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Abstract. We consider uncertain robust electricity market equilibrium problems
including transmission and generation investments. Electricity market equilibrium
modeling has a long tradition but is, in most of the cases, applied in a deterministic
setting in which all data of the model are known. Whereas there exist some literature
on stochastic equilibrium problems, the field of robust equilibrium models is still
in its infancy. We contribute to this new field of research by considering Γ-robust
electricity market equilibrium models on lossless DC networks with transmission and
generation investments. We state the nominal market equilibrium problem as a mixed
complementarity problem as well as its variational inequality and welfare optimization
counterparts. For the latter, we then derive a Γ-robust formulation and show that
it is indeed the counterpart of a market equilibrium problem with robustified player
problems. Finally, we present two case studies to gain insights into the general effects
of robustification on electricity market models. In particular, our case studies reveal
that the transmission system operator tends to act more risk-neutral in the robust
setting, whereas generating firms clearly behave more risk-averse.

1. Introduction

Equilibrium modeling for liberalized electricity markets and solving these models is
of great practical relevance today. In this area, the main mathematical modeling tools
are variational inequalities and complementarity problems. To obtain the latter, one
usually first states the optimization problem of every player. In the convex case, which is
typically considered in economics in general and in energy market modeling in particular,
the optimal actions of the players can be characterized by their first-order optimality
conditions. Together with suitably chosen market clearing conditions, the entire system is
of the form of a mixed complementarity problem (MCP), which is often a linear one. For a
general overview over linear complementarity problems (LCPs), we refer to the seminal
textbook by Cottle et al. (2009). A detailed discussion about complementarity problems in
energy markets is given in the book by Gabriel, Conejo, et al. (2012).

In the vast majority of papers on energy market modeling, the authors study a deter-
ministic setting, i.e., all the data of the model is considered to be certain. However, many
of the required parameters such as producers’ operating costs or the willingness to pay of
consumers are not known in advance—especially in the case of long-run investment models
that need to consider time or trading periods that are far in the future. Consequently, there
is a strong need for uncertain electricity market equilibrium modeling. In mathematical
optimization, there are mainly two approaches for tackling uncertain data: stochastic
optimization (see, e.g., Birge and Louveaux (2011) and Kall and Wallace (1994)) and
robust optimization (see, e.g., Ben-Tal et al. (2009), Bertsimas, Brown, et al. (2011),
and Soyster (1973)). Both approaches have also been applied to the field of equilibrium
modeling. However, the stochastic approach to LCPs is rather mature (see, e.g., X. Chen
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and Fukushima (2005), X. Chen, Wets, et al. (2012), X. Chen, Zhang, et al. (2009), and Lin
and Fukushima (2006)) compared to the field of robust LCPs or robust market equilibrium
problems, which are still in their infancies. The only studies we are aware of are Biefel
et al. (2020), Krebs, Müller, et al. (2019), Krebs and Schmidt (2020), Wu et al. (2011),
and Xie and Shanbhag (2014, 2016) on robust LCPs, Kramer et al. (2018) and Mather and
Munsing (2017) on robust market equilibrium modeling, and the very recent and related
paper by Fanzeres et al. (2019) on robust bidding strategies in auctions. In this paper,
we contribute to the second of the three mentioned fields and consider robustified market
equilibrium models with transmission and generation investments.

In conventional power systems, generation and transmission investment (or expansion)
planning has been performed in a centralized manner—typically using a cost minimization
approach. However, in today’s restructured electricity markets both investment decisions as
well as market outcomes are decentralized but need to be integrated to enable a proactive
planning process. In proactive planning, a decision maker can anticipate the investment
decisions of the other decision makers and the market outcome. This anticipative nature of
decision making requires sequential, i.e., hierarchical, or simultaneous equilibrium models.
There have been many developments in the applied electricity market literature regarding
these models in recent years; please refer to, e.g., Murphy and Smeers (2005) and Sauma
and Oren (2006) or the extensive reviews by Gomez (2019) and Hemmati et al. (2013) as
well as the references therein.

One of the most prominent studies on simultaneous decision making for generation
and transmission investment is presented in You et al. (2016). They have shown that
co-optimizing generation and transmission investments results in lower investment costs
compared to separately optimized investment decisions. This co-optimization model
has been applied in U.S. Eastern Interconnection and leads to cost-effective paths for
investments. However, market outcomes are not investigated. On the other hand, there
are several models that reflect the hierarchical nature as well as the market outcomes.
The studies in Gonzalez-Romero et al. (2019), Jenabi et al. (2013), and Maurovich-Horvat
et al. (2014) consider bilevel optimization problems in which transmission and generation
investments are simultaneously considered in the bilevel problem’s upper level and the
market is modeled in the lower level. Another stream of studies by Jin and Ryan (2014a,b)
and Pozo et al. (2013, 2017) investigate hierarchical trilevel models that include transmission
investments as the first level, generation investments as the second level, and the market
outcomes are modeled as third-level decisions. Similar trilevel models are also considered
in Ambrosius et al. (2020), Egerer et al. (2019), Grimm, Kleinert, et al. (2019), Grimm,
Martin, et al. (2016), and Kleinert and Schmidt (2019), where the first level models decisions
of the regulator/operator such as market-design decisions or investment in transmission
lines, the second level models generation investment as well as spot-market behavior of
market participants, and the third level contains redispatch models as they are used in,
e.g., Germany.

In many of these studies, bilevel or trilevel problems are cast as mathematical programs
with equilibrium constraints (MPECs) or equilibrium problems with equilibrium constraints
(EPECs) and are solved by equivalent single-level reformulations of the multilevel problem.
In Çelebi (2017), the author shows that a hierarchical bilevel model formulated as an MPEC
and a simultaneous model formulated as an MCP lead to the same results in a perfectly
competitive market structure and under some mild conditions; see also, e.g., Y. Chen and
Liu (2013) and Ehrenmann and Smeers (2011) for similar results in comparable settings.
Hence, in this paper, we resort our attention to MCP formulations.

Our contribution is the following. We study a robustification of a market equilibrium
model for proactive investment planning in generation and transmission assets. By doing
so, we explicitly consider long-run decisions based on market outcomes under uncertainty,
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which is of great importance in today’s restructured energy markets. We complement the
literature on energy markets with stochastic uncertainties by handling the uncertainty in a
robust way, which is especially important in risk-averse investment settings. Consequently,
our models allow to shed light on the interdependencies between endogenously determined
demand as well as generation in equilibrium models and long-run decision-making under
uncertainty. Since classical strict robustness is often criticized for its very conservative
solutions, we study the concept of Γ-robustness as it is proposed in Bertsimas and Sim
(2003, 2004) and Sim (2004) and as it is applied to market equilibrium models in Kramer
et al. (2018) that we modify here to put emphasis on the relation between uncertainty and
long-run decision-making. To the best of our knowledge, Γ-robustifications of investment
models for generation and transmission expansion have not been considered before in the
literature on energy market equilibrium models. To be more specific, we consider the
willingness to pay of consumers as uncertain and allow a pre-specified number of Γ many
consumers to deviate from their nominal willingness to pay in a worst-case way. We review
a classical deterministic market equilibrium model in its MCP and variational inequality
form in Section 2. There, we also state the equivalent welfare maximization problem.
Afterward, in Section 3, we derive the Γ-robustified counterpart of the deterministic welfare
maximization problem and show that it can also be obtained as an MCP based on a
suitably robustified consumer problem. This shows that the robustified models are also
economically meaningful. We then use the robustified models in Section 4 to analyze the
effects of robustification on market outcomes as demand, generation, and prices as well
as on investment decisions. Since we are interested in observing and understanding these
main effects, we have used two case studies that allow us to clearly analyze the impact of
robustification. Interestingly, our case studies reveal that the transmission system operator
(who may invest in transmission line expansion) acts rather risk-neutral, whereas generating
firms stop investing in new generation capacity already for mild uncertainties and thus act
more risk-averse. The paper closes with some concluding remarks and open problems for
future research in Section 6.

2. The Deterministic Model

2.1. General Modeling Assumptions and Network Setting. The deterministic equi-
librium model discussed in this section is based on the electricity market equilibrium model
given in Gabriel, Conejo, et al. (2012), where the authors apply a well-simplified application
of the study published in Hobbs (2001). In the latter paper, an LCP for a Nash–Cournot
market structure in bilateral or pool-type electricity markets is introduced; see Metzler et al.
(2003) for a detailed version of this equilibrium model. Moreover, in Gabriel, Conejo, et al.
(2012) a stochastic version of the original equilibrium model is considered and solved with
a generalized Benders decomposition approach. A robust version of this electricity market
equilibrium model is presented in Kramer et al. (2018). On the one hand, we simplify the
economic setting by considering a perfectly competitive market but extend the model in
Kramer et al. (2018) by incorporating generation and transmission investment decisions
that affect the capacity of generators and transmission lines. Moreover, the specific setting
of the robustification differs compared to the one studied in Kramer et al. (2018) since we
do not bound the number of uncertainty realizations per consumer over time but bound
the number of uncertainty realizations over the set of all consumers.

The basic assumptions of our generation and transmission investment planning model are
as follows. We consider an equilibrium model for perfectly competitive day-ahead markets
with transmission constraints. Balancing or real-time markets are not considered. As a
common practice in the literature, transmission and generation investments will be done
for a “target year” in the future; see, e.g., Conejo et al. (2016). However, note that it can
be extended to model a dynamic investment model for each year in the planning horizon;
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see, e.g., Khakpoor et al. (2017). In compliance with the latter point, investment costs are
discounted on an hourly basis. Potential generation investments are applicable for certain
firms and buses, and they are bounded above. Similarly, transmission line investments are
defined between certain buses and they are considered to have upper bounds as they are
constrained by a certain available budget. Finally, for the ease of presentation, existing line
capacity can be expanded without changing the line’s impedance in our market models.
This simplifying assumption can be relaxed as in Pozo et al. (2013).

In our model, electricity generators can sell to all consumers in the entire system and they
use the transmission system operator (TSO) as a mediator. In this structure, generating
firms optimize their profits according to capacity and generation-sales constraints and
the TSO optimizes its transmission service revenue according to the network constraints.
The latter are modeled using lossless linear DC (direct current) load flow constraints. In
addition, consumers change their amount of consumption as a reaction to price levels for
optimizing their utility.

In this section, we first define each decision maker’s deterministic optimization problem
separately and then form the overall equilibrium problem by concatenating each problem’s
optimality conditions. Together with nodal flow balance equations, this leads to an MCP.
The solutions of this MCP are market equilibria and the nodal electricity prices are, as
usual, obtained as dual variables of the nodal balance equations; see, e.g., Conejo et al.
(2016) and Hobbs (2001). Due to the fact that we consider a perfectly competitive market,
all players act as price takers and we can thus state their optimization problems using
exogenously given market prices.

In what follows, we model the electricity transmission network by using a connected and
directed graph G = (I, A) with node (or bus) set I and arc set A. Transmission lines a ∈ A
are usually denoted by its start and end points, e.g., a = (i, j) for start point i ∈ I and
end point j ∈ I.

2.2. Consumers. We start by introducing the models of the consumers that are located
at the nodes i ∈ I of the network. The consumers decide on their demand di ≥ 0 and their
willingness to pay is modeled by inverse market demand functions pi = pi(di). For the
latter functions, we assume that they are continuous and strictly decreasing. Under this
assumption, the gross consumer surplus∫ di

0

pi(ω) dω

is a strictly concave function in di and the benefit maximization problem

max
di

∫ di

0

pi(ω) dω − πidi (1a)

s.t. di ≥ 0 (1b)

of the consumer at node i ∈ I thus is a strictly concave maximization problem. Here and
in what follows, πi denotes the exogenously given market price at node i ∈ I.
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Table 1. Indices (top), variables (middle), and parameters (bottom) of the model

Symbol Explanation

I Set of nodes (or buses)
i0 ∈ I Reference bus
F Set of generating firms
If ⊆ I Set of nodes at which firm f generates
A ⊆ I × I Set of transmission lines

di Demand at node i
xfi Generation by firm f at node i
sfi Sales by firm f to node i
θi Voltage angle at node i
∆Tij Transmission line expansion for line (i, j)
∆Kfi New generation investment by firm f at node i

πi Nodal electricity price at node i
pi(·) Inverse market demand function at node i
copfi Operating costs of generating firm f at node i
cinv
fi Investment costs of new generation capacity for firm f at node i
cexp
ij Investment costs of capacity expansion for line (i, j)

Kfi Initial capacity of generating firm f at node i
∆K+

fi Generating firm f ’s maximum investment level at node i
Bij Susceptance of transmission line (i, j)
Tij Initial transmission line capacity of line (i, j)
∆T+

ij Maximum transmission line expansion for line (i, j)

2.3. Generating Firms. Every generating firm f ∈ F solves the problem

max
sf ,xf ,∆Kf

∑
i∈I

πisfi −
∑
i∈If

copfixfi −
∑
i∈If

cinv
fi ∆Kfi (2a)

s.t.
∑
i∈I

sfi −
∑
i∈If

xfi = 0, [νf ] (2b)

xfi ≤ Kfi + ∆Kfi, i ∈ If , [µfi] (2c)

∆Kfi ≤ ∆K+
fi, i ∈ If , [δfi] (2d)

xfi ≥ 0, ∆Kfi ≥ 0, i ∈ If , (2e)
sfi ≥ 0, i ∈ I, (2f)

where ∆Kf = (∆Kfi)i∈If is the vector of all capacity investments of firm f , xf = (xfi)i∈If
is the vector of all generations, and sf = (sfi)i∈I is the vector comprising all sales. The
generating firm f is modeled as a price-taker, i.e., it assumes that the price at every single
bus is exogenously given. The firms maximize their profits, which are given by revenue
from sales less operating costs less discounted generation investment costs; see the objective
function in (2a). Constraint (2b) models the balance of electricity generation and sales,
capacity constraints are modeled in (2c), and upper bounds on the capacity investments
are given in (2d). As it can be seen in (2c), generation investments affect the capacity
constraints. Here and in what follows, dual variables are denoted by Greek letters and are
given in parentheses next to the constraints. Finally, (2e) and (2f) ensure nonnegativity of
generation, sales, and capacity investments. Since dual variables of simple nonnegativity
constraints will be directly eliminated later, we do not state them here explicitly.
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2.4. Transmission System Operator. The model of the transmission system operator
(TSO) is given by

max
θ,∆T

∑
(i,j)∈A

(πj − πi)Bij (θi − θj)−
∑

(i,j)∈A

cexp
ij ∆Tij (3a)

s.t. Bij (θi − θj) ≤ Tij + ∆Tij , (i, j) ∈ A, [λ+
ij ] (3b)

−Bij (θi − θj) ≤ Tij + ∆Tij , (i, j) ∈ A, [λ−ij ] (3c)

∆Tij ≤ ∆T+
ij , (i, j) ∈ A, [γij ] (3d)

− π ≤ θi ≤ π, i ∈ I \ {i0}, [ε−i , ε
+
i ] (3e)

θi0 = 0, [ξ] (3f)
∆Tij ≥ 0, (i, j) ∈ A, (3g)

where θ = (θi)i∈I is the vector of all phase angles in the network and ∆T = (∆Tij)(i,j)∈A
comprises all transmission line capacity investments. The objective of the TSO is to
effectively distribute the transmission system services considering lossless DC network
constraints and to optimize its revenues obtained due to these operations. The TSO’s
revenue optimization in this manner, in fact, ensures that firms cannot use market power
to obtain more transmission rights in the competitive market; see Hobbs (2001). In other
words, the system operator works as an arbitrageur who benefits from price differences
between nodes. Furthermore, in this model, the TSO also decides on transmission line
capacity investments ∆Tij for all transmission lines (i, j) ∈ A. The objective function (3a)
denotes the revenue of the TSO, calculated as the price differences multiplied by power
flows less discounted transmission line expansion costs. Constraints (3b) and (3c) model
lossless DC power flow. Upper bounds on the transmission line expansion are given in (3d)
and (3e) represents lower and upper bounds on the phase angles θi, i ∈ I.1 The phase
angle of the reference bus i0 is fixed in (3f) to ensure a unique physical solution and, finally,
(3g) ensures nonnegativity of capacity investments.

2.5. Market Clearing. As market clearing conditions we use the nodal flow balance
equations

di −
∑
f∈F

xfi +
∑

(i,j)∈A

Bij (θi − θj)−
∑

(j,i)∈A

Bji (θj − θi) = 0, i ∈ I. (4)

Note that demand di at node i is the sum of all firms’ sales to that node, i.e., di =
∑
f∈F sfi.

2.6. A Mixed Complementarity Market Equilibrium Model. The market equilib-
rium model including generation and transmission investments is mainly taken from Çelebi
(2017) and it is presented as the following MCP, which is obtained by concatenating the
optimality conditions (that are both necessary and sufficient in our case) of all players and
the market clearing conditions.2

0 ≤ di ⊥ πi − pi(di) ≥ 0, i ∈ I, (5a)
0 ≤ sfi ⊥ νf − πi ≥ 0, f ∈ F, i ∈ I, (5b)

0 ≤ xfi ⊥ copfi − νf + µfi ≥ 0, f ∈ F, i ∈ If , (5c)

0 ≤ ∆Kfi ⊥ cinv
fi − µfi + δfi ≥ 0, f ∈ F, i ∈ If , (5d)

νf free ⊥
∑
i∈I

sfi −
∑
i∈If

xfi = 0, f ∈ F, (5e)

1Note that the πi, i ∈ I, in the objective function (3a) represent prices, whereas π without an index
in (3e) stands for the circle number.

2Note that, since all constraints are linear, no further constraint qualification is required.
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0 ≤ µfi ⊥ Kfi + ∆Kfi − xfi ≥ 0, f ∈ F, i ∈ If , (5f)

0 ≤ δfi ⊥ ∆K+
fi −∆Kfi ≥ 0, f ∈ F, i ∈ If , (5g)

0 ≤ ∆Tij ⊥ cexp
ij − λ

−
ij − λ

+
ij + γij ≥ 0, (i, j) ∈ A, (5h)

0 ≤ λ+
ij ⊥ Tij + ∆Tij −Bij (θi − θj) ≥ 0, (i, j) ∈ A, (5i)

0 ≤ λ−ij ⊥ Tij + ∆Tij +Bij (θi − θj) ≥ 0, (i, j) ∈ A, (5j)

0 ≤ γij ⊥ ∆T+
ij −∆Tij ≥ 0, (i, j) ∈ A, (5k)

0 ≤ ε+
i ⊥ π − θi ≥ 0, i ∈ I \ {i0}, (5l)

0 ≤ ε−i ⊥ θi + π ≥ 0, i ∈ I \ {i0}, (5m)

θi free ⊥
∑

(i,j)∈A

Bij (πj − πi)−
∑

(j,i)∈A

Bji (πi − πj) (5n)

+
∑

(i,j)∈A

Bij
(
λ−ij − λ

+
ij

)
−

∑
(j,i)∈A

Bji
(
λ−ji − λ

+
ji

)
− ε+

i + ε−i = 0, i ∈ I \ {i0},

θi0 free ⊥
∑

(i,j)∈A

Bij (πj − πi)−
∑

(j,i)∈A

Bji (πi − πj) (5o)

+
∑

(i,j)∈A

Bij
(
λ−ij − λ

+
ij

)
−

∑
(j,i)∈A

Bji
(
λ−ji − λ

+
ji

)
= 0,

ξ free ⊥ θi0 = 0, (5p)

πi free ⊥ di −
∑
f∈F

xfi +
∑

(i,j)∈A

Bij (θi − θj) (5q)

−
∑

(j,i)∈A

Bji (θj − θi) = 0, i ∈ I.

Note that the market clearing conditions are equipped with the beforehand exogenously
given market prices as dual variables. Thus, we obtain a system in the primal variables
d, s, x,∆K, θ,∆T and in the dual variables ν, µ, δ, λ+, λ−, γ, ε−, ε+, ξ, π. A solution of this
system, by construction, corresponds to solutions of the separate optimization problems
presented in Sections 2.2–2.4 that also satisfy the market clearing conditions (4). Thus, a
solution of (5) is a market equilibrium and π = (πi)i∈I is the vector of market clearing
nodal prices.

2.7. An Equivalent Welfare Maximization Problem. It is well-known that the
MCP (5), which models the wholesale electricity market under perfect competition, is
equivalent to the welfare maximization problem (WMP)

max
z

∑
i∈I

∫ di

0

pi(ω) dω −
∑
f∈F

∑
i∈If

copfixfi +
∑
i∈If

cinv
fi ∆Kfi

− ∑
(i,j)∈A

cexp
ij ∆Tij (6a)

s.t. Consumers: (1b) for all i ∈ I, (6b)
Generating firms: (2b)–(2f) for all f ∈ F, (6c)
TSO: (3b)–(3g), (6d)
Market clearing: (4) (6e)

with variables z = (d>, s>, x>,∆K>, θ>,∆T>)> as before. The equivalence can be shown
by comparing the first-order optimality conditions of Problem (6)—which are, again,
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necessary and sufficient—with the MCP (5) and by identifying the dual variables of the
market clearing conditions in (6e) with the equilibrium prices πi, i ∈ I, of the MCP.

2.8. An Equivalent Variational Inequality. In this section, we also present an equiva-
lent formulation of the MCP model given in Section 2.6 as a variational inequality (VI). In
general, the latter is given as the following problem. Given a feasible set K ⊆ Rn and a
vector-valued mapping G : Rn → Rn, the variational inequality problem VI(G,K) is to
find a vector z∗ ∈ K that satisfies

G(z∗)>(z − z∗) ≥ 0 for all z ∈ K. (7)

One advantage of VI formulations (compared to MCPs) is that only primal variables appear
in the formulation. In the context of the market equilibrium problem studied so far, the
feasible set is given by the feasible sets of all players in the market equilibrium problem
and the market clearing conditions, i.e.,

K = {z : (6b)–(6e) are satisfied}. (8)

Note that this set is a convex polyhedron. The variable vector of the VI thus is given by z
and the VI’s mapping G is defined as

G(v) =



−(pi(di))i∈I
0

(copfi )f∈F,i∈If
(cinv
fi )f∈F,i∈If

0
(cexp
ij )(i,j)∈A

 ,

where 0 here stands for the zero vector in appropriate dimension.
We close this section with some brief comments on existence and uniqueness of market

equilibria. Existence can be easily shown using the VI approach of this section. Since
the function G is continuous and because a nonempty, convex, and compact set K̃ ⊆ K
exists that contains all solutions of the VI(G,K), standard VI theory can be applied that
ensures the existence of a solution. Since the VI is equivalent to the MCP (5) and to the
welfare maximization problem (6), this also implies the existence of solutions for these two
formulations. The situation is much more complicated when it comes to uniqueness of
solutions. To the best of our knowledge, there is no result in the literature that can be
applied directly to the setting studied in this paper. For a related long-run model without
DC power flow constraints, uniqueness of market equilibria is shown in Grimm, Schewe,
et al. (2017). Moreover, uniqueness of the solution of a short-run model, again without DC
power flow constraints is proven in Krebs and Schmidt (2018) for the case of transport
costs. However, the most related study is given in Krebs, Schewe, et al. (2018). There,
a short-run market equilibrium model is analyzed that also incorporates DC power flow
constraints. It is shown that equilibria are, in general, not unique. Thus, we do not expect
uniqueness of solutions for the setting considered in this paper.

3. A Γ-Robustified Market Model

We now turn to the discussion of possible uncertainties in the models of the last
section. In principle, the techniques presented in the following can be applied to handle
uncertainties of different data such as, e.g., the future willingness to pay of consumers,
the future operating costs of generators, or the future investment costs for extending the
capacity of a transmission line. Here, we focus on the former as a prototypical parameter
for two reasons. First, this parameter is very important in equilibrium models since demand
influences prices, which themselves influence generation and thus investment. Second,
considering future demand parameters as uncertain is also of great importance for practice;
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see, e.g., Bertsimas, Litvinov, et al. (2014), Jiang et al. (2014), and Mather and Munsing
(2017). In the following, we consider a Γ-robustification of the WMP (6). To this end, we
additionally assume that each inverse market demand function pi is linear and strictly
decreasing, i.e., pi(di) = ai + bidi with ai ≥ 0 and bi < 0. Thus, the MCP (5) is a mixed
linear complementarity problem (MLCP). In what follows, we consider uncertainty in the
intercepts ai, i ∈ I, of the demand functions and use box-uncertainty sets centered around
the nominal values. Thus, for given nominal values āi, i ∈ I, of the price-intercepts we
have ai = āi + ui with

u = (ui)i∈I ∈ U := {u ∈ R|I| : −∆ai ≤ ui ≤ ∆ai, ∆ai ≥ 0, i ∈ I, |{i ∈ I : ui 6= 0}| ≤ Γ}.
Here, |I| ≥ Γ ∈ N is the number of uncertain price-intercepts that we hedge against in a
worst-case sense. Next, we show that we obtain the same model if we either

(1) robustify the welfare maximization problem (6) or
(2) first robustify a properly chosen aggregated model of the consumers and then

derive an MLCP as well as an equivalent optimization model.
In the described Γ-robust setting, the robust counterpart of (6) reads as

max
z

∑
i∈I

∫ di

0

(āi + biω) dω −
∑
f∈F

∑
i∈If

copfixfi +
∑
i∈If

cinv
fi ∆Kfi

 (9a)

−
∑

(i,j)∈A

cexp
ij ∆Tij − max

{J⊆I : |J|≤Γ}

{∑
i∈J

∆aidi

}
s.t. (6b)–(6e). (9b)

Note that we only consider the price intercepts of the inverse market demand functions
to be uncertain, whereas the slopes are considered to be certain. The reasons for this are
twofold. First, this leads to a much more streamlined presentation of the results since we
omit the technicalities required if slopes are also uncertain. Second, it is rather standard
for electricity market equilibrium models including fluctuating demand of consumers that
are modeled using inverse market demand functions that price intercepts change over time
while the slopes are kept constant; see, e.g., Grimm, Martin, et al. (2016) and Grimm,
Schewe, et al. (2017). The same assumption is also made, e.g., in Gabriel and Fuller (2010)
for the case of uncertain demand. Regarding a study in which the slopes are considered to
be uncertain as well we refer to Kramer et al. (2018).

Using the techniques as in, e.g., Kramer et al. (2018) and Krebs and Schmidt (2020),
we obtain the following equivalent reformulation of the robust counterpart (9).

Theorem 3.1. The Γ-robust counterpart (9) of the welfare maximization problem (6) is
equivalent to

max
z,α,β

∑
i∈I

∫ di

0

(āi + biω) dω −
∑
f∈F

∑
i∈If

copfixfi +
∑
i∈If

cinv
fi ∆Kfi

 (10a)

−
∑

(i,j)∈A

cexpij ∆Tij −
∑
i∈I

βi − αΓ

s.t. (6b)–(6e), (10b)
βi + α−∆aidi ≥ 0, i ∈ I, [ρi] (10c)
βi ≥ 0, i ∈ I, (10d)
α ≥ 0, (10e)

where β = (βi)i∈I .
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In what follows, we abbreviate the robustified welfare maximization problem (10) by
RWMP. As RWMP is a concave maximization problem over a polyhedral feasible set, its
necessary and sufficient first-order optimality conditions can be stated as the MCP

0 ≤ di ⊥ πi + ∆aiρi − āi − bidi ≥ 0, i ∈ I, (11a)
0 ≤ sfi ⊥ νf − πi ≥ 0, f ∈ F, i ∈ I, (11b)

0 ≤ xfi ⊥ copfi − νf + µfi ≥ 0, f ∈ F, i ∈ If , (11c)

0 ≤ ∆Kfi ⊥ cinv
fi − µfi + δfi ≥ 0, f ∈ F, i ∈ If , (11d)

νf free ⊥
∑
i∈I

sfi −
∑
i∈If

xfi = 0, f ∈ F, (11e)

0 ≤ µfi ⊥ Kfi + ∆Kfi − xfi ≥ 0, f ∈ F, i ∈ If , (11f)
0 ≤ δfi ⊥ ∆K+

fi −∆Kfi ≥ 0, f ∈ F, i ∈ If , (11g)
0 ≤ ∆Tij ⊥ cexp

ij − λ
−
ij − λ

+
ij + γij ≥ 0, (i, j) ∈ A, (11h)

0 ≤ λ+
ij ⊥ Tij + ∆Tij −Bij (θi − θj) ≥ 0, (i, j) ∈ A, (11i)

0 ≤ λ−ij ⊥ Tij + ∆Tij +Bij (θi − θj) ≥ 0, (i, j) ∈ A, (11j)

0 ≤ γij ⊥ ∆T+
ij −∆Tij ≥ 0, (i, j) ∈ A, (11k)

0 ≤ ε+
i ⊥ π − θi ≥ 0, i ∈ I \ {i0}, (11l)

0 ≤ ε−i ⊥ θi + π ≥ 0, i ∈ I \ {i0}, (11m)

θi free ⊥
∑

(i,j)∈A

Bij (πj − πi)−
∑

(j,i)∈A

Bji (πi − πj) (11n)

+
∑

(i,j)∈A

Bij
(
λ−ij − λ

+
ij

)
−

∑
(j,i)∈A

Bji
(
λ−ji − λ

+
ji

)
− ε+

i + ε−i = 0, i ∈ I \ {i0},

θi0 free ⊥
∑

(i,j)∈A

Bij (πj − πi)−
∑

(j,i)∈A

Bji (πi − πj) (11o)

+
∑

(i,j)∈A

Bij
(
λ−ij − λ

+
ij

)
−

∑
(j,i)∈A

Bji
(
λ−ji − λ

+
ji

)
= 0,

ξ free ⊥ θi0 = 0, (11p)

πi free ⊥ di −
∑
f∈F

xfi +
∑

(i,j)∈A

Bij (θi − θj) (11q)

−
∑

(j,i)∈A

Bji (θj − θi) = 0, i ∈ I,

0 ≤ α ⊥Γ−
∑
i∈I

ρi ≥ 0, (11r)

0 ≤ βi ⊥1− ρi ≥ 0, i ∈ I, (11s)

which we denote in the following by RMCP. This system is the same as (5) together with
(11r) and (11s). Moreover, in (11a) we have the additional term ∆aiρi compared to (5a).

Next, we robustify the aggregated consumer model, i.e., the model

max
d

∑
i∈I

(∫ di

0

pi(ω) dω − πidi

)
(12a)

s.t. di ≥ 0, i ∈ I. (12b)
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Its robust counterpart is given by

max
d

∑
i∈I

∫ di

0

(āi + biω) dω −
∑
i∈I

πidi − max
{J⊆I : |J|≤Γ}

{∑
i∈J

∆aidi

}
(13a)

s.t. di ≥ 0, i ∈ I. (13b)

Again, using the techniques as in, e.g., Kramer et al. (2018) and Krebs and Schmidt (2020),
we obtain the following reformulation of the robust counterpart (13).

Theorem 3.2. The Γ-robust counterpart (13) is equivalent to

max
d,α,β

∑
i∈I

∫ di

0

(āi + biω) dω −
∑
i∈I

πidi − αΓ−
∑
i∈I

βi (14a)

s.t. βi + α−∆aidi ≥ 0, i ∈ I, (14b)
di ≥ 0, βi ≥ 0, i ∈ I, (14c)
α ≥ 0. (14d)

Now, we put all first-order optimality conditions of the generating firms, TSO, robustified
aggregated consumer (14), and the nodal flow balance equations together. We call the
resulting system the robust market equilibrium problem (RMEP). This system is equivalent
to (11) resp. (10). The equivalence can be shown by comparing the first-order optimality
conditions (11) of (10) with the RMEP and by identifying the dual variables of the flow
balance equations with the equilibrium prices πi, i ∈ I, of the RMCP.

As we did for the MCP (5) in Section 2.8, we also present an equivalent formulation of
the RMCP as a variational inequality. We use the same notation as in Section 2.8. The
variable vector is given by v = (z>, α, β>)> and the feasible set reads

K = {v : (10b)–(10e) are satisfied}. (15)

Finally, the VI’s mapping G is defined as

G(v) =



−(āi + bidi)i∈I
0

(copfi )f∈F,i∈If
(cinv
fi )f∈F,i∈If

0
(cexp
ij )(i,j)∈A

Γ
(1)i∈I


.

The existence of Γ-robustified solutions can be shown in analogy to the existence of nominal
solutions as discussed at the end of Section 2.

4. Case Study #1: A 3-Bus Example

In this section, we apply the Γ-robust market equilibrium problem with transmission and
generation investments derived in the last section to the academic 3-bus test system given
in Figure 1. This test case is taken and adapted from Hobbs (2001). The situation is as
follows. Firm 1 is located at bus 1 and firm 2 is located at bus 2. Both firms can invest in
additional generation capacity. Demand, which is modeled using linearly decreasing inverse
market demand functions is located at all three buses and all buses are connected with
each other via existing transmission lines. The line connecting bus 1 and 2 has significantly
less capacity and is the only transmission line for which the transmission capacity can be
extended. All specific generation, demand, and line parameters are given in Table 2. Note
that generation and transmission expansion cost parameters are discounted assuming a
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Bus	1 Bus	2

Bus	3

f1 f2

d3

d2d1

Figure 1. 3-bus test system.

Table 2. The parameters for the 3-bus system.

Generation parameters Unit Firm 1 Firm 2

copfi $/MWh 15 20
cinv
fi $/MW/year 15 000 12 000
Kfi $/MW 480 350
∆K+

fi MW 100 100

Demand parameters Unit Bus 1 Bus 2 Bus 3

ai $ 40 40 32
bi $/MW 0.08 0.08 0.0516

Line parameters Unit Line 1-2 Line 1-3 Line 2-3

cexp
ij $/MW/year 21 000 — —
Tij MW 25 1000 1000
∆T+

ij MW 50 — —
Bij S (= Ω−1) 100 100 100

lifetime of 20 years and an interest rate of 3% per year. In this case study, we assume a
representative hour that repeats itself during the year, i.e., 8760 times, and investment
costs are discounted to a year.

We implemented both the nominal and the robustified market equilibrium problem
as a variational inequality in GAMS (version 24.6.1; see GAMS (2013)) and solved them
using PATH (version 4.7.04; see Ferris and Munson (2000)) and the extended mathematical
programming (EMP) framework by Ferris, Dirkse, et al. (2009) on a 2.3GHz processor
and 8GB RAM. As this is a small-scale illustrative example, the solution times are less
than a second for all considered models.

For getting some intuition for the equilibria in the deterministic setting, we first discuss
the solutions of the nominal case in Section 4.1. Afterward, we discuss the numerical
results for the Γ-robust market equilibria in Section 4.2.

4.1. The Deterministic Case. We start with discussing the numerical results for the
nominal case and for four different scenarios that are characterized by the following two
decisions.

Investment: We consider the case in which both firms and the TSO are allowed
to invest in generation and transmission capacity, respectively, and the case in
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Table 3. Numerical results for the market equilibrium model with and
without investment as well as with and without congestion. All values in
the lower part of the table are given in thousands.

Congestion No congestion
Investment No investment Investment No investment

d1 291.1 304.9 250 250
d2 250 249.9 250 250
d3 264.4 275.1 232.6 232.6
pi(d1) 16.71 15.6 20 20
pi(d2) 20 20.004 20 20
pi(d3) 18.35 17.8 20 20
x11 535.8 480 480 480
x22 269.7 350 252.6 252.6
∆T1−2 50 — 0 —
∆K11 55.8 — 0 —
∆K22 0 — 0 —
Flow on line 1-2 75 25 75.8 75.8
Flow on line 1-3 169.7 150.1 154.2 154.2
Flow on line 2-3 94.7 125.1 78.4 78.4

Profit of firm 1 7 200 2 541 21 024 21 024
Profit of firm 2 0 134 0 0
TSO revenue 3 240 14 454 0 0
Gen. exp. cost 837 — 0 —
Trans. exp. cost 1 050 — 0 —
Consumer surplus 67 393 71 580 56 023 56 023
Total surplus 78 670 75 580 77 047 77 047
Net surplus 76 783 75 580 77 047 77 047

which investment is not possible. The latter is obtained by setting ∆K+
fi = 0 and

∆T+
ij = 0.

Congestion: We consider the case in which congestion can appear and the case in
which transmission line capacities are considered to be sufficiently large. For the
former case, we use the capacities given in Table 2.

All results for all four possible scenarios are summarized in Table 3. First, without
transmission line congestion, there is no investment (see the 4th and 5th column in Table 3)—
even in the case in which it is allowed. As expected, without network congestion, net
surplus is maximal (at an annual value of 77 047 000). The profit of firm 1 (which can
produce cheaper than firm 2) in this case is the maximum and firm 2 (the more expensive
one) makes no profit. Thus, the marginal operating cost of firm 2, i.e., 20 $/MWh, sets all
nodal prices, which are equal since without congestion no price differences appear. Because
an uncongested network does not lead to any investment incentives for the generating
firms, generation and demand are strictly bounded above and, thus, consumer surplus
(56 023 000) is small compared to the congested network cases.

If no investment is allowed in the case with congestion (3rd column), the profit of firm 1
is minimal. As it is the case also for firm 2, firm 1 produces at its capacity. Investment in
generation capacity would be profitable (2 541 000 in column 3 vs. 7 200 000 in column 2)
but is not possible. Moreover, the profit for firm 2 is maximal (134 000), which is the
only setting in which firm 2 makes profit. This is due to the fact that firm 2 sells its
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entire generation (350MW) from bus 2 to the TSO (at a price of 20.004, which is slightly
higher than its operating costs of 20) and the TSO pays/gets a wheeling fee from firm 2 for
transmitting power to buses 1 and 3. This wheeling fee is given by pi(di)− p3(d3) (since
we choose bus 3 to be the reference bus) and is negative (-2.2) for bus 1 but positive for
node 2 (2.2). The profit for firm 2 is (p2(d2)− cop22)x22, because this formula omits wheeling
fees the TSO gets/pays from/to firm 2 in order to transmit power to other nodes. This
explanation is in line with the more detailed explanation given in, e.g., Hobbs (2001) and
Metzler et al. (2003). Thus, also the TSO’s revenues are maximal in this case since price
differences are maximal. Indeed, the nodal prices are the lowest at bus 1 and 3 and highest
at bus 2, where the price is the same for all scenarios.

Finally, when investments are allowed and there is congestion in the system, a better net
surplus value is observed compared to the case without investments. This can be expected
as new investment in transmission and generation capacity allows for higher net surplus.
The profit of firm 1 is better off, whereas profit of firm 2 reduces completely to 0. Only
in this case, a generation investment by firm 1 (55.8MW) and a transmission expansion
by the TSO (50MW on line 1-2) can be observed. Thus (and as usual), scarce network
capacities lead to investment incentives for generation. This, in turn, yields slightly higher
nodal prices, except for bus 2. Since this case (2nd column) is for sure the most interesting
one, it will be the base case for discussing the results of the robustified models in the next
section.

4.2. The Γ-Robust Case. In this section, we present and discuss the results for the
Γ-robustified market equilibrium models. We consider uncertain demand, which is modeled
via uncertain price-intercepts ai, i = 1, 2, 3, of the inverse market demand functions of the
consumers. Since we have three consumers, we consider robustified equilibrium models
for Γ ∈ {0, 1, 2, 3}, where Γ = 0 corresponds to the nominal case and larger values of Γ
lead to more conservative solutions. In particular, for Γ = 3 we obtain the strictly robust
counterpart so that the most conservative case is also covered. Moreover, we also vary the
size of the uncertainty interval around the nominal price-intercept āi. Here, we consider
intervals with 20% to 80% deviation around the nominal values. Again, larger possible
deviations lead to more conservative solutions.

Demands and Prices. We start by discussing nodal demands and prices in the robustified
market equilibria; see Figure 2. The results show a clear pattern. With increasing
uncertainty (i.e., larger Γ and/or larger uncertainty intervals), demands and prices are
decreasing. This is in line with the results reported in Kramer et al. (2018) and can be
explained as follows. The worst-case for the consumers corresponds to small surpluses, which
are obtained if the price-intercept uncertainty reveals so that the consumer’s willingness to
pay decreases. Since a decreased willingness to pay leads to less demand and thus smaller
prices, this explains the trends visible in Figure 2. One can also see that the prices converge
to the operating cost of the cheapest producer in the network (firm 1 at bus 1). This,
in particular, means that price differences converge to 0 in the network, i.e., uncertainty
decreases regional differentiation between nodes that are visible in the nominal solution
due to network constraints. Moreover, note that the demands decrease faster than price
differences, which will be important for a later discussion.

Generation and Sales. Figure 3 shows all generation and sales for all considered values
of Γ and all considered uncertainty set sizes. The left-most figures (Γ = 0) show the results
for the nominal equilibrium model. It can be seen in the top-most figure that generation is
decreasing for larger uncertainty—which is clear since demands decrease as well. Moreover,
both generators decrease their generation in almost the same way, leading to almost parallel
curves. This also leads to the fact that firm 2 stops generation earlier than firm 1 simply
because of its higher operating costs. Regarding sold quantities, we observe non-monotone
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Figure 2. Top: nodal demands (di in MWh) vs. different uncertainty in-
terval sizes. Bottom: nodal prices (πi in $/MWh) vs. different uncertainty
interval sizes. Both for Γ ∈ {0, 1, 2, 3}.

behavior. We discuss the case of Γ = 2 for the sales of firm 1 in detail, where we have
an increase in sales of firm 1 to the consumer at bus 1 when we go from 40% to 60% of
possible deviation from the nominal price-intercepts. This increase in uncertainty leads to
less demand, which in turn excludes the more expensive firm 2 from the market; see Γ = 2
in the top-most figure. Thus, the cheaper firm 1 needs to step in to satisfy the remaining
demand. As a consequence, a larger uncertainty can—in special situations—also lead to an
increase in sales for certain firms that remain in the market when others get too expensive
to satisfy the reduced demand.

Up to now, we observed that both demands and generations decrease if uncertainty
increases. It is thus not surprising that consumer as well as total and net surplus decrease
as well—see Figure 4, where it can be seen that all surplus measures converge to zero with
larger uncertainty. We also observe that profit of firms almost immediately converge to
zero in all uncertain cases. This means that almost all surplus is collected by the TSO.

Generation vs. Transmission Investment. As for the nominal case, we never observe
investment in generation capacity of firm 2 so that Figure 5 only shows investments in
generation capacity by firm 1 and by the TSO in additional transmission capacity for
line 1-2. For the nominal case (Γ = 0), we see that both firm 1 and the TSO are investing
in additional capacity. However, for Γ ≥ 1, firm 1 stops investing directly, whereas the
TSO still invests for Γ = 1 (independent of the size of the uncertainty sets) and also
still invests for Γ ∈ {2, 3} for smaller uncertainty sets. It thus seems to be the case that
generating firms act in a more risk-averse way whereas the TSO behaves more risk-neutral.
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Figure 3. Top: total generation by each firm (xfi in MWh). Mid and
bottom: Sales by firm 1 (mid; s1i in MWh) and 2 (bottom; s2i in MWh)
at each node of the network. All vs. different uncertainty interval sizes
and for Γ ∈ {0, 1, 2, 3}.

Putting it differently, the TSO pays the cost of uncertainty. The explanation is as follows:
For this case study, it is obvious that the capacity of line 1-2 is very strict. Hence, in
most scenarios it is better to invest in transmission capacity in order to maximize net
surplus. Moreover, we already mentioned above that demands decrease faster than price
differences if we increase the degree of uncertainty. Since total generation needs to decrease
as total demand decreases, investment incentives for generating firms get weaker for larger
uncertainty. On the other hand, we already observed that price differences stay larger also
for larger uncertainties. Since the TSO mainly earns via price differences, cf. Problem (3),
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Figure 4. Surplus values (in $) vs. different uncertainty interval sizes
and for Γ ∈ {0, 1, 2, 3}.
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Figure 5. Investments (in MW) vs. different uncertainty interval sizes
and for Γ ∈ {0, 1, 2, 3}.

investment incentives for the TSO decrease more slowly than for generating firms when we
increase Γ or the size of the uncertainty intervals.

5. Case Study #2: A 30-Bus Example

In this section, a modified IEEE 30-bus system from Jin (2012) and Sauma and Oren
(2006) is used to demonstrate our approach for a larger case. In this case study, there
are 6 generators (located at buses 1, 2, 13, 22, 23, and 27) and 39 lines. Different than
the modified case study in Jin (2012), we do not consider new candidate lines, which
would require binary variables for modeling expansion decisions. Another difference from
both the studies in Sauma and Oren (2006) and Jin (2012) is that we do not include
quadratic cost parameters for generators in our model. Indeed, some preliminary numerical
experiments revealed that the main conclusions are very similar with or without quadratic
generation cost terms, which is why we choose to consider the simplified linear setting here
for brevity. All firms can invest in generation capacity and all 39 existing lines are eligible
for transmission expansion. The remaining generation, demand, and line parameters are
presented in Sauma and Oren (2006) and in Appendix 5.A of Jin (2012). Similar to the case
study in Section 4, we have solved both the nominal and the robustified market equilibrium
problems as a variational inequality. All instances are again solved in less than 1 s.
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Table 4. Numerical results for the IEEE-30 bus system market equilib-
rium model with and without investment as well as with and without
congestion. Values in upper part of the table are in MW and values in
lower part of the table are $/hour.

Congestion No congestion
Investment No investment w/wo Investment

Total demand 521.47 358.57 358.60
x1 8.33 58.57 58.60
x2 160 60 60
x13 67.64 60 60
x22 121.98 60 60
x23 77.20 60 60
x27 86.32 60 60
∆T15−23 5.22 — —
∆T21−22 20.04 — —
∆T22−24 1.88 — —
∆T25−27 3.69 — —
∆Kf2 100.00 — —
∆Kf13 7.64 — —
∆Kf22 61.98 — —
∆Kf23 17.20 — —
∆Kf27 26.32 — —

Profit of firm 1 — — —
Profit of firm 2 1581.40 927.35 923.96
Profit of firm 13 541.11 797.92 854.33
Profit of firm 22 975.86 1784.54 1819.79
Profit of firm 23 617.60 982.54 1248.50
Profit of firm 27 690.56 1670.12 1630.87
Total profit 4406.53 6162.47 6477.45
TSO revenue 4612.61 2447.87 2313.96
Gen. exp. cost 1705.12 — —
Trans. exp. cost 123.33 — —
Consumer surplus 6707.50 3451.38 3344.83
Total surplus 15 726.63 12 061.72 12 136.24
Net surplus 13 898.18 12 061.72 12 136.24

5.1. The Deterministic Case. Similar to the scenarios in Table 3 of Section 4.1, the
results for the nominal case are presented in Table 4. Without transmission line congestion,
the results are identical for the cases with and without investments, which is why we list
them as a single column (last column of Table 4). For the other cases, the table shows
all generation investments by all firms and all transmission line investments by the TSO
for the nominal case. It is visible that there is substantial generation and transmission
investment in the case of network congestion. Hence, total and net surpluses are maximal,
but the firms’ total profit (i.e., producer surplus) is minimal—only firm 2 enjoys extra
profits when compared to the other cases.

The upper bound of generation for all firms is 60MW and all firms except firm 1 are
producing at this bound in the uncongested network cases and in the case with congestion
but without investment (3rd and 4th column).



Γ-ROBUST ELECTRICITY MARKET EQUILIBRIUM MODELS WITH INVESTMENTS 19

● ● ● ●

●

●

●
●

●

●

●
●

●

●

●

●

Γ = 0 Γ = 10 Γ = 20 Γ = 30

20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

0

5000

10000

15000

● Cons. Surp.
Net Surp.

Total Surp.

Figure 6. Surplus values (in $/hour) vs. different uncertainty interval
sizes and for Γ ∈ {0, 10, 20, 30}.
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Figure 7. Generation investments by firms as percent of the generation
investments in the nominal case under different uncertainty interval sizes
and for Γ ∈ {0, 10, 20, 30}.

5.2. The Γ-Robust Case. In this section, we consider the Γ-robustified equilibrium
model for Γ ∈ {0, 10, 20, 30}, where Γ = 0 is equivalent to the nominal case and larger
values lead to more conservative solutions. Note again that for Γ = 30, we obtain the
strictly robust case. As in Section 4.2, we vary the size of the uncertainty interval around
the nominal price-intercept āi between 20% to 80% of the nominal values.

We observe results regarding demand, prices, generation, and sales that are comparable
to those for the 3-bus study. For instance, as uncertainty increases, consumer, total and
net surpluses converge to zero; see Figure 6, which shows qualitatively the same behavior
as Figure 4 for the 3-bus study.

In this case study, we have resorted our attention to the investment behavior of firms
and the TSO, since these aspects also are the most interesting ones in the 3-bus case
study. Figure 7 and 8 show the investments by firms in additional generation capacity
as well as line investments by the TSO in the Γ-robustified settings for different levels of
uncertainty. In both figures, the values are given as percentages w.r.t. the investments in
the nominal case. It can again be seen that investments monotonically decrease if the level
of uncertainty increases. Moreover, the investments of the TSO stay larger for increased
levels of uncertainty when compared to the generation investments of the firms. This is
similar to the observation for the 3-bus network in Section 4: Generating firms act in
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Figure 8. Transmission investments by TSO at certain lines as percent
of the transmission investments at certain lines in the nominal case under
different uncertainty interval sizes and for Γ ∈ {0, 10, 20, 30}.
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Figure 9. Percent change in generation and transmission investment
costs under different uncertainty interval sizes and for Γ ∈ {0, 10, 20, 30}.

a more risk-averse way compared to the TSO who behaves more risk-neutral. This is
also clearly supported by the level of expansion cost depicted in Figure 9, where also the
generation firms’ investment costs decline faster then the TSO’s investment costs.

6. Conclusion

In this paper, we applied the concept of Γ-robustness to electricity market equilibrium
models including investment opportunities in additional generation or transmission line
capacity. To this end, we first introduced the nominal, i.e., certain, equilibrium problem as
an MCP and also stated its variational inequality and welfare maximization counterpart. We
then Γ-robustified the latter and showed that the resulting robustified welfare maximization
problem is equivalent to a suitably chosen equilibrium model derived from suitably chosen
and robustified consumer problems. This shows that the robustified market equilibrium
problem is indeed economically meaningful. In two detailed case studies we afterward
presented numerical results for the robustified setting and then discussed the effects of
robustification. In particular, in both case studies we observed a rather risk-neutral
investment behavior for the TSO, whereas generating firms stop investments already
for mild uncertainties and thus, act in a more risk-averse manner. Since this behavior
can be observed for both considered networks and due to the explanations that we give
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for this behavior, we think that this qualitative difference between the investment of
firms and the TSO is generalizable. However, we admit that the robustification of other
uncertain parameters like production costs or technical network data might lead to different
observations.

The area of robust market equilibria is a rather young field of research. Consequently,
there are still many open research questions. Based on what we presented in this paper,
we propose the following questions as interesting topics of future work:

(1) How does robust equilibrium modeling interferes with market power modeling?
It might be interesting to compare, both theoretically and computationally, how
robust market equilibria depend on whether perfect competition models or models
capturing market power are used.

(2) Which other concepts of robust optimization can be carried over to market equilib-
rium modeling? It might, e.g., be interesting to see which effects can be observed
when applying the concept of adjustable robustness to equilibrium models.

(3) What policy conclusions can be drawn from applying robust equilibrium models
to real-world electricity markets? Since, for sure, many parameters of electricity
market models are uncertain (such as investment and operating costs of generating
firms), such studies might be both of scientific as well as political interest.

Finally, let us close this paper with a rather general topic. The scientific community dealing
with energy market equilibrium models is often discussing the question of what the “correct
model” looks like. Should it be deterministic but with a high level of physical accuracy? Is
a proper modeling of physics maybe less important but should there be a stronger emphasis
on uncertainty modeling? If a stronger emphasis on uncertainty modeling is required, what
kind of uncertainty model (stochastic or robust—risk-neutral or highly risk-averse) is the
right one? These questions are long-lasting because they are hard to answer. Since in the
recent past, more and more robust aspects entered the stage of energy market equilibrium
modeling—and this paper hopefully serves as one contribution into this direction—a proper
analysis now seems more achievable as before. For instance, equilibrium models including
different ways of handling uncertainty can be fitted against real-world market outcomes to
shed some light on the appropriateness of stochastic and robust equilibrium modeling.
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