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ABSTRACT. Many long-term investment planning models for liberalized
electricity markets either optimize for the entire electricity system or focus on
confined jurisdictions, abstracting from adjacent markets. In this paper, we
provide models for analyzing the impact of the interdependencies between a
core electricity market and its neighboring markets on key long-run decisions.
This we do both for zonal and nodal pricing schemes. The identification of
welfare optimal investments in transmission lines and renewable capacity within
a core electricity market requires a spatially restricted objective function,
which also accounts for benefits from cross-border electricity trading. This
leads to mixed-integer nonlinear multilevel optimization problems with bilinear
nonconvexities for which we adapt a Benders-like decomposition approach
from the literature. In a case study, we use a stylized six-node network to
disentangle different effects of optimal regional (as compared to supra-regional)
investment planning. Regional planning alters investment in transmission
and renewable capacity in the core region, which affects private investment
in generation capacity also in adjacent regions and increases welfare in the
core region at the cost of system welfare. Depending on the congestion-pricing
scheme, the regulator of the core region follows different strategies to increase
welfare causing distributional effects among stakeholders.

Key words: OR in energy, Neighboring Markets, Renewable and Network
Expansion, Multilevel Optimization, Benders Decomposition.

1. INTRODUCTION

In recent years, various academic papers have focused on modeling long-run
decisions on transmission and generation expansion in liberalized electricity markets;
see, e.g., Grimm, Martin, et al. (2016), Kleinert and Schmidt (2019), Munoz et al.
(2016), Pozo et al. (2013), and Sauma and Oren (2009), to name only a few. The
fact that in today’s electricity markets various agents take decisions under different
objectives gives rise to methodological challenges in the context of multilevel mixed-
integer nonlinear optimization models, which form a very hard class of optimization
problems. Typical models focus on a specific market region, abstracting from the
fact that various regional electricity markets often are interconnected and, thus, a
regional market’s outcome is influenced by decisions in neighboring markets and vice
versa. Issues arising in the context of adjacent jurisdictions that potentially have
opposing goals play an increasingly important role in the regulation of electricity
markets. This is prominently reflected by the ongoing and intense policy debates
in this context. In these debates, the resulting interaction and coordination issues
between different regional markets often are referred to as “seams-issues”. For
prominent policy discussions on those seams-issues for Europe, see, e.g., European
Commission et al. (2014), Glachant and Meeus (2018), Newbery et al. (2018),
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and Roques and Verhaeghe (2016). Moreover, the most recent advances of the
FEuropean Commission regarding the precise design of European electricity markets
heavily put a focus on the potentially arising problems, which obtain at the borders
of different jurisdictions; see, e.g., BMWi (2020) and European Parliament and
European Commission (2019). For the ongoing discussion regarding seems issues in
the US see, e.g., Dennis et al. (2016), NREL (2018), and NRRI (2015).

Two examples where regional and system-wide perspectives differ are the regional
distribution of costs and benefits of transmission projects as well as regional targets
and support schemes versus system-wide approaches to foster investment in low-
carbon technologies. As an example, in the European electricity system, in which
most costs for transmission investment and renewable support schemes are covered
by national charges on electricity demand, national network planning tends to
invest too much in the enforcement of the grid within the country to promote
the integration of renewable electricity generation at the national level. Electricity
market models (like the one presented in this paper) that incorporate the perspective
of individual regions can provide valuable insights in this context by evaluating the
effects of conflicting regional decisions and the inflicted inefficiency at system level.

In this paper, we extend the literature on multilevel electricity market modeling
by a rigorous consideration of regional objectives in a framework of coupled regional
markets with cross-border interdependencies. We build on a multilevel approach
that models transmission expansion decided proactively by a regulator, followed
by generation investment and market operation decided on by private firms (see,
e.g., Sauma and Oren (2006) for nodal pricing), as well as redispatch operations
in case of zonal pricing decided on by the network operator. The articles that we
build on are Grimm, Martin, et al. (2016), where we considered transmission and
generation expansion for a given zonal configuration, on Grimm, Kleinert, et al.
(2019), where we abstracted from transmission expansion but considered endogenous
zonal configurations, as well as Kleinert and Schmidt (2019), where we combined
transmission and generation expansion with endogenous zonal configurations. We
expand the model of the latter article by introducing adjacent market regions that
have interconnected electricity markets. Conventional generation investment and
spot-market trading remains in line with the previous papers. Market participants
invest in conventional generation capacity in all regional electricity markets in
anticipation of market prices evolving at the inter-regionally coupled spot markets.
In our framework, we assume that a local regulatory authority, which we simply
call the regulator, is only responsible for a part of the inter-regional electricity
market, which we refer to as the core electricity market. The regulator decides
on transmission projects, capacity of renewable energy sources (RES), and backup
capacity with the objective to maximize the welfare of the respective core region.
This approach reflects that these decisions are in many markets not only relying on
markets but that they are predetermined by regional planning processes, e.g., for
the transmission network, due to regional objectives on renewable deployment, or
due to regional regulations on security of supply.

The proper consideration of regional objectives in our setup inevitably requires
the precise consideration of cross-border trade in coupled electricity markets. This
results in nonconvex bilinearities in the first-level objective function, however. These
nonconvexities have not been part of the models discussed in the above mentioned
papers and render the problem significantly more challenging. Fortunately, we show
that it is possible to mathematically exploit the problem-specific structure of the
model so that a reformulation is available that can be solved to global optimality
with a similar Benders-like decomposition approach as it has been developed and
used in Grimm, Kleinert, et al. (2019) and Kleinert and Schmidt (2019). The
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focus of this paper thus is not on a novel algorithmic technique for solving the
considered models. Rather, we provide a way to accurately include revenues from
cross-border trade into the first-level objective function in a way that allows to
exploit available techniques for solving the multilevel problem. Our approach allows
to study interesting and topical economic questions that cannot be answered using
the models in the existing literature.

To illustrate the impact of the consideration of neighboring markets on the
economic outcome, we apply our solution approach to a test instance comprising of
a core market region and two adjacent market regions with distinct characteristics.
In four different scenarios, three with different bidding zone configurations and one
with nodal pricing, we cover a large variety of congestion-pricing schemes in the core
region. In our analysis, we compare two different setups: One in which the regulator
has a supra-regional objective versus the case that the regulator only focuses on
the core region. We then determine the impact on investment in transmission
capacity as well as location and technology choice for RES and, as a consequence,
also changed incentives for private investment in conventional generation. Our
main findings are the following: First, increased regional welfare resulting from a
purely regional planning perspective induces disproportionally large welfare losses
in some neighboring markets. However, in some cases, selected adjacent market
regions even co-benefit. Second, also the distribution of economic rents within the
core region is affected considerably. In particular, the distribution of consumer
surplus as well as investment costs and rents of RES and the transmission network
deviates substantially across multiple bidding zones or nodes in the core region for
different objectives of the regulator. That is, some zones within the core region do
not benefit and even loose in case of the regional planning perspective. We find that
those effects occur due to price differences between the two considered scenarios
(supra-regionally versus regionally oriented regulator) in a limited number of hours.

Our work contributes to several strands of literature. In the following, we
review the related strands of literature in detail and, for each strand, we emphasize
our particular contribution. We expand models on transmission planning with
anticipation of generation investment by the consideration of a regulator that takes
care only for a part of the considered network area when investing in transmission
capacity, RES, and backup capacity. For the case of nodal pricing, we refer to
the early contribution by Sauma and Oren (2006) as well as to the more recent
work by Pozo et al. (2013). While under the typical assumptions, in particular
the assumption of competitive firms, the nodal pricing outcome coincides with the
welfare optimum, this is not the case if the regulator takes care only for a part of the
network but firms act on inter-regional markets. This also affects the complexity of
modeling of the respective situation, i.e., multilevel models are required. For further
contributions in the context of nodal pricing; see, e.g., Egerer and Schill (2014), who
analyze transmission and generation investment for different scenarios of pricing
RES curtailment in a case study. Minguez and Garcia-Bertrand (2016) analyze the
case of robust optimization when choosing network expansion. Furthermore, Bravo
et al. (2016) consider the impact of different network payment schemes on optimal
investment decisions. Several other articles also consider optimal investment and
placement of RES capacity; see e.g., O’Neill et al. (2013) or Spyrou et al. (2017).

In case of zonal pricing, long-run investment incentives of private companies are
not aligned with the overall system optimum due to distorted zonal price signals
at the spot market; cf. Holmberg and Lazarczyk (2015). An adequate model of a
zonal-pricing electricity system thus requires a multilevel approach to accurately
represent the diverging incentives of the regulator and private firms as introduced
and analyzed in Grimm, Martin, et al. (2016). Based on this framework, Grimm,
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Kleinert, et al. (2019) and Kleinert and Schmidt (2019) as well as Ambrosius, Grimm,
et al. (2018) determine the system-optimal price zones anticipating firms’ investment
and production decisions. Ambrosius, Egerer, et al. (2019) focus on the impact of
uncertainty about the future zonal configuration on transmission and generation
investment. Our approach extends those models by providing tools to rigorously
analyze cross-border trade for a purely regional objective of the regulator in a core
region.

While the literature referred to above considers a regulator who adopts a system-
optimal perspective, another strand of literature deals with decisions by governments
or regulators based on a purely regional perspective. For example, Buijs and Belmans
(2012), Huppmann and Egerer (2015), and Tohidi, Hesamzadeh, and Regairaz (2018)
consider network expansion decided on by different regional governments prior to
nodal pricing. Kasina and Hobbs (2020) evaluate the value of cooperation for
each region in a similar setting and allow for private investment in generation
capacity. The perspective of purely regional planners is also considered by Tohidi
and Hesamzadeh (2014) and Tohidi, Hesamzadeh, and Regairaz (2018) under the
assumption that the planners aim at minimizing resource costs. Our work adds
to those contributions by additionally taking into account governmental decisions
regarding RES investment and placement. Moreover, to the best of our knowledge,
our contribution is the first one to consider such a purely regional perspective of
governmental decisions in a context of zonal pricing with redispatch after spot-market
trading. A detailed representation of inter-regional power flows in our approach also
accounts for revenues from cross-border trade and thus requires to model market
prices as primal variables. This gives rise to nonconvex bilinear terms in the upper
level of our multilevel problem.

The remainder of this paper is organized as follows. In Sections 2 and 3, we state
a zonal and a nodal pricing model. Section 4 describes the solution approach and
Section 5 introduces a six-node example, for which we provide results in Section 6.
Finally, Section 7 discusses the main results and concludes.

2. THE MIXED-INTEGER MULTILEVEL MARKET MODEL

In our model, we consider an electricity market that is surrounded by other
market areas. We call the considered market area the core region and assume that
it is governed by a local (e.g., national) regulatory authority, which we simply call
the regulator. As in many liberalized electricity markets, some decisions are taken
(or governed) by the regulator, while other decisions are taken by private firms. In
particular, we assume that the regulator maximizes welfare with a focus on the core
region and, within the core region, decides on the expansion of network capacity, on
the technology and placement of RES to reach a regional renewable target, and on
investment in backup capacities. This takes into account that, in many markets,
the expansion of renewable energies and backup capacities is planned centrally and
is only realized afterward by private companies, e.g., through tenders. For network
and RES investment in neighboring market areas, the core region regulator assumes
a predetermined scenario. Private firms decide on the expansion of conventional
generation capacity and electricity production. In doing so, they do not solely focus
on the core region, but on price signals at all interconnected regional markets. Our
model can thus make visible to what extent the objective function of the regulator,
who focuses only on the core region, affects the decisions of private firms as well as
aggregated welfare and disaggregated welfare for individual market areas.

A mathematical model of this setup leads to a mixed-integer nonlinear trilevel
market model. In the following, we present every level of this model in detail.
Our approach builds on previous work on multilevel electricity market modeling,
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in particular on Grimm, Kleinert, et al. (2019) as well as Kleinert and Schmidt
(2019), and extends this setup by the consideration of multiple market areas and
RES investment. For doing so, we supplement the modeling approach with a more
complex modeling of the first level, which allows to focus on the decisions on a subset
of the regions, taking into account the prices at the borders. Moreover, we integrate
a larger number of different decisions, e.g., the decisions on network expansion, RES
locations, and backup capacity.

For a better understanding of the overall model, we first give a brief overview
of each level and the interdependencies between the levels; see Figure 1. On the
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FIGURE 1. Timeline of regional decisions in the core market region
and market operation in the entire market region. Single dots rep-
resent decisions taken once, whereas three dots represent decisions
taken in multiple time periods.

first level, the regulator of the core region decides on network expansion, investment
as well as placement of RES, and investment in backup generators. We do not
specify ownership for transmission lines as well as for RES and backup capacity
but assume that the regulator delegates operation of the transmission system and
of backup capacity to a benevolent network operator. We further assume that
generation from RES capacity is offered at the spot market at marginal cost but
we do not specify ownership of RES investment. This reflects the common practice
to establish mechanisms, e.g., tenders, that ensure a certain renewable capacity
expansion, where this capacity is later on made available at negligible marginal cost,
or even dispatched with priority. The goal of the regulator is to maximize the welfare
within the core region, which combines regional consumer, producer, and network
rents, as well as trade payments and parts of the network rents at the border to
neighboring market areas. To this end, the regulator anticipates the decisions of
the market participants of all regions. Thus, the anticipation of quantities that are
decided on by the agents on the two lower levels also influences the decisions of the
regulator.

The second level models long-term conventional generation investment decisions
of private firms and multiple periods of electricity market trading. Here, consumers
and generating firms act on the electricity market as to maximize their individual
profits. We assume market outcomes with perfectly competitive behavior, which
result from a power exchange or an independent system operator clearing the entire
spot market with supply and demand bids from market players in all market areas
and trade constraints for either nodal or zonal pricing. In contrast to the first
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level, the second level considers decision making in all market areas. Clearly, the
individual decisions of the agents of the second level are subject to the regulatory
setting and first-level decisions, i.e., network expansion and renewable placement
decisions as specified on the first level.

Finally, on the third level, the network operator maximizes welfare and adjusts
spot-market outcomes to enable feasible technical operation of the electricity network.
In this paper, we consider a cost-based redispatch as it is used in Austria, Switzerland,
or Germany. Thus, in case of infeasibilities, the network operator redispatches
production quantities within the core region at minimum cost. To this end, the
network operator may use backup generation capacities that are commissioned
by the regulator, i.e., decided upon in the first level. Under the assumption of a
cost-based redispatch, third-level decisions do not affect bids into the spot market
at the second level as generation companies do not make additional profits from
redispatch of production quantities. If generation redispatch and backup generation
do not suffice to establish a feasible power flow, the network operator, as a measure
of last resort, may as well decide to not supply all traded demand within its own
market region, which is called load shedding. Obviously, the technical feasibility of
traded quantities depends on the first-level decisions of the regulator.

In the remainder of this section, we first give a detailed overview of the mathe-
matical notation before we specify every level of the trilevel model in detail.

2.1. Notation and Mathematical Setup. We now start by describing the general
notation we use, which is based on both Grimm, Kleinert, et al. (2019) and Kleinert
and Schmidt (2019). All sets, parameters, and variables that are used in the
remainder of this section are summarized in Appendix A. We consider an electricity
transmission network G = (N, L) with a set of nodes N and a set of directed
transmission lines L. C N x N. Throughout the paper, we make use of the standard
d-notation, i.e., the sets of in- and outgoing lines of a node set N’ C N are denoted
by 61, and 6%, respectively. More formally, we have

6%, :={l€L:1=(n,m)withn¢ N',mec N'},

¢ ={leL:1=(n,m)withne N ,m¢gN'}.

We distinguish between a core region N C N and surrounding markets
NSW C N with N 0 N5W = () and N U N = N. The core market is
composed out of k£ pre-specified connected bidding zones that are denoted as parts of
a partition Z;U- - -UZ, = N with 1 < k < |N°'¢|. The surrounding markets form
bidding zones as well, i.e., Zyyq U--- U Z, = N3 with 1 <p—k < |N*"|. For all
transmission lines [ € L we denote their susceptance by B;. Moreover, we distinguish
between existing lines L with given capacity f; > 0 and candidate lines ™" that
can be built in the course of network expansion. Hence, L = L U L"*" holds. The
capacity and investment costs of an expansion module are given by fm°¢ and c°d,
l € LY. We further specify inter-zonal transmission lines

Lmer .= {1 = (n,m) € L: 3i,j € [p] withn € Z;,m € Z; and i # j}
and transmission lines
Lt :={l = (n,m) € L with n,m € N}

within the core region. Without loss of generality, we assume that inter-zonal lines
between the core market and the surrounding markets are always directed towards
the surrounding markets, i.e.,

{l = (7?,, m) with n € NSur7m c Ncore} _ @

holds. Note that we further assume L™V C L since network expansion is only
decided within the core market in our model.
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At every node n € N, we consider an aggregated demand of the consumers at that
node. We further introduce a given set of time periods T' = {1,...,|T|}, where |T|
is the number of time periods. Every time period ¢ € T has a length 4. Note that in
our setting, we have no dependencies between the time periods. Thus, our setting is
also capable of modeling stochasticity if this stochasticity is captured using multiple
scenarios. The “length” 74 then corresponds to the probability of the corresponding
scenario t. Elastic demand at node n € N in time period ¢ € T is modeled by
an inverse demand function py, +(d,, ;), where d,, ; denotes the consumer’s demand.
Here, we make the two following assumptions.

Assumption 1. All inverse demand functions py_+ are linear and strictly decreasing,
i€, Pnt(dnt) = Gt + bpdn with an, >0 and by, < 0.

As a consequence of the inverse demand functions being strictly decreasing, gross
consumer surplus

dn,t
T4 / P (w) dw
0
is a strictly concave function.

Assumption 2. All demands are strictly positive, i.e., dy + > 0 holds for alln € N
and allt € T.

Since we consider an aggregated demand at every node, this is a reasonable
assumption. Both the assumption of linear demand functions as well as of strictly
positive demands are needed to model spot-market prices in the primal constraints
of the second-level problem; see Section 2.3.

For a given network node n € N, G2! denotes a finite set of existing and
candidate generation technologies. We use the set G3* for already existing generation
technologies and the set GR®V for candidate generation technologies, i.e., G2l =
GXYUGSX holds. We further distinguish between conventional generators g € G,
renewable generators g € G™*, and backup generators g € GE%. Hence, G2!! =
G U G U GPY holds as well. For all existing generators g € GS*, the capacity is
fixed and given by qu. In contrast, private firms can invest in generation capacity g,
of candidate conventional generators g € GV N GS°™. The regulator of the core
region decides on the placement, i.e., the node n € N, of modules of renewable
generation projects g € GV N GI*° with a given module capacity (j;“"d. New
investment in renewable generation outside the core region is not considered, i.e.,
G2 N G = () holds for all n € N®"*. The amount of renewable generation
capacity outside the core region is considered by the regulator of the core region as
an exogenous parameter. Furthermore, the regulator of the core region can invest
in conventional capacities g, of backup generators g € GPu n € Nore. We assume
GPUN G = ) for all n € N i.e., there are no backup generators yet. Let us also
briefly sketch the cost structure of generators. All candidate generators g € GheY
have investment costs cig“" > 0 per installed MW. Variable costs of production g, ¢
of generator g € G2 n € N, are denoted by cy™ > 0. These costs are zero for
all renewable generators g € G***. Finally, for every generator g € G2! the actual
available capacity varies over time (due to weather conditions, maintenance work,
etc.) and is determined by capacity factors w,; € [0, 1].

2.2. First-Level Problem: Network Expansion, Renewable Investment,
and Backup Generation Investment within the Core Market. The first-
level problem models the regulator overseeing her market area, i.e., the core region,
which is embedded in a larger inter-connected electricity market. Inside the core
region, the regulator decides on network expansion, on investment in renewable
generation projects, and on investment in backup generation capacities. The latter
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capacities can be used to prevent excessive reallocation of spot-market quantities
during redispatch; cf. Section 2.4. The goal at this level is to maximize welfare
within the core region. Network expansion within the core region is modeled by
integer variables

y€{0,...,51} CNy forallle LV, (1)
indicating how often a module is built for line {. The maximum number of modules
that can be invested in is g;. Similarly, investment in renewable generation projects
is modeled by integer variables

g €10,...,Z4} CNy forall g e G;°, ne N, (2)

n
that specify how many modules are built per project. For each renewable generation
project g € GV, n € N, the available capacity is then given by qg“’dxg. Note
that this is in contrast to conventional and backup generation capacity that we
model using continuous variables. However, the integrality of the decisions on
renewable generation capacity is needed for the computational tractability of the
model. To the best of our knowledge, no effective solution techniques exist for the
situation in which linking variables are not discrete. This is discussed in more detail
in Section 4, where we propose the solution approach.

Following the practice of regional renewable targets (e.g., national targets for
European countries in 2020) we set such a target for the core region. As investment
in renewable capacity is discrete, we do this by defining a corridor with an upper
bound s (i.e., the aspired political renewable target) and a lower bound r (i.e., the
minimal required realization). These bounds refer to a share of annual available
renewable generation of expected annual demand in the core region, i.e., we impose
the constraints

)3 ED DD DI DI U D DD DR Livt

teT \meENeore geGresnGex geGresnGnew teT neNeore

(3)
E E E Tt(jgx + E th;m)dwg <s g E Ttd;e,fta
teT \nENvore geGresnGex gEGresnGrew teT neNeore

with 0 <r <s<1.
Finally, the regulator can invest in capacities g, of candidate backup genera-
tors g € GPU located at core nodes n € N i.e.,

0<q,<q,™ foralge G‘,‘;“, n € N, (4)
~max

where ¢ specifies the maximum backup capacity that can be installed.

Next, we derive the objective function of the first level. Regional welfare is
given as gross consumer surplus less generation costs after redispatch, investment
costs for conventional, renewable, and backup generators, as well as for network
expansion. The gross consumer surplus and generation costs involve demand and
generation quantities after redispatch dﬁf(tl and q;f’f, which are formally introduced in
Section 2.4. Remember that investment in transmission lines outside the core region
as well as investment in renewables in neighboring markets is not decided on by the
regulator of the core region. Further, one has to take into account load shedding
costs clsdlﬂi,57 which represent a price ceiling corresponding to the value of lost load;
cf. Section 2.4. Finally, congestion rents and payments for import and export on
links with neighboring markets (partly) add to regional welfare. These payments
depend on genuine second-level variables for the spot-market price m,; and the
power flow fls’got; see the second-level model in Section 2.3. The congestion rent on

transmission line [ = (n,m) is given by (.t — Tn.t) li‘;Ot, which may be split up

between the network operators at nodes n and m according to shares 0 < s§°"¢ <1
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and 0 < s = 1 — s¢°"8. Thus, the network operator at node n receives the
congestion rent

cong _ spot
Sn (Trm7t Tr’ﬂvt) It

Together with payments for import and export my, ; f7 POt trans-regional payments
at node n are given by the nonconvex function

cong _ spot spot __ _cong spot _ .cong spot
W (Tt — T ) f1 0+ Tty = sn B mmafry + (1= s )mn e f1

s n

— cong cong spot
= (Sn Tm,t + Sp, 7"'n,t) 1t

Welfare of the core market is thus given by

red

U1 ::Z Z Tt /Ompn,t(w)dw— Z cgarquf — Z cmedy,

teT neNeore geGal le Lnew

inv ~mod inv - inv -
- E E: Cg Qg Tg T+ E: ng9+zcgq9
ne Ncore gEG'r’fsmG?Lcw gEG%DnVﬁG;‘LCW gEGE“
Is jls
> 2 ey,
teTneNCOre

con, con spot
+ Z Z Tt (Sn gﬂ-m,t + S gﬂ'n,t) It -
tE€T 1=(n,m)Eore

()
Hence, the first-level problem reads
max 1 st (1)—(4). (6)
This is a mixed-integer optimization problem with linear constraints and a nonlinear
objective. The nonlinearities stem from the concave-quadratic gross consumer
surplus terms and the terms modeling congestion rents and trans-regional payments.
The latter terms are products of continuous second-level variables for the price 7, ¢
and the power flow flS Itmt and thus are nonconvex bilinear terms. Consequently,
the modeling of congestion rents and trans-regional payments, that is required
by considering multiple connected market areas, adds significant difficulty to the
first level compared to what has been studied in Grimm, Kleinert, et al. (2019) or
Kleinert and Schmidt (2019).

2.3. Second-Level Problem: Conventional Generation Investment and
Spot-Market Behavior. At the second level, we model long-term conventional
generation capacity investment and multiple periods of day-ahead spot-market trad-
ing. Consumers and generating firms want to maximize their individual profits. This
results in various optimization problems, whose optimality conditions—together
with suitably chosen market-clearing conditions—can be stacked to obtain a mixed
complementarity problem. It is well known that, under the assumption of perfect
competition, this mixed complementarity problem is equivalent to a welfare maxi-
mization problem; see, e.g., Grimm, Schewe, et al. (2017), where this is shown for
a related model setup. We are aware of the fact that the assumption of perfect
competition does not exactly reflect the situation of power markets. However, this is
a common assumption in the electricity market modeling literature; cf., e.g., Boucher
and Smeers (2001), Daxhelet and Smeers (2007), and Grimm, Martin, et al. (2016).
In our multilevel context, this assumption is required both for computational reasons
and also allows for a clear-cut analysis due to uniqueness of the resulting lower-level
equilibria. For a study of multiplicity of equilibria in other related settings, see,
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e.g., Krebs et al. (2018) and Zottl (2010).In our case, the assumption of perfect
competition yields the objective function

spot

R T [ e 3 g

teT neN 0 geGeony (7)
inv —
DR DI
nEN geGrewnGeony

Demand quantities are restricted by simple lower bounds

0<dP forallmeN, teT, (8)
whereas generation quantities are also bounded above by capacities, i.e.,
0< q;f’ft < wg,ttj_g‘x forallge GS*, ne N, teT, (9a)
0< qu)tOt < Wy tdy forall g e GRVNGL™, ne N, teT, (9b)
dg < q;™ for all g € G NGY™, ne N, (9¢)
0< qu’tOt < wg,t(j;mdxg forall g e G NGy*, ne N, teT. (9d)

Note that x4 is a first-level integer variable, whereas g, is a continuous second-level
variable.

In zonal markets, spot-market flow on intra-zonal lines is unconstrained. In
contrast, one needs to take into account capacities of existing and candidate inter-
zonal transmission lines. This can be modeled by

—Bifi < 3 < Bufy forall € LN L™ ¢t T, (10a)
=By < 5 < B foralll € L*V N L™ teT,  (10b)

where §; € [0, 1] are exogenously given inter-zonal transmission capacity factors
and f; is the thermal capacity of line . Furthermore, y; is the first-level network
expansion variable.

Finally, we impose zonal market-clearing conditions that state that the zonal
demand and outflow equal the zonal generation and inflow for every zone and time
period:

Dip= 3 & foralli€fpl, teT,  (ila)
nez;
Qi = Z Z a0y for all i € [p], t €T, (11D)
neZi geGaM\Go®
Fin = 3 #pot for all i € [p], t € T, (11c)
l:(n,m)ELinter,mezi
FRt= Y w foralliefpl te T, (11d)
l:(n,m)ELinter,nezi
Diy+ F = Qip + qu% for all i € [p], t € T. (11e)

For every i € [p] and t € T, the dual variable of the last constraint corresponds
to the resulting market price in zone ¢ and time period ¢t € T’; see Kleinert and
Schmidt (2019). For strictly positive demands, see Assumption 2, these prices can
be expressed in a primal formulation using the inverse demand functions p,, ;. Using
Assumption 1, we can denote market prices 7, ; by the linear constraints

Tnt = Qnt + bnttdff”ft forallne N, teT. (12)

These prices occur in the objective function (5) of the first level for modeling
trans-regional payments.
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In total, the second-level problem reads
max 2 st (8)-(12), (13)

which is a maximization problem with a concave-quadratic objective function over
constraints that are parameterized by the first-level decisions and that are linear in
the second-level variables.

2.4. Third-Level Problem: Cost-Optimal Redispatch. At the third level, the
network operator resolves possible technical infeasibilities of spot-market results, i.e.,
he decides on cost-based redispatch, generation quantities of backup generators, as
well as load shedding. When resolving infeasibilities within the borders of the core
region, all flows fred of lines connecting the core region with surrounding regions
are fixed to their spot—market values, i.e.,

Tt = frst forall | € 6jphee, t €T (14)

Load shedding is only applied if generation redispatch and backup generation are
not sufficient to resolve infeasibilities. This can be modeled by imposing sufficiently
large costs for load shedding, which refer to the value of lost load. We denote demand

quantities after redispatch with dre‘t1 and load shedding with dl,it > 0, respectively.
These variables are connected in the following way:

et =dPt —db, forallteT, ne N®, ceC,. (15)

n,t
For load shedding, we impose costs
¢ > max {e" g€ G p e Neorey,

The third-level problem minimizes reallocation costs given by

Jspot
n,t

)3 —Z Z Tt/,ed pnt dw

teT ne Nceore s

T Z Z T Z cvar (q;ezi _ q;ptot Z cvarqge?

teT neNeore geGeonY gEGDH
Is jgls
—I—Z Z TeCdyy
teT neNeore

Note that, by Assumption 1, this is a convex function in the third-level variables.

The quantities after redispatch have to fulfill all physical transmission constraints
within the core market. This includes Kirchhoff’s first law that ensures power
balance at every core node n € N°" and time period t € T"

rcd_|_ Z frcd Z q;?;i_"_ Z frcd. (16)
lesout geGall legin

In addition, Kirchhoff’s second law determines—according to the expansion plan
specified at the first level—the voltage angles 0,, ;, t € T, n € N, in the network:

red = B0t — Omt) for all | = (n,m) € L NL®, teT, (17a)
md =y Bi(0nt — Oms) for all | = (n,m) € L"Y N L™ teT.  (17b)

Note that the indicator constraint (17b) is parameterized by the first-level decision
and linear in the third-level variables. A formulation that is linear in all variables
can be obtained by a reformulation using big-Ms. Since the solution approach
presented in Section 4 is not harmed by the nonlinear indicator formulation, we
avoid big-Ms by using (17).
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In order to obtain unique physical solutions, we have to fix the voltage angle at
an arbitrary reference node 1 € N°*€ in every time period:

01, =0 foralltel. (18)

Furthermore, all transmission flows are limited by lower and upper bounds, i.e.,
~I< A< h for all | € LN L™, t €T, (19a)
= [l < Y < ey forallle L™V, teT. (19b)

The latter constraint also guarantees that only those lines are used at the redispatch
level that are built in the first level.

In addition to demand and production bounds of existing and candidate genera-
tors,

0<dyy for alln € N t € T, (20a)
0< q;f’f < wgyt(jgx forall g € GIX, ne N, teT, (20b)
0< q;f’? < wgyt(j‘g“"dxg forall g € GV NG, ne N, teT, (20c)
0< q;‘f? < wy 1y forall g e GE"NG™, ne N, teT, (20d)

backup generators are constrained by
0< q;‘ff <wgtGy forall ge G:’L”, ne N®™* teT. (21)

The capacities g, of backup generators g € GP" are determined by the regulator
and thus belong to the first level. In total, the redispatch problem reads

min 3 st (15)-(21). (22)

For fixed first- and second-level variables, this problem is a convex-quadratic mini-
mization problem over polyhedral constraints.

Altogether, we are facing a nonconvex mixed-integer nonlinear trilevel problem,
where the first level is a nonconvex MINLP and the second and third level are
concave maximization or convex minimization problems, respectively. Note that the
nonconvexities in the first-level objective function (5) stem from the modeling of
trans-regional payments and add significant difficulties to the already challenging
trilevel model. The overall model structure and the dependencies between the levels
are depicted in Figure 2.

Later, in Section 5, we analyze the welfare effects that stem from the regional
planning of the regulator in the core market. We therefore also compute supra-
regional solutions, in which the regulator of the core market acts in favor of the full
market. This can be achieved by changing the objective function of the first-level
model to

i
o ' : d d
Py = E § Tt( / Pn,t(w) dw — E c;‘“q;‘}) - § ™y
teT neN 0 gEGal l€ [new
inv -mod inv - inv -~ (23)
— Cq Qg g + Cq g + Cq g
nEN N geGresNGnew gEGConvNGnew geGhy

— Z Z thlsdlrf’t.
teT neNeore
Compared to (5), all nonconvex terms modeling trans-regional payments cancel
out and we take the sum over all nodes for consumers surplus and producer costs
instead of only considering the core-region nodes. As a consequence, (23) is a
concave-quadratic function.
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Level 1: core-regional regulatory decisions
network design: y, € LV
RES placement: Zg, g € Gy, ne€ N

n

backup generation investment: ¢, g € GPY, n e Neore

n

Y, Tg dg

Level 2: system-wide conventional generation

Y1, Tg,qyg investment & spot-market trade
generation investment: ¢q,, g € GV NG, ne N
dred, gred demand: d&r, ne N
production: ¢Pt, g€ GV UGS, neN
— t
Qg Aoy 5 43P

Level 3: core-regional cost-based redispatch
demand: dred, n e Neore

n,t

private production: ¢, g € Gi™ UGy, ne Neore

n o

backup production: ¢}, g € Gi", n € N

FIGURE 2. Structure of the trilevel market model.

3. A NODAL-PRICING BILEVEL MODEL

Besides the trilevel model stated in Section 2, which models a zonal-pricing
regime, we also consider a nodal-pricing regime. This results in a bilevel optimization
problem, in which the first level is similar to the first-level problem in Section 2.2.
The difference is that, in a nodal-pricing environment, the traded spot-market
quantities are feasible w.r.t. transport through the network and, thus, redispatch
and load shedding is not required. Moreover, the modeling of backup generators
is also not needed in the first level. The lower-level problem of the nodal-pricing
bilevel problem is a combination of Problem (13) and (22). Note, at this point,
that the market area considered by the regulator (level one) and the generators
(level two) is different, such that the problem to be considered is a genuine bilevel
problem. The modeling in this section builds on and combines previous work
on (i) long-term investment planning models, which addresses transmission and
generation investment for one regional electricity market with nodal pricing (Sauma
and Oren 2009; Spyrou et al. 2017) with (ii) the objective for regional optimization
as implemented in the seams literature on transmission investment games between
multiple regions with nodal pricing. Note that the latter generally abstracts from
investment in conventional and renewable generation capacity; see e.g., Huppmann
and Egerer (2015) and Tohidi, Hesamzadeh, and Regairaz (2018). In more detail,
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the upper level of the nodal-pricing problem is given by

max 3 Tt( /Od"'tpn,t(w)dw— 3 c;arqg,t) (24a)

teT neNcore geGsenY

(X awts Y )

ng Ncore QGG;?SQGTW QGG%?KWQG?,EW
d .
ST @Y Y n )
leLmew teT I=(n,m)€6Wore
st (1)-(3) (24b)
and the lower level reads

max 3% Tt< /0 O () duo 3 c;arqg,t> (25a)

teT neEN gEGConY
inv —
-2 2w
nEN geGRewNGeeny

st dpg+ Z fii= Z gt + Z fix forallme N, teT (25b)

leogut geGal ledin
fii =Bi(Ont — Opmy) foralll=(n,m)e L™ teT, (25¢)
Jfit=Buwyi(0nt —0me) foralll=(n,m)e L™, teT (25d)
Orn=0 foralltel, (25e)
—fi<fisr<fi forallle L™ teT, (25f)
— fmody, < fiy < fody, foralll € LV, t €T, (25g)
Tt =0nt +bptdny forallnme N, teT. (25h)
0<dy+ forallneN, teT, (251)
0< gyt Swge@™ forallge G, neN, teT, (25)
0<qqgt < wg,ttj_f]mdxg forall g € Gy NG, ne N teT, (25k)
0<qg: <wgeGy forallge G, NG, ne N, teT. (251)

The overall problem is a nonlinear mixed-integer bilevel problem, where the upper
level is an MINLP and the lower level is a QP for fixed upper-level variables.

4. SOLUTION APPROACH

Multilevel optimization problems are very hard to solve. Even in their easiest
instantiation, i.e., linear-linear bilevel models, they are already strongly NP-hard;
see, e.g., Dempe et al. (2015) and Hansen et al. (1992). The model presented in
Section 2 contains mainly three additional aspects that make it even harder:

(1) Tt is a mixed-integer trilevel model.

(2) The first-level objective function (5) is nonconvex.

(3) The linking variables between the first and the third level as well as between
the second and the third level are continuous.

In bilevel optimization, one can reformulate a convex lower level by strong duality
of convex optimization or by using the Karush-Kuhn—Tucker (KKT) conditions
of the lower level. Both approaches yield a nonconvex single-level reformulation.
However, the KKT approach allows for a linear reformulation of the nonlinear
KKT complementarity conditions using big-M constraints if the lower-level feasible
set is polyhedral. This results in a large—and often numerically unstable—single-
level problem and this approach has the additional drawback that an appropriate
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big-M has to be chosen (Kleinert, Labbé, et al. 2020; Pineda and Morales 2019).
Nevertheless, if the upper level is a mixed-integer linear (or quadratic) problem,
one can at least try to tackle the reformulation by state-of-the-art MI(Q)P solvers.
This type of reformulation technique is also applied to trilevel problems similar to
the one considered in this paper in Grimm, Kleinert, et al. (2019) and Kleinert
and Schmidt (2019), but with a concave-quadratic first-level objective function.
Their approach involves a reduction of the trilevel problem to an equivalent bilevel
problem and then uses the above mentioned KKT reformulation to a single-level
mixed-integer quadratic problem (MIQP). Grimm, Kleinert, et al. (2019) as well
as Kleinert and Schmidt (2019) demonstrate that this single-level reformulation is
highly challenging and can be solved reliably only for rather small networks. In the
context of the model of the present paper, the first two issues from above additionally
render every single-level reformulation a nonconvex mixed-integer nonlinear problem
(MINLP)—which is of course much harder to solve than a convex MIQP. We thus
refrain from using this approach in this paper.

Issue (3) may sound more like an advantage than a disadvantage on first sight.
However, many solution techniques for mixed-integer bilevel (or more general
multilevel) problems explicitly rely on integer linking variables; see, e.g., the branch-
and-bound based algorithm proposed by Xu and Wang (2014) or the sampling-based
algorithm of Lozano and Smith (2017). Furthermore, integer linking variables allow
for effective enumeration schemes (see, e.g., Grimm, Kleinert, et al. (2019) and
Kleinert and Schmidt (2019)) and specialized branch-and-cut methods; see, e.g.,
Fischetti, Ljubi¢, et al. (2017, 2018, 2019) and Tahernejad et al. (2016).

Putting all properties of the model together, it seems hopeless to solve the
problem at hand without using a highly problem-specific approach. This approach
is presented in the remainder of this section. We first propose equivalent model
reformulations, that resolve the third issue and allow for a solution approach that
is capable of dealing with the second issue. The latter is strongly based on the
Benders-like decomposition approaches developed in Grimm, Kleinert, et al. (2019)
and Kleinert and Schmidt (2019), which have also been used, in a different setting,
in Ambrosius, Grimm, et al. (2018). To avoid unnecessary duplication of the basic
techniques, we only discuss the respective difference in the remainder of this section.
All other things that can be done in analogy to the above mentioned papers are
given in Appendix B. As a first difference, we need the following lemma that is not
given in the former articles.

Lemma 1. The trilevel problem of Section 2 is equivalent to the trilevel problem

max 1y = ¢y
st. (1)—(3)
max 1y =y
st (8)(12) (26)

min s i=vs+ Y, Y eV

ne Ncore gEG.k,)L"
s.t. (15)—(21), (4),
i.e., the problem in which the variables g, for g € GPU.n € N and Constraint (4)

are moved from the first to the third level and the third-level objective function is
adapted accordingly.
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Before we prove the lemma, we point out the relationship of the objective functions
of the three levels. We use the notation
7 d inv —-mod
TR SR IS D S
lELHCW neNcure geG%esnnyxlew

and

J5POt

B 3 (o[ a3 o)

tET neNeore gEGEenY

- > Yo A4

nENcore gEG?LeWmG%()nV

7Tm,t+7rn,t spot
DD DI B/

LET 1= (1, m) €03%hre

Using this notation, it holds

br=tr—tr— Y > VG — s =1hy— 1 — s = ¢r. (27)
nE Ncore QGGE’L“
Proof. Let s* = (s%, 85, s%) be an optimal solution of the original trilevel problem.
By a slight abuse of notation, we further specify the solution of the original first level
as s; = (z*,y%, ¢ ,), where g, denotes the optimal vector of backup generation
capacity variables. Then, (z*,y*) is feasible for the first level of Problem (26) and
s3 is optimal for the second level of Problem (26) with fixed (2*,y*). In addition,
(Gt > 55) also minimizes the third level of Problem (26) with fixed (z*,y*, s3). To see
this, assume that there exists a solution (g}, ,, s5) of the third level of Problem (26)
with fixed (z*,y*, s5) that yields 12)3((?1/311, sh) < 7]13((?@';“, s3). Then, (z*,y*, qL,, 53, 55)
is feasible for the original trilevel problem and with (27) it holds
1/)1($*7 y*, Ql/alﬁ 537 Sé) = ¢2(8§) - "/Jl(x*a y*) - 7#3(67{;.11’ Sé)
> Pa(s3) = ¥1(a™, ") — (T, 53)
— 0i(s"),
which contradicts the optimality of s*. In total, s* is feasible for the first level and
optimal for the second and third level of Problem (26) and consequently feasible for
Problem (26).

On the other hand, let § = (51, 32, 53) be an optimal solution of Problem (26),
with 3; = (Z,7) and 33 containing gyy. Obviously, (51, @py) is feasible for the first-
level problem (6) and 3, is optimal for the second-level problem (13) for fixed ;.
Furthermore, for fixed gpy = Gy the original third-level problem (22) is—apart from
a constant term in the objective function—exactly the third level in Problem (26)
for fixed quy. Thus, 53 is optimal for the original third-level problem (22) with fixed
(31, 32, Gbu)- In total, 5 is feasible for the original first-level problem and optimal
for the original second- and third-level problem. Consequently, § is feasible for the
original trilevel problem.

In summary, we have that s* feasible and 5 is optimal for the reformulated trilevel
problem (26). Thus, we obtain

Y1(s*) < 1(5). (28)

Further, we know that § is feasible and s* is optimal for the original trilevel problem,
which gives

P1(8) < Yr(s”). (29)
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Using both (28) and (29), we obtain ;1 (s*) = ¢1(5). Hence, an optimal solution of
the original trilevel problem is also optimal for Problem (26) and vice versa. |

Note that in the reformulated Problem (26), the variables g, for g € GEY,
n € N are third-level variables. Thus, the only first-level variables present
in the second and third level are the integer variables that model investment in
transmission lines (1) and renewable generation projects (2). These integer variables
can easily be reformulated to binary variables, which is required by our solution
technique. For line expansion variables y;, [ € L™V, we introduce binary variables
yrt with i € {1,..., 7 := [logy(7)] 4+ 1}. In addition, we need the constraints
T
y=y 2" ypin, (30)
i=1
Similarly, we introduce binary variables xg‘? for all z4, g € G NGLY, n € N,
with i € {1,...,ry := [logy(Z4)| + 1} and the set of constraints

Tg
2y =Y 20 P, (31)
i=1

With these reformulations, we are facing a mixed-integer nonlinear trilevel problem
with the following structure: The first-level constraints only depend on genuine
first-level integer (and binary) variables. The second-level problem depends on
binary variables of the first-level due to Reformulation (30), but not on variables of
the third level. Similarly, the third-level problem now depends on binary first-level
and continuous second-level variables but—due to Lemma 1—not on continuous first-
level variables anymore. Only the nonlinear first-level objective function connects
all three levels. These coupling properties are exactly the ones that are required
to apply the Benders-like decomposition as it is developed in Grimm, Kleinert,
et al. (2019) and Kleinert and Schmidt (2019). The structure of this decomposition
algorithm is depicted in Algorithm 1. In a nutshell, the mechanism is the following.

Algorithm 1: Benders-like decomposition of Grimm, Kleinert, et al. (2019)
and Kleinert and Schmidt (2019).

Input: The trilevel problem of Section 2.

Output: A globally optimal solution for the trilevel problem.

while B < yVB do
2 Solve the Benders master problem, obtain corresponding fist-level binary

=

variables, and let 1B denote the corresponding objective value.
Solve the second-level problem (13) with fixed first-level binary variables.
4 Solve the third-level problem (22) with fixed binary first-level and
continuous second-level variables.
Evaluate 1, for given first-, second- and third-level solutions.
Add Benders optimality cuts.
if 1, > ¢I® then update 1B «— 1.

With the help of a Benders master problem, which is a relaxation of the full trilevel
problem, we compute promising first-level solutions and an upper bound B for
the trilevel objective function (5). In particular, this Benders master problem is a
comparably simple MILP because it linearly overestimates the nonlinear objective
function (5); see Appendix B for details. The solution of the master problem, i.e.,
the binary first-level variables, can be fixed in the Benders subproblem, which in our
case is a bilevel problem consisting of the original second- and third-level problem.
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Since the solution of the second level does not depend on the third-level solution,
the second and third level can be solved subsequently. Thus, solving the subproblem
can be done in polynomial time by solving two QPs. In order to obtain a correct
approach, it is necessary that the solution of the second-level problem is unique.
However, the second-level solution may be ambiguous, e.g., due to generators with
the same cost structure. Within one bidding zone, equilibria can be selected via tie
breaking rules as proposed in Ambrosius, Grimm, et al. (2018). In case of equivalent
cost structures of generators across zones, ambiguities may occur in time periods in
which inter-zonal transmission lines are non-binding. Since in this case no reasonable
tie breaking can be applied, we exclude such situations; see also Section 5.

Subsequently solving the second- and third-level problem for a fixed master
solution yields a feasible solution of the trilevel problem. Thus, we can evaluate the
nonlinear first-level objective function to obtain a lower bound ¥%Y®. Furthermore,
each feasible solution of the trilevel problem provides no-good-cut-like optimality
cuts. When added to the master problem, these cuts enforce the objective function
value 1B if a master solution is considered for the second time. We state the
optimality cuts in Appendix B. The algorithm stops with a globally optimal solution,
when the upper bound ¥YE and lower bound ¥+ meet.

Theorem 1. Algorithm 1 terminates after a finite number of iterations and returns
a globally optimal solution for trilevel problem of Section 2.

The proof of this theorem can be obtained in analogy to the proofs given in
Grimm, Kleinert, et al. (2019) and Kleinert and Schmidt (2019). We thus refrain
from formally stating it but only sketch the main ideas, which follow directly from
the discussions above. Every solution of the master problem yields an upper bound
and every solution of the corresponding subproblem yields a lower bound of the
trilevel problem. Thus, whenever a master solution is visited for the second time,
the termination criterion is reached and the algorithm stops. The finiteness then
follows from the finite number of integer-feasible solutions of the master problem
(or the first-level problem, respectively). Correctness follows from the construction
of the Benders cuts.

In Grimm, Kleinert, et al. (2019) as well as Kleinert and Schmidt (2019), this
Benders-like decomposition proved to be numerically much more stable and effective
compared to an MIQP single-level reformulation. As already mentioned, this effect
would be even more drastic in our application, because the nonconvex objective
function of the first level adds further nonconvexity to the single-level reformulation.
In addition, algorithms for nonconvex mixed-integer problems typically only yield
e-optimal solutions. In contrast, Algorithm 1 decomposes the problem in a way,
such that the nonconvexity only needs to be evaluated. The algorithm is thus not
affected at all by the additional complexity that stems from a correct modeling of
the interaction with neighboring markets and yields the global optimal solution.

Finally, it is easy to see that the nodal-pricing bilevel model of Section 3 can be
tackled with a suitably adapted version of Algorithm 1.

5. TEST CASE

As described in the last sections, we consider a regulator of a core region that
decides on regional optimal investment in RES and transmission capacity within
her jurisdiction to maximize regional welfare, i.e., the welfare of the core region.
In Section 2, we modeled this for a uniform- or zonal-pricing regime, whereas in
Section 3, we modeled a nodal-pricing regime. In this and the next section, we
analyze the effects of regional planning of the core region’s regulator compared
to supra-regional planning for the different (uniform, zonal, and nodal pricing)
congestion-pricing schemes.
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FIGURE 3. Network topology with existing (solid) and candidate
(dashed/red) transmission lines

We apply our setup to the simplistic electricity network given in Figure 3. The
considered test case does not resemble a specific real-world electricity system but
serves as an academic example, which represents general characteristics of electricity
markets regarding, e.g., the spatial distribution and temporal characteristics of
demand, the cost structure for conventional technologies, and assumptions on the
spatial potential and temporal availability of renewable technologies. This section
together with Table 10 in Appendix C provides a complete overview of the input data
of the considered test case. All data described in the following is normed to 1 MW
of peak-load demand of the core region. The core region consists of four nodes,
ie., N = {ny,...,ng}. In addition, we have two neighboring (surrounding)
markets N3 = {ns,ng}. All transmission lines have an equal susceptance of 1S,
and a capacity of 0.05 MW. The network topology in Figure 3 consists of four intra-
regional connections within the core region and three inter-regional connections that
connect the core region to the neighboring markets as well as the two neighboring
markets. In the initial setting, each intra-regional connection is equipped with one
transmission line and each inter-regional connection with two parallel transmission
lines (solid lines). In addition, the regulator of the core region can decide on
investment in intra-regional (dashed/red) transmission lines with the same physical
properties as the existing lines and an annuity of investment cost of 1850 EUR. This
corresponds to an average of 4.2 EUR/MWh at full utilization of line capacity for
the entire year. It is not possible to invest in inter-regional transmission lines.

For the core region, we assume a green field approach, i.e., no generation capacity
is installed yet. The capacity of renewables is determined endogenously by the
regulator; see (2). As stated in Constraint (3), the regulator has to satisfy a specific
renewable investment target. In particular, we assume that the aspired political
renewable target is 41 % of the annual reference demand and that the minimal
required realization is 39 %. Each renewable project g € G NG, n € N,
has a capacity q;nOd equivalent to 5% of the annual reference demand. Table 1
summarizes the annuity of investment cost and variable generation cost of all
technologies. These values translate into levelized cost of electricity at the nodes
with best resource quality for wind and PV as indicated in Table 2. Wind has the
lowest cost at n3 (47.5 EUR/MWh), compared to PV at ny (54 EUR/MWh). For
both technologies, we assume less suitable wind and solar conditions at the other
nodes which induce higher investment costs in order to provide the same annual
generation output. For wind, n; ranks second in resource quality (+ 32 % markup)
followed by n4 (+ 60 % markup). For PV we assume smaller differences in resource
quality between the three nodes (+ 3 % markup at n; and + 7% markup at n3). It
is not possible to invest in either wind or PV at the main demand node ns.
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TABLE 1. Economic parameters for conventional technologies

Unit CCGT GT Wind PV

Annuity investment cost  EUR/MW 69900 32500 71500 61800
Variable generation cost EUR/MWh 46.8 76.2 0.0 0.0

TABLE 2. Levelized cost of electricity (LCOE) at the nodes in the
core region (in EUR/MWh) for investment in wind and PV

ni T2 ns Ty

Wind 625 — 475 76.0
PV 555 — 58.0 54.0

TABLE 3. Structure of time periods with respective probability.

No Entries (frequency)

Seasons 2 winter (0.5), summer (0.5)
Demand levels 6 di/dg (0.1), d2—ds (0.2)
Wind 3wy (0.1), wy (0.8), ws (0.1)

In contrast to the core region, we assume an exogenous renewable scenario for the
neighboring markets with 0.98 MW wind capacity installed at node n5 and 0.43 MW
PV capacity installed at ng; see Figure 3.

Generation investment in conventional technologies, i.e., combined-cycle gas
turbines (CCGT) and gas turbines (GT) power plants, is possible at all nodes.

We implement the same generation technology (i.e., CCGT, GT, and wind/PV)
with a very small variance (10~3 EUR/MWHh) in variable costs between different
bidding zones to guarantee unique spot-market results; see also the discussion in
Section 4 and Grimm, Schewe, et al. (2017) for more details on uniqueness of
spot-market results. For backup generators on the redispatch level we assume the
same cost as for GT and for load shedding the value of lost load of 3000 EUR/MWh.

The temporal time resolution of the test case includes 36 time periods (Table 3),
which represent two seasons (winter and summer), six different demand levels per
season from d; (peak) to dg (off-peak), and three different wind capacity factors
from w; (highest) to ws (lowest). In combination, this makes a total of 36 time
periods, which occur at different frequency and scale in one representative year.
Each combination of season and demand hour is attributed with an individual
capacity factor for PV. Linear inverse demand functions at each node are derived
for the time periods with the help of a reference demand, a reference price, and a
point elasticity of demand (¢ = —0.1). The peak reference demand is 1.0 MW in the
core region (0.2MW at ny, 0.5 MW at ng, 0.1 MW at ng, and 0.2 MW at n4) and
0.4 MW for each neighboring region. Table 10 in Appendix C provides an overview
on reference demand levels, reference prices, and capacity factors for wind as well
as PV in each time period.

6. RESULTS

We now compare the optimal regional investment decisions, i.e., welfare-
maximizing decisions of the core region, with optimal supra-regional decisions
that maximize the system-wide welfare. Maximal core-region welfare is obtained by
solving the model with the regional welfare objective as described in Section 2 or
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Section 3, depending on the congestion-pricing scheme. In this case, we assume a
50:50 splitting of the congestion rents, i.e., s5°"% = 0.5 for all n € N. We explicitly
point out that welfare gains and losses in the neighboring markets do not affect
the decisions of the core-region’s regulator. Maximal system-wide welfare can be
obtained by solving the same models but with the system-wide first-level objective
function (23). We are interested in the following four different bidding zone configu-
rations: a single uniform bidding zone ({n1, na, ng, n4}), two bidding zones ({n1,
na}, {ns, na} or {n1, nz}, {na, na}), and nodal pricing ({n1}, {na2}, {ns}, {na}).

Before we discuss results for welfare levels per region, network and RES invest-
ments in the core region, and distributional effects including electricity prices, we
briefly discuss some computational aspects of our analysis.

All computational experiments have been executed on a compute cluster using
compute nodes with Intel Xeon E3-1240 v6 CPUs with 4 cores, 3.7 GHz, and
32 GB RAM,; see Regionales Rechenzentrum Erlangen (2020) for more details. We
implemented the algorithm in Python 2.7 and used Gurobi 8.1 to solve all optimization
problems. As mentioned in Section 4, the Benders-like decomposition approach
computes a global optimum of the trilevel and bilevel problems of Section 2 and
Section 3, respectively. The running time of the algorithm depends on (i) the
running time per iteration of the algorithm and (ii) the number of iterations needed
to compute a global optimum. The former is mainly driven by the size of the
subproblems, i.e., the size of the original second- and third-level problem. Since the
subproblems can be solved in polynomial time, it can be expected that the running
time per iteration scales quite well with larger networks or bigger sets of time
periods T'. In contrast, the number of iterations scales exponentially with the integer
decisions of the first-level problem. It can thus be expected that larger networks with
more modules of candidate lines and modules of renewable energy systems, modeled
as integer decisions y; € {0,...,4} and 2, € {0,...,Z,} in Section 2, require
significantly more computation time. With regard to median and mean running
times—which are around 5.7 h and 9.3 h, respectively—for the various configurations
that we consider in this section, tackling larger instances may be difficult. On
the other hand, we observe that optimal solutions are found for many instances
already after a few seconds or minutes, while the best bound obtained by the master
problem only improves very slowly. Thus, we see several possibilities to apply the
approach to larger instances: (i) Using (potentially) suboptimal solutions and stop
the algorithm after a certain time limit, (ii) tightening the master problem to obtain
better bounds, and (iii) develop stronger Benders optimality cuts. Especially the
latter two aspects are relevant from a methodological point of view but are out of
scope of this paper.

6.1. Change in Welfare Levels for Regional Planning.

Result 1. Regional investment planning allows for higher welfare levels in the
core region than supra-regional planning, but it decreases system welfare and causes
significant external effects in neighboring markets. Depending on the market design
in the core region, adjacent regions can either gain or lose.

Table 4 states changes in the annual welfare levels for regional compared to
supra-regional investment planning. The values represent an electricity system with
a peak demand of 1 MW in the core region and 0.4 MW in both adjacent regions.

Except for one case with two bidding zones (north-south), welfare in the core region
increases for regional planning whereas overall system welfare decreases. The core
region has a higher potential to increase its welfare for nodal pricing (+122 EUR/yr)
than for uniform pricing (+26 EUR/yr). However, one configuration with two
bidding zones (west-east) provides an even higher welfare gain (+726 EUR/yr).
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TABLE 4. Welfare effects in case of regional compared to supra-
regional planning for different bidding zone configurations and for
nodal pricing (in EUR /yr).

Core region Region 1 Region 2 Total

Congestion-pricing scheme {ni,...,n4} {ns} {ne}

One zone +26 -413 +378 -9
Two zones (north-south) — — — —
Two zones (west-east) +726 +708 -1468  -34
Nodal pricing (four nodes) +122 -259 -153  -290

The neighboring regions have to pay for the sum of losses in system welfare and
welfare gains in the core region. Depending on the bidding zone configuration,
one of the adjacent regions might also benefit from regional planning in the core
region. For one bidding zone in the core region, region 2 is by far the single biggest
winner (+378 EUR/yr), which in turn results in higher welfare losses for region 1
(-413EUR/yr). In one case with two bidding zones, the core region (+726 EUR/yr)
and region 1 (+708 EUR /yr) see even higher welfare gains which in result causes an
even higher loss in welfare for region 2 (-1468 EUR/yr). Nodal pricing with regional
planning results in a lower welfare level for both adjacent regions and also in by far
the highest losses in absolute system welfare (-290 EUR/yr).

6.2. Investment in Generation and Transmission Capacity.

Result 2. The regulator in the core region takes different decisions on investment
in RES and/or transmission capacity within a regional compared to a supra-regional
planning approach which also alters the incentives for private investment in genera-
tion capacity. For instance, under regional planning we observe increased network
1vestment; see Figure 4.

Table 4 shows investment decisions for regional planning (left column) and supra-
regional planning (right column) for different bidding zone configurations. For each
bidding zone configuration, differences in the investment decisions are depicted in
red.

In case of a single bidding zone in the core region, supra-regional planning results
in equal shares for wind and PV with four wind projects at the node with best
wind conditions (n3) and two PV projects each at the nodes with best (n4) and
second-best (n1) condition for PV, as well as significant network investments of eight
lines. For regional planning, the regulator can increase welfare in the core region
by replacing PV (n1) with additional wind (n3) and investment in one additional
transmission line.

Both cases with two bidding zones and supra-regional planning see more wind
at ng and transmission investment only within but not between bidding zones in
the core region. In the case with north-south bidding zones, the regulator has no
incentive to change the investment plan for regional planning. For west-east bidding
zones, regional planning shifts wind from the eastern bidding zone (n3) to PV in
the western bidding zone (nq).

For nodal pricing, supra-regional planning suggests the same RES investment
as two bidding zones but significantly lower transmission investment (only one
line). Regional planning further increases wind capacity at n3 (cheapest option)
and invests in additional transmission capacity for wind integration towards ng4.

Welfare optimal decisions of the regulator on RES placement and network expan-
sion anticipate private investments in conventional generation capacity. Depending
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TABLE 5. Private investment in conventional generation capac-
ity for supra-regional planning and differences in case of regional
planning (A values)

Core region Region 1 Region 2
{na}  {no}  {ns}  {na}  {ns} {ne}
o Zone 1
g CCGT 0.168  0.168  0.168  0.168 0.158 0.228
o GT 0.087  0.087  0.087  0.087 0.065 0.000
5 ACCGT -0.003 -0.003 -0.003 -0.003 0.000 0.000
AGT -0.003 -0.003 -0.003 -0.003 -0.015 0.000
" Zone 1 Zone 2
% CCGT 0.270  0.270  0.062  0.062 0.158 0.228
s GT 0.048  0.048  0.120  0.120 0.050 0.000
5 ACCGT +40.001 +0.001 +0.004 -+0.004 0.000 0.000
AGT -0.001  -0.001 +0.007 +0.007  +40.015 0.000
bgo Nodal core region
:E CCGT 0.161  0.390 0.021  0.195 0.118 0.168
T? GT 0.000  0.035  0.112  0.082 0.068 0.086
< ACCGT  0.000 -0.007 -0.021 +0.016  +0.001 0.000
Z AGT 0.000 +0.007 -0.054 -0.082  +0.031 -0.033

of the regulator’s planning objective, i.e., on supra-regional or regional level, lo-
cation and technology for private investments can differ considerable; see Table 5.
Wind capacity compared to PV has always at least a small availability in hours of
peak demand. More wind than PV for regional planning (one bidding zone and
nodal pricing) therefore allows lower investments in conventional capacity (vice
versa for two bidding zones). In case of zonal pricing, changes in conventional
generation investment can be attributed to the different RES investment choices as
no transmission investment takes place between bidding zones in the core region.
For nodal pricing, more wind and network capacity, in case of regional planning,
results in more variation of generations investments by private investors (location
and technology) and larger spill-over effects on neighboring markets due to the
physical representation of electricity flows in nodal electricity prices.

6.3. Price Effects and Distributional Effects under Regional and Supra-
regional Planning.

Result 3. Depending on the congestion-pricing scheme, the regulator follows dif-
ferent strategies to increase welfare in the core region for regional planning. Dis-
tributional effects for stakeholders within the core region can be significantly higher
than welfare gains and questions of internal cost allocation arise in case of multiple
bidding zones or nodal pricing.

There are different effects that have implications on the welfare in the core region
and motivate the regulator’s investment decisions in RES capacity and transmission
lines in the regional setting. In the following, we describe all aspects regarding
costs and rents, which jointly result in the welfare effects for the individual market
regions.

First of all, following a specific investment plan in the core region comes at a
certain cost which depends on RES investment (renewable costs), i.e., the choice of
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FIGURE 4. Investment in RES capacity and transmission lines in
the core region for supra-regional and regional planning (in case of
uniform pricing, zonal pricing, and nodal pricing).
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TABLE 6. Distributional effects of regional compared to supra-
regional planning for two bidding zone (in EUR /yr)

Zone 1  Zone 2  Core region Region 1 Region 2

{’I’Ll,’I’LQ} {ng,n4} {nl,...,n4} {TL5} {ng}

Renewable cost 17016  -14563 2453
Network cost 0 0 0
Consumer rent 61 -1828 -1767 -2280 -1718
Network rent -455 -626 -1081 -150 -281
Renewable rent 15003 -8724 6279 3139 531
Redispatch cost -254 257 4
Backup cost 248 0 248
Welfare -2402 3128 726 708 -1468

technology (wind or PV) and their location, as well as on transmission investment,
where each additional line increases costs in the core region (network cost). In
addition, initial investment decisions in the core region alter the market equilibrium,
which includes private investment in conventional generation capacity in the entire
electricity system. With a new market equilibrium, electricity prices and stakeholder
rents change within the core region but also in neighboring markets. While the
market equilibrium under perfect competition enforces a zero-profit condition for
private generation companies, consumers benefit from lower prices (consumer rent),
RES capacity benefits from higher prices in hours of production (renewable rent),
and trade constraints generate congestion rents at the adjacent zones or nodes
(network rent). Finally, infeasibility of market outcomes due to internal network
congestion within bidding zones may require adjustments (redispatch cost) and
investment in backup capacity (backup cost).

For two (west-east) bidding zones, see Table 6, the regulator does not take
different network investment choices for regional as compared to supra-regional
planning (no change in network cost) but decides to invest less in wind at ng (zone 2)
and more in PV at ny (zone 1), which gives rise to higher renewable cost in the core
region by 2453 EUR /yr. While this shift causes lower consumer and network rents as
well as higher costs for backup capacity, market payments for RES are significantly
higher in case of regional planning (+6279 EUR /yr), leading to an overall welfare
gain in the core region.

Within zone 2 ({ns, n4}), lower wind generation at ns in case of regional planning
(due to lower wind investment, see Table 4) leads to higher electricity prices in about
750 hours; see Figure 5b. Consumer rent (-1828 EUR /yr) as well as price differences
with neighboring zones are lower in case of regional planning, resulting in lower
network rents (-626 EUR/yr). On the contrary, higher prices lead to higher renewable
rent per unit of the remaining wind generation in zone 2. Note, however, that fewer
wind capacity is built under regional planning, which leads to a reduction in absolute
renewable rent. This rent reduction is significantly lower than the reduction in
renewable cost; see Table 6. In zone 1 ({n1,n2}), additional PV capacity under
regional planning leads to lower prices and together with lower system peak prices
results in a slightly higher consumer rent. However, the network rent is lower than
under supra-regional planning and the higher renewable rent does not cover the
additional renewable cost for PV at n;. Overall, welfare gains in the core region are
not distributed evenly. While overall welfare effects of regional planning are positive
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FIGURE 5. Ordered price differences between the regional as com-
pared to the supra-regional scenario (presional  psupra-regional)

in zone 2 (+3128 EUR/yr) and negative in zone 1 (-2402 EUR/yr), the direct price
effects in the spot market result in lower (higher) consumer rent in zone 2 (zone 1).

Table 6 illustrates that welfare effects in neighboring markets are limited to price
effects on consumer rent, network rent, and renewable rent. While the consumer
and the network rent decrease in both neighboring regions due to spill-over effects of
higher market prices in zone 2, the renewable rent increases much more in region 1
(+3139EUR/yr) than in region 2 (+531 EUR/yr). The partial shift from wind to
PV in the core region increases market prices in hours with high wind availability
and price increases in region 1 are higher than in region 2; cf. Figure 5b. Overall,
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TABLE 7. Distributional effects of regional compared to supra-
regional planning for one bidding zone (in EUR/yr)

Core region Region 1 Region 2

{nl,...,n4} {TL5} {TL6}

Renewable cost -2453
Network cost 1850
Consumer rent 3449 129 130
Network rent 0 -255 255
Renewable rent -2616 -288 -6
Redispatch cost 1409
Backup cost 0
Welfare 26 -413 378

the higher renewable rent in region 1 more than compensates other losses compared
to region 2 which observes welfare losses.

In case of a single bidding zone, regional planning results in additional wind
and less PV capacity as compared to supra-national planning. Regional planning
therefore has the opposite effect on investment levels for renewable technologies as
in the case with two bidding zones. Wind at nz (the cheapest RES technology)
which replaces some PV at n; which, together with additional network investment,
allows for cost savings in the core region of 603 EUR/yr. Additional wind capacity
reduces electricity prices in the core region in about 100 hours, see Figure 5a, which
increases the consumer rent (+3439 EUR/yr) and decreases the renewable rent
(-2616 EUR /yr) more than the renewable cost. The larger amount of wind capacity
requires a higher level of redispatch cost, which results in only small welfare gains
in the core region.

In both neighboring markets the consumer rent benefits only to a small extent
from lower market prices. As lower market prices result from additional wind
capacity, they have a negative effect on the renewable rent in region 1 (-288 EUR /yr)
but limited effects on the renewable rent in region 2 (-6 EUR/yr). Electricity prices
in the core region converge towards prices in region 1 in hours with high wind
generation reducing (increasing) the network rent between the core region and
region 1 (region 2). This results in overall welfare losses in region 1 and welfare
gains in region 2.

In case of nodal pricing, regional planning sees the highest wind investment at
ng of all scenarios and lowest renewable cost. Compared to supra-regional planning,
the regulator plans with two additional lines between the border nodes ns and ny
to integrate the additional wind generation, which re-route physical electricity flows
to a certain extend to n4. Prices increase more at ns and n4 than at ny and ns in
about 250 hours and ng3 experiences 50 additional hours with low electricity prices;
cf. Figure 5c. Even though overall investment cost increase in the core region by
1807 EUR/yr, the collection of significant amounts of network rent (3080 EUR/yr)
is the main driver for welfare gains. Thus, nodal pricing is the only case that allows
welfare gains in the core region for regional planning with losses of consumer rent
and renewable rent at the same time.

On a nodal basis, n3 and n4 experience the main shift in welfare as a result
of replacing PV at ny with wind at nz. At both nodes, the combination of more
wind and less PV capacity with additional network investment results in higher
prices, lower consumer rent, and an additional network rent. Overall nodal welfare
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TaBLE 8. Distributional effects of regional compared to supra-
regional planning for nodal pricing (in EUR /yr)

Core region Region 1 Region 2

{ni}t {n2} {ns} {na} {m,....,na}  {ns} {ne}

Renewable cost 0 0 14563 -16556 -1993
Network cost 0 0 1850 1850 3700
Consumer rent -86 201 -186 -453 -524 -535 -T17
Network rent -195 -90 1628 1736 3080 -14 -12
Renewable rent 133 0 13124 -139%84 =727 290 576
Welfare -148 111 -1848 2006 122 -259 -153

decreases at n3 as the additional renewable rent is lower than the renewable cost
and it increases at n4s with lower decreases in renewable rent than renewable cost.
For n; losses in network rent and consumer rent outweigh additional renewable rent
for PV, whereas higher consumer rent at no allows a modest increase in welfare.

Both neighboring markets experience welfare losses as price effects result in higher
reductions of consumer rent than increases in renewable rent.

7. DISCUSSION

In this contribution we have extended an existing multilevel electricity market
modeling approach to account for the effect of regional planning objectives of
the public authority on economic efficiency in an electricity system with coupled
regional spot markets. Our analysis adds to a well-established literature on electricity
market modeling, which typically does not focus on cross-border trade. Existing
contributions either (i) restrict themselves to heuristics to capture cross-border
electricity flows, (ii) assume supra-regional objectives of the public authorities,
or (iii) simply abstract from neighboring markets. We show that the rigorous
analysis of regional objectives in a system of interconnected regional markets has
serious implications on the results. In particular, the consideration of regional
planning objectives of the regulator yields different investment plans for transmission
expansion as well as renewable technology and allocational choices. We show that
this is true for a wide range of liberalized electricity markets, i.e., electricity markets
with nodal pricing as they are used in parts of the US and also zonal electricity
markets as they are used in Europe or Australia. This is an important result, as
today’s toolboxes for transmission investment planning and for renewable allocation
do not address regional motivations convincingly. Since the modeling of national
or regional objectives of a regulator implies a high degree of complexity, it is not
possible to compute significantly larger instances using the presented approach.
However, the model is well suited to illustrate the effects of cross-border aspects
using reduced examples.

In order to illustrate our approach, we presented a case study consisting of a core
region and two adjacent regions. Regional planning objectives, of course, lead to
welfare gains in the core region. We show that adjacent regions may either win or
loose. More importantly, we find substantial distributional effects as compared to
supra-regional planning. Distributional effects occur within the core region as well
as in the adjacent regions. Whereas there is no clear relation between market design
and the impact of the planning perspective, we can nevertheless identify drivers of
redistribution. In particular, line investment is taken as to integrate more cheap
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renewable energy in the core region and to increase network rents from trade with
the adjacent regions.

In future work, our model can be applied to more realistic network instances
and larger data sets. Computational challenges will then come up that need to be
addressed by novel algorithmic developments. Further interesting pathways are the
consideration of uncertainty on renewable scenarios in neighboring markets, the
analysis of investment in cross-border line capacity, or an assessment of the scope for
coordination of renewable targets. It is also a clear challenge to include our approach
into a game with several players on the first level for nodal and zonal pricing. This
would allow to analyze strategic transmission investment among multiple players.
Those questions are left for future research.
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APPENDIX A. NOTATION

TABLE 9. Technical and economic quantities.

Symbol Explanation
N Demand and Generation nodes
Ne°r¢  Nodes in the core region
N3 Nodes in the surrounding markets
7, Bidding zone k for k=1,...,p
L Transmission lines
L Existing transmission lines
L*%  Candidate transmission lines
LT Inter-zonal transmission lines
L™ Transmission lines within the core region
G2 All generation technologies at node n
GS*  Existing generation technologies at node n
G Candidate generation technologies at node n
G Conventional generators at node n
G Renewable generators at node n
GP"  Backup generators at node n

T Time periods

7¢ Length of time period ¢

B; Susceptance of transmission line [ € L

fi  Thermal capacity of transmission line I € L

B; Inter-zonal transmission capacity factor of line [
an,: Intercept of the inverse demand function p, ¢
bn,+ Slope of the inverse demand function p,, ;
cig“" Investment costs of generator g
™ Variable costs of production of generator g
(jgx Fixed capacity of existing generator g

qy'™  Maximum capacity that can be installed for candidate generator g
q_g“’d Module capacity of renewable generation project g

7 Maximum number of modules of line [

Zg Maximum number of modules of renewable project g
wg,+ Availability factors of generator ¢ in time period ¢
dﬁfi Reference demand at node n in time period ¢

c® Load shedding costs

5”& Share of congestion rent at node n

yi  Number of modules built for line [

zg Number of modules built for renewable project g

gy Capacity of candidate generator g
mn,t Market price at node n in time period ¢

4P Spot-market demand at node n in time period t
qf]f)tm Spot-market generation of generator g in time period ¢
i ot Spot-market power flow on line [ at time period ¢
dﬁfg Demand after redispatch at node n in time period ¢
qg‘ff Generation after redispatch of generator g in time period ¢
fj:jd Power flow after redispatch on line [ at time period ¢
dlit Load shedding at node n in time period ¢
0, Voltage angle at node n in time period ¢
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APPENDIX B. BENDERS-LIKE DECOMPOSITION APPROACH

The Benders master problem used in Algorithm 1 is given by

max T — Z Z 1nvq;nod Z c}nvyl (32&)

ng Ncore QEG;?SQG;‘LSW lELr‘OW
st. 7<a' (;) +b for all (a,b) € O, (32b)
network design: (1), (32c¢)
renewable energy investment: (2), (3), (32d)
integer-to-binaries: (30), (31). (32¢)

For suitably chosen optimality cuts O, this is a relaxation of the full trilevel problem
of Section 2. In particular,

7> + Z Z Clnv modxg+ Z clnv

ngNcore geG:LesmG:;ew le [ new

needs to hold for every set of optimality cuts O. For a fixed solution (z*,y*) of
the master problem (32), we can solve the second-level and third-level problem
subsequently; see Section 4. Afterward, we can evaluate the first-level objective
function value ¥ (z*, y*). We can then derive optimality cuts that are based on a
no-good-cut logic:

< wl 7y Z Z cmv—mod *+ Z cmod *

neNcuxe geGreé.ﬁGuew ZELDCW
+on YD vt DD —u) (33)
(l L) ybm_o (l 1) ybm 1
PO | > i > (o)
neN \(g,9):z}'r=0 (g.):apip=1
Furthermore, we can state two addltlonal optlmahty cuts:
T<YLGy ) Fen | YL w Y, (-], (34)

(Li):ypir=0 (Li)ypir=1

T ) Y Y | D, A Y (—ayh | (35)

neN \(g,9):zbn=0 (g,4):abin=1

The values of ¢, ¥ («*, ), and ¥} (-, y*) denote upper bounds for the entire
trilevel problem, the trilevel problem with fixed renewable project decisions z*,
and with fixed network design decisions y*, respectively. These bounds can be
derived, e.g., by solving a single-level mixed-integer linear program (MILP) that is
closely related to the concept of the high-point relaxation of the trilevel problem,;
see Kleinert and Schmidt (2019).
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APPENDIX C. TiIME PERIODS FOR THE TEST CASE

TABLE 10. Time periods with season (winter/summer), probability,
demand factor, reference price, as well as capacity factors for Wind
and PV

Season Prob Demand Ref price Wind PV

(EUR/MWh)
tt. W 0005 1.0 155 0.66  0.00
t2 W 0040 1.0 155 0.20  0.00
ts W 0005 10 155 0.02  0.00
t+ W 0010 09 60 0.66 0.1
ts W 0080 09 60 020 0.11
ts W 0010 09 60 0.02 0.11
tz W 0010 08 28 0.66 0.04
ts W 0080 08 28 0.20 0.04
to W 0010 08 28 0.02 0.04
to W 0010 0.7 28 0.66  0.00
tn W 0080 0.7 28 0.20  0.00
te W 0010 0.7 28 0.02  0.00
tis, W 0010 06 28 0.66  0.00
tu W 0080 06 28 0.20  0.00
tis, W 0010 06 28 0.02  0.00
tis W 0005 0.5 28 0.66  0.00
tir W 0040 05 28 0.20  0.00
tis W 0005 05 28 0.02  0.00
tio S 0005 0.9 60 034 058
too S 0040 0.9 60 0.10  0.58
t2i S 0005 0.9 60 0.01  0.58
te S 0010 08 28 034 045
tss S 0080 0.8 28 0.10 0.45
tze S 0010 08 28 0.01  0.45
tss S 0010 0.7 28 034 0.32
tss S 0.080 0.7 28 0.10 0.32
ter S 0010 0.7 28 0.01  0.32
tss S 0010 06 28 034 0.10
tsy S 0.080 0.6 28 0.10 0.10
tsp S 0010 06 28 0.01  0.10
tss S 0010 05 28 0.34  0.00
tsx S 0080 0.5 28 0.10  0.00
tas S 0010 05 28 0.01  0.00
tss S 0005 04 28 0.34  0.00
tss S 0040 04 28 0.10  0.00
tss S 0.005 0.4 28 0.01  0.00
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