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Abstract. As a result of its liberalization, the European gas market is orga-
nized as an entry-exit system in order to decouple the trading and transport
of natural gas. Roughly summarized, the gas market organization consists
of four subsequent stages. First, the transmission system operator (TSO)
is obliged to allocate so-called maximal technical capacities for the nodes of
the network. Second, the TSO and the gas traders sign mid- to long-term
capacity-right contracts, where the capacity is bounded above by the allocated
technical capacities. These contracts are called bookings. Third, on a day-
ahead basis, gas traders can nominate the amount of gas that they inject or
withdraw from the network at entry and exit nodes, where the nominated
amount is bounded above by the respective booking. Fourth and finally, the
TSO has to operate the network such that the nominated amounts of gas can
be transported. By signing the booking contract, the TSO guarantees that
all possibly resulting nominations can indeed be transported. Consequently,
maximal technical capacities have to satisfy that all nominations that comply
with these technical capacities can be transported through the network. This
leads to a highly challenging mathematical optimization problem. We consider
the specific instantiations of this problem in which we assume capacitated
linear as well as potential-based flow models. In this contribution, we formally
introduce the problem of Computing Technical Capacities (CTC) and prove that
it is NP-complete on trees and NP-hard in general. To this end, we first reduce
the Subset Sum problem to CTC for the case of capacitated linear flows in
trees. Afterward, we extend this result to CTC with potential-based flows and
show that this problem is also NP-complete on trees by reducing it to the
case of capacitated linear flow. Since the hardness results are obtained for the
easiest case, i.e., on tree-shaped networks with capacitated linear as well as
potential-based flows, this implies the hardness of CTC for more general graph
classes.

1. Introduction

The European gas market is organized as a so-called entry-exit market system,
which has been the outcome of the European gas market liberalization; see [6–8].
The main goal of the entry-exit system is to decouple the trading and transport
of gas. The current market organization that should achieve this goal is mainly
split into different stages in which the transmission system operator (TSO) and
the gas traders interact with each other. First, the TSO is obliged to allocate
so-called maximal technical capacities at all nodes of the network at which gas can
be injected or withdrawn. After determining the maximal technical capacities, the
TSO and the gas traders sign mid- to long-term capacity-right contracts, called
bookings, in which the traders buy rights for the maximal injection or withdrawal
at certain entry and exit nodes of the network. In doing so, the maximal bookable
capacities are bounded from above by the maximal technical capacities. These mid-
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to long-term booking contracts bound the amounts of gas that traders can nominate
on a day-ahead market. On this day-ahead basis, the traders nominate the amount
of gas that they inject or withdraw on the next day while the nominated amount of
gas is bounded above by the beforehand determined bookings. Finally, the TSO has
to operate the network such that the nominated amount of gas is transported as
requested. By signing the booking contract, the TSO has to guarantee the feasibility
of transport for every booking-compliant nomination, i.e., every nomination below
the booked capacity. Since the gas traders can sign any booking below the maximal
technical capacities, the TSO has to guarantee that all technical-capacities-compliant
nominations, i.e., infinitely many flow situations, can be transported through the
network. Thus, computing maximal technical capacities in the European gas market
leads to a challenging mathematical problem. A mathematical model of the European
entry-exit gas market system that models the described market organization has
been developed in [16]. The model is a four-level model and it is shown that, under
suitable assumptions, it can be reformulated as an equivalent bilevel model. Here, we
focus on the first stage where the maximal technical capacities need to be computed.
For doing so, we consider passive networks, i.e., no controllable network devices like
valves or compressors exist. We further focus on stationary models of gas transport
with capacitated linear flow models as well as on potential-based flows as used in,
e.g., [17, 29]. One of the main differences between capacitated linear flows and the
more accurate potential-based flow models is that, in the latter, no cyclic flows are
possible. On the one hand, this provides additional structure that can be exploited
for analyzing the feasibility of nominations and bookings as well as the maximization
of technical capacities. However, on the other hand, the coupling between node
potentials and arc flows usually is nonlinear and thus, leads to a harder class of
optimization problems.

Mathematical optimization methods for gas transport networks have been studied
with great interest in the last decades. For a comprehensive overview of this field see,
e.g., the book [20] and the survey article [27] as well as the references therein. Most of
the literature focuses on checking the feasibility of a single nomination as well as its
transport through the network. In [2] and [5], the cost-optimal gas transport in the
Belgian network before and after the European market liberalization is discussed. In
these papers, the gas physics is approximated by piecewise-linear functions, leading
to mixed-integer linear programs (MILPs). Alternative approaches that are also
based on MILP techniques can be found in [12, 13, 24]. Further, purely continuous
and physically accurate nonlinear optimization models are, e.g., studied in [30–32].
Even more sophisticated nonlinear mixed-integer models are considered, e.g., in [14,
15, 19]. Checking the feasibility of a nomination considering a capacitated linear
flow model is in P, since the task can be modeled as a linear program. Additionally,
the same holds in case of potential-based networks; see [4, 25]. In case of networks
with active elements, deciding the feasibility of a nomination is NP-hard for the
potential-based flow model; see [34].

In contrast to the rich literature on nominations, there is much less published
research on the feasibility of bookings. Deciding the feasibility of a given booking
consists of checking the feasibility of all booking-compliant nominations, i.e., of all
infinitely many nominations within the given booking bounds. Thus, this problem
can also be seen as a two-stage or adjustable robust optimization problem, see,
e.g., [3], where the uncertainty set is given by the booking-compliant nominations.
First results about the mathematical analysis of bookings are obtained in the
PhD theses [18, 36]. Moreover, the reservation-allocation problem studied in [10]
is also related to the feasibility of bookings. Considering the robust side, a set
containment approach to decide the robust feasibility and infeasibility of bookings
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with an application to the Greek gas transport network is studied in [1]. In general,
structural properties such as (non-)convexity and star-shapedness of the set of
feasible nominations and bookings for different gas transport models are considered
in [29]. For networks consisting of pipes only together with potential-based flows,
the feasibility of bookings can be characterized by conditions on nominations with
maximal potential difference; see [21]. Further, there it is shown that in case of
a linear potential-based flow model, this characterization enables us to check the
feasibility of a booking in polynomial time. Additionally, this is also possible in
case of nonlinear potential-based flows in tree-shaped networks; see [21, 28]. Using
special structures of the nomination with maximal potential difference together
with techniques from real algebraic geometry enables the authors of [22] to show
that checking the feasibility of a booking in a single cycle network is in P. For the
general case, i.e., a nonlinear potential-based flow model on arbitrary networks, the
complexity of checking the feasibility of a booking is not yet decided and an open
question for research. In the linear case, deciding the feasibility of a booking is
shown to be in coNP in [18, 21]. For the case of a capacitated linear flow model,
checking the feasibility of a booking is coNP-complete for cyclic networks, but it
can be solved in polynomial time for trees; see [18]. An illustrative overview about
the computational complexity of checking the feasibility of a booking is given in
Section 6 of [21].

For computing maximal technical capacities as introduced in, e.g., [23], there is
much less in the literature compared to the results for nominations and even less
compared to the feasibility of bookings. First results about technical capacities are
again obtained in the PhD theses [18, 36]. Further, for the case of a capacitated
linear flow model, exponential upper bounds for computing technical capacities are
given in [18].

Our contribution is the following. We prove that computing maximal technical
capacities is NP-complete for capacitated linear flows as well as potential-based flow
models in tree-shaped networks. The proof is obtained by reducing the Subset Sum
problem to computing maximal technical capacities for capacitated linear flows on
trees. Afterward, we reduce computing maximal technical capacities with potential-
based flows to the case of capacitated linear flows. Consequently, computing maximal
technical capacities is significantly harder than checking the feasibility of bookings,
since the latter can be done in polynomial time on trees. Note that our complexity
results are obtained on trees. Thus, computing technical capacities remains hard on
more complex graph classes like on general graphs. We summarize our contribution,
together with a review of the results from the literature, in Table 1.

The remainder of this paper is structured as follows. In Section 2, the problem of
computing maximal technical capacities is formally defined. The NP-completeness
of computing maximal technical capacities for capacitated linear flow models on
trees is shown in Section 3. Afterward, in Section 4 we extend this result by showing
that this problem is also NP-complete for potential-based instead of capacitated
linear flows. Finally, we close with a conclusion in Section 5.

2. Problem Description

In general, our problem description follows the one in [22]. We consider a directed
and connected graph G = (V,A) with nodes V and arcs A. The set of nodes is
partitioned into the set V+ of entry nodes, at which gas is supplied, the set V− of
exit nodes, where gas is withdrawn, and the set V0 of the remaining inner nodes.
We abbreviate the set V+ ∪ V− by Vb. The node types are also encoded in a vector
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Table 1. Complexity of computing technical capacities for different
flow models (capacitated linear flow (lin.), linear potential-based
(lin. pot.), and nonlinear potential-based (nonlin. pot.)) and differ-
ent graph classes (trees vs. general graphs).

Graph Flow Model Complexity References

Membership in NP NP-hardness

Tree lin. NP-complete [18, Prop. 3.2.7] Thm. 3.19
Tree lin. pot. NP-complete [22, Thm. 12, 28, Thm. 4] Thm. 4.10
Tree nonlin. pot. NP-complete [22, Thm. 20, 28, Thm. 4] Thm. 4.9

General lin. NP-hard Thm. 3.19,
[18] (implicit)

General lin. pot. NP-complete [22, Thm. 12] Thm. 4.10
General nonlin. pot. NP-hard Thm. 4.9

σ = (σu)u∈V defined by

σu =


1, if u ∈ V+,
−1, if u ∈ V−,
0, if u ∈ V0.

We now introduce basic definitions that we use in the following.

Definition 2.1. A load flow is a vector ` = (`u)u∈V ∈ RV≥0, with `u = 0 for all
u ∈ V0. The set of load flow vectors is denoted by L.

A load flow thus corresponds to an actual situation at a single point in time by
specifying the amount of gas that is supplied (`u for u ∈ V+) or withdrawn (`u
for u ∈ V−). Since we only consider stationary flows, we need to impose that the
supplied amount of gas equals the withdrawn amount, which leads to the definition
of a nomination.

Definition 2.2. A nomination is a balanced load flow `, i.e., σ>` = 0. The set of
nominations is given by N := {` ∈ L : σ>` = 0}.

Nominations and bookings are connected as follows.

Definition 2.3. A booking is a vector b = (bu)u∈V ∈ RV≥0, with bu = 0 for all
u ∈ V0. A nomination ` is called booking-compliant w.r.t. the booking b if ` ≤ b
holds, where “≤” is meant component-wise. The set of booking-compliant (or
b-compliant) nominations is given by N(b) := {` ∈ N : ` ≤ b}.

Obviously, N(b) ⊆ N ⊆ L holds for finite b.
We now define feasible nominations and feasible bookings, where “feasible” is

meant w.r.t. technical, physical, and legal constraints of gas transport. To this
end, let cE(x; `) = 0 and cI(x; `) ≥ 0 be the possibly nonlinear, nonconvex, and
nonsmooth constraints that model the full problem of gas transport.

Definition 2.4. A nomination ` ∈ N is feasible if a vector x ∈ Rn exists such that

cE(x; `) = 0, cI(x; `) ≥ 0 (1)

holds. The set of feasible nominations is denoted by FN .

We note that the set of feasible nominations FN depends on the chosen model
of gas transport. The only constraint that we need in all formulations is mass
conservation at each node of the network, i.e.,∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu for all u ∈ V, (2)
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where qu ≥ 0 for entries, qu ≤ 0 for exits, and qu = 0 for inner nodes.
The dependence of the feasible set defined in (1) on the nomination is given by a

fixation of the entry and exit flows according to the nomination `, i.e.,

qu = `u for all u ∈ V+, qu = −`u for all u ∈ V−.
These constraints are part of cE(x; `) = 0 in (1).

For a nomination ` ∈ N , we say that q ∈ RA is an `-flow if and only if q satisfies
Condition (2). We note that to check whether a given nomination is feasible may
lead to a nonlinear and nonconvex problem depending on the constraints cE and cI .
For more information on this problem, see, e.g., [20, 26] and the references therein.

Definition 2.5. We say that a booking b is feasible if all booking-compliant nomi-
nations ` ∈ N(b) are feasible. The set of feasible bookings is denoted by FB .

Due to the liberalization of the European gas market, trading and transport are
decoupled. This is mainly ensured by the so-called technical capacities. The TSO is
obliged to allocate such capacities while guaranteeing the feasibility of transport for
any balanced injections at entry nodes and withdrawals at exit nodes within these
capacities.

Definition 2.6. Technical capacities are a vector qC = (qCu )u∈V ∈ RV≥0 with qCu = 0
for u ∈ V0. The set of technical capacities is denoted by C.

We note that technical capacities qC can also be seen as a booking.

Definition 2.7. We say that technical capacities qC are feasible if all bookings
b ∈ B with b ≤ qC are feasible. The set of feasible technical capacities is denoted
by FC.

From the previous definitions it follows that given technical capacities qC ∈ C
are feasible if and only if all nominations ` ∈ N(qC) are feasible.

In the following, we analyze the complexity of computing maximal feasible tech-
nical capacities for different Constraints (1) of gas transport. To avoid unbounded
technical capacities, we require that feasible technical capacities satisfy the conditions

∑
u∈V−

qCu ≥ qCw, w ∈ V+, (3a)

∑
u∈V+

qCu ≥ qCw, w ∈ V−. (3b)

Conditions (3a) ensure that for every entry node, a technical-capacities-compliant
nomination exists such that the entry supplies its total capacity to the grid, i.e., a
nomination ` ∈ N(qC) with `w = qCw exists. Consequently, the complete capacity
of an entry node can be nominated in a nomination. In analogy, Conditions (3b)
ensure that for every exit node a technical-capacities-compliant nomination exists
such that the exit demands its total capacity. Conditions (3) ensure that we do
not allocate “unusable” node capacities, i.e., capacities that are not completely
used in any technical-capacities-compliant nomination. This prevents that the
problem of computing technical capacities is unbounded by setting a single technical
capacity to an arbitrary large value and the remaining capacities to zero. The
latter technical capacities only contain the zero nomination as technical-capacities-
compliant nomination which is usually feasible.

We finally describe the problem of computing (optimal) technical capacities for a
fixed weight vector d ∈ RV by

max d>qC s.t. qC are feasible technical capacities that satisfy (3). (4)
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Note that feasibility of (4) implicitly contains feasibility of the actual flows of every
technical-capacities-compliant nomination; see (1). Moreover, let us briefly discuss
that Problem (4) is slightly more general than the problem that TSOs actually
face in practice. The reason is that we consider arbitrary weight vectors d ∈ RV ,
whereas these may be restricted to be nonnegative in practice. The proof of our
complexity result is already rather technical without this restriction. Thus, we keep
the assumption d ∈ RV throughout the paper and postpone the nonnegative case
to future research.

We define two variants of CTC as the threshold problem associated with opti-
mization problem (4). Note that the used specific constraints clinE (x; `) and clinI (x; `)

as well as cpot
E (x; `) and cpot

I (x; `) will be specified in detail later.

Computing Technical Capacities (CTC) – capacitated linear flows.
Input: Graph G = (V,A) with entries V+, exits V−, inner nodes V0,

constraints clinE (x; `) and clinI (x; `),
arc flow bounds q−a ≤ q+a , q−a , q+a ∈ Q for all a ∈ A,
a weight vector d ∈ QV , and threshold value T ∈ Q+.

Question: Do feasible technical capacities qC ∈ FC with d>qC ≥ T exist?

Computing Technical Capacities (CTC) – potential-based flows.
Input: Graph G = (V,A) with entries V+, exits V−, inner nodes V0,

constraints cpot
E (x; `) and cpot

I (x; `),
potential bounds p−u ≤ p+u , p−u , p+u ∈ Q+ for all u ∈ V ,
a weight vector d ∈ QV , and threshold value T ∈ Q+.

Question: Do feasible technical capacities qC ∈ FC with d>qC ≥ T exist?

3. Computing Technical Capacities for Capacitated linear Flows

As in the last section, we follow the notation introduced in [22]. In the re-
mainder of the paper, we focus on tree-shaped networks and thus assume that the
graph G = (V,A) is a tree.

We first introduce some notation. We choose to use directed graphs to represent
gas networks. This modeling choice allows us to interpret the direction of flows.
However, actual physical flow in a gas network is not influenced by the direction of
the arcs. Thus, for u, v ∈ V , we introduce the so-called flow-path P := P (u, v) =
(V (u, v), A(u, v)) in which V (u, v) ⊆ V contains the nodes of the path from u to v in
the undirected version of the graph G and A(u, v) ⊆ A contains the corresponding
arcs of this path. Moreover, we call P (u, v) a directed flow-path from u to v if P (u, v)
is a directed path from u to v in G. For another pair of nodes u′, v′ ∈ V , we say that
P (u′, v′) is a flow-subpath of P (u, v) if P (u′, v′) ⊆ P (u, v), i.e., V (u′, v′) ⊆ V (u, v)
and A(u′, v′) ⊆ A(u, v) holds, and if P (u′, v′) is itself a flow-path. In particular,
this allows us to define an order on the nodes of a flow-path. For P = P (u, v) and
u′, v′ ∈ V (u, v), we define u′ �P v′ if and only if a flow-subpath P (u, u′) ⊆ P (u, v′)
exists. If u′ 6= v′ holds, we write u′ ≺P v′.

We note that if we reverse arcs in G, then `-flows can be adapted by switching
the sign for flows on each arc with different orientation. For a given `-flow q, we say
that node u ∈ V supplies node v ∈ V \ {u} if for each arc a = (i, j) ∈ A(u, v), the
conditions

i ≺P j =⇒ qa > 0, j ≺P i =⇒ qa < 0

hold. We now introduce two sub-graphs for an arc a = (u, v) ∈ A. If we delete
arc a in G, then the tree decomposes into two sub-trees. We define the sub-tree
that includes node u as Gu = (V

(u,v)
u , A

(u,v)
u ) and the other sub-tree that contains v
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as Gv = (V
(u,v)
v , A

(u,v)
v ). By construction, V (u,v)

v = V \ V (u,v)
u holds. Note that

considering the reversed arc (v, u) does not change the sub-trees Gu and Gv.
We now present the capacitated linear flow model considered in this section. We

consider lower and upper flow bounds q−a ≤ q+a that are given for every arc a ∈ A and
assume no other flow constraints. This means, we consider a standard capacitated
linear flow model. Consequently, for a nomination ` ∈ N , Constraints (1) are given
by (2) and the flow bounds

q−a ≤ qa ≤ q+a for all a ∈ A, (5)

i.e.,
clinI (x; `) = (clinI,a(q))a∈A, clinI,a(q) = (qa − q−a , q+a − qa)

and cE stays the same as in Section 2, i.e.,

clinE (x; `) = (clinE,u(q; `))u∈V , clinE,u(q; `) =
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u.

We note that checking the feasibility of a nomination ` ∈ N w.r.t. Conditions (1)
of this section is a standard `-transshipment problem; see, e.g., Chapter 11 of the
book [33].

We first show that we can validate the feasibility of given technical capacities for
a tree-shaped network in polynomial time. Afterward, in Section 3.2 we prove that
CTC for capacitated linear flows is NP-hard even for trees.

3.1. Checking Feasibility of Technical Capacities. Due to the tree structure
of the graph, we know that for every nomination ` ∈ N , there exists a unique `-flow.

Lemma 3.1 (Lemma 1 in [28]). Let ` ∈ N be a nomination. Then, a unique `-flow
exists and this flow can be computed in O(|V |).

With the next lemma, we bound the arc flow for a given `-flow in dependence of
the technical capacities by using the uniqueness of the flow-path between two nodes.
Thus, the arc flow is bounded by the minimum of the aggregated capacities of the
entries on one side of the arc and of the aggregated capacities of the exits on the
other side of the arc.

Lemma 3.2. Let qC ∈ C be technical capacities, ` ∈ N(qC) a nomination, and q
its unique `-flow. Then, for every arc a = (u, v) ∈ A, the flow qa is bounded by

ξ−a (qC) := −min

 ∑
w∈V+∩V (u,v)

v

qCw,
∑

w∈V−∩V (u,v)
u

qCw

 ≤ qa,
qa ≤ min

 ∑
w∈V+∩V (u,v)

u

qCw,
∑

u∈V−∩V (u,v)
v

qCw

 =: ξ+a (qC).

(6)

Proof. The claim follows from the tree structure of G, Lemma 3.1, and the flow
conservation constraints (2) that are satisfied by q. �

With an adaption of the approach developed in [28], we can show that the lower
and upper arc flow bounds (6) are tight w.r.t. N(qC). This means that for every arc
at least one nomination exists such that the corresponding flow is at the bound. To
this end, we state the auxiliary lemma that directly follows from the tree structure
of G.

Lemma 3.3. Let u 6= w ∈ V . Further, let V (u,i)
u ∩ V+ 6= ∅ hold for the first

arc (u, i) of the unique flow-path P (u,w). Then, an entry ũ ∈ V (u,i)
u ∩ V+ exists

such that P (u,w) ⊆ P (ũ, w) holds and additionally, no entry ū 6= ũ ∈ V (u,i)
u with
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P (ũ, w) ⊂ P (ū, w) exists. In particular, this implies V (ũ,k)
ũ ∩ V+ = {ũ} for the first

arc (ũ, k) of the unique flow-path P (ũ, w).

We now show that the upper arc flow bound in (6) is tight w.r.t. N(qC). We
even show a stronger result: For any node pair, a nomination with unique flows
exists so that for every arc of the unique flow-path between these two nodes the arc
flow is at its upper bound.

Lemma 3.4. Let qC ∈ C be technical capacities and u 6= w ∈ V . Furthermore, let
P (u,w) be a directed flow-path from u to w. Then, a nomination ` ∈ N(qC) with
unique flows q exists such that for every arc a = (k, l) ∈ A(u,w) the corresponding
arc flow is at its upper bound in (6), i.e.,

qa = ξ+a (qC) (7)

holds for every a ∈ A(u,w). Additionally, we can compute this nomination ` in
polynomial time.

Proof. For directly applying the results of Theorem 4 in [28] and its proof, we make
the following additional assumption. If u is no entry, then we interpret u as an
entry with technical capacity of zero. In analogy, if w is no exit, then we interpret
w as an exit with technical capacity of zero. These assumptions do not affect the
upper bound in (6). Further, let arc (u, i) ∈ A(u,w) be the first arc of the flow-path
P (u,w). We distinguish between two cases.

(i) Let V (u,i)
u ∩ V+ = {u}. This means that no flow can be supplied to u

without using arcs of flow-path P (u,w). Thus, the claim directly follows
from Theorem 4 in [28] and its proof.

(ii) Let V (u,i)
u ∩ V+ 6= {u} holds. We apply Lemma 3.3 and Case 1 for ũ and w.

In doing so, we can w.l.o.g. assume that P (ũ, w) is a directed flow-path
from ũ to w. Consequently, (7) is satisfied for a ∈ P (ũ, w). Due to this and
P (u,w) ⊂ P (ũ, w), the claim follows.

We can compute the corresponding nominations of Case 1 and 2 in polynomial time
due to Lemma 11 in [28]. �

Using Lemma 3.4, we now prove that also the lower arc flow bound of (6) is tight.

Lemma 3.5. Let qC ∈ C be technical capacities and u 6= w ∈ V . Furthermore, let
P (u,w) be a directed flow-path from u to w. Then, a nomination ` ∈ N(qC) with
unique flows q exists such that for every arc a = (k, l) ∈ A(u,w) the corresponding
arc flow is at the lower bound in (6), i.e.,

qa = ξ−a (qC) (8)

holds for every a ∈ A(u,w). Additionally, we can compute this nomination ` in
polynomial time.

Proof. We consider the graph G̃ = (V, Ã), which is a copy of G = (V,A) except that
arcs of P (u,w) are reversed so that P (u,w) is a directed flow-path from w to u. We
now apply Lemma 3.4 for w and u in G̃. Consequently, a nomination ` ∈ N(qC)

with unique `-flow q̃ in G̃ exist such that for (l, k) ∈ A(u,w), it holds

q̃(l,k) = ξ+a (qC) = min


∑

v∈V+∩V (l,k)
l

qCv ,
∑

v∈V−∩V (l,k)
k

qCv

 .
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Let q be the unique flows in G corresponding to nomination `. Due to the different
orientation of arc a = (k, l) of P (u,w) in G and G̃ and the tree structure of G,

q(k,l) = −q̃(l,k) = −min


∑

v∈V+∩V (l,k)
l

qCv ,
∑

v∈V−∩V (l,k)
k

qCv


= −min


∑

v∈V+∩V (k,l)
l

qCv ,
∑

v∈V−∩V (k,l)
k

qCv

 = ξ−a (qC)

holds. This shows the claim. �

Using the previous two lemmas, we can efficiently check the feasibility of technical
capacities.

Lemma 3.6. Let qC ∈ C be technical capacities. Then, qC are feasible technical
capacities if and only if for every arc a = (u, v) ∈ A, the conditions

q−a ≤ ξ−a (qC) ≤ 0 ≤ ξ+a (qC) ≤ q+a , (9)

are satisfied.

Proof. Let qC be feasible technical capacities and a ∈ A = (k, l) an arbitrary arc.
Applying Lemmas 3.4 and 3.5 for u = k and w = l as well as using the feasibility
of every nomination in N(qC) implies Conditions (9). Let Condition (9) be valid.
Then, qC are feasible technical capacities due to Lemma 3.2. �

We finally prove that checking the feasibility of given technical capacities can be
done in polynomial time.

Theorem 3.7. Let qC be technical capacities in a tree. Then, it can be decided in
polynomial time if qC is feasible and if it satisfies Conditions (3). In particular, this
implies that CTC with capacitated linear flows on trees is in NP.

Proof. For given technical capacities, we can check Conditions (3), and for every
arc, the Condition (9), in polynomial time. �

We note that the result of the previous theorem is also shown in a different way
by Theorem 3.2.3 and Proposition 3.2.7 in [18]. We have proven the same result
differently here because we need the special structure considered in Lemmas 3.4
and 3.5 for the potential-based case, which is not considered in [18].

3.2. Hardness. We prove that CTC for the case of capacitated linear flows is
NP-complete on trees. In the remainder of this section, we require that feasible
technical capacities satisfy Definition 2.6 and Conditions (3), i.e., feasible technical
capacities are always feasible for Problem (4).

In what follows, we reduce the Subset Sum problem to CTC. To this end, we
consider the following variant of the Subset Sum problem.

Subset Sum (SSP).
Input: M ∈ N, Z1, . . . , Zn ∈ N with Zi ≤M for i ∈ {1, . . . , n}, n ≥ 2,

and
∑n
i=1 Zi ≥M .

Question: Does I ⊆ {1, . . . , n} with
∑
i∈I Zi = M exist?

This definition of the SSP slightly deviates from the original definition in [11].
The requirements n ≥ 2,

∑n
i=1 Zi ≥ M , and Zi ≤ M for i ∈ {1, . . . , n} can be

checked in polynomial time and, thus, the considered SSP variant is still NP-hard.
The proof is structured as follows. We first construct a CTC instance on a tree

based on a given SSP instance. We then prove sufficient conditions for feasibility
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of a solution and show a lower bound of the objective; see Lemma 3.8. This can
be used to prove that the optimal value of the CTC instance exceeds a specific
threshold value if the corresponding SSP instance is feasible; see Lemma 3.9. The
bulk of the proof characterizes optimal solutions of the specific CTC instance; see
Lemmas 3.10–3.15. We finally use these properties to prove that if the SSP is
infeasible, optimal technical capacities in the specific CTC instance do not exceed
the threshold value.

For an arbitrary SSP instance, we construct an instance of (4) using capacitated
linear flows as follows. The graph G(SSP) is given by

V = {o, s, t} ∪ {hi, vi : i ∈ {1, . . . , n}} ,
A = {(o, s), (t, s)} ∪ {(o, hi), (hi, vi) : i ∈ {1, . . . , n}} .

We specify entries V+, exits V−, and inner nodes V0 by

V+ = {t} ∪ {hi : i ∈ {1, . . . , n}} , V− = {s} ∪ {vi : i ∈ {1, . . . , n}} , V0 = {o} .
In the following, we use the abbreviation δ = (n+ 1)−1. We now define the lower
and upper arc flow bounds q−a , q+a for a ∈ A in G(SSP) as follows

q−(o,s) = −δ ≤M = q+(o,s), q−(t,s) = 0 ≤ δ = q+(t,s),

q−(o,hi)
= −Zi ≤M + δ − Zi = q+(o,hi)

,

q−(hi,vi)
= 0 ≤M + δ = q+(hi,vi)

.

(10)

These arc flow bounds satisfy q−a ≤ 0 ≤ q+a for a ∈ A due to Zi ≤ M for
i ∈ {1, . . . , n}. A graphical representation of G(SSP) is given in Figure 1.

We denote nonnegative technical capacities by qC. We note that the capacity
of inner nodes is set to zero and, thus, we neglect these nodes w.r.t. technical
capacities. We determine the nonzero coefficients of the weight vector d as follows:

ds = (n+ 1)((n+ 1)M + 1), dt = n2 + nds + 1,

dhi
= −1, dvi = 1, i ∈ {1, . . . , n} .

We note that G(SSP) is a tree and qC = 0 are feasible technical capacities for
G(SSP) because of q−a ≤ 0 ≤ q+a for all a ∈ A. Further, we note that for a given
instance of SSP, we can build G(SSP) in polynomial time and its coding length is
polynomially bounded above by the coding length of the given SSP instance.

Due to the tree structure of G(SSP), we can check the feasibility of technical
capacities in G(SSP) in polynomial time; see Theorem 3.7. Lemma 3.6 implies that
for checking the feasibility of technical capacities in G(SSP) we have to verify the
conditions

q−(o,hi)
= −Zi ≤ −min

qChi
,

∑
u∈V−\{vi}

qCu

 ≤ 0, (11a)

0 ≤ min

 ∑
u∈V+\{hi}

qCu , q
C
vi

 ≤ q+(o,hi)
= M + δ − Zi, (11b)

q−(o,s) = −δ ≤ −min

qCt , ∑
u∈V−\{s}

qCu

 ≤ 0, (11c)

0 ≤ min

 ∑
u∈V+\{t}

qCu , q
C
s

 ≤ q+(o,s) = M, (11d)
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(−Z2,M + δ − Z2)

(0,M + δ)

(−Zn,M + δ − Zn)(0,M + δ)

Figure 1. The graph G(SSP). Entry nodes are indicated by circles,
exits by boxes, and inner nodes by diamonds.

q−(t,s) = 0, 0 ≤ min

qCt , ∑
u∈V−

qCu

 ≤ q+(t,s) = δ, (11e)

q−(hi,vi)
= 0, 0 ≤ min

∑
u∈V+

qCu , q
C
vi

 ≤ q+(hi,vi)
= M + δ (11f)

for i ∈ {1, . . . , n}.
The instance G(SSP) is constructed in such a way that the threshold of the

objective value for deciding the feasibility of SSP is given by

T :=

n∑
i=1

(M + δ − Zi) + (M + δ)ds + dtδ.

We next prove sufficient conditions for the feasibility of technical capacities
in G(SSP).

Lemma 3.8. Let q̃C ∈ C be technical capacities in G(SSP) that satisfy the conditions

q̃Ct = δ, q̃Cs = M + δ,

n∑
i=1

q̃Chi
= M, q̃Chi

≤ Zi, i ∈ {1, . . . , n} ,

and

q̃Cvi =

{
M + δ, if q̃Chi

= Zi,

M + δ − Zi, if q̃Chi
< Zi,

for i ∈ {1, . . . , n}. Then, q̃C are feasible technical capacities in G(SSP) and
d>q̃C ≥ T −M holds. Furthermore, such a q̃C always exists.
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Proof. To construct such a q̃C, one can use any fractional solution of the SSP. It
is easy to verify that the capacities q̃C satisfy Conditions (3). For checking the
feasibility of q̃C, it is left to verify Conditions (11). Due to the construction of q̃C,
the Conditions (11a) and (11c)–(11f) are satisfied. For Condition (11b), we now
distinguish for i ∈ {1, . . . , n} two cases depending on q̃Chi

.
First, let q̃Chi

= Zi. Consequently,

0 ≤ min

 ∑
u∈V+\{hi}

q̃Cu , q̃
C
vi

 =
∑

u∈V+\{hi}

q̃Cu = M + δ − Zi = q+(o,hi)
,

which implies Condition (11b). Second, let q̃Chi
< Zi. Consequently,

0 ≤ min

 ∑
u∈V+\{hi}

q̃Cu , q̃
C
vi

 = q̃Cvi = M + δ − Zi = q+(o,hi)
,

which implies Condition (11b).
Thus, the feasibility of q̃C follows from Lemma 3.6 and the objective value of q̃C

satisfies

d>q̃C = −M + (M + δ)ds + dtδ +

n∑
i=1

dvi q̃
C
vi

≥
n∑
i=1

(M + δ − Zi)−M + (M + δ)ds + dtδ = T −M. �

We can directly use the previous lemma to show that if the given SSP instance is
feasible, then optimal technical capacities in G(SSP) exceed the threshold value T .

Lemma 3.9. Let the given SSP be feasible, i.e., there exists I ⊆ {1, . . . , n} with∑
i∈I Zi = M . Further, let qC ∈ C be optimal technical capacities in G(SSP). Then,

d>qC ≥ T holds.

Proof. Let I be a feasible solution of SSP, then we construct the following technical
capacities:

q̄Ct = δ, q̄Cs = M + δ,

q̄Chi
= Zi, q̄Cvi = M + δ, i ∈ I,

q̄Chi
= 0, q̄Cvi = M + δ − Zi, i ∈ {1, . . . , n} \ I.

The technical capacities q̄C are feasible because they satisfy the conditions of
Lemma 3.8. Let i ∈ {1, . . . , n}. We now compute the objective value of the
ith branch of G(SSP), i.e.,

dhi q̄
C
hi

+ dvi q̄
C
vi = −q̄Chi

+ q̄Cvi . (12)

If i ∈ I holds, then from the construction of q̄C the ith branch (12) evaluates to

−q̄Chi
+ q̄Cvi = −Zi +M + δ,

which also holds for i /∈ I. Thus, the objective value of q̄C is given by

d>q̄C =

n∑
i=1

(M + δ − Zi) + ds(M + δ) + dtδ = T.

Consequently, the claim follows because q̄C are feasible technical capacities. �
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In what follows, we characterize optimal solutions; see Lemmas 3.10–3.15. Using
the obtained properties we prove that if SSP is infeasible, the threshold T value is
not exceeded by optimal technical capacities in G(SSP).

We first bound the technical capacity of certain nodes.

Lemma 3.10. Let qC ∈ C be optimal technical capacities in G(SSP). Then,

qCt ≤ δ, qCs ≤M + δ, qCvi ≤M + δ, i ∈ {1, . . . , n} .

Proof. The claim follows from the explicit structure of tree G(SSP), Conditions (3),
the arc flow bounds (10), and Lemmas 3.4 and 3.5. �

Additionally, we prove that the technical capacity of entry hi is bounded above
by Zi in an optimal solution.

Lemma 3.11. Let qC ∈ C be optimal technical capacities in G(SSP). Then,
qChi
≤ Zi holds for all i ∈ {1, . . . , n}.

Proof. We prove the claim by contraposition, i.e., we now assume that i ∈ {1, . . . , n}
with qChi

> Zi exists and then prove that qC are not optimal technical capacities.
From Condition (11a) it follows

∑
u∈V−\{vi} q

C
u ≤ Zi. Thus, we obtain the bounds

qCs ≤ Zi and qCvj ≤ Zi for j ∈ {1, . . . , n} \ {i}. Using Lemma 3.10, we can bound
the objective value corresponding to qC from above as follows:

d>qC ≤ δdt + Zids +

n∑
j=1,j 6=i

Zi +M + δ ≤ δdt + Zids + nM + δ. (13)

For the latter inequality, we also used that Zi ≤M holds. The upper bound (13) of
the objective value for qC and the objective value of the feasible point in Lemma 3.8
show that qC is not optimal. �

We next prove that the optimal technical capacity of entry t is at its upper
bound δ.

Lemma 3.12. Let qC ∈ C be optimal technical capacities in G(SSP). Then, qCt = δ
holds.

Proof. Let qC be feasible technical capacities. Due to Lemma 3.10, qCt ≤ δ holds.
We now prove the claim by contraposition, i.e., we show that if qCt < δ holds, then
we can construct a better solution q̄C. We set ε ≥ 0 such that qCt + ε = δ holds and
construct a new solution q̄C by

q̄Ct = qCt + ε, q̄Cs = max

{
qCs − nε, max

u∈V+

{
q̄Cu
}}

,

q̄Chi
= max

{
0, qChi

− ε
}
, q̄Cvi = max

{
0, qCvi − nε

}
, i ∈ {1, . . . , n} .

We now check the feasibility of q̄C. To this end, we first verify that q̄C satisfies
Conditions (3). Conditions (3a) are satisfied due to q̄Cs ≥ q̄Cu for u ∈ V+. We next
show that Conditions (3b) hold. To this end, we distinguish between two cases.

First, assume qCw ≤ nε for all w ∈ V−. Consequently, q̄Cs = max
{
q̄Cu : u ∈ V+

}
and q̄Cvi = 0 for i ∈ {1, . . . , n} are satisfied, which implies Conditions (3b). Second,
assume there exists v ∈ V− with qCv > nε. If additionally

max
{
q̄Cw : w ∈ V−

}
= max

{
q̄Cu : u ∈ V+

}
= q̄Cs

holds, then Conditions (3b) directly follow. Otherwise, from the feasibility of qC
and the construction of q̄C,∑

u∈V+

q̄Cu ≥
∑
u∈V+

qCu − nε ≥ max
w∈V−

qCw − nε = max
w∈V−

q̄Cw
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follows, which implies (3b). Thus, Conditions (3) are satisfied by q̄C.
For checking the feasibility of q̄C, it is left to show that Conditions (11) are

satisfied for q̄C. Due to the optimality of qC, we can apply Lemma 3.11 and, thus,
qChi
≤ Zi for i ∈ {1, . . . , n}. Due to this and the construction of q̄C, Conditions (11a)

are satisfied. Thus, q̄Ct ≤ δ as well as Conditions (11c) and (11e) are satisfied. We
next show that (11d) holds for q̄C. The construction of q̄C and qChi

≤ Zi ≤ M for
i ∈ {1, . . . , n} leads to∑

u∈V+\{t}

q̄Cu ≤
∑

u∈V+\{t}

qCu , q̄Cs ≤ max
{
qCs ,M

}
.

This, together with the feasibility of Condition (11d) for qC, leads to

0 ≤ min

 ∑
u∈V+\{t}

q̄Cu , q̄
C
s

 ≤ min

 ∑
u∈V+\{t}

qCu , max
{
qCs ,M

} ≤ q+(o,s) = M,

which implies the feasibility of Condition (11d) for q̄C. From Lemma 3.10, the
construction of q̄C, and the feasibility of qC Condition (11f) follows.

We now show the feasibility of Condition (11b). For i ∈ {1, . . . , n}, we prove

∑
u∈V+\{hi}

q̄Cu = qCt + ε+
∑

u∈V+\{t,hi}

max
{

0, qCu − ε
}
≤ max

 ∑
u∈V+\{hi}

qCu , δ

 .

(14)
If u ∈ V+ \ {t, hi} with qCu > ε does not exist, then∑

u∈V+\{hi}

q̄Cu = qCt + ε ≤ δ

holds. Otherwise, an entry w ∈ V+ \ {t, hi} with qCw > ε exists and∑
u∈V+\{hi}

q̄Cu = qCt + ε+ qCw − ε+
∑

u∈V+\{t,w,hi}

q̄Cu ≤
∑

u∈V+\{hi}

qCu

is satisfied.
Using (14), the feasibility of qC, and the construction of q̄C, we show the feasibility

w.r.t. Condition (11b) for q̄C by

0 ≤ min

 ∑
u∈V+\{hi}

q̄Cu , q̄
C
vi


≤ min

max

 ∑
u∈V+\{hi}

qCu , δ

 , qCvi

 ≤M + δ − Zi = q+(o,hi)
.

Consequently, Conditions (11) are satisfied by q̄C and, thus, q̄C are feasible technical
capacities due to Lemma 3.6.

Lastly, we compare the objective values of q̄C and qC by

d>q̄C − d>qC ≥ εdt −
n∑
i=1

nεdvi − nεds ≥ ε(dt − n2 − nds) = ε ≥ 0.

Consequently, q̄C is a strictly better solution if ε > 0. �

In what follows, we show that the aggregated capacity of certain entries is bounded
for optimal technical capacities in G(SSP).

Lemma 3.13. Let qC ∈ C be optimal technical capacities in G(SSP). Then,∑
u∈V+\{t} q

C
u ≤M is satisfied.
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Proof. We prove the claim by contraposition. To this end, we assume that∑
u∈V+\{t} q

C
u > M holds. This together with Lemma 3.12 implies qCt = δ and,

hence, ∑
u∈V+

qCu > M + δ. (15)

By Lemma 3.6, the feasible technical capacities qC satisfy Conditions (11). Because
of the assumption, the inequality qCs ≤ M follows from Condition (11d). Due to
Lemma 3.11, qChi

≤ Zi for i ∈ {1, . . . , n}. This, Inequality (15), and Condition (11b),
imply qCvi ≤M + δ − Zi for i ∈ {1, . . . , n}.

We now bound the objective value of qC by

d>qC ≤
n∑
i=1

(M + δ − Zi)−M +Mds + dtδ = T − dsδ −M.

Thus, from Lemma 3.8 it follows that qC is not optimal. �

With the next two lemmas, we bound the objective value of the ith branch of
G(SSP) in optimal technical capacities depending on the amount of flow, which is
supplied to this branch. In doing so, the ith branch consists of the subtree that
includes the nodes o, hi, and vi.

Lemma 3.14. Let qC ∈ C be optimal technical capacities and i ∈ {1, . . . , n}. If∑
u∈V+\{hi} q

C
u > M + δ − Zi holds, then

qCvi = M + δ − Zi, dhi
qChi

+ dviq
C
vi = −qChi

+M + δ − Zi
holds.

Proof. Let qC ∈ C be optimal technical capacities and i ∈ {1, . . . , n}. Due to∑
u∈V+\{hi} q

C
u > M+δ−Zi and the feasibility of qC, it follows from Conditions (11b)

that qC is only feasible if qCvi ≤ M + δ − Zi holds. Using this, Zi ≤ M + δ,
the optimality of qC, dvi > 0, Lemmas 3.10–3.12, and Conditions (11) leads to
qCvi = M + δ − Zi, which shows the claim. �

Lemma 3.15. Let qC ∈ C be optimal technical capacities and i ∈ {1, . . . , n}. If∑
u∈V+\{hi} q

C
u ≤M + δ − Zi holds, then

qCvi =
∑
u∈V+

qCu , dhiq
C
hi

+ dviq
C
vi = −qChi

+
∑
u∈V+

qCu

holds.

Proof. Let qC ∈ C be optimal technical capacities, which satisfy the requirements
and i ∈ {1, . . . , n}. Due to Conditions (3b), the inequality qCvi ≤

∑
u∈V+

qCu is
satisfied. For any assignment qCvi ∈ [0,

∑
u∈V+

qCu ], the Conditions (11) are satisfied
by qC due to

∑
u∈V+\{hi} q

C
u ≤ M + δ − Zi and Lemmas 3.10–3.12. Thus, the

optimality of qC, and dvi > 0, qCvi =
∑
u∈V+

qCu holds and the claim follows. �

We now derive an upper bound for the objective value if the given SSP instance
is infeasible while the aggregated entry capacity is M + qCt .

Lemma 3.16. Let the given SSP be infeasible, i.e., there exists no subset
I ⊆ {1, . . . , n} with

∑
i∈I Zi = M . Let qC ∈ C be optimal technical capacities

in G(SSP) with
∑
u∈V+\{t} q

C
u = M . Then, d>qC < T holds.
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Proof. Due to Lemma 3.12, qCt = δ holds. Consequently,
∑
u∈V+

qCu = M + δ is
satisfied. We now compute an upper bound for the ith branch (12) in G(SSP)
depending on i ∈ {1, . . . , n}. Due to Lemma 3.11, qChi

≤ Zi holds.
If qChi

< Zi holds, then∑
u∈V+\{hi}

qCu = M + δ − qChi
> M + δ − Zi.

Hence, we apply Lemma 3.14, and thus, (12) evaluates to −qChi
+M + δ − Zi.

If qChi
= Zi holds, then∑

u∈V+\{hi}

qCu = M + δ − qChi
= M + δ − Zi.

Consequently, we can apply Lemma 3.15 and, thus, (12) evaluates to M + δ − Zi.
From Lemma 3.11, it follows qChi

∈ [0, Zi] for i ∈ {1, . . . , n}. Due to this, the
infeasibility of SSP, qCt = δ, and

∑
u∈V+\{t} q

C
u = M , an index j ∈ {1, . . . , n} exists

with qChj
∈ (0, Zj). Also using Lemma 3.10, we can bound the objective value of qC

by

d>qC ≤
n∑

i=1,i6=j

(M + δ − Zi) + (M + δ − Zj − qChj
) + ds(M + δ) + dtδ

<

n∑
i=1

(M + δ − Zi) + ds(M + δ) + dtδ = T. �

We now prove an upper bound for the objective value of optimal technical
capacities independent of the SSP being feasible while the aggregated entry capacity
is below M + qCt .

Lemma 3.17. Let qC ∈ C be optimal technical capacities in G(SSP) and∑
u∈V+\{t} q

C
u = M − ε for a fixed ε ∈ (0,M ]. Then, d>qC < T holds.

Proof. Due to Lemma 3.12, qCt = δ holds, which implies
∑
u∈V+

qCu = M + δ − ε.
We now compute an upper bound for the ith branch (12) of G(SSP) depending on
i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}. If qChi

< Zi − ε holds, then∑
u∈V+\{hi}

qCu = M + δ − ε− qChi
> M + δ − Zi.

We apply Lemma 3.14 and, thus, the ith branch (12) evaluates to −qChi
+M +δ−Zi.

If, on the other hand, qChi
≥ Zi − ε holds, then∑

u∈V+\{hi}

qCu = M + δ − ε− qChi
≤M + δ − Zi.

We now apply Lemma 3.15, which together with qChi
≥ Zi − ε, Conditions (3), and

the requirements implies that the objective of the ith branch (12) is bounded by

−qChi
+ qCvi ≤ −q

C
hi

+ (M + δ − ε) ≤M + δ − Zi.

From
∑
u∈V+

qCu = M + δ − ε and Condition (3b), it follows qCs ≤M + δ − ε. Due
to this and the above, we can bound the objective value of qC from above by

d>qC ≤
n∑
i=1

(M + δ − Zi) + ds(M + δ − ε) + dtδ = T − dsε < T. �

The next theorem describes the relation between deciding the feasibility of a
given SSP instance and computing optimal technical capacities in G(SSP).
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Lemma 3.18. The SSP problem is solvable if and only if the optimal technical
capacities qC ∈ C in G(SSP) satisfy

d>qC ≥ T. (16)

Proof. Let the SSP problem be solvable and qC be optimal technical capacities
in G(SSP). We apply Lemma 3.9 and, thus, (16) is satisfied.

Let now qC ∈ C be optimal technical capacities in G(SSP) that satisfy (16). We
now assume that SSP is infeasible. Due to the optimality of qC and Lemma 3.13, we
know that

∑
u∈V+\{t} q

C
u ≤ M holds. If

∑
u∈V+\{t} q

C
u = M holds, then we apply

Lemma 3.16, which is a contradiction to qC satisfying (16). If
∑
u∈V+\{t} q

C
u = M−ε

for a fixed ε ∈ (0,M ] holds, we apply Lemma 3.17, which is a contradiction to qC
satisfying (16). �

We finally prove that CTC is NP-complete on trees.

Theorem 3.19. CTC with capacitated linear flows is NP-complete on trees. On
general graphs, it is at least NP-hard.

Proof. The feasibility of given technical capacities can be verified in polynomial
time on trees; see Theorem 3.7. For a given SSP instance, we can construct the CTC
instance G(SSP) in polynomial time and its coding length is polynomially bounded
above by the coding length of the given SSP instance. Hence, from Lemma 3.18 it
follows that CTC is NP-hard on trees, since G(SSP) is a tree. �

4. Computing Technical Capacities for
Nonlinear Potential-Based Flows

We now consider a nonlinear potential-based flow model of gas transport. Thus,
the flows depend on the potentials at the incident nodes. In contrast to the
capacitated linear flow case, the flows in potential-based networks follow additional
physical laws that make it unique. On the one hand, the potentials provide additional
structure for the analysis of nominations, bookings, and technical capacities. On the
other hand, the coupling between potentials and flows is usually nonlinear, which
results in a harder class of optimization problems. For capacitated linear flows it is
shown that checking the feasibility of technical capacities, respectively bookings, is
coNP-complete on general networks; see [18]. In [21], it is shown that verifying the
feasibility of technical capacities, respectively bookings, can be solved in polynomial
time on networks with linear potential-based flows. Moreover, checking the feasibility
of technical capacities, respectively bookings, can be done in polynomial time on
trees and single cycle networks in case of nonlinear potential-based flows; see [21,
22]. For the complexity of CTC with potential-based flows, only exponential upper
complexity bounds are known so far; see [18].

In this section, we prove that CTC is NP-complete for nonlinear as well as linear
potential-based flows. We first prove this for the nonlinear potential-based case.
Afterward, we show that the linear potential-based case can be proven in analogy
with the help of minor adaptions.

We now explicitly state the considered nonlinear potential-based flow model.
To this end, we introduce a bounded potential variable pu for every node u ∈ V .
Additionally, the potentials are coupled to arc flows. Thus, for a nomination ` ∈ N
the Constraints (1) are given by (2) and the classical Weymouth pressure drop
conditions

p2v = p2u − Λa|qa|qa for all a = (u, v) ∈ A, (17)
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where Λa > 0 is a constant for every arc a ∈ A; see [27, 35] and the chapter [9] in
the book [20]. Furthermore, the pressures are bounded, i.e.,

0 < p−u ≤ pu ≤ p+u for all u ∈ V. (18)

Consequently, the Constraints (1) are given by

cpot
I (x) =

(
cpot
I,u(p)u∈V

)
with cpot

I,u(p) = (pu − p−u , p+u − pu)

as well as

cpot
E (x; `) =

(
(cpot
E,u(q; `))u∈V

(cpot
E,a(q, p))a∈A

)
with

cpot
E,u(q; `) =

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u, cpot
E,a(q, p) = p2u − p2v − Λa|qa|qa.

In contrast to the capacitated linear flow model, no arc flow bounds exist in the
potential-based model. Instead, potential bounds are now included.

We can check the feasibility of technical capacities in tree-shaped networks with
potential-based flows in polynomial time due to [21].

Lemma 4.1. Let qC ∈ C be technical capacities in the tree G = (V,A). Then,
we can decide if qC is feasible and satisfies Condition (3) in polynomial time. In
particular, this implies that CTC with nonlinear potential-based flows on trees is in
NP.

Proof. Conditions (3) can obviously be checked in polynomial time. The feasibility
of qC can be checked in O(|V |2) due to Theorem 20 in [21]. �

We note that checking the feasibility of qC in polynomial time also follows from
adapting Theorem 4 in [28].

Considering a nonlinear potential-based flow model, we now prove that CTC is
NP-hard in tree-shaped networks. To this end, we reduce CTC with capacitated
linear flows to CTC with nonlinear potential-based flows. The case of capacitated
linear flows is NP-hard due to the results of Section 3. Thus, we now focus on the
reduction instances G(SSP) of the capacitated linear flow case; see Section 3.

We now transform a given G(SSP) instance of the capacitated linear flow to
the potential-based case. To this end, we take the same graph G(SSP) = (V,A)
and the objective coefficients d as in the previous section. We remove the flow
bounds. Moreover, we set Λ(t,s) = (M + δ)2102d2t and Λa = 1 for all remaining arcs
a ∈ A \ {(t, s)}. The squared potential bounds are given in Table 2. Intuitively,
K = 2(M + δ) is a pressure value that is chosen high enough such that the pressure
never drops below zero in the network. We denote the constructed instance by
Gpot(SSP). We further note that for a given instance of G(SSP), we can build
Gpot(SSP) in polynomial time and its coding length is polynomially bounded above
by the coding length of the given G(SSP) instance.

We first prove that feasible technical capacities in G(SSP) with capacitated linear
flow are also feasible for Gpot(SSP) in the potential-based case.

Lemma 4.2. Let qC ∈ C be feasible technical capacities in G(SSP) with capacitated
linear flow. Then, qC are feasible technical capacities in Gpot(SSP) in the potential-
based model.

Proof. Since qC are feasible technical capacities for G(SSP), they satisfy Condi-
tions (3). Let ` ∈ N(qC) be a nomination and q its corresponding flow, which is
unique due to the tree structure of the underlying graph. We now prove that this
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Table 2. Squared potential bounds with K = 2(M + δ) and
δ = (n+ 1)−1.

Nodes (p−)2 (p+)2

o K K
hi K − (M + δ − Zi)2 K + Z2

i

vi K − (M + δ − Zi)2 − (M + δ)2 K + Z2
i

s K −M2 K + δ2

t K −M2 K + δ2 + Λ(t,s)δ
2

nomination is also feasible in Gpot(SSP). To this end, we construct the potentials
corresponding to q and i ∈ {1, . . . , n} as follows:
p2o = K, p2s = K − |q(o,s)|q(o,s), p2t = K − |q(o,s)|q(o,s) + Λ(t,s)|q(t,s)|q(t,s),

p2hi
= K − |q(o,hi)|q(o,hi), p2vi = K − |q(o,hi)|q(o,hi) − |q(hi,vi)|q(hi,vi).

(19)

Since ` with its unique flows q is feasible for G(SSP), they satisfy the flow bounds (10).
Replacing the arc flows in (19) by the upper, respectively lower, arc flow bounds of
G(SSP), given by (10), shows that for any arc flows satisfying (10) the potentials
given in (19) are within the lower and upper potential bounds of Table 2. Con-
sequently, (q, p) satisfy Constraints (1) for the potential-based case and thus, ` is
a feasible nomination for Gpot(SSP). Since ` is an arbitrary booking-compliant
nomination w.r.t. qC, this shows the claim. �

We note that not all feasible technical capacities in Gpot(SSP) for the potential-
based case are also feasible in G(SSP) with capacitated linear flow. For instance,
technical feasible capacities with qCt > δ exist that are feasible for Gpot(SSP) but
not for G(SSP).

In contrast to feasible points, we now show that all optimal technical capacities
in Gpot(SSP) are also feasible in G(SSP). To this end, we prove an upper bound
for qCt and an analogous result to Lemma 3.11 for the potential-based case.

Lemma 4.3. Let qC ∈ C be feasible technical capacities in Gpot(SSP). Then,
qCt ≤ δ + 1/(10dt) holds.

Proof. From Conditions (3), the squared potential bounds of Table 2, (17), and t
being a leaf node of Gpot(SSP), it follows

qCt ≤
√
δ2 +

1

Λ(t,s)
(δ2 +M2).

Due to
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and the choice of Λ(t,s), we obtain

qCt ≤
√
δ2 +

1

Λ(t,s)
(δ2 +M2) ≤ δ +

1√
Λ(t,s)

(δ +M) = δ +
1

10dt
. �

Lemma 4.4. Let qC ∈ C be optimal technical capacities in Gpot(SSP). Then,
qChi
≤ Zi holds for all i ∈ {1, . . . , n}.

Proof. We prove the claim by contraposition. Thus, we assume that i ∈ {1, . . . , n}
with qChi

> Zi exists. From the tree structure of Gpot(SSP), Lemmas 3.4 and 3.5,
Conditions (3), and the potential bounds in Table 2, it follows that

∑n
j=1,j 6=i q

C
vj +

qCs ≤ Zi. Thus, we obtain the bounds qCs ≤ Zi, and qCvj ≤ Zi for j ∈ {1, . . . , n} \ {i}.
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Moreover, we obtain

qCvi ≤

√
(p+hi

)2 − (p−vi)
2

Λ(hi,vi)
=
√
Z2
i + (M + δ)2 + (M + δ − Zi)2 ≤ 2(M + δ).

Due to Lemma 4.3, qCt ≤ δ + 1/(10dt) holds. Furthermore, dhjq
C
hj
≤ 0 holds for

j ∈ {1, . . . , n} \ {i} and, thus, we can neglect these terms for bounding the objective
value corresponding to qC by

d>qC ≤
(
δ +

1

10dt

)
dt + Zids + (n− 1)Zi − Zi + 2 (M + δ)

≤
(
δ +

1

10dt

)
dt + Zids + nM + 2δ.

(20)

A comparison of the upper bound (20) for the objective value corresponding to qC
and the objective value of the feasible solution q̃C in Lemma 3.8, which is also
feasible for the potential-based case due to Lemma 4.2, leads to

d>q̃C − d>qC ≥ − 1

10dt
dt + δds −M − nM − 2δ

=− 1

10
+ (n+ 1)M + 1− (n+ 1)M − 2

n+ 1
= 1− 1

10
− 2

n+ 1
> 0

if n ≥ 2. Hence, qC is not optimal. �

We now prove that in an optimal solution qCt is bounded above by δ, which is
also the case for the capacitated linear flow model; see Lemma 3.12.

Lemma 4.5. Let qC ∈ C be optimal technical capacities in Gpot(SSP). Then,
qCt ≤ δ holds.

Proof. We prove the claim by contraposition. Thus, we assume qCt > δ. Due
to this, Lemmas 3.4 and 3.5, and the potential bounds in Table 2, it follows∑
u∈V−\{s} q

C
u ≤ δ. Consequently,

∑
u∈V−\{s} duq

C
u ≤ δ holds due to du ≤ 1 for all

u ∈ V− \ {s}. Further, from the potential bounds, Lemma 4.3, and Conditions (3),
the inequality qCs ≤M + δ + 1/(10dt) follows. We now compare the objective value
of qC with the corresponding objective value of the solution q̃C of Lemma 3.8.

First, assume that qCs ≥ M + δ holds. Due to Conditions (3) and qCt ≤ δ +
1/(10dt), which follows from Lemma 4.3,

∑
u∈V+\{t} q

C
u ≥M − 1/(10dt) > 0 holds.

Consequently, a comparison of the objective values of qC and q̃C of Lemma 3.8 leads
to

d>q̃C − d>qC ≥ − 1

10dt
dt −

1

10dt
ds −M −

∑
u∈V+\{t}

qCu du −
∑

u∈V−\{s}

qCu du + nδ

≥ − 1

10dt
dt −

1

10dt
ds −M +

(
M − 1

10dt

)
− δ + nδ

≥ − 3

10
+ (n− 1)δ > 0.

Since n ≥ 2 holds, qC is not optimal.
Second, assume that qCs < M + δ holds. Thus, ε > 0 with qCs + ε = M + δ

exists. Due to Conditions (3) and qCt ≤ δ+ 1/(10dt), which follows from Lemma 4.3,∑
u∈V+\{t} q

C
u ≥ max {0,M − ε− 1/(10dt)} holds. Consequently, a comparison of

the objective values of qC and q̃C of Lemma 3.8 leads to

d>q̃C − d>qC ≥ − 1

10dt
dt + εds −M + max

{
0,M − ε− 1

10dt

}
− δ + nδ. (21)



COMPUTING TECHNICAL CAPACITIES IS NP-HARD 21

If max{0,M − ε − 1/(10dt)} = 0 is satisfied, then ε ≥ 0.9 holds. Hence, (21) is
positive for n ≥ 2. Otherwise, (21) results in

− 1

10
+ εds − ε−

1

10dt
− δ + nδ > 0.

Hence, qC is not optimal. �

Lemma 4.6. Let qC ∈ C be optimal technical capacities in Gpot(SSP). Then, qC
are feasible technical capacities in G(SSP).

Proof. Since qC are feasible technical capacities for the potential-based case, they
satisfy Conditions (3). We now check if qC satisfies Conditions (11). Due to
Lemma 4.4, qChi

≤ Zi holds for all i ∈ {1, . . . , n}. Consequently, Condition (11a) is
satisfied. Due to Lemma 4.5, qCt ≤ δ holds as well. Thus, Conditions (11c) and (11e)
are satisfied. From Conditions (3), the potential bounds in Table 2, Lemmas 3.4
and 3.5, and qChi

≤ Zi, it follows qCvi ≤M + δ for i ∈ {1, . . . , n}. Consequently,
Condition (11f) is satisfied.

The potential bounds in Table 2 imply that the flow on arc (o, s) is bounded from
the above by M and the arc flow (o, hi) is bounded from below by −Zi as well as
from above by M + δ − Zi for i ∈ {1, . . . , n}. Due to this and Lemmas 3.4 and 3.5,
Conditions (11d) and (11b) are satisfied. In total, qC satisfies Conditions (11) and
thus, the claim follows from Lemma 3.6. �

Lemma 4.7. The optimal technical capacities in G(SSP) and in Gpot(SSP) are
identical.

Proof. The claim follows from Lemmas 4.2 and 4.6. �

As a consequence of the last lemma, the Lemmas 3.10–3.17 are also valid in the
potential-based case. Thus, we can also adapt Lemma 3.18, which implies that CTC
on trees with a nonlinear potential-based model is NP-hard.

Lemma 4.8. The SSP problem is solvable if and only if the optimal technical
capacities qC of Gpot(SSP) satisfy d>qC ≥ T.

Proof. The claim follows from Lemma 4.7 and Lemma 3.18. �

Theorem 4.9. CTC with nonlinear potential-based flows is NP-complete on trees.
On general graphs, it is at least NP-hard.

Proof. The validation of a given technical capacities of a tree can be done in
polynomial time due to Lemma 4.1. Then, the claim follows from Lemma 4.8. �

Sometimes linear potential-based flow models are preferred instead of the nonlinear
potential-based model here considered, since it simplifies the resulting optimization
problem. The only difference between a linear and our nonlinear potential-based
model is that the Weymouth equations (17) are replaced by

pv = pu − Λaqa for all a = (u, v) ∈ A. (22)

The remaining Constraints (1) stay the same. We conclude this section with proving
that CTC for linear potential-based flows is also NP-complete on trees. This can be
shown in analogy to the nonlinear potential-based case considering only a few small
adaption.

Theorem 4.10. CTC with linear potential-based flows is NP-complete on trees. On
general graphs, it is NP-complete as well.



22 L. SCHEWE, M. SCHMIDT, J. THÜRAUF

Sketch of the proof. Checking the feasibility of technical capacities with linear
potential-based flows in a general graph can be done in polynomial time due
to Theorem 12 in [21]. Consequently, CTC with linear potential-based flow is in NP.

For proving NP-hardness, we adapt the previous results for the nonlinear potential-
based case. We first replace the original value Λ(t,s) = (M + δ)2102d2t by Λ(t,s) =
(M + δ)10dt. In analogy, we replace in Table 2 every squared value by its non-
squared value. Furthermore, Table 2 now represents the potential bounds p− and p+
instead of (p−)2 and (p+)2. Finally, we replace the terms |qa|qa by qa and p2u by
pu in (19). After these modifications, we can prove Lemmas 4.2–4.8 for the linear
potential-based case in analogy to the nonlinear case—keeping in mind that the
potentials are now coupled by (22), which simplifies some of the calculations. This
implies that CTC for linear potential-based flows is NP-hard on general graphs. �

5. Conclusion

In this paper, we proved that computing maximal technical capacities in the
European entry-exit gas market is NP-hard. To this end, we showed that the
problem is NP-complete on trees for a capacitated linear flow model as well as
for potential-based flows. We first reduced the Subset Sum problem to computing
maximal technical capacities with capacitated linear flows on trees. Afterward,
we used this result to reduce the case of capacitated linear flows to the case of
potential-based flows. In contrast to the situation in the literature on the feasibility
of bookings, our hardness results for CTC are already obtained for the easiest case,
i.e., on tree-shaped networks and capacitated linear flow models as well as potential-
based flows. Consequently, computing technical capacities is also hard for more
general graph classes including trees, i.e., especially for general graphs. Another
interesting question regarding the complexity of CTC is whether it is ΣP

2 -complete
for capacitated linear or nonlinear potential-based flows.
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