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Introduction

In this thesis we investigate scalar, linear transport equations with piecewise constant

coefficients on networks. They describe, for instance, the passive transport of a tracer,

e.g. a chemical substance, in a fluid flow within a pipe network. In every pipe e the

dynamics is modeled by the hyperbolic partial differential equation

ae∂tu
e + be∂xu

e = 0,

where ae [m2] denotes the cross-sectional area, be [m3/s] the volume flow rate, which

is determined by the flow dynamics, and ue the molar concentration [mol/m3] of the

tracer within the fluid flow. Under the assumption that the flow is steady and the fluid

is incompressible, we have a constant volume flow rate be in every pipe. On networks,

additional coupling conditions are necessary that model the mixing process of the tracer at

inner junctions. We assume that the inflowing tracer is mixed and flows out with the molar

concentration of this mixture. Together with suitable initial and boundary conditions the

passive transport process on a network is fully described.

This work deals with the analysis and the numerical approximation of such transport

problems on networks. In the first chapter, we present the network topology, the ba-

sic notations, and the problem under investigation. The second chapter focuses on the

well-posedness of the transport problem on networks. We use semigroup theory to verify

existence and uniqueness of solutions. Moreover, we derive a stability estimate for the

exact solution. In the third chapter, we investigate the numerical approximation through

Galerkin methods, more precisely the Discontinuous Galerkin method. We show a dis-

crete stability estimate and derive a convergence result for the semi-discretization on a

single edge and on networks. Additionally, we consider a suitable time discretization and

also derive a convergence result for the fully discrete scheme on networks. Finally, the

theoretical results are illustrated by some numerical tests in the last chapter.
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Chapter 1

Transport Equations on Networks -
Problem and Notation

This work deals with transport equations on networks. In this section, we define the

network topology and introduce function spaces on networks. Moreover, we present the

problem under investigation. The notations and basic definitions are taken from [3], but

they do not coincide completely.

1.1 The network topology

The network is described by a finite, directed, and connected graph G = (V , E) with a

set of vertices V = {v1, . . . , vn} and edges E = {e1, . . . , em} ⊂ V × V . Every edge

e ∈ E has a specific length le and we identify e with the interval (0, le). The values le

are stored in a vector l := (le)e∈E of length m. The triple G = (V , E , l) is then called

a geometric graph and represents the basic geometric model for the network. For every

edge e = (v1, v2) we define two values

ne(v1) := −1 and ne(v2) := +1, (1.1)

which indicate the start and end point of the edge by −1 and +1, respectively, and for

v ∈ V \ {v1, v2} we set ne(v) := 0. For every vertex v ∈ V we then define the set of

incident edges by E(v) := {e ∈ E : ne(v) 6= 0}. We distinguish between inner vertices

V0 := {v ∈ V : |E(v)| ≥ 2} and boundary vertices V∂ := V \ V0 and assume that the

6



1.2. FUNCTION SPACES ON NETWORKS 7

set of boundary vertices is non-empty. A geometric graph G = (V , E , l) satisfying the

properties noted above will be called a network in the sequel. An example of a network

is given in figure 1.1.

v1

v2

v3 v4

e1

e2

e3

Figure 1.1: A network with vertices V = {v1, v2, v3, v4} and edges E = {e1, e2, e3}, inner
vertex V0 = {v3}, and boundary vertices V∂ = {v1, v2, v4}. For the vertex v3 we have
E(v3) = {e1, e2, e3} and ne1(v3) = ne2(v3) = +1, ne3(v3) = −1.

1.2 Function spaces on networks

Let G = (V , E , l) be a network. We denote by L2(e) = L2(0, le) the space of square

integrable functions on the edge e ∈ E and by

L2(E) = L2(e1)× · · · × L2(em) = {u : ue ∈ L2(e) for all e ∈ E}

the space of square integrable functions on the network. Here ue = u|e denotes the

restriction of u ∈ L2(E) to e. The natural norm and scalar product are given by

‖u‖2
L2(E) =

∑
e∈E

‖ue‖2
L2(e) and (u, v)L2(E) =

∑
e∈E

(ue, ve)L2(e).

In a similar manner, we define the broken Sobolev spaces

Hs
pw(E) = {u ∈ L2(E) : ue ∈ Hs(e) for all e ∈ E}.

Let us note that for s ≥ 1 the functions u ∈ Hs
pw are continuous along edges e ∈ E , but

may be discontinuous across junctions v ∈ V0. We will frequently use the space H1
pw that

can also be written as

H1
pw(E) = {u ∈ L2(E) : ∂′xu ∈ L2(E)},
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where ∂′xu|e = ∂xu
e is the broken weak derivative. This space is equipped with the norm

‖u‖2
H1

pw(E) = ‖u‖2
L2(E) + ‖∂′xu‖2

L2(E)

and the corresponding scalar product

(u, v)H1
pw(E) = (u, v)L2(E) + (∂′xu, ∂

′
xv)L2(E).

1.3 Transport equations on a single edge

The transport equation on a single edge e = (0, l) is given by the scalar, linear, hyperbolic

partial differential equation

a∂tu+ b∂xu = 0, x ∈ e, t > 0, (1.2)

which models the transport of a certain quantity, e.g. a substance with a concentration u,

through a pipe of length l and cross-sectional area awith a volume flow rate b. We assume

that a, b > 0 are positive and constant. Equation (1.2) describes the conservation of the

total amount of the substance, i.e. the change of the total amount in a control volume is

only caused by inflow and outflow across its boundaries.

Lemma 1.1. Let T > 0 and u ∈ C1([0, T ];L2(e)) ∩ C0([0, T ];H1(e)) be a solution of

(1.2). Then for any x1, x2 ∈ e, x1 < x2, it holds

d

dt

∫ x2

x1

au(x, t) dx = −bu(x, t)
∣∣x2
x=x1

Proof. Since u solves (1.2) and a, b are constant, one has

d

dt

∫ x2

x1

au(x, t) dx =

∫ x2

x1

a∂tu(x, t) dx = −
∫ x2

x1

b∂xu(x, t) dx = −bu(x, t)
∣∣x2
x=x1

,

which proves the result.
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In order to uniquely specify the solution, we need initial conditions and boundary condi-

tions at the inflow boundary x = 0 of e given by

u(x, 0) = u0(x), x ∈ e, (1.3)

u(0, t) = g(t), t > 0, (1.4)

with u0 ∈ L2(e) and g ∈ L2(0,∞). We can now derive a stability estimate for the

solution of (1.2)–(1.4), which directly implies an a-priori bound.

Lemma 1.2 (Stability). Let u ∈ C1([0, T ];L2(e)) ∩ C0([0, T ];H1(e)) be a solution of

(1.2)–(1.4). Then

d

dt
‖a1/2u(t)‖2

L2(e) + bu(l, t)2 = bg(t)2 for all t ∈ (0, T ). (1.5)

Proof. Since u solves (1.2) with inflow boundary condition (1.4), we have

d

dt
‖a1/2u(t)‖2

L2(e) = 2(a∂tu(t), u(t))L2(e) = −2(b∂xu(t), u(t))L2(e) = −
∫
e

b
d

dx
u(t)2 dx

= bu(0, t)2 − bu(l, t)2 = bg(t)2 − bu(l, t)2.

Lemma 1.2 ensures the uniqueness of solutions of the transport problem (1.2)–(1.4).

Corollary 1.3. A solution of the transport problem (1.2)–(1.4) is unique.

Proof. Assume that u1 and u2 both solve (1.2)–(1.4). Then u := u1 − u2 solves (1.2)–

(1.4) with u0 ≡ 0 and g ≡ 0. The identity (1.5) in lemma 1.2 then yields

d

dt
‖a1/2u(t)‖2

L2(e) = 0.

Since a > 0, we can conclude ‖u(t)‖L2(e) = 0 for all t ≥ 0. Consequently u ≡ 0, and

the solution is thus unique.

In the case of constant coefficients a and b, we can explicitly determine the solution of

the transport problem (1.2)–(1.4) by using the method of characteristics.



10 CHAPTER 1. PROBLEM AND NOTATION

Lemma 1.4. The unique solution of (1.2)–(1.4) is given by

u(x, t) =

u0(x− b
a
t), ax− bt ≥ 0,

g(t− a
b
x), ax− bt < 0.

(1.6)

Proof. Let us recall that a curve t 7→ (x(t), t), along which a solution of (1.2) is constant,

is called characteristic. Characteristics can be determined by solving

d

dt
x(t) =

b

a
, x(0) = x0. (1.7)

We obtain x(t) = x0 + b
a
t as solution. Then one has

d

dt
u(x(t), t) = ∂tu(x(t), t) + ∂xu(x(t), t)∂tx(t) = ∂tu(x(t), t) +

b

a
∂xu(x(t), t) = 0.

Consequently

u(x, t) =

u0(x− b
a
t), ax− bt ≥ 0,

g(t− a
b
x), ax− bt < 0,

solves the transport problem (1.2)–(1.4).

Remark 1.5. If the initial and boundary conditions are discontinuous or do not satisfy

the compatibility condition u0(0) = g(0), the function given by (1.6) is discontinuous,

but can be considered as a generalized solution of (1.2)–(1.4).

An extensive introduction to conservation laws can be found in [10].

1.4 Transport equations on networks

We now extend the transport problem on a single edge given by (1.2)–(1.4) to a network

G = (V , E , l). On every edge e ∈ E we have the equation

ae∂tu
e + be∂xu

e = 0, x ∈ e, t > 0 (1.8)

with initial conditions

ue(x, 0) = ue0(x), x ∈ e. (1.9)
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We assume that the volume flow rate be > 0 and the cross-sectional area ae > 0 are

positive and constant on every edge e ∈ E . Additionally, be is assumed to satisfy a

conservation condition at inner vertices v ∈ V0 given by∑
e∈E(v)

ne(v)be =
∑

e∈E−(v)

be −
∑

e∈E+(v)

be = 0. (1.10)

We define the set of inflow edges E−(v) := {e ∈ E : ne(v)be > 0} and the set of outflow

edges E+(v) := {e ∈ E : ne(v)be < 0} for every vertex v ∈ V . Furthermore, we define

the set of inflow boundary vertices V−∂ := {v ∈ V∂ : bene(v) < 0 for e ∈ E(v)} and

outflow boundary vertices V+
∂ := {v ∈ V∂ : bene(v) > 0 for e ∈ E(v)}. We assume

that there exists at least one inflow and one outflow boundary vertex. Note that every

v ∈ V−∂ has a unique outflow edge and every v ∈ V+
∂ has a unique inflow edge. For ease

of notation we just identify this edge by e, if the context is clear.

Coupling and boundary conditions

In order to fully describe the transport problem, we need boundary conditions at the

inflow boundary of every edge e ∈ E . Since be > 0, the inflow boundary is at x = 0 and

the outflow boundary at x = le. Unlike the transport problem on a single edge (1.2)–(1.4),

the inflow boundary condition for edges, whose tails are inner vertices, is determined by

the inflowing quantity of adjacent edges. Consequently, we need coupling conditions at

inner vertices and boundary conditions at the inflow boundary vertices. In the following

we write ue(v1, t) = ue(0, t) and ue(v2, t) = ue(le, t) for e = (v1, v2).

For every inner vertex v ∈ V0 we introduce a value u−v , which is determined as mixture

of the values coming from inflow edges of v, i.e.

u−v (t) :=

∑
e∈E−(v) b

eue(v, t)∑
e∈E−(v) b

e
, v ∈ V0. (1.11)

This value then serves as the inflow boundary value for the outflow edges of v, more

precisely

ue(v, t) = u−v (t) for e ∈ E+(v), v ∈ V0. (1.12)

Note that u−v for v ∈ V0 has the meaning of g in (1.4) for a single edge. As a consequence

of the coupling condition (1.11)–(1.12) we obtain the following result, that yields the
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conservation of the total amount of substance at inner vertices.

Lemma 1.6. Let u ∈ C0([0, T ];L2(E)) be a function satisfying the coupling condition

(1.11)–(1.12). Then∑
e∈E

ne(v)beue(v, t) =
∑

e∈E−(v)

beue(v, t)−
∑

e∈E+(v)

beue(v, t) = 0.

Proof. Inserting the coupling condition (1.11)–(1.12) yields∑
e∈E(v)

ne(v)beue(v, t) =
∑

e∈E−(v)

beue(v, t)−
∑

e∈E+(v)

beue(v, t)

=
∑

e∈E−(v)

beue(v, t)−
∑

e∈E+(v)

beu−v (t)

=
∑

e∈E−(v)

beue(v, t)−
∑

e∈E+(v)

be
∑

e∈E−(v) b
eue(v, t)∑

e∈E−(v) b
e

=
∑

e∈E−(v)

beue(v, t)
(
1−

∑
e∈E+(v) b

e∑
e∈E−(v) b

e

)
= 0.

Here we used the conservation condition (1.10) for the volume flow rates.

In addition to the coupling condition (1.11)–(1.12) we need boundary conditions at the

inflow boundary vertices v ∈ V−∂ given by

ue(v, t) = gv(t) for v ∈ V−∂ , e ∈ E
+(v), (1.13)

with gv ∈ L2(0,∞).

The complete transport problem on the network is the given by (1.8) with initial condi-

tions (1.9), inflow boundary conditions (1.13) at the inflow boundary vertices and cou-

pling conditions (1.11)–(1.12) at the inner vertices.

Outlook

The uniqueness of a solution of the transport problem on networks can then again be

verified with a stability estimate similar to lemma 1.2 for a single edge. The statement on
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existence and uniqueness of solutions together with the proof is given in chapter 2. But

on particular networks it is possible to explicitly determine the solution of the transport

problem, more precisely on tree-like networks, i.e. networks without loops. One can just

extend the exact solution on a single edge given by (1.6) to the network, using the exact

solutions on the inflow edges to obtain the coupling conditions for the outflow edges at

every inner vertex. Clearly, this procedure is only possible if the network has no loops.

Otherwise it is not trivial at all to find the exact solution of the transport problem. In

the next section we give a simple example of a tree-like network and determine the exact

solution of the transport problem.

1.5 Exact solution of the transport problem for a tree-
like network

We consider the tree-like network given in figure 1.1. We distinguish between the inflow

boundary vertices V−∂ = {v1, v2}, the outflow boundary vertex V+
∂ = {v4} and the inner

vertex V0 = {v3}. We assume the same cross-sectional area ae = 1 and the same length

le = 1 for all edges. The volume flow rates on the edges are given by be1 = be2 = 1, be2 =

2, which satisfy the conservation condition (1.10). The initial conditions for the edges

are given by uei0 ≡ 0 for i = 1, 2, 3, and the inflow boundary conditions for the inflow

boundary vertices in V−∂ are given by gv1(t) = 1
2

and gv2(t) = 1 for t > 0. According to

lemma 1.4, the exact solution on every edge ei, i = 1, 2, 3, is given by

uei(x, t) =

u
ei
0 (x− beit), x− beit ≥ 0,

gvi(t− x/bei), x− beit < 0,

where x ∈ [0, 1], t ≥ 0. The inflow boundary condition for the edge e3 is determined

by the transport in the inflow edges e1, e2 and the coupling conditions (1.11)–(1.12). We

obtain

gv3(t) =

0, t ≤ 1,

3
4
, t > 1.

Since the initial and boundary conditions do not satisfy the compatibility condition

ue0(0) = gv(0) for v ∈ V−∂ , e ∈ E+(v), we obtain a discontinuous solution.



Chapter 2

Analysis of Transport Equations on
Networks

In this section, we study the well-posedness of the transport problem on networks intro-

duced in section 1.4. For this we will rewrite the problem as an abstract evolution problem

in a Hilbert space and use semigroup theory to establish the existence of a unique solution

for given initial condition. Additionally, we derive a stability estimate for the solution.

Before we state and prove the results on the well-posedness, we give a short introduction

to semigroup theory.

2.1 Introduction to semigroup theory

Let us briefly recall some basic results from semigroup theory. We refer to [6, p.433–445]

for details and proofs, and to [5, 11] for further reading.

Let X be a real Hilbert space and A : D(A) ⊂ X → X be a linear operator with domain

D(A). Consider the abstract Cauchy problem

u′(t) = Au(t), t > 0, (2.1)

u(0) = u0. (2.2)

A function u ∈ C1([0,∞);X) ∩ C0([0,∞);D(A)), which solves (2.1)–(2.2), is called a

classical solution. Note that (2.1) can be interpreted as an ordinary differential equation

14
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in a Hilbert space.

We now want to investigate the existence and uniqueness of classical solutions of the

abstract initial value problem (2.1)–(2.2). For X = Rn and A ∈ Rn×n the problem is an

ordinary differential equation and the Picard-Lindelöf theorem yields the existence of a

unique solution for all u0 ∈ Rn. This solution is given by u(t) = S(t)u0 with S(t) = eAt

defined by the matrix exponential function. One can directly verify that in this case

(i) S(0)u0 = u0 for all u0 ∈ X ,

(ii) S(t+ s)u0 = S(t)S(s)u0 for all t, s ≥ 0, u0 ∈ X ,

(iii) the mapping t 7→ S(t)u0 is continuous from [0,∞) to X .

Now let X be a general real Hilbert space. A family {S(t)}t≥0 of linear and bounded

operators S(t) : X → X satisfying the conditions (i)–(iii) is called a strongly continu-

ous semigroup. If, additionally, ‖S(t)‖X ≤ 1 for all t ≥ 0, then {S(t)}t≥0 is called a

contraction semigroup.

To every strongly continuous semigroup {S(t)}t≥0 on a Hilbert space X , one can asso-

ciate an operator A : D(A) ⊂ X → X defined by

Au := lim
t→0+

S(t)u− u
t

, u ∈ D(A),

which is called the infinitesimal generator of the semigroup {S(t)}t≥0. The domainD(A)

of A is given by

D(A) := {u ∈ X : lim
t→0+

S(t)u− u
t

exists in X}

and one can show that D(A) is dense in X , see [11].

Semigroup theory allows us to investigate the well-posedness of the abstract Cauchy

problem (2.1)–(2.2) and the corresponding inhomogeneous problem. The following re-

sult together with the proof can be found in [5, p.435ff.].

Theorem 2.1. Let A : D(A) ⊂ X → X be the infinitesimal generator of a strongly

continuous semigroup {S(t)}t≥0. Then for any u0 ∈ D(A) and f ∈ W 1,1(0, T ;X) the
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inhomogeneous Cauchy problem

u′(t) = Au(t) + f(t), 0 < t < T, (2.3)

u(0) = u0 (2.4)

has a unique classical solution u ∈ C1([0, T ];X) ∩ C0([0, T ];D(A)), which is given by

the abstract variation-of-constants formula

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds. (2.5)

Note that for X = Rn, A ∈ Rn×n we have S(t) = eAt and (2.5) is the well-known

solution for the corresponding inhomogeneous ODE.

The objective now is to determine which operators generate strongly continuous semi-

groups. For contraction semigroups this question is completely answered by the Hille-

Yosida theorem, that can be found in [6, p.439]. The Lumer-Phillips theorem gives sim-

pler sufficient conditions for the operator A to generate a contraction semigroup, see

[5, p.83] for details. Let us recall that a contraction semigroup is a special case of a

strongly continuous semigroup.

Theorem 2.2 (Lumer-Phillips). Let X be a real Hilbert space and A : D(A) ⊂ X → X

be a linear, densely defined, and closed operator. If A is dissipative, i.e.

(Au, u)X ≤ 0 for all u ∈ D(A), (2.6)

and λ0I − A : D(A) → X has a dense image for some λ0 > 0, then A is the generator

of a contraction semigroup.

The existence of a unique solution of certain classes of inhomogeneous Cauchy problems

of the form (2.3)–(2.4) can thus be verified using theorem 2.1 and the Lumer-Phillips

theorem 2.2.

2.2 Well-posedness of transport problems on networks

We now establish the well-posedness of the transport problem on networks introduced

in section 1.4 by using the results from the previous section. Let us note that the well-
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posedness of evolution equations on networks has also been investigated in [2] for infinite

networks using semigroup theory.

Let us recall the transport problem introduced in section 1.4. On every edge e ∈ E , it

reads

ae∂tu
e + be∂xu

e = 0, x ∈ e, t > 0, (2.7)

ue(v, t) = u−v (t), e ∈ E+(v), t > 0, (2.8)

ue(x, 0) = ue0(x), x ∈ e. (2.9)

The inflow values u−v are defined by

u−v (t) := gv(t), v ∈ V−∂ , (2.10)

u−v (t) :=

∑
e∈E−(v) b

eue(v, t)∑
e∈E−(v) b

e
, v ∈ V0. (2.11)

For our analysis we will assume that

(i) a ∈ L2(E) is piecewise constant with ae > 0 for all e ∈ E ,

(ii) b ∈ L2(E) is piecewise constant with be > 0 for all e ∈ E and satisfies∑
e∈E(v)

ne(v)be =
∑

e∈E−(v)

be −
∑

e∈E+(v)

be = 0 for all v ∈ V0. (2.12)

The main result of this section is the following.

Theorem 2.3 (Well-posedness). Let T > 0, u0 ∈ H1
pw(E) satisfying the coupling

conditions at inner vertices (2.8) with (2.11), and gv ∈ W 2,1(0, T ) for all v ∈ V−∂ .

Further assume that the compatibility condition ue0(v) = gv(0) holds for all v ∈ V−∂ ,
e ∈ E+(v). Then the transport problem (2.7)–(2.11) has a unique classical solution

u ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)).

The proof is given in the remainder of this section. In order to show the well-posedness

of (2.7)–(2.11), we rewrite the problem as an abstract inhomogeneous Cauchy problem

of the form (2.3)–(2.4), and apply theorem 2.1 and the Lumer-Phillips theorem 2.2.
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Step 1: Transformation into an abstract Cauchy problem

First we get rid of the inhomogeneous inflow boundary conditions (2.10). We set

ue = uez + ueg with uez(v, t) = 0 and ueg(v, t) = gv(t) for v ∈ V−∂ , e ∈ E
+(v).

If a suitable function ug satisfying the coupling conditions at inner vertices (2.8) with

(2.11) is given, then we can formulate an inhomogeneous Cauchy problem for uz on

every edge e ∈ E by

ae∂tu
e
z + be∂xu

e
z = −(ae∂tu

e
g + be∂xu

e
g), x ∈ e, t > 0, (2.13)

uez(v, t) = u−z,v(t), e ∈ E+(v), t > 0, (2.14)

uez(x, 0) = uez,0(x), x ∈ e, (2.15)

with homogeneous inflow boundary conditions

u−z,v(t) = 0, v ∈ V−∂ , (2.16)

and coupling conditions

u−z,v(t) =

∑
e∈E−(v) b

euez(v, t)∑
e∈E−(v) b

e
, v ∈ V0. (2.17)

Next we define suitable function spaces on the network, see section 1.2, where we include

the homogeneous inflow boundary and coupling conditions, by

X := L2(E) and D(A) := {v ∈ H1
pw(E) : v satisfies (2.14) with (2.16)–(2.17)} ⊂ X

with norm and scalar product

‖v‖X := ‖a1/2v‖L2(E) and (u, v)X := (au, v)L2(E).

We then formally define

A : D(A) ⊂ X → X, A|e := − b
e

ae
∂x,

f ∈ L1([0, T ];L2(E)), f(t)|e := −(∂tu
e
g +

be

ae
∂xu

e
g).
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Then problem (2.13)–(2.17) can be written as an abstract Cauchy problem on X given by

∂′tuz = Auz + f(t), t > 0, (2.18)

uz(0) = uz,0. (2.19)

If a suitable ug ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)) satisfying the inflow bound-

ary and coupling conditions (2.8) with (2.10)–(2.11) exists, and if uz ∈ C1([0, T ];X) ∩
C0([0, T ];D(A)) is a classical solution of (2.13)–(2.17) resp. (2.18)–(2.19), then

u = uz + ug is a classical solution of the transport problem (2.7)–(2.11). The unique-

ness will be established later by an energy estimate.

Step 2: Definition of the function ug

Let us start with defining a suitable function ug ∈ C1([0, T ];L2(E))∩C0([0, T ];H1
pw(E))

which satisfies (2.8) with (2.10)–(2.11), so that uz,0 and f fulfil the conditions in theorem

2.1, i.e. uz,0 ∈ D(A) and f ∈ W 1,1([0, T ];X). We set

ueg(x, t) :=

gv(t), v ∈ V−∂ , e ∈ E+(v),

G−v (t) :=
∑

e∈E−(v) b
eueg(v,t)∑

e∈E−(v) b
e , v ∈ V0, e ∈ E+(v),

and

uez,0(x) :=

ue0(x)− gv(0), v ∈ V−∂ , e ∈ E+(v),

ue0(x)−G−v (0), v ∈ V0, e ∈ E+(v).

Then ug ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)), because gv ∈ W 2,1(0, T ) and the

spaceW 2,1(0, T ) is continuously embedded in C1(0, T ), and since x 7→ ueg(x, t) is a con-

stant function and thus in H1(e). Moreover, ug satisfies (2.8) with (2.10)–(2.11) by con-

struction. Since the initial and boundary conditions also fulfil the compatibility condition

gv(0) = ue0(v) for v ∈ V−∂ , e ∈ E+(v), and u0 itself satisfies the coupling condition at in-

ner vertices (2.8) with (2.11), one can directly see that uz,0 ∈ D(A). For gv ∈ W 2,1(0, T )

it is further clear that

f(t)|e = −(∂tu
e
g +

be

ae
∂xu

e
g) =

−∂tgv(t), v ∈ V−∂ , e ∈ E+(v),

−∂tG−v (t), v ∈ V0, e ∈ E+(v),

defines a function f ∈ W 1,1([0, T ];L2(E)).
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Step 3: Existence of a unique solution of (2.18)–(2.19)

According to theorem 2.1 the inhomogeneous Cauchy Problem (2.18)–(2.19) with A,

f and uz,0 defined in step 1 and step 2 has a unique solution, if the operator A is the

infinitesimal generator of a strongly continuous semigroup. We will therefore verify

the conditions of theorem 2.2, and show that A is even the infinitesimal generator of a

contraction semigroup.

We first check that the operator A : D(A) ⊂ X → X is linear, densely defined, and

closed. By definition, A is linear. It is also densely defined, since the space

C∞0 (E) = {u ∈ L2(E) : ue ∈ C∞0 (e)} is dense in X = L2(E) and C∞0 (E) ⊂ D(A). Fur-

thermore, the operator A is closed, i.e. for all sequences (uk)k∈N ⊂ D(A) with uk → u

and Auk → y w.r.t. ‖ · ‖X , it holds that u ∈ D(A) and Au = y. This can be seen by

observing that the spaceD(A) is closed as a proper subspace of the closed spaceH1
pw(E).

Since (uk)k∈N is a Cauchy sequence inD(A) w.r.t. ‖·‖X , the limit u is then also inD(A).

From the definition of A it is then immediately clear that Au = y.

As a next step, we show that λ0I − A : D(A) ⊂ X → X has a dense image for some

λ0 > 0. As indicated above, the space D(A) is dense in X = L2(E) and A(D(A)) is also

dense in L2(E) due to the definition of A. Hence the image of λ0I −A is dense in X for

any λ0 > 0.

It remains to verify that A is dissipative, i.e. (Au, u)X ≤ 0 for all u ∈ D(A). By

definition of A and the scalar product (·, ·)X , we have

(Au, u)X = −(
b

a
∂′xu, u)X = −

∑
e∈E

(be∂xu
e, ue)L2(e).

Observe that

−2
∑
e∈E

(be∂xu
e, ue)L2(e) =−

∑
e∈E

∫
e

be∂x(u
e)2 dx = −

∑
e∈E

be(ue)2
∣∣le
0

=
∑
v∈V−∂

be ue(v)2︸ ︷︷ ︸
=0

−
∑
v∈V+

∂

beue(v)2

+
∑
v∈V0

( ∑
e∈E+(v)

beue(v)2 −
∑

e∈E−(v)

beue(v)2
)
, (2.20)

since u ∈ D(A) implies ue(v) = 0 for v ∈ V−∂ . At the inner vertices v ∈ V0, we

can insert the coupling condition (2.17) and estimate (2.20) by using Jensen’s inequality.
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We obtain

ue(v)2 = (u−v )2 =

(∑
e∈E−(v) b

eue(v)∑
e∈E−(v) b

e

)2

≤
∑

e∈E−(v) b
eue(v)2∑

e∈E−(v) b
e

(2.21)

for v ∈ V0, e ∈ E+(v). Inserting (2.21) in (2.20), the sum over the inner vertices can

thus be estimated by∑
v∈V0

( ∑
e∈E+(v)

beue(v)2−
∑

e∈E−(v)

beue(v)2
)

≤
∑
v∈V0

( ∑
e∈E+(v)

be
∑

e∈E−(v) b
eue(v)2∑

e∈E−(v) b
e
−

∑
e∈E−(v)

beue(v)2
)

=
∑
v∈V0

( ∑
e∈E−(v)

beue(v)2
(∑e∈E+(v) b

e∑
e∈E−(v) b

e
− 1
))

= 0. (2.22)

The last identity follows by the conservation condition (2.12) for the volume flow rates.

In summary, we thus have shown that

(Au, u)X ≤−
1

2

∑
v∈V+

∂

beue(v)2 ≤ 0 for all u ∈ D(A).

This proves that the operator A is dissipative. By theorem 2.2, A is the infinitesimal

generator of a contraction semigroup.

Proof of theorem 2.3

We verified all conditions of theorem 2.1. Hence the inhomogeneous Cauchy problem

(2.18)–(2.19) has a unique classical solution uz ∈ C1([0, T ];X) ∩ C0([0, T ];D(A)) and

consequently u = uz+ug ∈ C1([0, T ];L2(E))∩C0([0, T ];H1
pw(E)) is a classical solution

of (2.7)–(2.11). The uniqueness will be shown in the next section.
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2.3 A stability estimate

We now derive a stability estimate for solutions of (2.7)–(2.11), which yields an a-priori

bound and allows us to prove uniqueness of solutions. Define

E(u) :=
1

2
‖a1/2u‖2

L2 , (2.23)

which can be interpreted as mathematical entropy, i.e. a measure for the information con-

tent in u. On a network consisting of only one edge e = (v1, v2), we already know from

lemma 1.2, that d
dt
E(u(t)) only depends on the inflow and outflow across the boundary,

more precisely

d

dt
E(ue(t)) +

be

2
ue(v2, t)

2 =
be

2
gv1(t)

2.

We now show that a similar property holds on networks.

Lemma 2.4. Let u be a classical solution of (2.7)–(2.11). Then

d

dt
E(u(t)) +

1

2

∑
v∈V+

∂

beue(v, t)2 ≤ 1

2

∑
v∈V−∂

begv(t)
2. (2.24)

Proof. By elementary computations, one obtains

d

dt
E(u(t)) =

1

2

d

dt
‖a1/2u(t)‖2

L2(E) = (a∂tu(t), u(t))L2(E)

=− (b∂xu(t), u(t))L2(E) = −1

2

∑
e∈E

beue(t)2
∣∣le
x=0

=
1

2

∑
v∈V−∂

beue(v, t)2 − 1

2

∑
v∈V+

∂

beue(v, t)2

+
1

2

∑
v∈V0

( ∑
e∈E+(v)

beue(v, t)2 −
∑

e∈E−(v)

beue(v, t)2
)
.

The sum over the inner vertices in the last line can again be estimated by inserting the

coupling conditions (2.11) and using Jensen’ inequality together with conservation con-

dition (2.12) for the volume flow rates in the same way as we have done in equation

(2.22). This yields ∑
v∈V0

( ∑
e∈E+(v)

beue(v, t)2 −
∑

e∈E−(v)

beue(v, t)2
)
≤ 0.
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Inserting the inflow boundary conditions (2.10) then already yields the final stability es-

timate.

Hence we verified that no information is produced at junctions. Instead information might

get lost due to the mixing process. Moreover, we can use the stability estimate to verify

the uniqueness of solutions of (2.7)–(2.11).

Corollary 2.5 (Uniqueness). A solution of the transport problem on networks (2.7)–

(2.11) is unique.

Proof. Assume that u1 and u2 both solve (2.7)–(2.11). Then u := u1 − u2 satisfies

(2.7)–(2.11) with u0 ≡ 0 and g ≡ 0. Consequently E(u(0)) = 0 and lemma 2.4 yields

d

dt
E(u(t)) ≤ 0.

It directly follows that E(u(t)) = 0, because by definition we have E(u) ≥ 0. Since

a > 0, we then obtain u ≡ 0. Hence a solution of (2.7)–(2.11) is unique.



Chapter 3

Numerical Approximation

In this chapter, we study numerical methods for approximating the solution of the trans-

port problem on networks introduced in section 1.4. For the space discretization we use

the Discontinuous Galerkin method, which has shown to be especially suitable for hyper-

bolic problems. First we present this method applied to the transport equation on a single

edge and then transfer it to networks. Moreover, we give a stability and a convergence

result for the Discontinuous Galerkin semi-discretization. Finally, we discuss a suitable

time discretization and state a convergence result for the fully discrete scheme.

3.1 The Discontinuous Galerkin method on a single edge

The Discontinuous Galerkin method is a nonconforming finite element method using

discontinuous functions for approximation. Before we focus on the transport problem

on networks, we consider the scalar linear transport equation on a single edge e = [0, l]

given by

a∂tu+ b∂xu = 0, x ∈ e, t > 0, (3.1)

with a constant cross-sectional area a > 0 and a constant volume flow rate b > 0. Bound-

ary conditions at the inflow boundary x = 0 of e and initial conditions are given by

u(0, t) = g(t), t > 0, (3.2)

u(x, 0) = u0(x), x ∈ e. (3.3)

24
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In the following we give an introduction to the basic ideas and present the main results

about the Discontinuous Galerkin method based on the expositions in [1, 7, 9, 12].

Notation

We define the spatial grid

Th :={Ti := [xi−1, xi] : i = 1, . . . ,M, x0 = 0, xM = l}

with hi := xi − xi−1 and h := maxhi, and the grid dependent scalar products

(u, v)Th :=
∑
T∈Th

(u, v)L2(T ), 〈nu, v〉∂Th :=
∑
T∈Th

∫
∂T

nuv ds,

where here n denotes the outward unit normal vector on the boundaries of each element

Ti = [xi−1, xi] given by n|Ti = ni with

ni(xi−1) = −1, ni(xi) = +1.

The corresponding grid norm is given by ‖v‖2
Th := (v, v)Th . Note that for v ∈ L2(e) the

grid norm is just the regular L2-norm. Moreover, we denote by

Hs
pw(Th) := {v ∈ L2(e) : v|T ∈ Hs(T ) for all T ∈ Th}

the grid-dependent space of piecewise Hs-functions.

For the approximation in space we choose piecewise polynomials of degree k, that can

be discontinuous at the spatial grid points xi, from the finite dimensional space

Vh := {vh ∈ L2(e) : vh|T ∈ Pk(T ) for all T ∈ Th},

where Pk denotes the space of polynomials of degree k. Note that functions in Vh for-

mally take two values at inner grid points. We thus define the lower and upper limit value

of vh ∈ Vh at x ∈ e = [0, l] as

v−h (x) := lim
z→0−

vh(x+ z), v+
h (x) := lim

z→0+
vh(x+ z).

Note that for x = 0 only v+
h and for x = l only v−h are defined in this way. Additionally,
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we define the jump at the grid point xi, i = 1, . . . ,M − 1, as

[vh]i := v−h (xi)− v+
h (xi).

For convenience we set [vh]0 := −v+
h (x0) and [vh]M := v−h (xM).

Furthermore, we introduce the L2-projection of a function w ∈ L2(e) onto the space Vh,

which is given by the mapping Πh : L2(e)→ Vh, such that

(w − Πhw, vh)Th = 0 for all vh ∈ Vh. (3.4)

Let us recall the standard interpolation error estimates.

Lemma 3.1 (Interpolation error estimates). Let u ∈ Hk+1
pw (Th) and Ti ∈ Th, and denote

by ui = u|Ti . Then

(i) ‖u− Πhu‖L2(Ti) ≤ Chk+1|u|Hk+1(Ti),

(ii) |(ui − Πhui)(x)| ≤ Ch
k+1/2
i |u|Hk+1(Ti) for x ∈ ∂Ti.

Proof. The first estimate (i) is a standard result, see e.g. [8, Appendix C]. The second

estimate (ii) is a direct consequence from the standard trace inequality, the Bramble-

Hilbert lemma and (i), see also [8, Appendix C] for the proof.

The Discontinuous Galerkin method

Denoting by Γ− = {0} the inflow boundary of e = [0, l], the Discontinuous Galerkin

approximation in space of problem (3.1)–(3.3) is then given by the following problem.

Problem 3.2 (Discontinuous Galerkin method). Find uh ∈ H1([0, T ];Vh), such that

uh(0) = Πhu0, (3.5)

(a∂tuh(t), vh)Th +Bh(uh(t), vh) = lh(t, vh) (3.6)

for all vh ∈ Vh, t ∈ (0, T ), where

Bh(u, v) := −(bu, ∂xv)Th + 〈nbu−, vh〉∂Th\Γ− , (3.7)

lh(t, v) := −〈nbg(t), v〉Γ− . (3.8)
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Auxiliary results

In the following we collect some important properties of the Discontinuous Galerkin

method.

Lemma 3.3 (Consistency). Let u be the classical solution of (3.1)–(3.3). Then

(a∂tu(t), vh)Th +Bh(u(t), vh) = lh(t, vh) for all vh ∈ Vh, t ∈ (0, T ).

Proof. Inserting u in (3.6) and applying integration-by-parts yields

(a∂tu(t),vh)Th +Bh(u(t), vh)− lh(t, vh)

= (a∂tu(t), vh)Th − (bu(t), ∂xvh)Th + 〈nbu−(t), vh〉∂Th\Γ− + 〈nbg(t), vh〉Γ−

= (a∂tu(t), vh)Th + (b∂xu(t), vh)Th + 〈nb(u−(t)− u(t)), vh〉∂Th\Γ−

+ 〈nb(g(t)− u(t)), vh〉Γ−

= 0.

Here we used that u solves (3.1), is continuous on e and u(0, t) = g(t).

As a direct consequence of consistency we obtain Galerkin orthogonality.

Corollary 3.4 (Galerkin orthogonality). Let u be the classical solution of (3.1)–(3.3) and

uh be the solution of problem 3.2. Then

(a∂tu(t)− a∂tuh(t), vh)Th +Bh(u(t)− uh(t), vh) = 0

for all vh ∈ Vh, t ∈ (0, T ).

The well-posedness of problem 3.2 can be verified by the Picard-Lindelöf theorem.

Lemma 3.5 (Well-posedness). Let u0 ∈ L2(e) and g ∈ C0(0, T ). Then problem 3.2 has

a unique solution u ∈ C1([0, T ];Vh).

Proof. Consider a basis of Vh given by (ψl)
d
l=1, where d is the dimension of Vh, and define

M jl = (aψl, ψj)Th ,

Bjl = −(bψl, ∂xψj)Th + 〈nbψ−l , ψj〉∂Th\Γ− ,

lj(t) = −〈nbg(t), ψj〉Γ− ,
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j, l = 1, . . . , d. Then (3.5)–(3.6) can be transformed into

M∂tu(t) +Bu(t) = l(t),

u(0) = u0,

with coefficient vector u(t) = (ul(t))
d
l=1. The initial condition is given by Πhu0 ∈ Vh,

which can thus be written as
∑d

l=1 u0,lψl(x). The well-posedness of problem 3.2 then

directly follows from the Picard-Lindelöf theorem, since the mass matrixM is symmetric

and positive definite and therefore invertible, and l(t) ∈ C0(0, T ) for g ∈ C0(0, T ). The

corresponding solution of problem 3.2 is then given by u(x, t) =
∑d

l=1 ul(t)ψl(x).

Discrete stability

We now study the discrete stability of the Discontinuous Galerkin semi-discretization on

a single edge. For this we need to investigate more closely the bilinearform Bh. Let us

recall that a, b > 0 are assumed to be positive and constant.

Lemma 3.6. For Bh defined in (3.7) it holds that

Bh(vh, vh) =
M∑
i=0

b

2
[vh]

2
i for all vh ∈ Vh.

Proof. From the definition of Bh, one can see that

Bh(vh, vh) =− (bvh, ∂xvh)Th + 〈nbv−h , vh〉∂Th\Γ−

=− 1

2
〈nbvh, vh〉∂Th + 〈nbv−h , vh〉∂Th\Γ−

=−
M∑
i=0

b

2
[v2
h]i +

M∑
i=1

bv−h (xi)[vh]i

=
M∑
i=0

b

2
[vh]

2
i .

Lemma 3.6 directly yields a discrete stability estimate for the solution of problem 3.2.
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Corollary 3.7 (Discrete stability). For the solution uh of problem 3.2, we have

d

dt
‖a1/2uh(t)‖2

Th +
M∑
i=1

b[uh(t)]
2
i ≤ bg(t)2.

Proof. Since uh is the solution of problem 3.2 and thus satisfies (3.6), we obtain

1

2

d

dt
‖a1/2uh(t)‖2

Th = (a∂tuh(t), uh(t))Th = −Bh(uh(t), uh(t)) + lh(uh(t)).

Lemma 3.6 yields an identity for Bh given by

Bh(uh(t), uh(t)) =
M∑
i=0

b

2
[uh(t)]

2
i .

Using Young’s inequality, we can estimate lh by

lh(t, uh(t)) =− 〈nbg(t), uh(t)〉Γ− = bg(t)u+
h (0, t) ≤ b

2
g(t)2 +

b

2
u+
h (0, t)2.

Inserting this into the first identity then leads to the desired result.

Remark 3.8. Let us recall that the analytical solution of the transport problem on a single

edge (3.1)-(3.3) satisfies the stability identity of lemma 1.2, which was given by

d

dt
‖a1/2u(t)‖2

L2(e) + bu(l, t)2 = bg(t)2.

Corollary 3.7 yields a similar result for the discrete solution uh of problem 3.2. The

jumps introduced by the Discontinuous Galerkin methods can be interpreted as additional

numerical dissipation, which promotes stability.

Convergence analysis

It remains to investigate the convergence of the Discontinuous Galerkin method applied

to the transport problem on a single edge (3.1)–(3.3). The main ingredients of the cor-

responding proof are the consistency of the method in lemma 3.3, the resulting Galerkin

orthogonality in corollary 3.4, the discrete stability in corollary 3.7, and the interpolation

error estimates in lemma 3.1.
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Theorem 3.9. Let T > 0 and let u be the exact classical solution of (3.1)–(3.3) and uh
be the solution of problem 3.2. If additionally u(t) ∈ Hk+1(Th) for all 0 ≤ t ≤ T , then

‖u− uh‖L∞([0,T ];L2(e)) ≤ Chk+1/2|u|L∞([0,T ];Hk+1
pw (Th)).

We will not go into details here, but refer to the proof of the convergence result on net-

works given in the next section. This proof directly transfers to a single edge, which can

be considered as a network that consists of only one edge. Basically, the procedure in

both proofs is the same, except that on networks we have to deal with inner junctions.

The convergence result on a single edge and the corresponding proof can also be found

in the literature, see e.g. [1, Theorem 3.1].

Remark 3.10. Assuming more regularity of the exact solution, namely u(t) ∈ Hk+2
pw (Th)

for 0 ≤ t ≤ T , it is possible to derive an improved error estimate of order O(hk+1).

The proof exploits the superconvergence property of the orthogonal projection with the

Gauss-Radau points, see [1, Theorem 3.2] for details.

3.2 The Discontinuous Galerkin method on networks

We now extend the Discontinuous Galerkin method stated in problem 3.2 to networks.

Let us start with recalling the transport problem on networks introduced in section 1.4.

On every edge e ∈ E we have

ae∂tu
e + be∂xu

e = 0, x ∈ e, t > 0, (3.9)

ue(v, t) = u−v (t), e ∈ E+(v), t > 0, (3.10)

ue(x, 0) = ue0(x), x ∈ e, (3.11)

with inflow values u−v defined by

u−v (t) := gv(t), v ∈ V−∂ , (3.12)

u−v (t) :=

∑
e∈E−(v) b

eue(v, t)∑
e∈E−(v) b

e
, v ∈ V0. (3.13)
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Let us also recall the basic assumptions on the coefficients, i.e.

(i) a ∈ L2(E) is piecewise constant with ae > 0 for all e ∈ E . We denote by

amin = mine∈E a
e and by amax = maxe∈E a

e.

(ii) b ∈ L2(E) is piecewise constant with be > 0 for all e ∈ E and satisfies∑
e∈E(v)

ne(v)be =
∑

e∈E−(v)

be −
∑

e∈E+(v)

be = 0 for all v ∈ V0. (3.14)

Notation

Now we extend the Discontinuous Galerkin method to the transport problem on networks

(3.9)–(3.13). For this we define the spatial grid by

Th(E) := {T ei := [xei−1, x
e
i ] : i = 1, . . . ,M e, xe0 = 0, xeMe = le, e ∈ E},

and the approximation space by

Vh(E) := {vh ∈ L2(E) : vh|T ∈ Pk(T ) for all T ∈ Th(E)}.

We denote by hei := xei − xei−1 and by h := maxhei . For ease of notation we drop the

index e if the meaning is clear from the context. We further introduce the grid dependent

scalar products

(u, v)Th(E) :=
∑

T∈Th(E)

(u, v)L2(T ), 〈nu, v〉∂Th(E) :=
∑

T∈Th(E)

∫
∂T

nuv ds,

and the corresponding grid norm ‖v‖2
Th(E) := (v, v)Th(E), where n denotes the outward

unit normal vector on the boundary of each element T ei = [xei−1, x
e
i ] ∈ Th(E) given by

n|T e
i

= nei with

nei (x
e
i−1) = −1, nei (x

e
i ) = +1.

For e = (v1, v2) we set ne1(xe0) = ne(v1) and neMe
(xeMe

) = ne(v2), where ne(v) is defined

in (1.1). Furthermore, we define the grid-dependent space of piecewise Hs-functions by

Hs
pw(Th(E)) := {v ∈ L2(E) : v|T ∈ Hs(T ) for all T ∈ Th(E)}.



32 CHAPTER 3. NUMERICAL APPROXIMATION

The L2-projection of w ∈ L2(E) onto the space Vh(E) is given by the mapping

Πh : L2(E)→ Vh(E), such that

(w − Πhw, vh)L2(E) = 0 for all vh ∈ Vh(E). (3.15)

Due to the discontinuity of the functions in Vh(E), the L2-projection can be defined lo-

cally on every element, and therefore the interpolation error estimates given in lemma 3.1

can be used to obtain corresponding estimates for Πh on networks by summation.

The Discontinuous Galerkin method

A direct combination of the Discontinuous Galerkin approximation for the problem (3.1)–

(3.3) on a single edge given in problem 3.2 together with the boundary and coupling

conditions (3.12)–(3.13) on networks now leads to the following scheme.

Problem 3.11 (Discontinuous Galerkin method). Find uh ∈ H1([0, T ];Vh(E)), such that

uh(0) = Πhu0, (3.16)

(a∂tuh(t), vh)Th(E) +Bh(uh(t), vh) = lh(t, vh) (3.17)

for all vh ∈ Vh(E), 0 ≤ t ≤ T , where

Bh(u, v) := −(bu, ∂xv)Th(E) + 〈nbu−, v〉∂Th(E)\V−∂
, (3.18)

lh(t, v) := −〈nbg(t), v〉V−∂ , (3.19)

with

ue−(v) :=

∑
e∈E−(v) b

eue−(v)∑
e∈E−(v) b

e
, v ∈ V0, e ∈ E+(v). (3.20)

Auxiliary results

In the very same manner as on a single edge, we obtain the following properties of the

Discontinuous Galerkin method on networks given by problem 3.11.



3.2. THE DISCONTINUOUS GALERKIN METHOD ON NETWORKS 33

Lemma 3.12 (Consistency). Let u be the classical solution of the transport problem on

networks (3.9)–(3.13). Then

(a∂tu(t), vh)Th(E) +Bh(u(t), vh) = lh(t, vh) for all vh ∈ Vh(E), t ∈ (0, T ).

Proof. Applying integration-by-parts yields

(a∂tu(t), vh)Th(E) +Bh(u(t), vh)− lh(t, vh)

= (a∂tu(t), vh)Th(E) − (bu(t), ∂xvh)Th(E) + 〈nbu−(t), vh〉∂Th(E)\V−∂
+ 〈nbg(t), vh〉V−∂

= (a∂tu(t), vh)Th(E) + (b∂xu(t), vh)Th(E) + 〈nb(u−(t)− u(t)), vh〉∂Th(E)\V−∂

+ 〈nb(g(t)− u(t)), vh〉V−∂
= 〈nb(u−(t)− u(t)), vh〉∂Th(E)\V−∂

.

The other terms vanish, because u solves (3.9) and satisfies the inflow boundary condition

(3.10) with (3.12), so u(v, t) = gv(t) for v ∈ V−∂ . For the remaining term we obtain

〈nb(u−(t)− u(t)), vh〉∂Th(E)\V−∂
=
∑
v∈V0

∑
e∈E+(v)

−be(ue−(v, t)− ue(v, t))veh(v),

since u is continuous on every edge e ∈ E and thus ue(t) = ue−(t) on (0, le]. For

any v ∈ V0, e ∈ E+(v), it holds ue(v, t) = u−v (t), where u−v (t) is defined in (3.13). We

observe that this definition is identical to the definition of ue−(v, t) for v ∈ V0, e ∈ E+(v)

in (3.20), also since u is continuous on e. Hence, this term vanishes as well and we obtain

the desired consistency result.

As before, consistency again directly implies Galerkin orthogonality.

Corollary 3.13 (Galerkin orthogonality). Let u be the classical solution of the transport

problem on networks (3.9)–(3.13) and uh be the solution of problem 3.11. Then

(a∂tu(t)− a∂tuh(t), vh)Th(E) +Bh(u(t)− uh(t), vh) = 0

for all vh ∈ Vh(E), t ∈ (0, T ).

As a next step we investigate the well-posedness of the Discontinuous Galerkin semi-

discretization on networks. It can be shown with exactly the same argumets as on a

single edge, see lemma 3.5.
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Lemma 3.14 (Well-posedness). Let u0 ∈ L2(E) and gv ∈ C0(0, T ) for all v ∈ V−∂ . Then

problem 3.11 has a unique solution u ∈ C1([0, T ];Vh(E)).

Discrete stability

The analytical solution of the transport problem on networks (3.9)–(3.13) satisfies the

stability estimate of lemma 2.4, which was given by

d

dt
‖a1/2u(t)‖2

L2(E) +
∑
v∈V+

∂

beue(v, t)2 ≤
∑
v∈V−∂

begv(t)
2.

We now show that the solution of the Discontinuous Galerkin semi-discretization defined

in problem 3.11 satisfies a similar stability result. For this we first present an estimate for

the Discontinuous Galerkin bilinearform Bh defined in (3.18) with (3.20). Note that we

assume that ae, be > 0 are positive and constant for all e ∈ E .

Lemma 3.15. For the bilinearform Bh defined in (3.18) with (3.20) it holds

Bh(vh, vh) ≥
∑
e∈E

Me−1∑
i=1

be

2
[vh]

2
i +

∑
v∈V−∂

be

2
v+
h (v)2 +

∑
v∈V+

∂

be

2
v−h (v)2

for all vh ∈ Vh(E).

Proof. On every edge e ∈ E we can use lemma 3.6 to obtain

Bh(vh, vh) =− (bvh, ∂xvh)Th(E) + 〈nbvh, vh〉∂Th(E)\V−∂
(3.21)

=
∑
e∈E

Me∑
i=0

be

2
[vh]

2
i −

∑
v∈V0

∑
e∈E+(v)

bev−h (v)v+
h (v)

=
∑
e∈E

Me−1∑
i=1

be

2
[vh]

2
i +

∑
v∈V−∂

be

2
v+
h (v)2 +

∑
v∈V+

∂

be

2
v−h (v)2+

∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 +

∑
e∈E+(v)

be

2
v+
h (v)2 − bev−h (v)v+

h (v)
)
.
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The sum over the inner vertices in the last line can be further estimated by

∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 +

∑
e∈E+(v)

be

2
v+
h (v)2 − u−h (v, t)v+

h (v)
)

=
∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 +

∑
e∈E+(v)

be

2
(v+
h (v)− v−h (v))2︸ ︷︷ ︸

≥0

−b
e

2
v−h (v)2

)

≥
∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 −

∑
e∈E+(v)

be

2
v−h (v)2

)
.

By inserting the definition of ve−h (v) for v ∈ V0, e ∈ E+(v) given in (3.20), we obtain

∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 −

∑
e∈E+(v)

be

2
v−h (v)2

)
=
∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 −

∑
e∈E+(v)

be

2

(∑e∈E−(v) b
ev−h (v)∑

e∈E−(v) b
e

)2
)

≥
∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2 −

∑
e∈E+(v)

be

2

∑
e∈E−(v) b

ev−h (v)2∑
e∈E−(v) b

e

)
=
∑
v∈V0

( ∑
e∈E−(v)

be

2
v−h (v)2

(
1−

∑
e∈E+(v) b

e∑
e∈E−(v) b

e

))
= 0.

Here we used Jensen’s inequality and the conservation condition (3.14) for the volume

flow rates. Inserting this result in (3.21) thus yields the final estimate

Bh(vh, vh) ≥
∑
e∈E

Me−1∑
i=1

be

2
[vh]

2
i +

∑
v∈V−∂

be

2
v+
h (v)2 +

∑
v∈V+

∂

be

2
v−h (v)2.

Note that this shows that the bilinearform Bh is positive semi-definite.

As a direct consequence, we obtain a discrete stability estimate.

Corollary 3.16 (Discrete stability). For the solution uh of problem 3.11, one has

d

dt
‖a1/2uh(t)‖2

Th(E) +
∑
e∈E

Me−1∑
i=1

be[uh(t)]
2
i +

∑
v∈V+

∂

beu−h (v, t)2 ≤
∑
v∈V−∂

begv(t)
2.
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Proof. Testing (3.17) with vh = uh(t) leads to

1

2

d

dt
‖a1/2uh(t)‖2

Th(E) = (a∂tuh(t), uh(t))Th(E) = −Bh(uh(t), uh(t)) + lh(t, uh(t)).

Lemma 3.15 yields an estimate for Bh given by

Bh(uh(t), uh(t)) ≥
∑
e∈E

Me−1∑
i=1

be

2
[uh(t)]

2
i +

∑
v∈V−∂

be

2
u+
h (v, t)2 +

∑
v∈V+

∂

be

2
u−h (v, t)2,

and using Young’s inequality we can estimate lh(t, uh(t)) by

lh(t, uh(t)) = −〈nbg(t), uh(t)〉V−∂ ≤
∑
v∈V−∂

be

2
gv(t)

2 +
be

2
u+
h (v, t)2.

Inserting both estimations into the first identity leads to the desired result.

Convergence analysis

As a final step of our analysis, we now investigate the convergence of the Discontinuous

Galerkin method applied to the transport problem on networks (3.9)–(3.13). The main

result is the following.

Theorem 3.17 (Convergence). Let T > 0, and let u be the exact classical solution of

(3.9)–(3.13) and uh be the solution of problem 3.11. If u(t) ∈ Hk+1
pw (Th(E)) for all

0 ≤ t ≤ T , then

‖u− uh‖L∞([0,T ];L2(E)) ≤ C(T )hk+1/2|u|L∞([0,T ];Hk+1
pw (Th(E))),

where C(T ) is a constant only depending on T .

The proof is given in the remainder of this section. The basic procedure is as follows:

First we split the error u−uh into a projection and a discrete error component and consider

both separately. The projection error can be estimated by the interpolation error estimates

given in lemma 3.1. For the estimation of the discrete error we exploit consistency and

discrete stability of the Discontinuous Galerkin scheme. Further computations to handle

the inner junctions then yield the stated convergence result.
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Let us define ηh := u− Πhu and eh := uh − Πhuh. Then we can split the error via

u(t)− uh(t) = u(t)− Πhu(t) + Πhu(t)− uh(t) = ηh(t)− eh(t)

into a projection and a discrete error component. By the triangle inequality we obtain

‖u(t)− uh(t)‖Th(E) ≤ ‖ηh(t)‖Th(E) + ‖eh(t)‖Th(E). (3.22)

It thus remains to estimate the two contributions separately.

Lemma 3.18. The projection error ηh(t) can be estimated by

‖ηh(t)‖Th(E) ≤ Chk+1|u|L∞([0,T ];Hk+1
pw (Th(E))) (3.23)

for all 0 ≤ t ≤ T . Note that the constant C is independent of T .

Proof. Since u(t) ∈ Hk+1
pw (Th(E)) for all 0 ≤ t ≤ T , the standard interpolation error

estimates given in lemma 3.1 yield

‖ηh(t)‖T e
i
≤ Che k+1

i |u(t)|Hk+1
pw (T e

i )

for all T ei ∈ Th(E). Summing over all elements then gives

‖ηh(t)‖Th(E) ≤ Chk+1 max
s∈[0,T ]

|u(s)|Hk+1
pw (Th(E)) = Chk+1|u|L∞([0,T ];Hk+1

pw (Th(E))).

The last identity holds, because u is continuous in time.

Lemma 3.19. The discrete error eh(t) can be estimated by

‖eh(t)‖Th(E) ≤ C(T )hk+1/2|u|L∞([0,T ];Hk+1
pw (Th(E))) (3.24)

for all 0 ≤ t ≤ T with a constant C(T ) that only depends on T .

Proof. By corollary 3.13 we know that

(a∂tu(t)− a∂tuh(t), vh)Th(E) +Bh(u(t)− uh(t), vh) = 0

for all vh ∈ Vh(E), t ∈ (0, T ). As a consequence we have

(a∂tηh(t), vh)Th(E) +Bh(ηh(t), vh) = (a∂teh(t), vh)Th(E) +Bh(eh(t), vh) (3.25)
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for all vh ∈ Vh(E). Inserting vh = eh(t) into (3.25) leads to

1

2

d

dt
‖a1/2eh(t)‖Th(E) = −Bh(eh(t), eh(t)) + (a∂tηh(t), eh(t))Th(E) +Bh(ηh(t), eh(t))

=: (I) + (II) + (III). (3.26)

Now we estimate the terms in this identity separately.

Estimation of (I): The identity (3.21) in the proof of lemma 3.15 yields

Bh(eh(t), eh(t)) =
∑
e∈E

Me−1∑
i=1

be

2
[eh(t)]

2
i +

∑
v∈V−∂

be

2
e+
h (v, t)2 +

∑
v∈V+

∂

be

2
e−h (v, t)2

+
∑
v∈V0

( ∑
e∈E−(v)

be

2
e−h (v, t)2 +

∑
e∈E+(v)

be

2
e+
h (v, t)2 − bee−h (v, t)e+

h (v, t)
)
.

Estimation of (II): The term (a∂tηh(t), eh(t))Th(E) vanishes due to the definition of ηh
and the property of the L2-projection (3.15), since eh ∈ Vh(E), a is constant on every

edge e ∈ E , and ∂tΠhu = Πh∂tu.

Estimation of (III): We obtain

Bh(ηh(t),eh(t)) = − (bηh(t), ∂xeh(t))Th(E)︸ ︷︷ ︸
=0

+〈nbηh(t), eh(t)〉∂Th(E)\V−∂

=
∑
e∈E

Me∑
i=1

beη−h (xi, t)[eh(t)]i −
∑
v∈V0

∑
e∈E+(v)

beη−h (v, t)e+
h (v, t)

≤
∑
e∈E

Me−1∑
i=1

(be
2
η−h (xi, t)

2 +
be

2
[eh(t)]

2
i

)
+
∑
v∈V+

∂

(be
2
η−h (v, t)2 +

be

2
e−h (v, t)2

)
+
∑
v∈V0

( ∑
e∈E−(v)

beη−h (v, t)e−h (v, t)−
∑

e∈E+(v)

beη−h (v, t)e+
h (v, t)

)
.

The term (bηh(t), ∂xeh(t))Th(E) also vanishes due to the definition of ηh, the property of

the L2-projection (3.15), the assumption that b is constant on every edge e ∈ E , and the

fact that ∂xeh ∈ Vh(E). Additionally, we used Young’s inequality here to estimate the

sum over the outflow boundary vertices.
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Inserting the results for (I)–(III) into (3.26), where some of the terms are already can-

celling out, then gives

1

2

d

dt
‖a1/2eh(t)‖Th(E) = −Bh(eh(t), eh(t)) +Bh(ηh(t), eh(t))

≤
∑
e∈E

Me−1∑
i=1

b

2
η−h (xi, t)

2 −
∑
v∈V−∂

be

2
e+
h (v, t)2 +

∑
v∈V+

∂

be

2
η−h (v, t)2

+
∑
v∈V0

( ∑
e∈E−(v)

(
− be

2
e−h (v, t)2 + beη−h (v, t)e−h (v, t)

)
+

∑
e∈E+(v)

(
− be

2
e+
h (v, t)2 + bee−h (v, t)e+

h (v, t)− beη−h (v, t)e+
h (v, t)

))
. (3.27)

As a next step, we estimate the sum over the inner vertices. For v ∈ V0, e ∈ E−(v) it

holds that

−b
e

2
e−h (v, t)2 + beη−h (v, t)e−h (v, t) = −b

e

2
(η−h (v, t)− e−h (v, t))2 +

be

2
η−h (v, t)2

and for v ∈ V0, e ∈ E+(v), using Young’s inequality again, we obtain

−b
e

2
e+
h (v,t)2 + bee−h (v, t)e+

h (v, t)− beη−h (v, t)e+
h (v, t)

=− be

2
(e+
h (v, t)− e−h (v, t))2 +

be

2
e−h (v, t)2 − beη−h (v, t)

(
e+
h (v, t)− e−h (v, t)

)
− beη−h (v, t)e−h (v, t)

≤ be

2
(η−h (v, t)− e−h (v, t))2.

Inserting the estimates in (3.27) yields

1

2

d

dt
‖a1/2eh(t)‖Th(E) ≤

∑
e∈E

Me∑
i=1

be

2
η−h (xi, t)

2 +
∑
v∈V0

( ∑
e∈E−(v)

−b
e

2
(η−h (v, t)− e−h (v, t))2

+
∑

e∈E+(v)

be

2
(η−h (v, t)− e−h (v, t))2

)
,

where we dropped the term −
∑

v∈V−∂
bev

2
e+
h (v, t)2 ≤ 0. By inserting the coupling condi-

tions (3.20) in the same way as we have done in the proof of lemma 3.15, we obtain for
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every inner vertex v ∈ V0 that

∑
e∈E−(v)

− be

2
(η−h (v, t)− e−h (v, t))2 +

∑
e∈E+(v)

be

2
(η−h (v, t)− e−h (v, t))2

)
≤
∑

e∈E−(v)

−be
2

(η−h (v, t)− e−h (v, t))2 +
∑

e∈E+(v)

be
2

∑
e∈E−(v) b

e(η−h (v, t)− e−(v, t))2∑
e∈E−(v) b

e

=
∑

e∈E−(v)

be

2
(η−h (v, t)− e−h (v, t))2

(∑e∈E+(v) b
e∑

e∈E−(v) b
e
− 1
)

= 0.

Here we again used Jensen’s inequality for the estimate, and the conservation condition

(3.14) for the volume flow rates in the last identity.

In summary we can thus estimate the discrete error by the projection error via

1

2

d

dt
‖a

1
2 eh(t)‖2

Th(E) ≤
∑
e∈E

Me∑
i=1

be

2
η−h (xi, t)

2.

Using the interpolation error estimates given in lemma 3.1, one can see that

|(w − Πhw)−(xei )| ≤ Chk+1/2|w|Hk+1
pw (T e

i )

for w ∈ Hk+1(T ei ) and all i = 1, . . . ,M e, e ∈ E . Hence

d

dt
‖a1/2eh(t)‖2

Th(E) ≤ Ch2k+1|u(t)|2
Hk+1

pw (Th(E))
.

Integrating over [0, t] then leads to

‖a1/2eh(t)‖2
Th(E) ≤‖a1/2eh(0)‖2 + Ch2k+1

∫ t

0

|u(s)|2
Hk+1

pw (Th(E))
ds

≤C(T )h2k+1|u|2
L∞([0,T ];Hk+1

pw (Th(E)))
.

Here we used that ‖a1/2eh(0)‖Th(E) = 0, because uh(0) = Πhu0. Hence we can further

estimate

‖eh(t)‖Th(E) ≤
1

amin

‖a1/2eh(t)‖Th(E) ≤ C(T )hk+1/2|u|L∞([0,T ];Hk+1
pw (Th(E))),

which is the final estimate for the discrete error.
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Proof of theorem 3.17

We sucessfully estimated the projection error by (3.23) in lemma 3.18 and the discrete

error by (3.24) in lemma 3.19. Inserting both results in (3.22) then yields

‖u(t)− uh(t)‖Th(E) ≤ C(T )hk+1/2|u|L∞([0,T ];Hk+1
pw (Th(E)))

for all t ∈ [0, T ], where C(T ) is a constant only depending on T . This gives the desired

convergence result.

Remark 3.20. Using the arguments mentioned in remark 3.10 it should be possible to de-

rive an improved error estimate for the Discontinuous Galerkin method of orderO(hk+1).

3.3 Time discretization

To obtain a fully discrete scheme, we simply use the implicit Euler method for the time

discretization of problem 3.11. We consider N equidistant time steps of length τ up to

the time point T > 0 and set tn = nτ, n = 0, . . . , N . We denote by unh the numerical

solution of the fully discrete scheme at time tn and by

∂τu
n
h :=

unh − un−1
h

τ

the corresponding backward difference quotient.

Problem 3.21 (Fully discrete scheme). Set u0
h = Πhu0. For n = 1, . . . , N find

unh ∈ Vh(E), such that

(a∂τu
n
h, vh)Th(E) +Bh(u

n
h, vh) = lh(t

n, vh) (3.28)

for all vh ∈ Vh(E) with Bh, lh and u−(v) defined as in (3.18), (3.19) and (3.20), respec-

tively. Let us recall the definitions that are given by

Bh(u, v) := −(bu, ∂xv)Th(E) + 〈nbu−, v〉∂Th(E)\V−∂
, (3.29)

lh(t, v) := −〈nbg(t), v〉V−∂ (3.30)
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with

ue−(v) :=

∑
e∈E−(v) b

eue−(v)∑
e∈E−(v) b

e
for v ∈ V0, e ∈ E+(v). (3.31)

Auxiliary results

Now we investigate the properties of the fully discrete scheme. We observe that consis-

tency and Galerkin orthogonality are not satisfied, since the solution u(tn) of the trans-

port problem on networks (3.9)–(3.13) does not solve (3.28). But we obtain the following

similar results including an additional error term introduced by the time discretization.

Lemma 3.22. Let u be the classical solution of problem (3.9)–(3.13). Then

(a∂τu(tn), vh)Th(E) +Bh(u(tn), vh) =(a∂τu(tn)− a∂tu(tn), vh)Th(E) + lh(t
n, vh)

for all vh ∈ Vh(E), n = 1, . . . , N .

Proof. This result is a direct consequence of the consistency of the Discontinuous Galerkin

semi-discretization, see lemma 3.12.

We can immediately conclude the following result.

Corollary 3.23. Let u be the classical solution of (3.9)–(3.13) and {unh}0≤n≤N be the

solution of problem 3.21. Then

(a∂τu(tn)− a∂τunh, vh)Th(E) +Bh(u(tn)− unh, vh) = (a∂τu(tn)− a∂tu(tn), vh)Th(E)

for all vh ∈ Vh(E), n = 1, . . . , N .

It remains to investigate the well-posedness of the fully discrete scheme. It can be verified

by using the Lax-Milgram theorem, that gives the existence and uniqueness of variational

problems under some requirements on the corresponding bilinear- and linearform.

Lemma 3.24 (Well-posedness). Problem 3.21 has a unique solution unh ∈ Vh(E),

n = 0, . . . , N , for all u0 ∈ L2(E) and gv ∈ L2(0, T ), v ∈ V−∂ .
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Proof. We can write (3.28) equivalently as

B̃h(u
n
h, vh) := (

a

τ
unh, vh)Th(E) +Bh(u

n
h, vh) = (

a

τ
un−1
h , vh)Th(E) + l(tn, vh) =: l̃nh(vh).

According to the Lax-Milgram theorem, the problem of finding unh ∈ Vh(E), such that

B̃h(u
n
h, vh) = l̃nh(vh) for all vh ∈ Vh(E) and given un−1

h ∈ Vh(E), 1 ≤ n ≤ N , has a

unique solution, if the bilinearform B̃h is continuous and elliptic and l̃nh is continuous.

The continuity is obviously satisfied. It remains to show that B̃h is elliptic, that means

B̃h(vh, vh) ≥ C‖vh‖2
Th(E) for all vh ∈ Vh(E).

Lemma 3.15 yields an estimation for Bh given by

Bh(vh, vh) ≥
∑
e∈E

Me−1∑
i=1

be

2
[vh]

2
i +

∑
v∈V−∂

be

2
v+
h (v)2 +

∑
v∈V+

∂

be

2
v−h (v)2 ≥ 0.

Since ae > 0 is assumed to be constant on every edge e ∈ E , we can estimate

(
a

τ
vh, vh)Th(E) ≥

amin

τ
‖vh‖2

Th(E).

In summary, we obtain ellipticity of B̃h.

Discrete stability

The discrete stability estimate for the Discontinuous Galerkin semi-discretization given

in corollary 3.16 directly transfers to the fully discrete scheme. We define

d

dτ
‖unh‖2

Th(E) := (∂τu
n
h, u

n
h)Th(E),

and obtain the following result.

Corollary 3.25 (Discrete stability). Let {unh}0≤n≤N be the solution of problem 3.21. Then

d

dτ
‖a1/2unh‖2

Th(E) +
∑
e∈E

Me−1∑
i=1

be[unh]2i +
∑
v∈V+

∂

beun−h (v)2 ≤
∑
v∈V−∂

begv(t
n)2.
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Convergence analysis

Finally we investigate the convergence of the fully discrete scheme on networks. We will

give an error estimate together with the proof.

Theorem 3.26 (Convergence). Let u be the sufficiently smooth exact solution of (3.9)–

(3.13) and {unh}0≤n≤N be the solution of problem 3.21 with time step size 0 < τ ≤ τ0 < 1.

Then the following error estimate holds

max
n=0,...,N

‖u(tn)− unh‖2
Th(E) ≤ C

(
τ 2‖∂ttu‖2

L∞([0,T ];L2(E))

+ h2k+1 max
n=0,..,N

|u(tn)|2
Hk+1

pw (Th(E))

)
.

The constant C only depends on T and τ0.

In the remainder of this section we give the proof of this theorem. The procedure is

similar as in the proof of theorem 3.17. We again split the error into a projection part

and a discrete part and estimate both separately. The projection error can be estimated

using the interpolation error estimates given in lemma 3.1. For the discrete error we use

corollary 3.23 and the results derived in the proof of theorem 3.17. Moreover, we need a

discrete Gronwall lemma to derive the final convergence result.

Denote by un = u(tn) the exact solution at the time point tn, n = 0, . . . , N . Further

denote by ηnh = un − Πhu
n and enh = unh − Πhu

n, n = 0, . . . , N . We can now split the

error via

un − unh = un − Πhu
n + Πhu

n − unh = ηnh − enh

into a projection and a discrete error component, and obtain

‖un − unh‖2
Th(E) ≤ 2

(
‖ηnh‖2

Th(E) + ‖enh‖2
Th(E)

)
. (3.32)

Now we estimate the projection error ηnh and the discrete error enh separately.

Lemma 3.27. The projection error ηnh can be estimated by

‖ηnh‖Th(E) ≤ Chk+1 max
l=0,..,N

|u(tl)|Hk+1
pw (Th(E)) (3.33)

for all n = 0, . . . , N with a constant C independent of T .
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Proof. Assuming u(t) ∈ Hk+1
pw (Th(E)) for all 0 ≤ t ≤ T , the interpolation error esti-

mates in lemma 3.1 yield

‖ηnh‖T e
i
≤ Che k+1

i |u(tn)|Hk+1
pw (T e

i )

for all T ei ∈ Th(E), n = 0, . . . , N . Summing over all elements then leads to

‖ηnh‖Th(E) ≤ Chk+1|u(tn)|Hk+1
pw (Th(E)) ≤ Chk+1 max

l=0,..,N
|u(tl)|Hk+1

pw (Th(E)).

Note that the constant C is independent of T .

Lemma 3.28. The discrete error can be estimated by

‖enh‖2
Th(E) ≤ C

(
τ 2‖∂ttu‖2

L∞([0,T ];L2(E)) + h2k+1 max
l=0,..,N

|u(tl)|2
Hk+1

pw (Th(E))

)
(3.34)

for all n = 0, . . . , N with a constant C = C(T, τ0) that only depends on T and τ0.

Proof. By corollary 3.23 we can deduce that

(a∂τe
n
h, vh)Th(E) +Bh(e

n
h, vh)

= (a∂τη
n
h , vh)Th(E)︸ ︷︷ ︸
=0

+Bh(η
n
h , vh)− (a∂τu

n − a∂tu(tn), vh)Th(E)

≤ Bh(η
n
h , vh) +

1

2
‖a1/2(∂τu

n − ∂tu(tn))‖2
Th(E) +

1

2
‖a1/2vh‖2

Th(E) (3.35)

for all vh ∈ Vh(E). The term vanishes, because of the definition of ηnh , the property of the

L2-projection (3.15), and the fact that a is constant on every edge. Moreover, we used

Young’s inequality for the last estimate.

Now we insert vh = enh in (3.35). From estimates we made in the proof of the convergence

theorem 3.17, we know that

−Bh(e
n
h, e

n
h) +Bh(η

n
h , e

n
h) ≤

∑
e∈E

Me∑
i=1

be

2
ηn−h (xi)

2 ≤ C

2
h2k+1|u(tn)|2

Hk+1
pw (Th(E))

.

The error introduced by the implicit Euler method can be estimated by

‖a1/2(∂τu
n − ∂tu(tn))‖Th(E) ≤ Ca1/2

maxτ‖∂ttu‖L∞([tn−1,tn];L2(E))

using the Taylor series and the fact that a > 0 is constant on every edge. Inserting the
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estimates in (3.35) yields

(a∂τe
n
h, e

n
h)Th(E) ≤

1

2
‖a1/2enh‖2

Th(E) +
C

2

(
τ 2‖∂ttu‖2

L∞([tn−1,tn];L2(E))

+ h2k+1|u(tn)|2
Hk+1

pw (Th(E))

)
.

We can further estimate

(a∂τe
n
h, e

n
h)Th(E) =

1

2τ

(
‖a1/2(enh − en−1

h )‖2
Th(E) + ‖a1/2enh‖2

Th(E) − ‖a1/2en−1
h ‖2

Th(E)

)
≥ 1

2τ

(
‖a1/2enh‖2

Th(E) − ‖a1/2en−1
h ‖2

Th(E)

)
and obtain the following estimate of enh given by

1

τ

(
‖a1/2enh‖2

Th(E) − ‖a1/2en−1
h ‖2

Th(E)

)
≤ ‖a1/2enh‖2

Th(E) + C
(
τ 2‖∂ttu‖2

L∞([tn−1,tn];L2(E))

+ h2k+1|u(tn)|2
Hk+1

pw (Th(E))

)
. (3.36)

Now we need a discrete version of the Gronwall lemma for differential equations that are

discretized with the implicit Euler method, see [4].

Lemma 3.29 (Discrete Gronwall lemma: backward difference form).
Let (an)n∈N and (bn)n∈N ⊂ R, 1− τ > 0 be given and assume for n ≥ 1 that

1

τ
(an − an−1) ≤ an + bn.

Then

an ≤ (1− τ)−n
(
a0 + τ

n−1∑
j=0

(1− τ)jbj+1
)
.

We can now apply lemma 3.29 to the estimate (3.36) and obtain

‖a1/2enh‖2
Th(E) ≤ (1− τ)−n

(
‖a1/2e0

h‖2
Th(E)

+ Cτ

n−1∑
j=0

(1− τ)j
(
τ 2‖∂ttu‖2

L∞([tj ,tj+1];L2(E)) + h2k+1|u(tj+1)|2
Hk+1

pw (Th(E))

))
≤
Cτ
∑n−1

j=0 (1− τ)j

(1− τ)n
(
τ 2‖∂ttu‖2

L∞([0,T ];L2(E)) + h2k+1 max
l=0,..,N

|u(tl)|2
Hk+1

pw (Th(E))

)
.
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Here we used that e0
h = u0

h − Πhu(0) = 0 by our choice of u0
h, so ‖a1/2e0

h‖ = 0.

Furthermore, it holds

n−1∑
j=0

(1− τ)j =
(1− (1− τ)n)

τ
.

We can thus estimate

τ
∑n−1

j=0 (1− τ)j

(1− τ)n
=

1

(1− τ)n
− 1 ≤ 1

(1− τ)N
≤ e

T
1−τ0 .

Here we used that 0 < τ ≤ τ0 < 1 and

1

(1− τ)N
=
(

1 +
τ

1− τ

)N
≤
(

1 +
τ

1− τ0

)N
≤ e

Nτ
1−τ0 = e

T
1−τ0 .

Including this in the constant C = C(T, τ0), we obtain

‖enh‖2 ≤ 1

amin

‖a1/2enh‖2

≤ C
(
τ 2‖∂ttu‖2

L∞([0,T ];L2(E)) + h2k+1 max
l=0,..,N

|u(tl)|2
Hk+1

pw (Th(E))

)
.

Proof of theorem 3.26

We were able to estimate the projection error by (3.33) in lemma 3.27 and the discrete

error by (3.34) in lemma 3.28. Inserting in (3.32) then yields the desired result, since

both estimations hold for all n = 0, . . . , N .

Remark 3.30. As stated in remark 3.20 and remark 3.10 it should be possible to derive an

improved spatial error estimate of order O(hk+1) for the Discontinuous Galerkin semi-

discretization. This spatial superconvergence should directly transfer to the fully discrete

scheme, which then yields an improved total error of order O(τ + hk+1).



Chapter 4

Numerical Tests

In the last chapter, we give some details on the implementation of the fully discrete

scheme presented in section 3.3, and illustrate our theoretical results by some numeri-

cal experiments. We want to verify the stability and error estimates for the exact solution

of the transport problem on networks and the numerical solution of the fully discrete

scheme.

Details on the implementation

The fully discrete scheme given in problem 3.21 uses the Discontinuous Galerkin method

for space and the implicit Euler method for time discretization. Since the implicit Euler

is only first order accurate, it seems reasonable to use the Discontinuous Galerkin method

with piecewise constant polynomials. We denote by ue,ni the constant solution value on

T ei at time point tn. For n = 1, . . . , N we then solve

hei
τ
ae
(
ue,ni − u

e,n−1
i

)
+ be

(
ue,ni − u

e,n
i−1

)
= 0 (4.1)

for e ∈ E , i = 1, . . . ,M e, with inflow boundary and initial values

ue,n0 =

gv(t
n), v ∈ V−∂ , e ∈ E+(v),∑

e∈E−(v) b
eue,nMe∑

e∈E−(v) b
e , v ∈ V0, e ∈ E+(v),

(4.2)

ue,0i =
1

hei

∫
T e
i

u0(x) dx. (4.3)

48
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For simplicity we introduced a new variable ue,n0 that replaces ue−(v) in the scheme

(3.28)–(3.31) at the inflow boundary of every edge e ∈ E . It can be understood as addi-

tional algebraic condition and (4.1)–(4.3) as an algebraic differential equation, which is

discretized with the implicit Euler method. We can write it as a linear system of equations

that we solve in every time step. For illustration we give a simple example, that will also

be considered in the numerical tests.

Example 4.1. We again consider the network in figure 1.1 that has been investigated in

section 1.5. The initial condition is given by u0(x) and the inflow boundary condition by

gvi(t) for i = 1, 2. On every edge we have a constant cross-sectional area ae > 0 and a

constant volume flux rate be > 0, and assume an equidistant grid separating each edge

into two intervals. Denoting by λe := τbe

heae
, we then solve the following linear system of

equations in every time step:



1 + λe1 0 0 0 0 0 −λe1 0 0

−λe1 1 + λe1 0 0 0 0 0 0 0

0 0 1 + λe2 0 0 0 0 −λe2 0

0 0 −λe2 1 + λe2 0 0 0 0 0

0 0 0 0 1 + λe3 0 0 0 −λe3

0 0 0 0 −λe3 1 + λe3 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 −be1 0 −be2 0 0 0 0 be1 + be2





ue1,n1

ue1,n2

ue2,n1

ue2,n2

ue3,n1

ue3,n2

ue1,n0

ue2,n0

ue3,n0



=



ue1,n−1
1

ue1,n−1
2

ue2,n−1
1

ue2,n−1
2

ue3,n−1
1

ue3,n−1
2

gv1 (tn)

gv2 (tn)

0



with ue,0i = 1
he

∫
T e
i
u0(x) dx.

Numerical tests

Now we present some numerical tests to verify the stability and convergence results for

the solution of the transport problem (3.9)–(3.13) and the solution of problem 3.21. We

consider two different network topologies and use the fully discrete scheme given in prob-

lem 3.21 with piecewise constant polynomials in space for the numerical approximation.

First, we consider the network from example 4.1 given in figure 1.1. We assume the same

length le = 1 and cross-sectional area ae = 1 for all edges e ∈ E and volume flow rates

be1 = 1, be2 = 1 and be3 = 2, which satisfy the conservation condition (3.14). The exact

solution can be explicitly determined, see section 1.5. Details on the implementation
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of the fully discrete scheme using piecewise constant polynomials in space are given in

example 4.1.

For an illustration of the stability estimates we choose ue0 ≡ 1 as initial condition for all

e ∈ E and

gv(t) =

1− t
2
, 0 ≤ t ≤ 2,

0, t > 2,

as inflow boundary condition for the inflow boundary vertices v1 and v2. As measure we

use the mathematical entropy defined in (2.23), which is given by

E(u) :=
1

2
‖u‖2

L2(E), (4.4)

since ae = 1 for all e ∈ E . The stability estimate for the exact solution in lemma 2.4 and

the corresponding estimate for the numerical solution given by corollary 3.25 suggest

that for the chosen inflow boundary condition E should quickly tend to zero for both

exact and numerical solution. In our test we compute E at time points T = 0, 1, . . . , 5,

and expect the same behaviour for the exact and the numerical solution, more precisely

E should dissipate quickly and take approximately the same values for both solutions.

Table 4.1 shows the results. And indeed we can observe the predicted behaviour.

T 0 1 2 3 4 5

exact 1.5000 1.0833 0.2813 0.0104 0.0000 0.0000

num 1.5000 1.0797 0.2833 0.0106 3.0600 · 10−12 4.8209 · 10−41

Table 4.1: Dissipation of the exact solution and the numerical solution for h = 0.01 and
τ = 0.005.

Now we focus on the verification of the error estimate given in theorem 3.26. As initial

and inflow boundary conditions we choose ue0 ≡ 0 for all edges e and gv1(t) = 1
4
t2 and

gv2(t) = 1
8
t2. They satisfy the compatibility condition uei0 (0) = gvi(0) for i = 1, 2. We

measure the error with the standard L2-norm on every edge in the network at the time

point T given by

‖ue(T )− ue,Nh ‖L2(e). (4.5)

We choose h = 0.5 and τ = 0.2 as start grid step sizes, and refine the grid by holding

the ratio τ/h constant and uniformly reduce h and thus τ by a factor of 2. Theorem 3.26
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states a first order convergence rate in time and a convergence rate of order k + 1/2 in

space. It should even be possible to derive an improved spatial rate of order k + 1, if

the solution u of the transport problem satisfies u(t) ∈ Hk+2
pw (Th(E)) for all 0 ≤ t ≤ T ,

see remark 3.30. Since we are using the fully discrete scheme with piecewise constant

polynomials and the solution u of the transport problem (3.9)–(3.13) with the chosen

initial and inflow boundary conditions satisfies u(t) ∈ H2(Th(E)) for t ≥ 0, we expect

a convergence rate of 1. The results of our tests are illustrated in the tables 4.2 and 4.3

together with the corresponding convergence rates at time points T = 1, 2. They match

our theoretical results.

h 0.5 0.25 0.125 0.0625 0.5 · 2−4 0.5 · 2−5 0.5 · 2−6 0.5 · 2−7

e1 0.05086 0.03125 0.01804 0.00995 0.00533 0.00279 0.00144 0.00074

rate / 0.70270 0.79283 0.85869 0.90323 0.93319 0.95355 0.96754

e2 0.02543 0.01562 0.00902 0.00497 0.00266 0.00139 0.00072 0.00037

rate / 0.70270 0.79283 0.85869 0.90323 0.93319 0.95355 0.96754

e3 0.02134 0.01146 0.00567 0.00265 0.00120 0.00053 0.00023 0.00010

rate / 0.89641 1.01568 1.09638 1.14581 1.17755 1.19934 1.21450

Table 4.2: Error estimates and corresponding convergence rates for T = 1.

h 0.5 0.25 0.125 0.0625 0.5 · 2−4 0.5 · 2−5 0.5 · 2−6 0.5 · 2−7

e1 0.14156 0.07812 0.04107 0.02103 0.01063 0.00535 0.00268 0.00134

rate / 0.85760 0.92773 0.96535 0.98321 0.99169 0.99586 0.99794

e2 0.07078 0.03906 0.02053 0.01052 0.00532 0.00268 0.00134 0.00067

rate / 0.85760 0.92773 0.96535 0.98321 0.99169 0.99586 0.99794

e3 0.08490 0.05101 0.02843 0.01492 0.00756 0.00378 0.00189 0.00094

rate / 0.73515 0.84309 0.92995 0.98211 1.00031 1.00205 1.00113

Table 4.3: Error estimates and corresponding convergence rates for T = 2.
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Now we focus on a more complex network given by

v1 v2

v3

v4

v5 v6
e1

e2

e3

e4

e5

e6

e7

with vertices V0 = {v1, . . . , v6} and edges E = {e1, . . . , e7}. We distinguish between

the inflow boundary vertex V−∂ = {v1}, the outflow boundary vertex V+
∂ = {v6} and the

inner vertices V0 = {v2, v3, v4, v5}. Again we assume the same length le = 1 and cross-

sectional area ae = 1 for all edges e ∈ E , and volume flow rates be1 = 2, be2 = be3 = 1,

be4 = be5 = 0.5, be6 = 1.5 and be7 = 2, that satisfy the conservation condition (3.14).

Given initial and inflow boundary conditions, the exact solution can be determined anal-

ogously as in section 1.5.

For a verification of the stability estimates of the exact and the numerical solution given

in 2.4 and corollary 3.25, we choose ue0 ≡ 1 as initial condition for all e ∈ E , and

gv1(t) =

1− t, 0 ≤ t ≤ 1,

0, t > 1,

as inflow boundary condition at the inflow boundary vertex v1. As measure we again use

(4.4) and compute E for the exact and the numerical solution at time points

T = 0, . . . , 10. We again expect that E should quickly dissipate and that the values

should be approximately the same for both solutions. The test results given in table 4.4

again match our theoretical prediction.

T 0 1 2 3 4 5

exact 3.5000 2.8333 1.8264 0.7308 0.1554 0.0062

num 3.5000 2.8257 1.8057 0.7168 0.1496 7.98 · 10−3

T 6 7 8 9 10

exact 0.0000 0.0000 0.0000 0.0000 0.0000

num 1.59 · 10−6 1.16 · 10−15 3.61 · 10−30 8.31 · 10−49 1.48 · 10−70

Table 4.4: Dissipation of the exact solution and the numerical solution for h = 0.01 and
τ = 0.005.
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Finally, we investigate the convergence of the fully discrete scheme. We want to verify

the theoretical result given in theorem 3.26. As initial and inflow boundary condition

we choose ue0 ≡ 0 for all e ∈ E and gv1(t) = 1
8
t2, which fulfil the compatibility con-

dition ue10 (0) = gv1(0). Moreover, the corresponding solution of (3.9)–(3.13) satisfies

u(t) ∈ H2(E). According to theorem 3.26 and remark 3.30 we expect a first order con-

vergence. For the test we again use (4.5) as measure for the error, choose h = 0.5 and

τ = 0.2 as start grid step sizes, and refine the grid by holding the ratio τ/h constant and

uniformly reduce h and thus τ by a factor of 2. Table 4.5 illustrates the results at the

time point T = 4 together with the corresponding convergence rates. Again we observe

that the convergence rates match our theoretical result derived in theorem 3.26 and re-

mark 3.30.

h 0.5 0.25 0.125 0.0625 0.5 · 2−4 0.5 · 2−5

e1 0.11699 0.06026 0.03057 0.01539 0.00772 0.00387

rate / 0.95716 0.97923 0.98977 0.99492 0.99747

e2 0.14570 0.07748 0.03994 0.02027 0.01021 0.00512

rate / 0.91114 0.95596 0.97853 0.98942 0.99475

e3 0.14570 0.07748 0.03994 0.02027 0.01021 0.00512

rate / 0.91114 0.95596 0.97853 0.98942 0.99475

e4 0.14544 0.08464 0.04714 0.02521 0.01305 0.00661

rate / 0.78103 0.84437 0.90314 0.94974 0.98112

e5 0.14544 0.08464 0.04714 0.02521 0.01305 0.00661

rate / 0.78103 0.84437 0.90314 0.94974 0.98112

e6 0.09731 0.05324 0.02843 0.01512 0.00801 0.00421

rate / 0.87020 0.90498 0.91147 0.91639 0.92749

e7 0.12751 0.07011 0.03676 0.01881 0.00955 0.00484

rate / 0.86283 0.93167 0.96660 0.97792 0.97982

Table 4.5: Error estimates and corresponding convergence rates for T = 4.



Conclusion

In this work we investigated scalar, linear transport equations with piecewise constant

coefficients on networks. We were able to prove well-posedness by semigroup theory un-

der some restrictions on the regularity of the initial and boundary conditions. Moreover,

we derived a stability estimate for the solution also on networks. The semi-discretization

using the Discontinuous Galerkin method was shown to preserve this stability estimate,

and a convergence result together with the proof was given. We could show that the order

of convergence for the transport problem on a single edge also holds on networks. For the

time discretization we considered the implicit Euler method and derived an error estimate

for the fully discrete scheme. The well-known results on a single edge again transfer to

networks. Finally, we illustrated the theoretical results by some numerical experiments.

Overall, we were able to verify well-known stability and convergence results for transport

equations on a single edge also on networks.

We only considered transport equations with constant volume flow rates on every edge

of the network. An extension of the results to space or time dependent volume flow rates

is missing, but under some restrictions it should be possible to transfer them. Further

investigations are needed. Moreover, other numerical methods than the Discontinuous

Galerkin method could be considered, as well as a higher order time discretization. The

results derived in this work could also be used to study more complex models that include

transport equations.
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