and f ′(x; d) = f◦(x; d). Furthermore, f ′(x; d) is upper semi-continuous in x.

3 Nonlinear robust optimization with a notion of inex-
actness

We consider robust optimization problems that are formulated as a minimax problem with
an objective function v : Rn × Rm → R that is locally Lipschitz continuous and lower C1,
and a compact set U :

min
x

max
u∈U

v(x, u). (9)

First, the problem (9) covers the case of a robust optimization problem with parameter
uncertainties that affect the objective function value:

min
x

t

s. t. c(x, u) ≤ t ∀u ∈ U .
(10)

Choosing v(x, u) := c(x, u), this problem is equivalent to (9).
Second, the following case of parameter uncertainties that affect constraints can be treated
by the problem statement (9):

min
x

c(x)

s. t. gi(x, u) ≤ 0 ∀u ∈ U , i ∈ 1, . . . , N.
(11)

Penalizing infeasibility by an l1 penalty term with penalty parameter ψ, we obtain an
unconstrained minimax problem:

min
x

max
u∈U

c(x) + ψ

N∑
i=1

[gi(x, u)]+, (12)

[·]+ denoting the positive part. This problem is covered by (9) by choosing v(x, u) :=

c(x) + ψ
∑N
i=1[gi(x, u)]+.

It can be seen that e.g. for continuously differentiable functions c(·, ·) or c(·) and g(·, ·), the
above choices of v(·, ·) meet the assumption of being locally Lipschitz continuous and lower
C1. Furthermore, the settings in (10) and (11) can also be combined such that the objective
function value as well as constraints are affected by uncertainties.
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Our approach to solve the minimax problem (9) is to treat it as a minimization problem
with a nonsmooth, non-convex objective function. The objective function of the minimiza-
tion problem is the optimal value function of the adversarial maximization problem and is
denoted by f(x) = maxu∈U v(x, u) as defined in (2).
To evaluate a function value f(x), a non-convex optimization problem hence has to be
solved to global optimality. As this global optimization problem may be intractable, we
make the more realistic assumption that the inner maximization problem cannot be solved
exactly within a reasonable time period, but can be solved approximately in the sense that
εf -optimal solutions can be computed for any given εf . This can be realized for example by
piecewise linear relaxation. For a given error bound εf , we hence approximate the optimal
value function f(x) by v(x, ux) with

ux ∈ {u ∈ U | v(x, ux) ≥ max
u∈U

v(x, u)− εf}, (13)

so that f(x) − εf ≤ v(x, ux) ≤ f(x). For technical reasons that will be explained later,
we prefer to use an overestimator of the optimal value function. In order to evaluate an
approximation fa(x) of f(x) for a given εf , we thus choose a ux from the set in (13) and
construct the following overestimator:

fa(x) := v(x, ux) + εf . (14)

The exact subdifferential of f at x is calculated as (see e.g. [GD82]):

∂f(x) = conv{∂xv(x, u∗x) | u∗x ∈ U , v(x, u∗x) = max
u∈U

v(x, u)}. (15)

Having at hand ux ∈ U with fa(x) = v(x, ux)+εf , we choose as an approximate subgradient

gx ∈ ∂xv(x, ux). (16)

This approximate subgradient is an element of the following outer approximation of the
exact subdifferential:

∂̃af(x) := conv{∂xv(x, u) | u ∈ U , v(x, u) ≥ v(x, ux)}. (17)

We note that the approximate subdifferential ∂̃af(·) differs from an ε-subdifferential, as used
e.g. in [Nol13]:

∂εf(x) = ∂f(x) + εB(0, 1). (18)

By this definition, it is ensured that an element of the ε-subdifferential is in an ε-neighborhood
of the exact subdifferential. Comparing ∂ε(·) and ∂̃af(·), we observe that inclusion does not
hold in either direction. As we consider inexact worst case evaluations of type (13), we only
have the outer approximation at hand and cannot use Noll’s bundle method that requires to
have (18) at hand. Thereby, the exact subdifferential’s property of local boundedness from
Lemma 2.6 is preserved by the approximation (17):

Corollary 3.1. The mapping ∂̃af(·) is locally bounded.

Proof. The claim follows from Lemma 2.6, 2. applied to the function v(x, u), using its local
Lipschitz continuity and boundedness of U .
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In practice, to compute an approximate function value and a corresponding approximate
subgradient for a given error bound εf , we do the following: We compute an approximate so-
lution ux to the adversarial maximization problem, the corresponding function value v(x, ux)
and a subgradient gx of v(·, ux) at the point x. We thus require that v(·, u) and ∂v(·, u) can
be evaluated exactly for each possible realization u ∈ U .
An example for such a setting is a non-convex adversarial problem maxu∈U v(x, u) which can
be solved approximately using linearization techniques that provide underestimators for the
optimal function value. For a given u ∈ U , however, the objective value and an approximate
subgradient in the sense of (17) can be evaluated exactly. In Section 5, we will see that the
gas transport problem under uncertainty fits into this framework.

4 An adaptive bundle method

We now present an adaptive bundle method which is applicable to the nonlinear robust
optimization problems with approximate worst case evaluations and corresponding subgra-
dients in the sense of Section 3. Although some algorithmic concepts and proof techniques
employed are inspired by [Nol13], our notion of inexactness differs, see Section 3, and re-
quires alternative arguments at crucial steps. Therefore, to provide a complete presentation
of the results, we summarize the relevant arguments from [Nol13]. Throughout this section
and especially in the proofs in Appendix A in the online supplement, we will describe how
each step compares to Noll’s work with a particular emphasis on where they differ. We
obtain convergence results under the assumptions made in Section 3.
We start with fixing the notation. A bundle method is divided into one outer loop and a
number of inner loops: The outer loop aims to find serious iterates, using inner loops. In
an inner loop, new trial iterates around the current serious iterate are determined and serve
as candidates for the next serious iterate.

Notation 4.1. We denote trial iterates by xk,j with inner loop counter k and outer loop
index j as superscripts. If the outer loop index is clear from the context, we denote trial
iterates as xk. In the remainder of this section, we define some concepts such as e.g. cutting
planes. They each correspond to a certain inner loop which is indicated by an index k. We
proceed with these in the same way and omit the outer loop index j from the beginning if
it is clear from the context. We denote outer iterates by xj, with outer loop counter j as
subscript, or simply by x if it is clear that we mean the current serious iterate.

We evaluate the objective function and hence solve the inner maximization problem at a
trial iterate xk with an adaptive error bound εf (xk, x). This error bound linearly depends
on the trial iterate’s distance to the current serious iterate x with an algorithmic parameter
ε′′:

εf (xk, x) = ε′′‖x− xk‖. (19)

We note that the parameter ε′′ can be chosen arbitrarily but also plays an important role in
our convergence results. We further note that the error bound now depends not only on the
point at which the function value is approximated. It also depends on the serious iterate of
the outer loop within which the approximation is evaluated.

Notation 4.2. We denote εf (xk, x) by εx
k

f or εkf if x is clear from the context. For two
serious iterates x = xj, xj−1, we denote εf (xj , xj−1) by εxf if the outer loop index is clear
from the context.
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Access to an εf (xk, x)-exact function value approximation at any trial iterate xk is ensured
by Assumption 1.1 in Section 1. We recall that by Assumption 1.1, we have for any x ∈ Rn
and any choice of εf > 0, access to a ux ∈ U with v(x, ux) ≥ maxu∈U v(x, u)− εf .
Following [Nol13], we now summarize some algorithmic concepts that we will require later.
To find a new trial iterate, the function f is approximated around the current serious
iterate x by a convex working model. Therefore, let gx ∈ ∂xv(x, ux) be the corresponding
approximate subgradient of f at x. Then, the affine linear function

m0(·, x) := fa(x) + gx
T (· − x) (20)

is called the exactness plane at x. At trial iterates xk around the serious iterate x, we define
further cutting planes

mk(·, x) := tk(·)− sk, (21)

where tk(·) denotes the tangent plane at xk, and sk denotes the downshift with respect to
the serious iterate x:

tk(·) := fa(xk) + gk
T (· − xk), sk := [tk(x)− fa(x)]+ + c‖xk − x‖2. (22)

Here, c denotes an algorithmic constant.
Now, as a convex working model, we choose

φk(·, x) := max{ml(·, x) | 0 ≤ l ≤ k − 1}. (23)

A second-order working model is further defined by

Φk(·, x) = φk(·, x) +
1

2
(· − x)TQ(x)(· − x), (24)

where a symmetric and possibly non positive-definite Q(x) ∈ Rn×n may be constructed
using second-order information which may be available for f at the serious iterate x. The
corresponding local underestimators that include second-order information are denoted by

Mk(·, x) = mk(·, x) +
1

2
(· − x)TQ(x)(· − x). (25)

To find a new trial iterate xk in a neighborhood of a current serious iterate x, we solve the
convex program

min
z∈Rn

Φk(z, x) +
τk
2
‖z − x‖2, (26)

where τk ∈ R+ denotes a proximity control parameter. Throughout the algorithm, Q(x) +
τkI � 0 is ensured by setting τk > λmin(Q(x)). Since xk solves (26), it follows that

g∗k := (Q(x) + τkI)(x− xk) ∈ ∂φk(xk, x), (27)

which is called the aggregate subgradient. In the convergence proof, we will make use of
this subgradient and its properties. Furthermore, the aggregate subgradient can be used
for aggregation strategies. These strategies aim to retain information but not every single
cutting plane from the current and former outer loops in the convex working model and
were proposed in [Kiw83]. We refer to [Nol13; NPR08; Nol10] for further explanations of
aggregation strategies.
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Acceptance of a trial iterate xk as a new serious iterate xj+1 is decided by the following
acceptance test, which depends on an algorithmic parameter 0 < γ < 1:

ρk :=
fa(xj)− fa(xk)

fa(xj)− Φk(xk, xj)
≥ γ. (28)

An xk is thus accepted if the predicted descent (denominator) is met by the actual descent
(numerator), up to a certain ratio γ. Another element of the presented bundle method is
proximity control in the course of an inner loop, which we adopt from [NPR08]: Using an
algorithmic parameter γ̃ with γ < γ̃ < 1, we increase the proximity control parameter τk
according to

ρ̃k :=
fa(xj)−Mk(xk, xj)

fa(xj)− Φk(xk, xj)
, τk+1 =

{
2τk ρ̃k ≥ γ̃,
τk ρ̃k < γ̃.

(29)

4.1 Algorithm

With these ingredients, we state the main algorithm in Algorithm 1. While based on the
algorithm in [Nol13], it uses inexact function values and approximate subgradients in Steps
6 and 14, respectively, corresponding to our notion of inexactness as outlined in Section 3.

4.2 Convergence of the algorithm

In order to prepare a convergence proof, we now construct a global overestimator for the
convex working model φk(·, x) at a serious iterate x. In detail, we define for a serious iterate
x a convex function φ(·, x), a first-order model of f . It is the pointwise supremum of cutting
planes that possibly arise in the current inner loop. In detail, we consider for possible trial
iterates z cutting planes that are constructed with the help of an approximate worst case
evaluation:

mz(·, x) = fa(z) + gz
T (· − z)− sz. (30)

Here, mz(·, x) is a cutting plane at z with an approximate function value fa(z) and an
approximate subgradient gz ∈ ∂xv(x, uz). The cutting planes are downshifted by sz with
respect to x and fa(x) as defined in (21),(22). We note that for every fixed z, several cutting
planes, which differ in their worst-case evaluations uz and hence approximate function values
and subgradients, may contribute to the supremum. In detail, we have

uz ∈ {u ∈ U | v(x, uz) ≥ f(z)− ε′′‖x− z‖} (31)

In addition, exactness planes contribute to the supremum: By m0(·, x), we denote exactness
planes at x with approximate subgradients gx ∈ ∂̃af(x) without downshift. Overall, the
first-order model is defined as:

φ(·, x) := sup
{{
mz(·, x)| uz ∈ U , v(x, uz) ≥ f(z)− ε′′‖x− z‖,

z ∈ B(0,M) \ {x}
}
∪{

m0(·, x)| ux
′ ∈ U , v(x, ux

′) = v(x, ux)
}}
.

(32)

M is assumed to be chosen such that B(0,M) contains x and all trial iterates which possibly
occur in an inner loop corresponding to x. The existence of such an M can be justified by
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Algorithm 1 Adaptive bundle method

1: Fix parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < T <∞, ε′′ > 0, εx1

f > 0, ζ > 0.

2: Choose initial values: Starting point x1, Q1 = QT1 s.t. −qI � Q1 � qI, τ#
1 s.t.

Q1 + τ#
1 I � 0. Set j = 1.

3: while dist(0, ∂̃af(xj)) ≤ ε̃ not fulfilled do . Stopping test

4: Initialize inner loop with serious iterate xj : τ1 = τ#
j . Set k = 1.

5: Solve the program . Trial step generation

min
xk∈Rn

Φk(xk, xj) +
τk
2
‖xk − xj‖2.

6: Compute fa(xk) with εkf = ε′′‖xj − xk‖. . Adaptive function value approximation

7: if ρk =
fa(xj)−fa(xk)

fa(xj)−Φk(xk,xj)
≥ γ then . Acceptance test

8: xj+1 ← xk.

9: τ#
j+1 =

{
τk ρk < Γ,
1/2τk ρk ≥ Γ.

. Update τ#

10: Set Qj+1 s.t. Qj+1 = QTj+1, −qI � Qj+1 � qI. . Update Qj

11: If Qj+1 + τ#
j+1I 6� ζI: Increase τ#

j+1 s.t. Qj+1 + τ#
j+1I � ζI.

12: τ#
j+1 = min{τ#

j+1, T}.
13: else
14: Generate a cutting plane mk(·, xj) with gk ∈ ∂̃af(xk).

15: if ρ̃k =
fa(xj)−Mk(xk,xj)
fa(xj)−Φk(xk,xj)

≥ γ̃ then . Update τk
16: τk+1 ← 2τk.
17: end if
18: Build new working model φk+1: add mk(·, xj) to φk. . Update φk
19: Increase k and go to Step 5: Trial step generation.
20: end if
21: Increase j.
22: end while

11



the proof of Lemma 4.8 in [Nol13, Lemma 4, proof part ii)] and part i) of the proof of
Lemma 4.7 in Appendix A in the online supplement.
An example for the first-order model φ(·, x) is depicted in Figure 1. We now transfer [Nol13,
Lemma 2] to our setting. The difference is that we use (32) instead of the first-order model
from [Nol13], where the exact subdifferential is approximated by (18).

Lemma 4.3. For the first-order model φ(·, x), defined in (32), the following properties hold:

1. φ(x, x) = fa(x),

2. ∂φ(x, x) ⊆ ∂̃af(x),

3. φk(·, x) ≤ φ(·, x) for the working model φk(·, x).

x

f(x)

fa(x)

f

fa

φ m0(·, x)

y

Figure 1: An example of the function φ(·, x)

Proof. 1.) φ(x, x) ≥ fa(x) since the exactness planes m0,g(·, x) contribute to the supremum
at x. φ(x, x) ≤ fa(x) follows from the downshift of the involved cutting planes with respect
to fa(x).
2.) Let g ∈ ∂φ(x, x), so that for all y ∈ Rn, gT (y − x) ≤ φ(y, x) − φ(x, x), since φ(y, x) is
convex in y. For an arbitrary fixed h ∈ Rn and any t > 0, there are zt ∈ B(0,M) such that

φ(x+ th, x) = mzt,gt(x+ th, x), (33)

where mzt,gt denotes the cutting plane at zt with an approximate subgradient gt. For a
fixed t we define y := x+ th and m(·, x) := fa(x) + gT (· − x). From convexity of φ and 1.),
it follows that φ(y, x) = mzt,gt(y, x) ≥ m(y, x). We have from the downshift at zt that

mzt,gt(x, x) ≤ fa(x)− c‖x− zt‖2 = m(x, x)− c‖x− zt‖2. (34)

From these inequalities for the cutting planes m and mzt,gt at x and y, we obtain

gTh ≤ gTt h. (35)

Moreover, let t → 0+, so that φ(x + th, x) → φ(x, x). Consequently, with (33) and 1.),
mzt,gt(x+ th, x)→ fa(x). As mzt,gt(x+ th, x) and mzt,gt(x, x) converge to the same limit,
we infer from (34) that zt → x. From convergence and thus boundedness of zt, with Corollary
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3.1 we obtain boundedness of the sequence gt ∈ ∂̃af(zt). Hence, there is a subsequence with
gt → ĝ.
We now distinguish two cases:
i) First, we assume finite convergence of zt → x. An example of this case with fa(x) > f(x)
is depicted in Figure 1. Finite convergence implies that there is a t̄ such that for all t ≤ t̄,
zt = x and thus gt ∈ ∂̃af(x). With (35), as h was chosen arbitrarily, g ∈ ∂̃af(x) and thus
the claim ∂φ(x, x) ⊆ ∂̃af(x) follows from convexity of ∂̃af(x).
ii) Second, we assume that there is no finite convergence of zt → x. It can be shown that
this is exactly the case if fa(x) = f(x). From f(zt) ≤ fa(zt) ≤ f(zt) + ε′′‖x− zt‖, it follows
that for t→ 0+, fa(zt)→ f(x). Let uzt and ux be such that fa(zt) = v(zt, uzt) + ε′′‖x− zt‖
and f(x) = v(x, ux), so that v(zt, uzt) → v(x, ux). As the sequence of uzt lies in U and is
thus bounded, we can choose a convergent subsequence with uzt → u∗. Using v(zt, uzt) →
v(x, u∗), we infer v(x, ux) = v(x, u∗) and thus ∂xv(x, u∗) ⊆ ∂̃af(x). From gt ∈ ∂xv(zt, uzt),
it follows for an arbitrary d ∈ Rn, denoting v(·, u) by vu(·):

gTt d
Def. 2.5
≤ v◦uzt

(zt; d)
Lemma 2.7

= v′uzt
(zt; d) = lim

t↓0

vuzt
(zt + td)− vuzt

(zt)

t

= lim
t↓0

v(zt + td, uzt)− v(zt, uzt)

t
= v′((zt, uzt); (d, 0)).

Lemma 2.7 implies upper semi-continuity of v′(·, (d, 0)) so that using convergence of zt → x
and uzt → u∗, we infer

lim sup
(zt,uzt )→(x,u∗)

v′((zt, uzt); (d, 0)) ≤ v′((x, u∗); (d, 0)). (36)

Using gTt d ≤ v′((zt, uzt); (d, 0)), which holds for every gt in the considered sequence and
hence for the case of passing to the limit, it follows from gt → ĝ that

ĝT d ≤ v′((x, u∗); (d, 0)) = v′u∗(x, d)
Lemma 2.7

= v◦u∗(x, d). (37)

As d was chosen arbitrarily, it follows from Definition 2.5 that ĝ ∈ ∂xv(x, u∗) ⊆ ∂̃af(x).
With (35), we have that gTh ≤ ĝTh. As h was chosen arbitrarily, the claim follows from
convexity of ∂̃af(x). This can be seen using the hyperplane separation theorem.
3.) Follows from the definitions of φ and φk.

In the convergence proof, we exploit perturbed subgradient inequalities that are similar
to the one ensured by ε′-convexity of a function, see (5) in Definition 2.1. In detail, the
assumption of v(·, ·) being lower C1 and thus approximate convex ensures ε′-convexity for
an arbitrary ε′ > 0 on a suitable region:

Lemma 4.4. For every x0 ∈ Rn and ε′ > 0, there is a δ > 0 such that for every fixed
u ∈ U , v(·, u) is ε′-convex on B(x0, δ).

Proof. Given x0 and ε′ > 0, it follows from approximate convexity that for a fixed u ∈ U ,
there is a δu > 0 such that v(·, u) is ε′-convex on B(x0, δu). As U is compact, there ex-
ists a lower bound δ > 0 with δ ≤ δu for all u ∈ U . Hence, v(·, u) is ε′-convex on B(x0, δ).

We will later use Lemma 4.4 to obtain ε′-convexity for arbitrary ε′ > 0 on certain regions.
If ε′-convexity is fulfilled on a suitable region, we obtain the following properties of the
approximate subdifferential ∂̃af(x) by employing the problem’s minimax structure. These
can be interpreted as perturbed subgradient inequalities.
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Lemma 4.5. Let xk be a trial iterate corresponding to a serious iterate x and gk ∈ ∂̃af(xk)
be an approximate subgradient. Then, if for every fixed u ∈ U , v(·, u) is ε′-convex on X ⊆ Rn
and xk ∈ X ,

1. gk
T (z − xk) ≤ fa(z)− fa(xk) + εkf + ε′‖xk − z‖ for all z ∈ X ,

2. gk
T (z − xk) ≤ f(z)− f(xk) + εkf + ε′‖xk − z‖ for all z ∈ X .

If also x ∈ X ,

3. fa(xk)− (fa(x) + gk
T (xk − x)) ≤ (ε′ + ε′′)‖xk − x‖.

Proof. 1.) Let uk ∈ U be such that fa(xk) = v(xk, uk) + εkf . For gk ∈ ∂xv(xk, uk), using
v(z, uk) ≤ f(z) ≤ fa(z), we have

gk
T (z − xk) ≤ v(z, uk)− v(xk, uk) + ε′‖xk − z‖

≤ fa(z)− fa(xk) + εkf + ε′‖xk − z‖.
(38)

By convexity, the desired inequality holds for all gk ∈ ∂̃af(xk).
2.) Let uk ∈ U be such that fa(xk) = v(xk, uk) + εkf . For gk ∈ ∂xv(xk, uk), using v(z, uk) ≤
f(z) and v(xk, uk) ≥ f(xk)− εkf , we have

gk
T (z − xk) ≤ v(z, uk)− v(xk, uk) + ε′‖xk − z‖

≤ f(z)− f(xk) + εkf + ε′‖xk − z‖.
(39)

The desired inequality thus also holds for all gk ∈ ∂̃af(xk).
3.) By substituting in a trial iterate xk and serious iterate x, we obtain from 1.) that

gk
T (x− xk) ≤ fa(x)− fa(xk) + εkf + ε′‖xk − x‖

≤ fa(x)− fa(xk) + ε′′‖xk − x‖+ ε′‖xk − x‖,
(40)

so the claim follows.

Remark 4.6. We note that Lemma 4.5, 3., provides a bound on

fa(xk)− (fa(x) + gk
T (xk − x)) = [tk(x)− fa(x)]+, (41)

which is a part of the downshift of a cutting plane at xk with respect to fa(x). In detail, the
downshift is in (22) defined as sk = [tk(x)− fa(x)]+ + c‖xk − x‖2.
By Lemma 4.5, 3., one hence obtains a distance dependent bound on the whole downshift sk.
The term fa(x) − tk(x) is also called linearization error in the literature (see e.g. [HS10])
and due to non-convexities it can be negative.

We provide the rather technical proofs for the following convergence results in Appendix
A in the online supplement. Before stating them here, we give here a rough summary of
the line of argumentation in the proofs: After showing convergence of iterates, Lemma 4.4
can be employed to ensure ε′-convexity on a region containing current and forthcoming
iterates for an arbitrary ε′ > 0. Consequently, Lemma 4.5, 3., can be used to obtain
a distance dependent bound on corresponding downshifts. Together with convergence of
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iterates, this implies (at least linear) convergence of the downshifts to 0. Especially, the
term [tk(x)−fa(x)]+ converges to 0. Since this term may be positive due to non-convexities,
its convergence to 0 can be interpreted as follows: The impact of non-convexities vanishes
in the limit.
The factor ε′′ finally shows up in first convergence results (Lemma 4.7 and Theorem 4.11).
Later, it vanishes by choosing ε′′ to be not constant but a sequence converging to 0 and
leads to sharpened convergence results in Corollaries 4.12 and 4.13.
We now start by obtaining finite convergence of the inner loop in Algorithm 1. In detail,
we start with the case where τk →∞ and prove the following result in Appendix A.1 in the
online supplement:

Lemma 4.7. Let x be the current serious iterate. If the inner loop does not terminate
finitely and τk →∞, then it holds that

dist(0, ∂̃af(x)) ≤ η,

with η = ε′′

(γ̃−γ) .

If the proximity parameter τk stays bounded, adopting an argument analogous to [Nol13,
Lemma 4, Lemma 7], we obtain:

Lemma 4.8. [Nol13] Let x be the current serious iterate. If the inner loop does not termi-
nate finitely and τk is bounded, then xk → x and

0 ∈ ∂φ(x, x).

Lemma 4.8 together with ∂φ(x, x) ⊆ ∂̃af(x) from Lemma 4.3, 2., leads to the following
corollary.

Corollary 4.9. Let x be the current serious iterate. If the inner loop does not terminate
finitely and τk is bounded, then xk → x and

0 ∈ ∂̃af(x).

Remark 4.10. Using Lemma 4.5, 2., we offer an interpretation of the results dist(0, ∂̃af(x)) ≤
η and 0 ∈ ∂̃af(x) from Lemma 4.7 and Corollary 4.9, respectively: Let εxf be the function

value approximation error at x. If 0 ∈ ∂̃af(x), then for any ε′ > 0, there is a δ > 0 such
that for all y ∈ B(x, δ),

0 ≤ f(y)− f(x) + ε′‖x− y‖+ εxf ,

f(x) ≤ f(y) + ε′‖x− y‖+ εxf .
(42)

Analogously, if dist(0, ∂̃af(x)) ≤ η, for any ε′ > 0, there is a δ > 0 such that for all
y ∈ B(x, δ),

f(x) ≤ f(y) + (ε′ + η)‖x− y‖+ εxf . (43)

We note that these properties also hold if εxf denotes an a posteriori error, which may be
available after the corresponding approximate function evaluation.

Now, we obtain convergence of the outer loop in Algorithm 1 by the following result that
we prove in Appendix A.2 in the online supplement:
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Theorem 4.11. Let Ω := {x ∈ Rn : f(x) ≤ fa(x1)} be bounded and let x̄ be an accumulation
point of the sequence xj. Then it holds that

dist(0, ∂f(x̄)) ≤ η,

with η = ε′′

(γ̃−γ) .

We now sharpen the obtained results for Algorithm 1 and proceed in two steps.
First, in (19), we have chosen a linear dependence of the exactness in a trial iterate and the
distance to the last serious iterate: εf (xk, x) = ε′′‖x − xk‖. We apply instead of a fixed
value ε′′ a sequence ε′′j,k which converges, passing to a subsequence, to 0 in the course of
running the algorithm. We obtain convergence results that are analogous to Lemma 4.7 and
Theorem 4.11. In detail, making use of ε′′j,k → 0, we can set the constant ε′′ in the optimality
criterion to 0 and obtain the following results. The proofs can be found in Appendix A.3
and A.4 in the online supplement, respectively:

Corollary 4.12. Let x be the current serious iterate and suppose the inner loop does not
terminate finitely with τk →∞ and εf (xk, x) = ε′′k‖xk−x‖ with ε′′k ∈ O(τ−1

k )∪O(‖x−xk‖).
Then it holds that

0 ∈ ∂̃af(x).

Corollary 4.13. Let x1 be such that Ω := {x ∈ Rn : f(x) ≤ fa(x1)} is bounded, let x̄
be an accumulation point of the sequence xj and εf (xk, xj) = ε′′j,k‖xk − xj‖ with ε′′j,k ∈
O(τ−1

j,k ) ∪ O(‖xj − xk‖). Then it holds that

0 ∈ ∂f(x̄).

Second, the convergence result in Corollary 4.12 can further be sharpened by the following
modification of the algorithm: When the distance between trial and serious iterate becomes
small, suggesting proximity to a local optimum, re-estimate the function value at the serious
iterate. In detail, during an inner loop, εxf , fa(x) and ml(·, x) for l < k are no longer fixed,

but are sequences εx,kf , fka (x) and mk
l (·, x). They are updated in the course of updating the

working model in Step 18 in Algorithm 1 with

fk+1
a (x)− εx,k+1

f ≤ f(x) ≤ fk+1
a (x), (44)

and εx,k+1
f ∈ O(‖x− xk‖). In Appendix A.5 in the online supplement, we prove:

Corollary 4.14. Let x be the current serious iterate and suppose the inner loop does not
terminate finitely with τk →∞ and εf (xk, x) = ε′′k‖xk−x‖, with ε′′k ∈ O(τ−1

k )∪O(‖x−xk‖).

Further, let fka (x) be a sequence that satisfies (44) with εx,k+1
f ∈ O(‖x−xk‖). Then it holds

that
0 ∈ ∂f(x).

We note that making use of Corollary 4.14 would mean applying the stopping criterion
0 ∈ ∂f(x). This is contradictory to the strategy of evaluating fa(x) only with a needed,
possibly increasing, exactness in the subsequent inner loop.
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4.3 Stopping criteria

In general, a stopping criterion that involves exploiting the subdifferential at a given point
is not applicable in practice. In this section, we list the stopping criteria that are used in
our numerical tests. We motivate them by the following results.

Lemma 4.15. [Nol13] Let x be the current serious iterate in an inner loop. If there is a
trial iterate such that xk = x, then 0 ∈ ∂̃af(x).

Proof. Using g∗k = (Q(x) + τkI)(x − xk) ∈ ∂φk(xk, x), we infer from xk = x that 0 ∈
∂φk(x, x) ⊆ ∂φ(x, x) ⊆ ∂̃af(x).

Lemma 4.16. Let x be the current serious iterate in an inner loop. If εxf > 0, then there

is a δ > 0 such that for any trial iterate xk with εkf = ε′′‖xk − x‖:

‖xk − x‖ ≤ δ ⇒ ∂̃af(xk) ⊆ ∂̃af(x). (45)

Proof. From continuity of f , we have that for any εxf > 0 and x ∈ Rn, there is a δ > 0 such

that for any xk,

‖xk − x‖ ≤ δ ⇒ ‖f(xk)− f(x)‖ ≤ 1

2
εxf . (46)

We choose δ ≤ 1
2ε′′ ε

x
f , so that for any uxk with v(xk, uxk) ≥ f(xk) − ε′′‖x − xk‖, we have

v(xk, uxk) ≥ f(x) − εxf and the claim follows from convexity of the approximate subdiffer-
entials.

Both results suggest a small distance between trial and serious iterate as a motivation for
stopping the algorithm. From Lemma 4.15 we have that equality of serious and trial iterate
means that 0 is contained in the approximate subdifferential of the serious iterate. Moreover,
from Lemma 4.16 we have that for a small enough distance between iterates, we cannot lower
the subdifferential’s distance to 0 by generating even closer iterates.
For practical stopping criteria, see [Nol13, Section 1.8] and [GAN13]. The proposed con-
ditions use the distance between consecutive serious iterates or between trial and current
serious iterate:

1. Let xj be the current serious step and xj+1 the next accepted serious step in the inner
loop of xj . If

‖xj+1 − xj‖
1 + ‖xj‖

< tol, (47)

we stop the algorithm in the outer loop and accept xj+1 as a solution.

2. Let xj be the current serious step. If for three successive trial steps xk,

‖xk − xj‖
1 + ‖xj‖

< tol, (48)

then we stop the algorithm in the inner loop and accept xj as a solution.

3. Let xj be the current serious step and let a maximum number of inner iterations or a
maximum number of outer iterations be exceeded. Then we accept xj as a solution.
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Remark 4.17. We note that the aggregate subgradient g∗k could also be used for a stopping
criterion: In the convergence proof, we inferred the optimality criteria from convergence of
the sequence of aggregated subgradients to 0, in some cases passing to a subsequence. A
small ‖g∗k‖ thus suggests that the algorithm should be stopped.

5 Applications

5.1 The robust gas transport problem

In this section, we concretize the adaptive bundle method for a real-world problem in order to
demonstrate its applicability. The setting of nonlinear robust optimization considered so far
is generic enough to cover even two-stage optimization problems with uniquely determined
second-stage variables. One relevant example for this is the case of physical networks with
state variables in the second stage.
Here, we consider the particular case of a robust two-stage optimization problem that arises
in the context of the stationary gas transport problem. A detailed explanation of the task
together with the corresponding models and solution approaches can be found in [Koc+15].
For a similar model and a decomposition method for the robust two-stage gas transport
problem in the case of no active elements on cycles, see [ALS19]. We emphasize that our
method is applicable to the general case of active elements on cycles and hence to a problem
that has not been efficiently handled in the literature before.
Given a gas network, the task is to determine a minimum-cost control of active elements,
such as compressors or control valves, so that all demands are satisfied without violating
physical or technical constraints. In particular, the control of active elements is modeled as
here-and-now variables at the first stage and the realization of physical states as wait-and-
see variables at the second stage. Uncertainties arise in the demands and in the pressure
loss coefficients. The latter is due to the fact that the pipes’ frictions are uncertain and
strongly influence pressure losses. The network operator therefore has to ensure feasibility
of gas transport for every possible realization, meaning that a relevant robust two-stage
optimization problem arises.
To keep this work self-contained, we first introduce the nominal problem, reformulate it so
that it is accessible to robust optimization and derive the robust counterpart. A given gas
network is modeled as a directed graph G = (V,A) with |V| = n, |A| = m and incidence
matrix A ∈ {−1, 0, 1}n×m. The gas flow is denoted by q ∈ Rm, which is positive if flow and
arc direction coincide and negative, otherwise. Pressure values at the nodes are considered
by their squared values, denoted by π ∈ Rn. The control of active elements is associated
with a cost function w(∆), which is to be minimized. Combining this objective with physical
constraints and bounds leads to the following nominal optimization problem, which we will
explain in more detail below:

min
∆,q,π

w(∆) (49a)

s. t. Aq = d (49b)

ATπ = F (q,∆) (49c)

π ∈ [π, π] (49d)

q ∈ R|A|. (49e)
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The given demand is denoted by d ∈ Rn and is balanced:
∑n
i=1 di = 0. With regard

to physical constraints, we first take flow conservation into account in (49b). Second, the
difference between squared pressures at connected nodes depends on the type of arc: An arc
a ∈ A either models a pipe if a ∈ Api ⊆ A, or an active element if a ∈ Aac = A \ Api. The
pressure loss on a pipe a = (u, v) depends on a pressure loss coefficient λa > 0. Pressure
decreases in the direction of flow. Using a linear compressor model, we assign a value ∆a ∈ R
to every active element a ∈ Aac. In total, denoting the pressure loss on an arc a ∈ A by
Fa(q,∆), we obtain (see e.g. [Koc+15])

Fa(q,∆) = πv − πu =

{
−λaqa|qa|, a ∈ Api
∆a, a ∈ Aac.

(50)

We now apply a reformulation suggested in [ALS19; Got+16]: We eliminate the constraints
in (49) using the following result from [ALS19; Col+78]: Fixing the compressor variable
and the pressure at an arbitrary root node, the pressure and flow values to fulfill (49b) and
(49c) are unique. Further, we eliminate (49d) by penalizing violation of the pressure bounds
with an exact l1 penalty function.
We choose an arbitrary root node r ∈ V and delete the corresponding row or entry in the
incidence matrix and demand vector to obtain the reduced versions Ã and d̃, respectively.
Now, we divide the set of arcs A into a set of basic arcs B, corresponding to a spanning
tree, and a set of nonbasic arcs, N = A\B, each of them corresponding to one fundamental
cycle. We can now eliminate the flow variables for basic arcs, as they are determined by the
nonbasic flow variables:

qB(qN ) = Ã−1
B (d̃− ÃNqN ). (51)

For given parameters (d, λ), the nonbasic flow qN (d, λ) itself can be computed by solving
the cycle equation

ÃTN (Ã−1
B )TFB(qB(qN ),∆) = FN (qN ). (52)

Here, and in the following, we assume that the root node pressure πr is known. Given values
for the active elements, we compute the corresponding state variable π as follows:

πv(∆; d, λ) = πr +
(

(Ã−1
B )TFB(qB(qN (d, λ)),∆)

)
v
. (53)

The pressure at a node v is thereby computed by the summed pressure loss on the path
from r to v. The columns of Ã−1

B describe the unique paths in the spanning tree B from
the root r to the respective vertices. Finally, we can rewrite (49) with a penalty parameter
ψ ∈ R:

min
∆

w(∆) + ψ
∑
v∈V

max
{

0, πv − πv(∆; d, λ), πv(∆; d, λ)− πv
}
. (54)

Now we consider uncertainties in the demand d and the pressure loss coefficients λ, and
protect against them in a robust sense. After a realization of the uncertain parameters,
the state variables q and π are adjusted as second-stage variables so that the gas transport
problem under uncertainty can be modeled as a robust two-stage optimization problem with
a compact uncertainty set U :

min
∆

max
(d,λ)∈U

w(∆) + ψ
∑
v∈V

max
{

0, πv − πv(∆; d, λ), πv(∆; d, λ)− πv
}
, (55)
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U := {(d, λ) | λj ∈ [λ, λ] for j = [m], di ∈ [d, d] for i ∈ [n],

n∑
i=1

di = 0}. (56)

Using the notation of Section 3, the gas transport problem is thus formulated as a minimax
problem, where

v(∆, (d, λ)) = w(∆) + ψ
∑
v∈V

max
{

0, πv − πv(∆; d, λ), πv(∆; d, λ)− πv
}
, (57)

f(∆) = max
(d,λ)∈U

v(∆, (d, λ)). (58)

Through straightforward calculation, we derive a subgradient g∆,(d,λ) ∈ ∂∆v(∆, (d, λ)). For
the special case of having no compressors on cycles, the following formula thereby holds:

g∆,(d,λ) = ∇w(∆) + ψ
( ∑
v:πv>π

(Ã−1
B∩Ac

)v −
∑

v:πv<π

(Ã−1
B∩Ac

)v
)
. (59)

Here we denote the vth column of (Ã−1
B ), restricted to the row entries which correspond to

compressor arcs, by (Ã−1
B∩Ac

)v

5.1.1 Approximate solutions to the adversarial problem

The adversarial inner maximization problem in (55) is a non-convex optimization prob-
lem, which for a given ∆ has to be solved with arbitrary precision, with respect to the
optimal objective value v(∆, (d∗, λ∗)). As the non-convexity only appears in the form of
one-dimensional constraints, it is efficient to apply piecewise linear relaxation to find an ap-
proximate global solution (d̃ε, λ̃ε). Piecewise linear relaxation is known to perform well in
this context, see e.g. [Gei+12]. Now the question is, how to choose the error bound for the
relaxation to ensure a certain precision and thus a bound on v(∆, (d∗, λ∗))− v(∆, (d̃ε, λ̃ε)).
To this end, we treat the approximate solution to the adversarial problem as a black box.
For a given ∆, we consider the following auxiliary optimization problem, which is a relax-
ation of the piecewise linear relaxation of the adversarial problem, shortening the objective
to the penalty term:

max
(d,λ)∈U,π,q

∑
v∈V

max{0, πv − πv, πv − πv}

s. t. Aq = d

(ATπ)a = ∆a ∀a ∈ Ac
(ATπ)a ≤ −λaqa|qa|+ ε ∀a ∈ Ap
(ATπ)a ≥ −λaqa|qa| − ε ∀a ∈ Ap
q ∈ R|A|

π ∈ R|V |.

(P ε)

pε denotes the optimal objective value of (P ε) and p∗ denotes the optimal objective value
of (P 0), so that v(∆, (d∗, λ∗)) = w(∆) + ψp∗. We also denote the optimal penalty term,
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which is derived using piecewise linear relaxation, by p̃ε, so that p∗ ≤ p̃ε ≤ pε. Now, for a
given ∆ we consider the following auxiliary problem, namely (P ε) with fixed (d, λ):

max
π,q

∑
v∈V

max{0, πv − πv, πv − πv}

s. t. ((d, λ), π, q) feasible for (P ε).

(P ε(d,λ))

We denote by pε(d, λ) the optimal objective value of (P ε(d,λ)) and by p∗(d, λ) the optimal

objective value of (P 0
(d,λ)), so that v(∆, (d, λ)) = w(∆) + ψp∗(d, λ). In order to bound the

desired quantity v(∆, (d∗, λ∗))− v(∆, (d̃ε, λ̃ε)), we thus bound the quantity p∗ − p∗(d̃ε, λ̃ε).
To do this, we use the following inequalities:

p∗(d̃ε, λ̃ε) ≤ p∗ ≤ p̃ε ≤ pε(d̃ε, λ̃ε). (60)

We make use of the following result, omitting the proof:

Lemma 5.1. For fixed (d, λ) and ε > 0, it holds that pε(d, λ)− p∗(d, λ) ≤ ε|V |3.

With (60), we thus obtain that p∗ − p∗(d̃ε, λ̃ε) ≤ ε|V |3 and it follows that

v(∆, (d∗, λ∗))− v(∆, (d̃ε, λ̃ε)) ≤ ψε|V |3. (61)

Using this error bound together with the subgradient formula (59), we provide an inexact
function value v(∆, (d̃ε, λ̃ε) and an approximate subgradient g∆,(d̃ε,λ̃ε) in the sense of Section
3. However, it is not possible to derive a bound on the distance of g∆,(d̃ε,λ̃ε) to the exact

subdifferential ∂f(∆), as required for the ε-subdifferential (18) for the bundle method in
[Nol13]. Therefore, the latter cannot be used in this context. However, for an appropriately
chosen ε, we have g∆,(d̃ε,λ̃ε) ∈ ∂̃af(∆), so that the adaptive bundle method proposed here
is applicable.

5.1.2 Algorithmic details

With the results from Section 5.1.1, we apply the adaptive bundle method, using piecewise
linear relaxation by the delta method (see [MM57; Gei+12; ALS19]) to find an approximate
solution (d̃ε, λ̃ε) to the adversarial problem with the error bound (61). Having at hand p̃ε,
an a posteriori error is provided by (see (60))

εp := ψ(p̃ε − p∗(d̃ε, λ̃ε)). (62)

However, experimental evaluations of εp suggest that the bound (61) is usually not tight.

As the computation of (d̃ε, λ̃ε) is also time-consuming for a small ε, we use the following
strategy: We refine the linearization of pressure loss constraints only for relevant arcs and
only in the case of a too large a posteriori error. When a function value approximation
with an error bound εf is required, we compute (d̃ε, λ̃ε) using the delta method parameter
ε from the previous iteration. If the a posteriori error εp, violates the bound εf , we scale
down ε for pressure loss constraints on arcs that were relevant for the a posteriori error in
the following sense: We define

vmax := argmax
v∈V
‖ dist

(
[π, π], π̃εv

)
− dist

(
[π, π], πv(∆; d, λ)

)
‖, (63)
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so that vmax is a node with the largest deviation of penalty caused by approximate worst
case pressure values π̃εv to the penalty caused by exact state variables. As relevant arcs we
then denote the arcs on the path Pvmax

from the root node r to vmax and arcs on cycles
Ci, i ∈ N that intersect with Pvmax

. The linearization is thus refined on the following set of
arcs:

Avmax

ref :=
{
a | a ∈

(
Pvmax ∪ {Ci | i ∈ N, (Ci ∩ Pvmax) 6= ∅}

)}
(64)

In particular, we replace Step 6 in Algorithm 1 by the subroutine in Algorithm 2. At the
beginning of an outer loop, ε0 is thereby initialized, either with the value from the last inner
loop or with an initial value if it is the first outer loop. In addition, if the proximity control
parameter τ is decreased at Step 9 in Algorithm 1, we increase ε.

Algorithm 2 Subroutine: Adaptive function value approximation

1: εkf = ε′′‖xj − xk‖, ε0 = εk ∈ Rn, i = 0.

2: Compute f0
ε = v(∆, (d̃ε0 , λ̃ε0)) and the a posteriori error εp.

3: while εp > εkf do
4: Identify vmax.

5: (εi+1)a =

{
1/10(εi)a a ∈ Avmax

ref ,

(εi)a else.

6: Compute f i+1
ε = v(∆, (d̃εi+1 , λ̃εi+1)) and update εp.

7: Increase i.
8: end while
9: fa(xk) = f iε + εp, ε

k+1 = εi.

5.2 Application to Robust Electricity Networks in the Alternating
Current Model

As argued earlier the adaptive bundle method is a general algorithm for nonlinear robust
optimization problems that can also be applied for electricity networks. The latter are
predominantly modeled using the alternating current optimal power flow (ACOPF) model.
From the many different existing formulations [Bie+20] and applications, we focus on some
references, namely [Car62; Jab08; KDS18]. There are only very few works on the robust
ACOPF problem. Due to its intrinsic difficulty that mainly arises from its non-convexity,
algorithms heuristically search for robust solutions [MR18], or work with convex relaxations
from which it may be possible to generate robust points [Yan+21].
In its basic nominal version, the ACOPF problem is a nonlinear non-convex optimization
problem. Given an electricity network modeled by an undirected graph G = (V,A), the
task is to minimize operating costs that are mainly caused by electricity generation. The
cost function

∑
k∈V Ck(Pk) can be assumed to be linear or convex in the active power

generation at the network nodes. It has to be ensured that given bounds on variable values
and line flow limits are maintained. In addition, power flow equations that in the polar
model are described by non-convex functions involving trigonometric terms necessarily need
to be satisfied.
First, for each node, standard (linear) flow conservation equations model for both the active
as well as the reactive demand that the net power generation at a node equals the flow that
is transported along its incident lines. Non-convex power-flow equations model the active
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power flow pkl and the reactive power flow qkl along a line (k, l) ∈ A. These equations are
trigonometric functions in the phase angle difference θkl and are bilinear in the node voltage
magnitudes Uk and Ul. For details, see [Car62].
In electricity networks, a typical and relevant source of uncertainty consists in the fact that
load profiles at a network node may be uncertain due to fluctuations or due to uncertainties
in the load forecast. Typically, the corresponding uncertainty set U is modeled as a box un-
certainty that is composed as the cross product of an interval for each uncertain parameter.
Robust protection against such uncertainties is a natural choice. In automatic generation
control that is typically installed in practical network operation, the generators need to
compensate for uncertainties in order to ensure that also under uncertainty the power is
balanced throughout the network, see [MR18].
For the description of the robust counterpart, we focus on explaining the characteristics of
the model only in the level of detail that is necessary here. Abstractly, the task consists
in determining on the first stage, i.e., here-and-now, an optimal network state. This means
that for each node k ∈ V, the best possible active and reactive power generation Pk, Qk and
voltage magnitude Uk as well as for each line (u, v) ∈ A the phase angle difference θu,v, the
active and reactive power flow puv, quv need to be determined. The first-stage variables need
to satisfy the corresponding non-convex power-flow equations for each line. They also need
to take values between given upper and lower bounds. Let a first-stage decision be denoted
by a vector y ∈ Y of appropriate dimension.
After the uncertainty has manifested itself, wait-and-see adjustable reactions that depend
on ω ∈ U need to ensure that the non-convex power flow equations and the corresponding
bounds are satisfied. In more detail, for each k ∈ V, adjustable active and reactive power
generation Pωk , Q

ω
k and voltage magnitude Uωk as well as for each line (u, v) ∈ A the phase

angle difference θωu,v, the active and reactive power flow pωuv, q
ω
uv need to be determined by

automatic generation control. The latter fixes a decision rule in which the generators at
the nodes generate the power that is necessary in order to react on fluctuations. The total
power mismatch, i.e., the sum of all uncertainties in power generation is divided among the
generators according to some participation factors. Again, adjustable variables also need to
stay within their bounds and also need to satisfy the non-convex power-flow equations. For
each ω ∈ U , let the adjustable second-stage decisions be denoted by a vector yω ∈ Y(y, ω)
of appropriate dimension that also may depend on the first-stage decision y ∈ Y.
As the resulting two-stage non-convex robust optimization problem is complex and in gen-
eral intractable by available methods, we associate with it a robust model that is possibly
somewhat more conservative however that is algorithmically tractable by the adaptive bun-
dle method. Let us exemplify the reformulation of one of the robust constraints, for example
for the voltage at a node, that reads as:
Determine feasible second-stage adjustable variables such that

Uωk ≤ Ūk ∀ω ∈ U ,

where Ūk specifies the upper bound on the voltage at a node k ∈ V. In order to model the
robust counterpart, we rewrite the semi-infinite constraint as

max
ω∈U,yω∈Y(y,ω)

Uωk ≤ Ūk,

where Y(y, ω) denotes the set of second-stage adjustable variables. Maximization is not
only performed with respect to ω ∈ U but also with respect to yω ∈ Y(y, ω). The latter is
necessary due to the fact that the ACOPF model usually does not guarantee the existence
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of a unique solution on the second stage. Due to the fact that we ensure bounds for all
adjustable solutions, the model outlined here may be more conservative than the original
robust ACOPF model.
Writing similarly all robust constraints for ensuring power generation limits at all nodes and
for transmission line limits at all line, we denote by the value P (yω) = max{0, Uωk − Ūk, . . .}
the maximum bound violation in the second-stage.
The objective that is input for the adaptive bundle method then reads as

min
y∈Y

∑
k∈V

Ck(Pk) + ψ max
ω∈U,yω∈Y(y,ω)

P (yω)

with some penalty parameter ψ.
The model is in a form in which it can in principle be solved by the adapted bundle method
outlined here. Although its structure is more complex than that of the robust gas operation
problem from the last section, its close relation to the latter renders our bundle method a
promising algorithm for its solution. Indeed, using MIP techniques, adaptive piecewise linear
relaxations of the non-convex subproblems can be applied. Approximate subgradients in the
sense of an outer approximation of the Clarke subdifferential can essentially be calculated by
analytic formulas. As a result, this leads to an algorithm for a robust two-stage optimization
problem with non-convex first as well as non-convex second stage where the second stage
does not necessarily have a unique solution.
Similarly as for the gas application, piecewise linear relaxations strengthen the adversarial
and together with the maximization over the adjustable variables, this may lead to a some-
what more conservative model than the original robust formulation. This seems acceptable
as such highly complex problems are currently still beyond the state-of-the-art of available
methods.
In order to be able to use our adaptive bundle method, we have to reformulate all first-stage
constraints into the objective function. For the robust ACOPF problem, the first-stage
decisions need to satisfy the non-convex power-flow equations in addition. Therefore, it
would be beneficial to have at hand an enhancement of the method so that constrained
problems can be dealt with without the need to relax the first-stage constraints. It would
also be helpful for the quality of the solution to combine it with additional algorithmic
enhancements such as spatial branching so that the non-convex problem on the first stage
can be solved to global optimality. To conclude, we have shown in this section that the
bundle method can in principle also be applied to the challenging robust ACOPF problem.
The details of these algorithmic enhancements however go beyond the work performed here
and are subject of future research.

6 Numerical Results

In this section, we present some numerical results, firstly for an analytical example and
secondly for the robust gas transport problem from the preceding section. The adaptive
bundle method was implemented in MATLAB and the experiments were conducted on a
machine with an Intel Core i7-8550U (4 cores) and 16GB of RAM.
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6.1 An analytical example

A two-dimensional test problem is taken from Zuhe et al. [ZNE90]. We slightly modified
the example in order to obtain the non-convex problem in Example 6.1, which is depicted
in Figure 2.

Example 6.1.

min
x∈[0,1]

max
u∈[0,1]

v(x, u) = u(1− u)(u− x)4 − 0.2(x− 0.5)2.

For a fixed x ∈ [0, 1], the local maxima of v(x, u) in u are

u1(x) :=
1

12
(−
√

4x2 − 4x+ 25 + 2x+ 5), u2(x) :=
1

12
(
√

4x2 − 4x+ 25 + 2x+ 5),

and the global maximum is attained at

u∗(x) =

{
u2(x) x ≤ 1

2 ,

u1(x) x > 1
2 .

The global solution to the robust optimization problem is attained at x∗ = 0.5. To im-
itate inexactness in the function evaluations, we proceed as follows: For a given x with
‖v(x, u1(x)) − v(x, u2(x))‖ ≤ εf , we choose u1(x) or u2(x) as an approximate optimal so-
lution ux to the inner maximization problem uniformly at random. In this way, we may
approximate a negative exact subgradient by a positive subgradient, or vice versa. It should
be noted that as soon as an approximation error is made at an iterate x, it holds that
0 ∈ ∂̃af(x), so that in the case of a serious iterate x, the theoretical stopping criterion in
Step 3 of Algorithm 1 is fulfilled. In detail, when a serious iterate’s function value is inexactly
evaluated, the algorithm may be stopped with the following result: The aggregate subgradi-
ent is close to 0 and the serious iterate fulfills the optimality criterion dist(0, ∂̃af(x)) ≤ ε′′

(γ̃−γ)

from Lemma 4.7 and Corollary 4.9.
Numerical results for different values of the parameter ε′′ are summarized in Table 1, where
each column with ε′′ > 0 represents an averaged result over 50 runs. From the table, we
see that the parameter value ε′′ = 1 is not sufficiently small to yield results of the same
quality as with ε′′ = 0.01 or ε′′ = 0.1. Figures 2 and 3 depict an example for the case
ε′′ = 1, in which the 6th serious iterate is inexactly evaluated and the optimum of x∗ = 0.5
is not achieved by the algorithm. As at the 6th serious iterate x, a negative subgradient is
approximated by a positive one, we have 0 ∈ ∂̃af(x). Even though the theoretical stopping
criterion applies, the practical does not. Due to the positive subgradient, the algorithm
however makes no progress in the sense of approaching x = 0.5 and after a few more inner
loops, a practical stopping criterion applies.
We want to improve the results for the case of ε′′ = 1 without globally setting ε′′ to a smaller
value. Therefore, we apply a strategy like that used in Corollary 4.14 and re-estimate fa(x)

for a serious iterate x if εx,kf ≥ 10−1‖x − xk‖. An example for this case is depicted in
Figure 4 and 5. Such a re-estimation also includes updating the corresponding subgradient
and cutting planes. We hence do not permanently accept an inexact subgradient. This
hinders the algorithm from becoming stuck at a point with an error in the subgradient
approximation and thus 0 in the approximate subdifferential. The results show that this
strategy indeed yields to a significant improvement in the objective and solution value, so
that the optimum is reached when only inexact function values and subgradient evaluations
are available.

25



Figure 2: v(x, u) from Example 6.1 with iter-
ates from a run with ε′′ = 1. Due to inexact-
ness ”wrong” approximate subgradients with
negative slope enter the bundle for all iter-
ates shown in the bottom left. In contrast,
for exact evaluations a ”correct” subgradient
with positive slope is added, see iterates at
top left. See Figure 3 for a zoom on the box.

Figure 3: Zoom to the region of the subse-
quence of serious iterates with exact solution
to the inner maximization problem. The num-
bers indicate the outer loop counter j.

Figure 4: v(x, u) from Example 6.1 with iter-
ates from a run with re-estimation of fa(x).
The optimal solution at x∗ = 0.5 is attained.
See Figure 3 for a zoom on the boxes.

Figure 5: Zoom to the regions of the subse-
quences of serious iterates. The numbers in-
dicate the outer loop counter j.
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ε′′ = 0 ε′′ = 0.01 ε′′ = 0.1 ε′′ = 1 ε′′ = 1, re-estimate fa(x)

# serious iterates 37 18 29 19 48
# trial iterates 51 34 53 33 99
objective value 0.0023 0.0032 0.0030 0.0038 0.0023
solution 0.50 0.40 0.42 0.33 0.50
‖g∗‖ 4.67e-17 1.13e-11 1.15e-12 2.53e-13 3.35e-13
# downshifts 2 8 17 6 29
running time (sec) 3.0 5.3 12.0 5.4 28.9

Table 1: Averaged results for Example 6.1 with tol = 10−9, γ = 0.1, γ̃ = 0.9. The geometric
mean is used for the row of ‖g∗‖. The last column shows results for the strategy of re-
estimating the serious iterates’ function values (see Corollary 4.14).

6.2 The robust gas transport problem

For computational experiments with the robust gas transport problem, the relaxed adver-
sarial maximization problem was solved using an implementation of the delta method in
Python with Gurobi 8.1.
As test cases, we used slightly modified instances from the library of realistic gas network
instances [Pfe+15], and as uncertainty sets for nominal demand and pressure loss coeffi-
cients d and λ, we used [0.95 · d, 1.05 · d] and [λ, 1.1 · λ], respectively. Further, in order to
fulfill bounds on ∆, we included a penalty term in the cost function w(∆). The numerical
results for the instances GasLib134 and GasLib40, modelling gas networks with 40 and 134
nodes, respectively, are summarized in Table 2 and 3, where we compare the results for
different values of the algorithmic exactness parameter ε′′. When we refer to ”number of
refinements”, we mean the number of re-evaluations in the sense of Algorithm 2. It should
be noted from the results that the running time is determined to a large extent by the
effort of approximating the adversarial problem up to the desired error: For different values
of ε′′, the numbers of trial iterates and thus function evaluations are in the same order of
magnitude, whereas the running time increases as the algorithm demands a smaller error in
the approximation of the adversarial problem.
The results can be compared to numerical results in [ALS19]. There, the GasLib instances
are also used, though with a slightly different model. We compared our results for the
case of GasLib-134, which models the Greek gas network. According to a test run with
the instance used in [ALS19], we attain the same solution, which makes use of one of the
two active elements. The running time and iteration number of this test run were in the
same order of magnitude as for our experiments that are depicted in Table 2. For our
numerical experiments, we have chosen a nominal demand scenario for which both of the
two active elements are used in the solution. Table 2 shows that for all tested values of ε′′,
no downshifts or refinements are necessary and the algorithm requires only a few seconds.
This effect can be explained by the network’s tree-structure, which makes the adversarial
problem much easier to solve, leading to small a posteriori errors.
We note that the approach in [ALS19] is explicitly adapted to the structure of the robust
gas transport problem and moreover cannot be applied to instances with compressors on
cycles. In the instance GasLib40, there is one compressor on a cycle, so that we cannot
directly compare our results. The results of our numerical experiments are depicted in
Table 3. We reach for the case of ε′′ = 10 only quite a large value for ‖g∗‖, the aggregate
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ε′′ = 0.1 ε′′ = 1 ε′′ = 10

# serious iterates 11 11 11
# trial iterates 13 13 13
objective value 343.80 343.80 343.80
‖g∗‖ 1.30e-09 1.30e-09 1.30e-09
# refinements 0 0 0
# downshifts 0 0 0
running time (sec) 18.7 20 20.8

Table 2: Results for the instance GasLib134 (2 active elements).

ε′′ = 0.1 ε′′ = 1 ε′′ = 10 ε′′ = min(10, 10 · ‖xk − xj‖)
# serious iterates 19 22 22 25
# trial iterates 32 37 59 50
objective value 2211.98 2211.97 2216.46 2212.14
‖g∗‖ 1.53e-10 1.42e-09 1.00e+00 1.22e-05
# refinements 47 48 42 49
# downshifts 0 5 31 17
running time (sec) 94.1 60.4 58.5 63.0

Table 3: Results for the instance GasLib40 (6 active elements).

subgradient’s norm. To improve this result without having to solve the adversarial problem
up to a lower error bound at every single function evaluation in the course of the algorithm,
we apply Corollaries 4.12 and 4.13: We ensure ε′′k ∈ O(‖x − xk‖) by the choice of ε′′ =
min(10, 10 · ‖xk − xj‖), so that the enhanced convergence results of Corollaries 4.12 and
4.13 apply. Indeed, from the results in Table 3 we recognize an enhancement with respect
to ‖g∗‖ and the objective value. However, this effect is accompanied by an increase in the
number of iterations and refinements, and thus function evaluations. The strategy of an
adaptive ε′′ thus is useful if evaluations of low precision are cheap and evaluations of high
precision expensive but still tractable.
In summary, we demonstrated that our adaptive bundle method is an efficient method that
is able to solve realistic instance sizes within short time, such as the robust gas trans-
port problem for Greece. Despite the fact that this problem contains non-convexities, we
demonstrated its tractability via adaptive solution of the mixed-integer linear relaxations
using state-of-the-art MIP solvers. The results show that our adaptive bundle method with
the appropriate notion of inexactness is able to make use of these practically efficient MIP
technologies for the solution of nonlinear robust optimization problems.

7 Conclusion

We have presented an adaptive bundle method for non-convex nonlinear robust optimiza-
tion problems with inexact solutions to the adversarial problem. In addition to providing

28



a convergence proof, we have further shown its applicability through the example of gas
transport under uncertainties. In this context, a robust two-stage optimization problem
with unique lower level arises from uncertainties and the need for a robust treatment of
these in a real-world application.
An open question in this context is whether some of the techniques presented here could
be used for the case of discrete active elements and thus global optimization. Since our
framework is appropriate in the case of nonlinear robust optimization, it can also be used
for further applications such as e.g. optimal water or electricity networks. Both of these
applications are again network applications for which a piecewise linearization method may
be the preferred choice to adaptively solve the lower level problem to global optimality. We
have outlined the approach for the optimal power flow problem in the alternating current
model in the application section of this article. Having this said, we would like to stress
again that the bundle framework we presented, does not impose any restrictions on the
choice of the solution method for the lower level problem. To give an example, the authors
are currently working on a problem in the design of nanoparticles, namely robust particle
synthesis. There, the lower level-problem does not exhibit a graph-based structure and thus
an optimization method based on Lipschitz constants is preferred. As, however, the main
purpose of this article was to introduce the bundle framework for the solution of general
nonlinear robust optimization problems, we decided to report about these applications in
the future rather than discussing them in full detail here.
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A Proofs of convergence results from Section 4.2

In the following proofs, we employ techniques analogous to those employed by [Nol13,
Lemma 3], transferred to our setting. It is noted however that first, the definitions of
e.g. fa and φ are not equivalent and second, we require a different argument to derive (74)
due to our different notion of inexactness.

A.1 Proof of Lemma 4.7

Proof. i) We have, see (27), g∗k = (Q + τkI)(x − xk) ∈ ∂φk(xk, x), so that with φk(x, x) =
fa(x), with m0(xk, x) ≤ φk(xk, x) and the definition of the exactness plane m0(xk, x) =
fa(x) + gx

T (xk − x) where gx ∈ ∂̃af(x),

g∗k
T (x− xk) ≤ φk(x, x)− φk(xk, x) ≤ fa(x)−m0(xk, x) = gx

T (x− xk). (65)

Using the definition of g∗k and (65), we thus have

g∗k
T (x− xk) = (x− xk)T (Q+ τkI)(x− xk) ≤ ‖gx‖‖x− xk‖. (66)

The matrix (Q+ τI) is positive definite, so that, with τk →∞, we can infer ‖x− xk‖ → 0
and hence xk → x.
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ii) We obtain φk(xk, x)→ fa(x) as follows: Using (65), there is a lower bound on φk(x, x)−
φk(xk, x), which tends to 0, using (66) for k →∞. As m0(xk, x)→ fa(x) for k →∞, (65)
also provides an upper bound on φk(x, x) − φk(xk, x), which tends to 0. With φk(x, x) =
fa(x), the claim follows.
iii) Let ηk := dist(g∗k, ∂φ(x, x)). Using φ(·, x) ≥ φk(·, x) from Lemma 4.3, 3., together with
g∗k ∈ ∂φk(xk, x) with the corresponding subgradient inequality, it follows for all y ∈ Rn that:

φ(y, x) ≥ φk(y, x) ≥ φk(xk, x) + g∗k
T (y − xk). (67)

From part i), we have xk → x and boundedness of g∗k. Hence, passing to a subsequence
ensures g∗k → g∗ for some g∗. Together with φk(xk, x)→ fa(x) = φ(x, x) from ii), we obtain

φ(y, x) ≥ φ(x, x) + g∗T (y − x),

so that g∗ ∈ ∂φ(x, x). Thus, ηk ≤ ‖g∗k − g∗‖ → 0.
To investigate the asymptotic behavior of ρk and ρ̃k, we derive by using parts i)-iii) the
estimates (72) in part iv) and (75) in part v). These estimates bound the terms fa(x) −
Φk(xk, x) and fa(xk)−Mk(xk, x), respectively.
iv) Subtracting 1

2 (x−xk)TQ(x−xk) from the first inequality in (65), using φk(x, x) = fa(x)
and again the definition of g∗k, we obtain

1

2
(x− xk)TQ(x− xk) + τk‖x− xk‖2 ≤ fa(x)− Φk(xk, x). (68)

Next, we can bound the left-hand side for a sufficiently large k and an arbitrarily fixed
0 < ζ < 1, using τk →∞ as follows:

1

2
(x− xk)TQ(x− xk) + τk‖x− xk‖2 ≥ (1− ζ)τk‖x− xk‖2. (69)

Moreover, for sufficiently large k, we have from the asymptotic behavior of g∗k, that

‖g∗k‖ ≤ (1 + ζ)τk‖x− xk‖. (70)

Substituting (69) for the left-hand side of (68) and replacing τk using (70), for sufficiently
large k we obtain

fa(x)− Φk(xk, x) ≥ 1− ζ
1 + ζ

‖g∗k‖‖x− xk‖. (71)

We define η := dist(0, ∂φ(x, x)). From the definition of η and ηk, we obtain for k →∞ that
‖g∗k‖ ≥ η − ηk > (1− ζ)η. Putting this estimation into (71), we infer, for k large enough,

fa(x)− Φk(xk, x) ≥ (1− ζ)2

1 + ζ
η‖x− xk‖, (72)

where ζ is chosen as before.
v) As defined in (21), we have mk(·, x) = tk(·)−sk, with sk := [tk(x)−fa(x)]+ +c‖xk − x‖2.
We first consider the case tk(x) > fa(x). Then:

mk(·, x) = fa(x) + gk
T (· − x)− c‖x− xk‖2. (73)

Now, choose an arbitrary ε′ > 0. Using Lemma 4.4, there is a δ > 0 such that for every
fixed u ∈ U , v(·, u) is ε′-convex on B(x, δ) for the chosen ε′. From xk → x, we have for
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sufficiently large k that xk ∈ B(x, δ), so that Lemma 4.5, 3., can be applied. Using (73) we
obtain:

fa(xk)−mk(xk, x) = fa(xk)− (fa(x) + gk
T (xk − x)) + c‖xk − x‖2

≤ (ε′ + ε′′)‖xk − x‖+ c‖xk − x‖2.
(74)

It follows by subtracting 1
2 (x−xk)TQ(x−xk) from both sides and using c‖x−xk‖2− 1

2 (x−
xk)TQ(x− xk)→ 0, that

fa(xk)−Mk(xk, x) ≤ (1 + ζ)(ε′ + ε′′)‖xk − x‖ (75)

for k large enough, again choosing ζ as before. For the case tk(x) ≤ fa(x), the estimate (75)
also holds, since in this case fa(xk)−mk(xk, x) = c‖x− xk‖2. For k large enough, we then
have c‖x− xk‖2 ≤ (ε′ + ε′′)‖x− xk‖ and − 1

2 (x− xk)TQ(x− xk) ≤ ζ‖x− xk‖, so that the
claim follows.
vi) Now we apply the obtained results to the formulas for ρk and ρ̃k: Rewriting ρ̃k as

ρ̃k = ρk +
fa(xk)−Mk(xk, x)

fa(x)− Φk(xk, x)
, (76)

and using (72) and (75), we obtain for sufficiently large k

ρ̃k ≤ ρk +
(1 + ζ)2(ε′ + ε′′)‖x− xk‖

(1− ζ)2η‖x− xk‖
= ρk +

(1 + ζ)2(ε′ + ε′′)

(1− ζ)2η
. (77)

From ρk < γ for all k and ρ̃k ≥ γ̃ for infinitely many k and since ζ was chosen arbitrarily,

we infer η < (ε′+ε′′)
(γ̃−γ) . As ε′ > 0 was chosen arbitrarily, it follows that

η ≤ ε′′

(γ̃ − γ)
. (78)

Finally, with ∂φ(x, x) ⊆ ∂̃af(x) from Lemma 4.3, 2., the claim follows.

A.2 Proof of Theorem 4.11

Proof. We must only consider the case where the outer loop does not terminate finitely. By
kj , we denote the inner loop counter of an outer iteration j at which a trial step is accepted
as a new serious step, s.t. xkj ,j = xj+1. From the acceptance test, we thus have

fa(xj)− fa(xj+1) ≥ γ
(
fa(xj)− Φkj (xj+1, xj)

)
. (79)

Moreover, with g∗kj = (Qj + τkjI)(xj − xj+1) ∈ ∂φkj (xj+1, xj), the following subgradient
inequality, applied at xj , holds:

(xj − xj+1)T (Qj + τkjI)(xj − xj+1) ≤ φkj (xj , xj)− φkj (xj+1, xj). (80)

Using φkj (xj , xj) = fa(xj) and (79), we obtain

1

2
‖xj+1 − xj‖2Qj+τkj

≤ fa(xj)− Φkj (xj+1, xj) ≤ γ−1(fa(xj)− fa(xj+1)). (81)
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By construction, the sequence of fa(xj) is decreasing and due to boundedness of Ω also
bounded from below, so that the right-hand side converges to 0. We thus obtain

‖xj+1 − xj‖2Qj+τkj

j→∞−−−→ 0, (82)

so that there is a subsequence of serious steps xj and a limit point x̄ with xj → x̄ for j ∈ J .
Throughout the algorithm, the accumulation point x̄ does not appear as a trial step, so that
fa(x̄) is never evaluated. Therefore, we redefine the value fa(x̄) := limj→∞ fa(xj). It is
well-defined as the sequence is decreasing and bounded from below. From f(xj) ≤ fa(xj) ≤
f(xj) + ε′′‖xj − xj−1‖ together with (82), we have fa(x̄) = f(x̄).
We now consider the sequence

g∗kj = (Qj + τkjI)(xj − xj+1) (83)

and distinguish two cases. First, we consider the case where a subsequence of g∗kj converges
to 0 and second, we assume that no such subsequence exists:
i) Assume first that there is an infinite subsequence J ′ of J such that g∗kj converges to 0 for

j ∈ J ′. To prove 0 ∈ φ(x̄, x̄), we now show that the limit of g∗kj , which equals 0, fulfills the
subgradient inequality of φ at x̄.
First, we note that boundedness of Ω implies boundedness of the sequence of serious iterates
xj . From Corollary 3.1, it follows that the sequence of corresponding approximate subgra-

dients gxj ∈ ∂̃af(xj) is bounded. With (66), applied at g∗kj , boundedness of the trial steps

xk in all the inner loops also follows. Hence, in the definition of φ in (32), M can be chosen
such that B(0,M) contains the trial iterates from all inner loops.
Now, we apply the subgradient inequality of g∗kj ∈ ∂φkj (xj+1, xj) to an arbitrarily chosen

vector h and use estimate (79) from the acceptance test:

g∗kj
Th ≤ φkj (xj+1 + h, xj)− φkj (xj+1, xj)

≤ φ(xj+1 + h, xj)− fa(xj) + fa(xj)− φkj (xj+1, xj)

= φ(xj+1 + h, xj)− fa(xj) + fa(xj)− Φkj (xj+1, xj) +
1

2
‖xj − xj+1‖2Qj

≤ φ(xj+1 + h, xj)− fa(xj) + γ−1(fa(xj)− fa(xj+1)) +
1

2
‖xj − xj+1‖2Qj+τkj

.

(84)

Choosing an arbitrary h′ and using (84) with h = xj − xj+1 + h′ and g∗kj
T (xj − xj+1) =

‖xj − xj+1‖2Qj+τkj
, we see:

1

2
‖xj − xj+1‖2Qj+τkj

+ g∗kj
Th′ ≤ φ(xj + h′, xj)− fa(xj) + γ−1 (fa(xj)− fa(xj+1)) . (85)

With j →∞, we obtain 0 ≤ φ(x̄+ h′, x̄)− φ(x̄, x̄) and hence 0 ∈ ∂φ(x̄, x̄). By Lemma 4.3,
2., it follows that 0 ∈ ∂̃af(x̄) and thus, with fa(x̄) = f(x̄), we obtain 0 ∈ ∂f(x̄).
ii) Second, assume that for every j ∈ J , ‖g∗kj‖ = ‖(Qj + τkjI)(xj − xj+1)‖ ≥ µ > 0 for a
µ > 0. For this case, we proceed in a manner similar to the proof of Lemma 4.7. There, we
investigated a sequence of trial iterates which do not pass the acceptance test and also lead
to an increase of the proximity parameter. For the limit of this sequence, we then obtained
a bound on the distance of the approximate subdifferential to 0.
Now, we derive an analogous result for the accumulation point x̄. To do this, we pass to a
subsequence of trial iterates that do not pass the acceptance test, lead to an increase of the
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proximity parameter and converge to x̄. We start by identifying such a subsequence and
then proceed as in the proof of Lemma 4.7: We show that an accumulation point of the
sequence of corresponding aggregate subgradients lies in ∂φ(x̄, x̄) and bound its distance to
0. We then obtain a bound on the distance of the approximate subdifferential at x̄ to 0.
As ‖xj − xj+1‖ → 0, g∗kj 6→ 0 and the sequence of Qj is bounded, the sequence τkj , j ∈ J is

unbounded and τkj →∞. Let J+ := {j ∈ J : τkj > τ#
j } be the set of indices of inner loops

in which the proximity parameter is increased. From boundedness of the sequence τ#
j , as

ensured in Step 12 in Algorithm 1, it follows that for every j ∈ J there is a j′ ∈ J+ with
j ≤ j′. Hence, there is an infinite subsequence j ∈ J+ ⊆ J with τkj → ∞, which we now
consider. Let kj − vj be the index of the last inner step of the jth inner loop, at which
the parameter τ is increased: τkj = 2τkj−vj . From the acceptance test and the update rule
for the proximity control parameter in the algorithm, we have ρkj−vj < γ and ρ̃kj−vj ≥ γ̃,
respectively.
We consider the sequence g∗kj−vj = (Qj + 1

2τkjI)(xj − xkj−vj ) ∈ ∂φkj−vj (xkj−vj , xj). Anal-

ogously to (65), we obtain:

(xj − xkj−vj )T (Qj +
1

2
τkjI)(xj − xkj−vj ) ≤ gxj

T (xj − xkj−vj ), (86)

where gxj
∈ ∂̃af(xj). Boundedness of Ω and thus xj together with Corollary 3.1 ensures

boundedness of ∂̃af(xj). Hence, with (86), boundedness of g∗kj−vj follows. Using τkj−vj →
∞, we thus derive from the definition of g∗kj−vj that ‖xj−xkj−vj‖ → 0, so that xkj−vj → x̄.

As the sequence g∗kj−vj is bounded, there is a subsequence J ′ of J such that g∗kj−vj → g̃ for

some g̃. Now we apply the subgradient inequality of g∗kj−vj = (Qj + 1
2τkjI)(xj − xkj−vj ) ∈

φkj−vj (xkj−vj , xj) to an arbitrary h and use ρ̃kj−vj ≥ γ̃ together with Φkj−vj (xkj−vj , xj) =
Mkj−vj (xkj−vj , xj):

g∗kj−vj
Th ≤ φkj−vj (xkj−vj + h, xj)− φkj−vj (xkj−vj , xj)

≤ φ(xkj−vj + h, xj)− fa(xj) + fa(xj)− φkj−vj (xkj−vj , xj)

= φ(xkj−vj + h, xj)− fa(xj) + fa(xj)− Φkj−vj (xkj−vj , xj)

+
1

2
‖xkj−vj − xj‖2Qj

≤ φ(xkj−vj + h, xj)− fa(xj) + γ̃−1
(
f(xj)−Mkj−vj (xkj−vj , xj)

)
+

1

2
‖xkj−vj − xj‖2Qj

.

(87)

To obtain a subgradient inequality implying for the limit with respect to j → ∞ that
g̃ ∈ ∂φ(x̄, x̄), we show that the last two summands tend to 0. For the last summand, this
follows from ‖xj − xkj−vj‖ → 0 and boundedness of Qj .
To prove γ̃−1(f(xj)−Mkj−vj (xkj−vj , xj))→ 0, we only need to show fa(xj)−mkj−vj (xkj−vj , xj)→
0 and proceed as follows: For every j ∈ J ′, we infer from f(xj)− fa(xj) ≤ 0 together with
f(xkj−vj )− fa(xkj−vj ) ≥ −ε′′‖xj − xkj−vj‖ that

f(xj)− fa(xj) ≤ f(xkj−vj )− fa(xkj−vj ) + ε′′‖xj − xkj−vj‖ (88)

so that
f(xj)− f(xkj−vj ) ≤ fa(xj)− fa(xkj−vj ) + ε′′‖xj − xkj−vj‖. (89)
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Passing to the limit gives

lim sup
j∈J′

fa(xkj−vj ) ≤ lim
j→∞

fa(xj) = fa(x̄), (90)

and with mkj−vj (xkj−vj , xj) ≤ fa(xkj−vj ), it follows that

lim supmkj−vj (xkj−vj , xj) ≤ fa(x̄). (91)

To show that fa(xj)−mkj−vj (xkj−vj , xj)→ 0, it hence suffices to prove that the estimate
lim inf mkj−vj (xkj−vj , xj) ≥ fa(x̄) holds. We thus need to show that the downshift skj−vj
at xkj−vj with respect to xj and fa(xj) tends to 0. This follows from

lim
j→∞

[tkj−vj (xj)− fa(xj)]+ = lim
j→∞

[fa(xkj−vj )− fa(xj) + gkj−vj
T (xj − xkj−vj )]+ = 0, (92)

using (90), boundedness of ∂̃af(xkj−vj ) and xkj−vj → xj . Passing in (87) to the limit, we
thus infer

g∗kj−vj
Th ≤ φ(x̄+ h, x̄)− φ(x̄, x̄). (93)

As h was chosen arbitrarily, we obtain g̃ ∈ ∂φ(x̄, x̄).
In a manner similar to the proof of Lemma 4.7, parts iv) and v) in 1.), we now investigate
the asymptotic behavior of ρkj−vj and ρ̃kj−vj . To this end, we derive the estimates (94)
and (96) for the terms fa(xj) − Φkj−vj (xkj−vj , xj) and fa(xkj−vj ) − Mkj−vj (xkj−vj , xj),
respectively.
Let η := dist(0, ∂φ(x̄, x̄)) so that ‖g̃‖ ≥ η. The following result is derived analogously to
part iv) in the proof of Lemma 4.7: Using g∗kj−vj ∈ ∂φkj−vj (xkj−vj , xj) and τkj → ∞,

together with ‖g∗kj−vj‖ ≥ (1− ζ)η for j large enough, it holds that

fa(xj)− Φkj−vj (xkj−vj , xj) ≥
1− ζ
1 + ζ

‖g̃‖‖xj − xkj−vj‖ ≥
(1− ζ)2

1 + ζ
η‖xj − xkj−vj‖. (94)

We first assume [tkj−vj (xj)− fa(xj)]+ > 0. Now, choose an arbitrary ε′ > 0. From Lemma
4.4, we know that there is a δ > 0 such that for every fixed u ∈ U , v(·, u) is ε′-convex on
B(x̄, δ) for the chosen ε′. From xkj−vj → x̄ and xj → x̄, we obtain for sufficiently large j
that xkj−vj , xj ∈ B(x, δ). Thus, Lemma 4.5, 3., can be applied and for sufficiently large j
it follows that

fa(xkj−vj )−mkj−vj (xkj−vj , xj) = fa(xkj−vj )− fa(xj)− gkj−vjT (xkj−vj − xj)
+ c‖xkj−vj − xj‖2

≤ (ε′′ + ε′)‖xkj−vj − xj‖+ c‖xkj−vj − xj‖2.
(95)

The estimate also holds for the case [tkj−vj (xj) − fa(xj)]+ = 0. Analogously to part v) in
the proof of Lemma 4.7, we obtain

fa(xkj−vj )−Mkj−vj (xkj−vj , xj) ≤ (1 + ζ)(ε′ + ε′′)‖xkj−vj − xj‖. (96)

Using the estimates (96) and (94), we infer

ρ̃kj−vj = ρkj−vj +
fa(xkj−vj )−Mkj−vj (xkj−vj , x)

fa(x)− Φkj−vj (xkj−vj , x)

≤ ρkj−vj +
(1 + ζ)2(ε′ + ε′′)‖xkj−vj − xj‖

(1− ζ)2η‖xj − xkj−vj‖
,

(97)
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so that η ≤ ε′+ε′′

γ̃−γ , as ζ was arbitrary. Since ε′ > 0 was chosen arbitrarily,

η ≤ ε′′

γ̃ − γ
. (98)

Hence, with ∂φ(x̄, x̄) ⊆ ∂̃af(x̄) from Lemma 4.3, 2., we obtain dist(0, ∂̃af(x̄)) ≤ η. From
fa(x̄) = f(x̄), it follows that dist(0, ∂f(x̄)) ≤ η.

A.3 Proof of Corollary 4.12

Proof. Follow the proof of Lemma 4.7 in Appendix A.1 and in part v), choose not only ε′ but
also ε′′ > 0 arbitrarily. As τk → ∞ and xk → x has been assumed or shown, respectively,
there exists a k large enough such that (74) holds. In part vi), we then replace (78) by

η ≤ 0, (99)

as ε′′ > 0 was chosen arbitrarily, and the claims follow.

A.4 Proof of Corollary 4.13

Proof. Follow the proof of Theorem 4.11 in Appendix A.2 and in order to derive (95), choose
not only ε′ but also ε′′ > 0 arbitrarily. As τkj−vj → ∞ and ‖xkj−vj − xj‖ → 0 has been
assumed or shown, respectively, there exists a j large enough such that (95) holds. We can
then replace (98) by

η ≤ 0, (100)

as ε′′ > 0 was chosen arbitrarily, and the claims follow.

A.5 Proof of Corollary 4.14

Proof. In the definition of φ(·, x) in (33), for the cutting plane at x use the exact evaluation
at x, such that mx,g(·, x) = f(x) + gT (· − x) with g ∈ ∂f(x). Then, follow the proof of
Lemma 4.7 in Appendix A.1 with some minor changes:
In part 1.), i), we note that gx is not fixed but a sequence gkx. Boundedness of the sequence
follows from boundedness of U and Lemma 2.6. We obtain xk → x and thus fka (x)→ f(x).
In part ii), we can show φk(xk, x)→ f(x).
In part iii), we use that for every y ∈ Rn, there is a k̄ such that for every k > k̄, φ(y, x) ≥
φk(y, x). It follows that g∗ ∈ ∂φ(x, x) ⊆ ∂f(x).
The rest of the proof can be carried out analogously to the proofs of Lemma 4.7 and Corol-
lary 4.12 in Appendix A.1 and A.3, respectively, yielding 0 ∈ ∂f(x).
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B Parameters for numerical results

Table 4: Parameters for the tests with GasLib40 and GasLib134, leading to the results in
Tables 3 and 2.

parameter value

0 Γ 0.9
1 T 1e+100
2 c 1e-05
3 γ 0.1
4 γ̃ 0.9

5 τ#
1 1

6 tol 1e-07
7 ψ 10
8 ψ∆ 1e+04
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