
Packing under Convex Quadratic Constraints ?

Max Klimm1, Marc E. Pfetsch2, Rico Raber3, and Martin Skutella3

1 School of Business and Economics, HU Berlin, Spandauer Str. 1, 10178 Berlin,
Germany, max.klimm@hu-berlin.de.

2 Department of Mathematics, TU Darmstadt, Dolivostr. 15, 64293 Darmstadt,
Germany, pfetsch@mathematik.tu-darmstadt.de

3 Institute of Mathematics, TU Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany, {raber,skutella}@math.tu-berlin.de

Abstract. We consider a general class of binary packing problems with
a convex quadratic knapsack constraint. We prove that these problems
are APX-hard to approximate and present constant-factor approxima-
tion algorithms based upon three different algorithmic techniques: (1) a
rounding technique tailored to a convex relaxation in conjunction with
a non-convex relaxation whose approximation ratio equals the golden
ratio; (2) a greedy strategy; (3) a randomized rounding method leading
to an approximation algorithm for the more general case with multiple
convex quadratic constraints. We further show that a combination of the
first two strategies can be used to yield a monotone algorithm leading to
a strategyproof mechanism for a game-theoretic variant of the problem.
Finally, we present a computational study of the empirical approxima-
tion of the three algorithms for problem instances arising in the context
of real-world gas transport networks.

1 Introduction

We consider packing problems with a convex quadratic knapsack constraint of
the form

maximize p>x

subject to x>Wx ≤ c,
x ∈ {0, 1}n,

(P)

where W ∈ Qn×n≥0 is a symmetric positive semi-definite (psd) matrix with non-
negative entries, p ∈ Qn≥0 is a non-negative profit vector, and c ∈ Q≥0 is a non-
negative budget. Such convex and quadratically constrained packing problems
are clearly NP-complete since they contain the classical (linearly constrained)
NP-complete knapsack problem [14] as a special case when W is a diagonal
matrix. In this paper, we therefore focus on the development of approximation
algorithms. For some ρ ∈ [0, 1], an algorithm is a ρ-approximation algorithm if
its runtime is polynomial in the input size and for every instance, it computes

? We acknowledge funding through the DFG CRC/TRR 154, Subproject A007.

a solution with objective value at least ρ times that of an optimum solution.
The value ρ is then called the approximation ratio of the algorithm. We note
that the assumption on W being psd is necessary in order to allow for sensible
approximation. To see this, observe that when W is the adjacency matrix of an
undirected graph and c = 0, (P) encodes the problem of finding an independent
set of maximal weight, which is NP-hard to approximate within a factor better
than n−(1−ε) for any ε > 0, even in the unweighted case [10].

The packing problems that we consider also have a natural interpretation in
terms of mechanism design. Consider a situation where a set of n selfish agents
demands a service, and the subsets of agents that can be served simultaneously
are modeled by a convex quadratic packing constraint. Each agent j has private
information pj about its willingness to pay for receiving the service. In this
context, a (direct revelation) mechanism takes as input the matrix W and the
budget c. It then elicits the private value pj from agent j. Each agent j may
misreport a value p′j instead of their true value pj if this is to their benefit. The
mechanism then computes a solution x ∈ {0, 1}n to (P) as well as a payment
vector g ∈ Qn≥0. A mechanism is strategyproof if no agent has an interest in
misreporting pj , no matter what the other agents report.

Before we present our results on approximation ratios and mechanisms for
non-negative, convex, and quadratically constrained packing problems, we give
two real-world examples that fall into this category.

Example 1 (Welfare maximization in gas supply networks). Consider a gas pipe-
line modeled by a directed graph G = (V,E) with different entry and exit nodes.
There is a set of n transportation requests (sj , tj , qj , pj), j ∈ [n] := {1, . . . , n},
each specifying an entry node sj ∈ V , an exit node tj ∈ V , the amount of gas to
be transported qj ∈ Q≥0, and an economic value pj ∈ Q≥0. One model for gas
flows in pipe networks is given by the Weymouth equations [28] of the form

βe qe |qe| = πu − πv for all e = (u, v) ∈ E.

Here, the parameter βe ∈ Q>0 is a pipe specific value that depends on physical
properties of the pipe segment modeled by the edge, such as length, diameter, and
roughness. Positive flow values qe > 0 denote flow from u to v, while a negative
qe indicates flow in the opposite direction. The value πu denotes the square of
the pressure at node u ∈ V . In real-life gas networks, there is typically a bound
c ∈ Q≥0 on the maximal difference of the squared pressures in the network.
For the operation of gas networks, it is a natural problem to find the welfare-
maximal subset of transportation requests that can be satisfied simultaneously
while satisfying the pressure constraint.

To illustrate this problem, we consider the particular case in which the net-
work has a path topology similar to the one depicted in Figure 1. We assume
that for each request the entry node is left of the exit node. Thus, the pressure
in the pipe is decreasing from left to right. For j ∈ [n], let Ej ⊆ E denote the
set of edges on the unique (sj , tj)-path in G. Indexing the vertices v0, . . . , vk and
edges e1, . . . , ek from left to right, the maximal squared pressure difference in

2

s1, s2 s3 s4

t1

s5, s6

t4 t5 t3, t6

e1 e2 e3 e4 e5

Fig. 1. Gas network with feed-in and feed-out nodes.

the pipe is given by

π0 − πk =

k∑
i=1

(
πi−1 − πi

)
=

k∑
i=1

βei

(∑
j∈[n]:ei∈Ej

qj xj

)2
,

where xj ∈ {0, 1} indicates whether transportation request j ∈ [n] is being
served. For the matrix W = (wij)i,j∈[n] defined by wij =

∑
e∈Ei∩Ej βe qi qj , the

pressure constraint can be formulated as x>Wx ≤ c. To see that the matrix W
is positive semi-definite, we write W =

∑
e∈E βe q

e (qe)>, where qe ∈ Qn≥0 is
defined as qei = qi if e ∈ Ei, and qei = 0, otherwise.

Gas networks are particularly interesting from a mechanism design perspec-
tive, since several countries employ or plan to employ auctions to allocate gas
network capacities [21], but theoretical and experimental work uses only linear
flow models [17,24], thus ignoring the physics of the gas flow.

Example 2 (Processor speed scaling). Consider a mobile device with battery ca-
pacity c and k compute cores. Further, there is a set of n tasks (qj , pj), each
specifying a load qj ∈ Qk≥0 for the k cores and a profit pj . The computations
start at time 0 and all computations have to be finished at time 1. In order to
adapt to varying workloads, the compute cores can run at different speeds. In
the speed scaling literature, it is a common assumption that energy consump-
tion of core i when running at speed s is equal to βi s

2, where βi ∈ Q>0 is a
core-specific parameter [2,13,29].1 The goal is to select a profit-maximal subset
of tasks that can be scheduled in the available time with the available battery
capacity. Given a subset of tasks, it is without loss of generality to assume that
each core runs at the minimal speed such that the core finishes at time 1, i.e.,
every core i runs at speed

∑
j∈[n] xj q

j
i so that the total energy consumption

is
∑k
i=1 βi(

∑
j∈[n] xj q

j
i)

2. The energy constraint can thus be formulated as a
convex quadratic constraint.

Mechanism design problems for processor speed scaling are interesting when
the tasks are controlled by selfish agents and access to computation on the
energy-constrained device is determined via an auction.

1 Other works assume that the relationship is cubic, but experiments conducted by
Wierman et al. [29] suggest that the relationship is closer to quadratic than cubic.

3

1.1 Our Results

In Section 3 we derive a φ-approximation algorithm for packing problems with
convex quadratic constraints where φ = (

√
5−1)/2 ≈ 0.618 is the inverse golden

ratio. The algorithm first solves a convex relaxation and scales the solution by
φ, which turns it into a feasible solution to a second non-convex relaxation. The
latter relaxation has the property that any solution can be transformed into a
solution with at most one fractional component without decreasing the objec-
tive value. In the end, the algorithm returns the integral part of the transformed
solution. Combining this procedure with a partial enumeration scheme yields a φ-
approximation; see Theorem 1. In Section 4 we prove that the greedy algorithm,
when combined with partial enumeration, is a constant-factor approximation
algorithm with an approximation ratio between (1 −

√
3/e) ≈ 0.363 and φ; see

Theorem 2 and Theorem 3. In Section 5, we show that a combination of the re-
sults from the previous section allows to derive a strategyproof mechanism with
constant approximation ratio. In Section 6 we derive a randomized constant-
factor approximation algorithm for the more general problem with a constant
number of r convex quadratic packing constraints. The algorithm solves a con-
vex relaxation, scales the solution, and performs randomized rounding based on
that scaled solution. Combining this algorithm with partial enumeration yields a
constant-factor approximation; see Theorem 5. In Section 7 we show that pack-
ing problems with convex quadratic constraints of type (P) are APX-hard; see
Theorem 6. Finally, in Section 8, we apply the three algorithms to several in-
stances of the problem type described in Example 1 based on real-world data
from the GasLib library [26].

1.2 Related Work

When W is a non-negative diagonal matrix, the quadratic constraint in (P) be-
comes linear and the problem is then equivalent to the 0-1-knapsack problem
which admits a fully polynomial-time approximation scheme (FPTAS) [12]. An-
other interesting special case is when W is completely-positive, i.e., it can then be
written as W = UU> for some matrix U ∈ Qn×k≥0 with non-negative entries. The
minimal k for which W can be expressed in this way is called the cp-rank of W ,
see [3] for an overview on completely positive matrices. The quadratic constraint
in (P) can then be expressed as ‖U>x‖2 ≤

√
c. For the case that U ∈ Qn×2

≥0 , this
problem is known as the 2-weighted knapsack problem for which Woeginger [30]
showed that it does not admit an FPTAS, unless P = NP. Chau et al. [5] settled
the complexity of this problem showing that it admits a polynomial-time approx-
imation scheme (PTAS). Elbassioni et al. [6] generalized this result to matrices
with constant cp-rank.

Exchanging constraints and objective in (P) leads to knapsack problems with
quadratic objective function and a linear constraint first studied by Gallo [8].
These problems have a natural graph-theoretic interpretation where nodes and
edges have profits, the nodes have weights, and the task is to choose a subset
of nodes so as to maximize the total profit of the induced subgraph. Rader and

4

Woeginger [23] give an FPTAS when the graph is edge series-parallel. Pferschy
and Schauer [22] generalize this result to graphs of bounded treewidth. They also
give a PTAS for graphs not including a forbidden minor which includes planar
graphs.

Mechanism design problems with a knapsack constraint are contained as a
special case when W is a diagonal matrix. For this special case, Mu’alem and
Nisan [18] give a mechanism that is strategyproof and yields a 1/2-approximation.
Briest et al. [4] give a general framework that allows to construct a mechanism
that is an FPTAS for the objective function. Aggarwal and Hartline [1] study
knapsack auctions with the objective to maximize the sum of the payments to
the mechanism.

2 Preliminaries

For ease of exposition, we assume that all matrices and vectors are integer. Let
[n] := {1, . . . , n} and W = (wij)i,j∈[n] ∈ Nn×n be a symmetric psd matrix.
Furthermore, let p ∈ Nn be a profit vector and let c ∈ N be a budget. We
consider problems of the form (P), i.e., max {p>x : x>Wx ≤ c, x ∈ {0, 1}n}.
Throughout the paper, we denote the characteristic vector of a subset S ⊆ [n]
by χS ∈ {0, 1}n, i.e., χi = 1 if i ∈ S and χi = 0, otherwise.

We first state the intuitive result that after fixing xi = 1 for i ∈ N1 ⊆ [n] and
fixing xi = 0 for i ∈ N0 (with N0 ∩N1 = ∅), we again obtain a packing problem
with a convex and quadratic packing constraint.

Lemma 1. Let W ∈ Nn×n be symmetric psd, p ∈ Nn, and c ∈ N. Further, let
N0, N1 ∈ 2[n] with N0 ∩ N1 = ∅ and N0 ∪ N1 ([n] be arbitrary. Then, there
exist ñ ∈ N, W̃ ∈ Nñ×ñ symmetric psd, p̃ ∈ Nñ, and c̃ ∈ N such that

max
{
p>x : x>Wx ≤ c, x ∈ {0, 1}n, xi = 0 ∀i ∈ N0, xi = 1 ∀i ∈ N1

}
= p>χN1

+ max
{
p̃>x̃ : x̃>W̃ x̃ ≤ c̃, x̃ ∈ {0, 1}ñ

}
.

Proof. Let n0 = |N0|, n1 = |N1|, and ñ := n−n0−n1. Without loss of generality
we can assume that [ñ] = [n]\(N0∪N1). Consider the matrix W̃ = (w̃ij) ∈ Nñ×ñ
defined as

w̃ij =

{
wij if i 6= j,

wij + 2
∑
k∈N1

wik if i = j,
i, j ∈ [ñ].

Note that W̃ is obtained from W by taking principal minors and adding diagonal
matrices with non-negative entries so that W̃ is positive semi-definite. Let c̃ =
c− χ>N1

WχN1 . With a slight abuse of notation, for a set S ⊆ [ñ], let χ̃S denote

its characteristic vector in {0, 1}ñ and χS its characteristic vector in {0, 1}n. We
then obtain for all S ⊆ [ñ] the equality

χ̃>S W̃ χ̃S =
∑
i∈S

(
wii + 2

∑
k∈N1

wik

)
+

∑
i,j∈S:i6=j

2wij

= χ>S∪N1
WχS∪N1

− χ>N1
WχN1

.

5

Thus, we have χ̃>W̃ χ̃S ≤ c̃ if and only if χ>S∪N1
WχS∪N1 ≤ c. Defining p̃ ∈ Nñ

with p̃i = pi for all i ∈ [ñ] then establishes the claimed result. ut

By Lemma 1, the following assumptions are without loss of generality.

Lemma 2. It is without loss of generality to assume that 0 < wii ≤ c and pi > 0
for all i ∈ [n].

Proof. If wii > c for some i ∈ [n], then xi = 0 in every feasible solution x. If
wii = 0, then the positive semi-definiteness of W implies wij = wji = 0 for every
j ∈ [n]. Hence, the value of xi does not influence the value of x>Wx and it is
without loss of generality to assume that xi = 1. Furthermore, if pi = 0 then the
value of xi does not influence the value of p>x and it is without loss of generality
to assume that xi = 0. In all cases, Lemma 1 yields the claimed result. ut

3 A Golden Ratio Approximation Algorithm

In this section, we derive a φ-approximation algorithm for packing problems
with convex quadratic constraints of type (P) where φ = (

√
5 − 1)/2 ≈ 0.618

is the inverse golden ratio. To this end, we first solve a convex relaxation of
the problem. We then use the resulting solution to compute a feasible solution
to another non-convex relaxation of the problem. The second relaxation has
the property that any solution can be transformed so that it has at most one
fractional value, and the transformation does not decrease the objective value.
Together with a partial enumeration scheme in the spirit of Sahni [25], this yields
a φ-approximation.

Denote by d ∈ Nn the diagonal of W ∈ Nn×n and let D := diag(d) ∈ Nn×n
be the corresponding diagonal matrix. For a vector x ∈ {0, 1}n we have x2

i = xi
for all i ∈ [n] and, thus, we obtain

x>Wx ≥ x>Dx = d>x for all x ∈ {0, 1}n.

We arrive at the following relaxation of (P):

maximize bp>xc
subject to x>Wx ≤ c,

d>x ≤ c,
x ∈ [0, 1]n.

(R1)

The following lemma shows that we can compute an exact optimal solution
to (R1) in polynomial time.

Lemma 3. The relaxation (R1) can be solved exactly in polynomial time.

6

Proof. For every x ∈ [0, 1]n, we have bp>xc ∈ P := {0, . . . ,
∑
i∈[n] pi}. For fixed

q ∈ P , consider the mathematical program

minimize x>Wx

subject to p>x ≥ q,
d>x ≤ c,
x ∈ [0, 1]n

(Dq)

with optimal value c(q). Since (Dq) is quadratic and convex with linear con-
straints, it can be solved exactly in polynomial time, see Kozlov et al. [16]. If
c(q) > c, we conclude that the maximal value of (R1) is strictly smaller than q.
If c(q) ≤ c, the corresponding solution x solves (R1) with an objective value
of q. With binary search over P , we can compute the maximal value q∗ ∈ P
such that (Dq) has a solution of at most c. The thus computed value q∗ is the
maximal objective of (R1) and the corresponding optimal solution x of (Dq) is
an optimal solution of (R1). ut

We proceed to propose a second relaxation of (P). To this end, note that for
every x ∈ {0, 1}n we have

x>Wx = x>(W −D)x+ x>Dx = x>(W −D)x+ d>x.

Relaxing the integrality condition yields the following relaxation of (P):

maximize p>x

subject to x>(W −D)x+ d>x ≤ c,
x ∈ [0, 1]n.

(R2)

Note that since the trace of W − D is zero, W − D has a negative eigenvalue
unless all eigenvalues are zero. Hence, W −D is not positive semi-definite, unless
W is a diagonal matrix. Therefore, the relaxation (R2) is in general not convex.

We proceed to show that (R2) always has an optimal solution for which at
most one variable is fractional. For x ∈ Rn, let N0(x) := {i ∈ [n] : xi = 0},
N1(x) := {i ∈ [n] : xi = 1}, and Nf (x) := [n] \ (N1(x) ∪N0(x)).

Lemma 4. For any feasible solution x of (R2), one can construct a feasible
solution x̄ with |Nf (x̄)| ≤ 1 and p>x̄ ≥ p>x in linear time.

Proof. Let x be a feasible solution of (R2). Assume |Nf (x)| ≥ 2, and consider
i, j ∈ Nf (x) with i 6= j, in particular, xi, xj ∈ (0, 1). We proceed to construct a
feasible solution x̄ with |Nf (x̄)| ≤ |Nf (x)| − 1 and p>x̄ ≥ p>x; see Figure 2 for
an illustration.

Denote v(x) := x>(W −D)x+ d>x, and for k ∈ {i, j} let

νk(x) :=
∂

∂xk
v(x) =

∑
l∈[n]\{k}

2wkl xl + wkk, rk(x) :=
pk

νk(x)
.

7

v(x) ≤ c

1

1

xi

xj

(x̄i, x̄j)

p

Fig. 2. Any feasible solution x of (R2) with |Nf (x)| ≥ 2 can be transformed into
a feasible solution x̄ with |Nf (x̄)| ≤ |Nf (x)|−1 without decreasing the objective
value.

By Lemma 2 it is without loss of generality to assume that wkk > 0 and thus
νk(x) > 0. Note that νk(x) does not depend on xk and therefore, for all x ∈ Rn
and t ∈ R, we have that

v(x+ tχk) = v(x) + t νk(x), (1)

where χk ∈ {0, 1}n denotes the k-th unit vector.

Without loss of generality, assume that ri(x) ≥ rj(x) and define

ε̄ :=
νi(x)

νj(x)
(1− xi), ε := min(xj , ε̄), δ :=

νj(x)

νi(x)
ε.

Consider the vector x̄ = x − εχj + δχi. By the definition of ε, we have
x̄j = xj − ε ≥ 0. We further obtain

x̄i = xi + δ = xi +
νj(x)

νi(x)
ε ≤ xi +

νj(x)

νi(x)
ε̄ = 1.

Note that x̄j = 0 if ε = xj and x̄i = 1 if ε = ε̄ so that at least one of the
inequalities x̄j ≥ 0 and x̄i ≤ 1 is tight. We conclude that x̄ ∈ [0, 1]n and
|Nf (x̄)| ≤ |Nf (x)| − 1. Furthermore, applying Equation (1), we get

v(x̄) = v(x− εχj + δχi)

= v(x− εχj) + δνi(x− εχj)
= v(x)− ενj(x) + δνi(x− εχj)
≤ v(x)− ενj(x) + δνi(x)

= v(x).

8

Algorithm 1: Golden ratio algorithm

1 foreach H ⊆ [n] with |H| ≤ 3 do
2 yH ← sol. of (R1) with xi = 1 ∀i ∈ H, xi = 0 ∀i ∈ {j ∈ [n]\H : pj > min

h∈H
ph}

3 zH ← transf. of φyH containing at most one fractional variable

4 z̄H ← bzHc
5 H∗ ← argmax {p>z̄H : H ⊆ [n] with |H| ≤ 3}
6 return z̄H

∗

Thus, x̄ is a feasible solution of (R2). Moreover, we have

p>x̄ = p>x− εpj + δpi

= p>x− εpj + ενj(x)
pi

νi(x)

= p>x− εpj + ενj(x)ri(x)

≥ p>x− εpj + ενj(x)rj(x)

= p>x− εpj + εpj

= p>x.

Applying this construction iteratively (at most) |Nf (x)|−1 ≤ n−1 times yields
the required result. ut

Remark 1. The algorithm in the proof of Lemma 4 can be improved by setting

ε̄ :=
(1− xi) νi(x)

νj(x) + 2wij (1− xi)
, ε := min(xj , ε̄), δ :=

ε νj(x)

νi(x)− 2wij xj ε
.

In this way, we obtain v(x̄) = v(x) and increase the objective value at least as
much as in the proof of Lemma 4 while still ensuring that x̄ is feasible for (R2)
and |Nf (x̄)| ≤ |Nf (x)| − 1.

We proceed to devise a φ-approximation algorithm. The algorithm iterates
over all sets H ⊆ [n] with |H| ≤ 3. For each set H it computes an optimal
solution yH to the convex relaxation (R1) with the additional constraints

xi = 1 for all i ∈ H, and

xi = 0 for all i ∈ {j ∈ [n] \H : pj > min
h∈H

ph}.

Then, we scale down yH by a factor of φ and show that φyH is a feasible solution
to the non-convex relaxation (R2). By Lemma 4, we can transform this solution
into another solution zH with at most one fractional variable. The integral part
of zH is our candidate solution for the starting set H. In the end, we return the
best thus computed candidate over all possible sets H; see Algorithm 1.

Theorem 1. Algorithm 1 computes a φ-approximation for (P).

9

Proof. Fix an optimal solution x∗ of (P) and define S∗ := {i ∈ [n] : x∗i = 1}.
Since the algorithm iterates over all solutions of size at least three, it is without
loss of generality for our following arguments to assume that |S∗| ≥ 4. Let
H∗ ⊂ S∗ with |H∗| = 3 be chosen such that pi ≤ minh∈H∗ ph for all i ∈ S∗

and consider the run of the algorithm when starting with H∗. Let H̄ := {i ∈
[n] \ H∗ : pi > minh∈H∗ ph} and k := |H̄|. It is without loss of generality to
assume that [n] \ (H∗ ∪ H̄) = [n− k − 3]. Consider the packing problem where
as additional constraints we have xi = 1 for all i ∈ H∗ and xi = 0 for all i ∈ H̄.
By Lemma 1, this packing problem can be written as

maximize p̃>x

subject to x>W̃x ≤ c̃,
x ∈ {0, 1}n−k−3,

(P̃)

where W̃ is a symmetric and positive semi-definite matrix. We then have p>x∗ =∑
h∈H∗ pi + p̃>x̃∗ for an optimal solution x̃∗ of (P̃).

Let y be an optimal solution to the convex relaxation (R1) of (P̃). Since
(R1) is a relaxation of (P̃), we have p>y ≥ p>x̃∗. We proceed to show that φy
is feasible for the non-convex relaxation (R2) of (P̃). To this end, we calculate

(φy)>(W̃ − D̃)(φy) + φ d̃>y = φ2y>(W̃ − D̃)y + φ d̃>y ≤ φ2c̃+ φc̃ = c̃,

where for the inequality we used that y is feasible for the convex relaxation
and, thus, y>W̃y ≤ c̃ and d̃>y ≤ c̃. By Lemma 4, we can transform φy into a
solution z such that p̃>z ≥ φp̃>y and z has at most one fractional variable z`
with ` ∈ [n− k − 3].

Let S = H∗ ∪ {i ∈ [n − k − 3] : zi = 1} and consider the solution χS . We
have that

χ>SWχS = χ>H∗WχH∗ + z>W̃z ≤ χ>H∗WχH∗ + c̃ = c,

so that χS is feasible for (P). Moreover, we obtain

p>χS =
∑
h∈H∗

ph + p̃>z − p`z`

≥
∑
h∈H∗

ph + φp̃>y − p`

≥
∑
h∈H∗

ph + φp̃>x̃∗ − p`

= φp>x∗ + (1− φ)
∑
h∈H∗

ph − p`

≥ φp>x∗ + (3(1− φ)− 1) min
h∈H∗

ph

≥ φp>x∗,

establishing the claimed result. ut

10

As a result of Theorem 1, we can derive an upper bound on the optimal value
of (R1). This will turn out to be useful when constructing a monotone greedy
algorithm in the next section.

Corollary 1. Let x∗ and y∗ be optimal solutions to (P) and (R1), respectively.
Then p>y∗ ≤ 2

φp
>x∗.

Proof. Since y∗ is feasible for (R1), we have

(φy∗)>(W −D)(φy∗) + d>(φy∗) ≤ φ2(y∗)TWy∗ + φd>y∗ ≤ (φ2 + φ)c = c.

Therefore, φy∗ is feasible for (R2). By Lemma 4, we can transform φy∗ into a
vector z with p>z ≥ p>(φy∗) = φp>y∗ and |Nf (z)| ≤ 1. The integral part bzc
of z is feasible for (P), and thus, p>z ≤ p>bzc + maxi∈[n] pi ≤ 2p>x∗. We

conclude that p>y∗ ≤ 1
φp
>z ≤ 2

φp
>x∗. ut

4 The Greedy Algorithm

In this section we analyze the greedy algorithm and show that, when combined
with a partial enumeration scheme in the spirit of Sahni [25], it is at least a
(1 −

√
3/e)-approximation for packing problems with quadratic constraints of

type (P). We further show that its approximation ratio can be bounded from
above by the golden ratio φ. Even though this approximation ratio is thus not
better than the one guaranteed by the golden ratio algorithm (Theorem 1), it is
worth analyzing it for several reasons. Firstly, it is simple to understand as well
as to implement and turns out to have a much better running time in practice
than the golden ratio algorithm; see the computational results in Section 8.
And, secondly, the greedy algorithm serves as a main building block to devise a
strategyproof mechanism with constant welfare guarantee; see Section 5.

For a set S ⊆ [n], we write w(S) := χ>SWχS . The core idea of the greedy
algorithm is as follows. Assume that we have an initial solution S ⊂ [n]. Amongst
all remaining items in [n]\S, we pick an item i that maximizes the ratio between
profit gain and weight gain, i.e.,

i ∈ argmax
j∈[n]\S

pj
w(S ∪ {j})− w(S)

.

If adding i to the solution set would make it infeasible, i.e., w(S ∪ {i}) > c,
then we delete i from [n]. Otherwise, we add i to S. We repeat this process until
[n] \ S is empty.

It is known from the knapsack problem that, when starting the greedy algo-
rithm as described above with the empty set as initial set, then the produced
solution can be arbitrarily bad compared to an optimal solution. However, the
greedy algorithm can be turned into a constant-factor approximation by using
partial enumeration: For all feasible subsets U ⊆ [n] with |U | ≤ 2, we run the
greedy algorithm starting with U as initial set. In the end we return the best
solution set found in this process; see Algorithm 2.

11

Algorithm 2: Greedy algorithm with partial enumeration

1 foreach U ⊆ [n] with |U | ≤ 2 do
2 S ← U , I ← [n]
3 while I \ S 6= ∅ do
4 i← argmaxj∈I\S

pj
w(S∪{j})−w(S)

5 if w(S ∪ {i}) ≤ c then
6 S ← S ∪ {i}
7 else
8 I ← I \ {i}
9 SU ← S

10 U∗ ← argmax {p>χSU : U ⊆ [n] : |U | ≤ 2}
11 return χSU∗

The analysis of the algorithm follows a similar approach as the analysis of
Sviridenko [27] for the greedy algorithm for maximizing a submodular function
under a linear knapsack constraint. The non-linearity of the constraint in our
case makes the analysis more complicated, though. In order to prove the ap-
proximation ratio of the greedy algorithm we need the following two technical
lemmas.

Lemma 5. Let m ∈ N and consider the sequence (θt)t∈N defined by the recur-
sive formula

1−
(
m+ 2

√
tm
)
θt+1 =

t∑
i=1

θi, θ1 =
1

m
.

Then
∑m
t=1 θt ≥ 1−

√
3
e .

Proof. Consider the initial value problem

ψ′(x) =
1− ψ(x)

1 + 2
√
x
, x ∈ [0, 1], ψ(0) = 0.

Since the function f : [0, 1] × R → R, (x, s) 7→ 1−s
1+2
√
x

is Lipschitz-continuous

in s, by the Picard-Lindelöf Theorem, this problem has a unique solution, which
is given by

ψ(x) = 1− e−
√
x
√

1 + 2
√
x, x ∈ [0, 1].

Since its first derivative

ψ′(x) =
e−
√
x√

1 + 2
√
x
, x ∈ [0, 1],

is monotonically decreasing, it follows that ψ is concave.
Define zt :=

∑t
i=1 θi, t ∈ {0, . . . ,m}. We claim that for every t ∈ {0, . . . ,m}

we have

zt ≥ ψ
(
t
m

)
. (2)

12

Note that (2) implies the result using

m∑
t=1

θt = zm ≥ ψ(1) = 1−
√

3

e
.

To finish the proof, we prove (2) by induction. We have z0 = 0 = ψ(0). Now
assume that (2) holds for some arbitrary but fixed t ∈ {0, . . . ,m − 1}. By the
recursive definition of (θt)t∈N and the concavity of ψ, it then follows that

zt+1 = zt + θt+1

= zt +
1− zt

m+ 2
√
tm

= zt

(
1− 1

m+ 2
√
tm

)
+

1

m+ 2
√
tm

≥ ψ
(
t
m

)(
1− 1

m+ 2
√
tm

)
+

1

m+ 2
√
tm

= ψ
(
t
m

)
+

1− ψ(tm)

m+ 2
√
tm

= ψ
(
t
m

)
+ 1

mψ
′(t
m

)
≥ ψ

(
t+1
m

)
,

which completes the proof. ut

Lemma 6. Let w0, . . . , wm ∈ N with 0 = w0 < w1 < · · · < wm, and let θi ≥ 0,
i ∈ [m]. Then,

m∑
i=1

θi(wi−wi−1) ≥
(

1−
√

3

e

)
min

t=0,...,m−1

t∑
i=1

θi(wi−wi−1) + θt+1(wm+2
√
wtwm).

Proof. We first show the statement for sequences 0 = w0 < w1 < · · · < wm with
the additional property that wi − wi−1 = 1 for all i ∈ [m]. For this case, it is to
show that

m∑
i=1

θi ≥
(

1−
√

3

e

)
min

t=0,...,m−1

t∑
i=1

θi + θt+1

(
m+ 2

√
tm
)
.

It suffices to show that the optimal value of the following optimization problem
is at least 1−

√
3/e.

minimize

m∑
i=1

θi

subject to

t∑
i=1

θi + θt+1(m+ 2
√
tm) ≥ 1 for all t = 0, . . . ,m− 1,

θi ≥ 0, for all i = 1, . . . ,m.

(3)

13

We claim that every optimal solution to (3) satisfies all inequalities with equality.
For a contradiction, fix an optimal solution θ∗1 , . . . , θ

∗
m and suppose there is

s ∈ {0, . . . ,m− 1} such that

s∑
i=1

θ∗i + θ∗s+1(m+ 2
√
sm) > 1.

Choosing the minimal s with this property, we have θ∗s+1 > 0. Let

δ = min

θ∗s+1,

s∑
i=1

θ∗i + θ∗s+1(m+ 2
√
sm)− 1

m+ 2
√
sm

 ,

and consider the solution θ′1, . . . , θ
′
m defined as

θ′i =

θ∗i if i < s+ 1,

θ∗i − δ if i = s+ 1,

θ∗i + δ

m+2
√

(i−1)m
if i > s+ 1.

We first check that the solution θ′1, . . . , θ
′
m is feasible. For the inequalities for

t = 0, . . . , s − 1, there is nothing to show since the involved variables are not
altered. For t = s, the inequality is satisfied by the choice of δ. For t > s, we
obtain

t∑
i=1

θ′i + θ′t+1(m+ 2
√
tm) ≥

t∑
i=1

θ∗i − δ +

(
θ∗t+1 +

δ

m+ 2
√
tm

)
(m+ 2

√
tm) ≥ 1,

where for the second inequality we used that θ∗1 , . . . , θ
∗
m is feasible. Finally, we

note that

m∑
i=1

θ∗i −
m∑
i=1

θ′i = δ −
m∑

i=s+2

δ

m+ 2
√

(i− 1)m
≥ δ
(

1− m− 1

m

)
> 0,

contradicting the optimality of θ∗1 , . . . , θ
∗
m. We conclude that every optimal so-

lution of (3) satisfies all inequalities with equality. The result then follows from
Lemma 5.

It is left to show that the statement holds for arbitrary finite sequences
0 = w0 < w1 < · · · < wm. Fix such a sequence, let m′ := wm, and let θ′1, . . . , θm′

be such that there are first w1 −w0 copies of θ1, then w2 −w1 copies of θ2, and

14

so on. We thus obtain

m∑
i=1

θi(wi − wi−1) =

m′∑
i=1

θ′i

≥
(

1−
√

3

e

)
min

t=0,...,m′−1

t∑
i=1

θ′i + θ′t+1(m′ + 2
√
tm′)

=

(
1−
√

3

e

)
min

t=w0,...,wm−1

t∑
i=1

θ′i + θ′t+1(m′ + 2
√
tm′)

=

(
1−
√

3

e

)
min

t=0,...,m−1

t∑
i=1

(wi − wi−1)θi + θt+1(wm + 2
√
twm),

yielding the result. ut

We can now prove the approximation ratio of the greedy algorithm.

Theorem 2. The Greedy algorithm with partial enumeration (Algorithm 2) is

a an approximation algorithm with approximation ratio (1−
√

3
e) for (P).

Proof. Let x∗ be an optimal solution of (P) and set S∗ := {i ∈ [n] : x∗i = 1}.
Number the items of S∗ = {i∗1, i∗2, . . . , i∗k} such that pi∗1 ≥ pi∗2 ≥ · · · ≥ pi∗k . Since
the algorithm enumerates all solutions with at most two items, it is without loss
of generality to assume that |S∗| ≥ 3. Consider the run of the greedy algorithm
with U = {i∗1, i∗2}. Without loss of generality, we assume that i∗1 = n − 1 and
i∗2 = n. Set S0 := U , and for t = 1, 2, . . . , denote by St and it the values of S
and i after the t-th pass of the while loop. Furthermore, define

θt :=
pit

w(St−1 ∪ {it})− w(St−1)
.

By Lemma 1, we can treat the problem after fixing xi∗1 = xi∗2 = 1 as a new
problem of the same form with matrix W̃ ∈ N(n−2)×(n−2), profit vector p̃, and
budget c̃. In the following, for a set S ⊆ [n] \U we write w̃(S) := χ>S W̃χS . Note
that w̃ is supermodular, i.e., for any two sets S, S′ ⊆ [n] \ U we have∑

i∈S′\S

w̃(S ∪ {i})− w̃(S) ≤ w̃(S ∪ S′)− w̃(S).

By Lemma 2, we can assume without loss of generality that w̃(S∪{i})−w̃(S) > 0.
Let t∗ be the first step of the greedy algorithm for which it∗ ∈ S∗ but the

algorithm does not add it∗ to its solution set. It is without loss of generality to
assume that in all previous iterations t ∈ {1, . . . , t∗−1} we had St = St−1∪{it}
as otherwise item it would be neither contained in the optimal solution nor the
solution computed by the greedy algorithm; thus, removing it from the instance
would not change the analysis. Since it∗ is not included in the solution, we

15

have w̃(St
∗−1 ∪ {it∗} \ U) > c̃. In the following, we write St

∗
:= St

∗−1 ∪ {it∗},
S̃∗ := S∗ \ U , and for t ∈ {0, . . . , t∗}, we write S̃t := St \ U .

For all t ∈ {0, . . . , t∗ − 1}, we obtain∑
i∈S̃∗

pi ≤
∑
i∈S̃t

pi +
∑

i∈S̃∗\S̃t
pi

=
∑
i∈S̃t

pi +
∑

i∈S̃∗\S̃t

pi

w̃(S̃t ∪ {i})− w̃(S̃t)

(
w̃(S̃t ∪ {i})− w̃(S̃t)

)
≤
∑
i∈S̃t

pi + θt+1

∑
i∈S̃∗\S̃t

(
w̃(S̃t ∪ {i})− w̃(S̃t)

)
≤
∑
i∈S̃t

pi + θt+1

(
w̃(S̃t ∪ S̃∗)− w̃(S̃t)

)
,

where we used the supermodularity of w̃. By the Cauchy-Schwarz inequality it
holds that

w̃(S̃t ∪ S̃∗)− w̃(S̃t) = (χS̃t + χS̃∗\St)
>W̃ (χS̃t + χS̃∗\S̃t)− w(S̃t)

≤ w̃(S̃∗ \ S̃t) + 2

√
w̃(S̃t)w̃(S̃∗ \ S̃t)

≤ c̃+ 2

√
w̃(S̃t)c̃.

Thus, we get∑
i∈S̃∗

pi ≤
∑
i∈S̃t

pi + θt+1

(
c̃+ 2

√
w̃(S̃t)c̃

)
for all t ∈ {0, . . . , t∗ − 1}.

Since c̃ < w̃(S̃t
∗
), it follows that∑

i∈S̃∗
pi ≤ min

t=0,...,t∗−1

∑
i∈S̃t

pi + θt+1

(
w̃(S̃t

∗
) + 2

√
w̃(S̃t∗)w̃(S̃t)

)

= min
t=0,...,t∗

t∑
i=1

θi

(
w̃(S̃i)− w̃(S̃i−1)

)
+ θt+1

(
w̃(S̃t

∗
) + 2

√
w̃(S̃t∗)w̃(S̃t)

)
.

Furthermore,

∑
i∈S̃t∗

pi =

t∗∑
i=1

θi

(
w̃(S̃i)− w̃(S̃i−1)

)
and thus, by Lemma 6,

∑
i∈S̃t∗

pi ≥

(
1−
√

3

e

)∑
i∈S̃∗

pi.

16

k

`

1 2 . . . m

Fig. 3. A partial greedy solution S = (S1, S2) with initial set S0 = (S0
1 , S

0
2),

where S0
1 = {1, 2} and S0

2 = ∅. The long bars represent type 1 items whereas
the short bars represent type 2 items.

Finally, this leads to∑
i∈St∗−1

pi =
∑
i∈U

pi +
∑

i∈S̃t∗−1

pi

=
∑
i∈U

pi +
∑
i∈S̃t∗

pi − pit∗

≥
∑
i∈U

pi +

(
1−
√

3

e

) ∑
i∈S̃∗

pi − pit∗

≥
∑
i∈U

pi +

(
1−
√

3

e

) ∑
i∈S̃∗

pi −
1

2

∑
i∈U

pi

≥
(

1−
√

3

e

) ∑
i∈S∗

pi.

Since the greedy algorithm with starting solution U obtains a profit of at least∑
i∈St∗−1 pi, this implies the claimed result. ut

We proceed to show that the approximation ratio of the greedy algorithm
can be bounded from above by the golden ratio.

Theorem 3. The approximation ratio of the greedy algorithm with partial enu-
meration is at most φ = (

√
5− 1)/2, even if we allow partial enumeration over

an arbitrary but fixed number of items.

Proof. Consider the following instance. Let m, `, k ∈ N with ` < k and denote
by χi the i-th unit vector in Rm. Let there be two types of items: m items of

type 1 with profit p(1) = 1 and weight vector y
(1)
i = kχi, i ∈ [m], and m` type 2

items with profit p(2) = 1+2`
k2+2k` and weight vector y

(2)
i = χd i` e, i ∈ [m`]; see

Figure 3 for an illustration.

17

We wish to solve

maximize p(S1, S2) := |S1| p(1) + |S2| p(2)

subject to w(S1, S2) :=
∥∥∥∑
i∈S1

y
(1)
i +

∑
i∈S2

y
(2)
i

∥∥∥2

2
≤ mk2,

S1 ⊆ [m], S2 ⊆ [m`].

Setting Y := [y
(1)
1 , . . . , y

(1)
m , y

(2)
1 , . . . , y

(2)
m`], this optimization problem can be re-

formulated as in (P) with weight matrix W = Y >Y , which is clearly nonnegative
and positive semidefinite.

We first derive the solution produced by the greedy algorithm. Partition
[m`] =

⋃m
i=1 Ti, where Ti = {j ∈ [m`] : d j` e = i}. Consider a partial greedy

solution S = (S1, S2) and assume that i /∈ S1 and j /∈ S2 for some type 1
item i ∈ [m] and type 2 item j ∈ Ti. Let h := |S2 ∩ Ti| < `. Then we have
w(S1, S2 ∪ {j})− w(S1, S2) = (h+ 1)2 − h2 = 1 + 2h, and thus

p(2)

w(S1, S2 ∪ {j})− w(S1, S2)
=

1 + 2`

(k2 + 2k`)(1 + 2h)

>
1 + 2`

(k2 + 2kh)(1 + 2`)

=
1

k2 + 2kh

=
p(1)

w(S1 ∪ {i}, S2)− w(S1, S2)
.

Hence, the greedy algorithm will always include type 2 item j ∈ Ti before type 1
item i in its solution.

Assume that for a partial solution S = (S1, S2) we have i ∈ S1, i′ /∈ S1,
and j /∈ S2 for some type 1 items i, i′ ∈ [m] and a type 2 item j ∈ Ti. Since
|S2 ∩ Ti′ | ≤ `, we have

p(1)

w(S1 ∪ {i′}, S2)− w(S1, S2)
≥ 1

k2 + 2k`

>
1 + 2`

(1 + 2k)(k2 + 2k`)

≥ p(2)

w(S1, S2 ∪ {j})− w(S1, S2)
.

Consequently, the greedy algorithm will always add type 1 item i′ before type 2
item j ∈ Ti to its solution given that type 1 item i is already included.

Thus, the greedy algorithm starts with some initial solution S0 = (S0
1 , S

0
2).

Afterwards, it includes all type 2 items in [m`]\
⋃
i∈S0

1
Ti (Step 1). Finally, it adds

type 1 items until the capacity bound of mk2 is reached (Step 2). Let s := |S0
1 |.

The weight of the partial solution after Step 1 is given by sk2+(m−s)`2. Adding

18

any type 1 item in Step 2 increases the weight of the solution by k2 +2k`. Hence,
in Step 2,

r :=
mk2 − sk2 − (m− s)`2

k2 + 2k`
=

(m− s)(k2 − `2)

k2 + 2k`

type 1 items are added until the capacity is reached. (It is without loss of gen-
erality to assume that r ∈ Z since otherwise after adding brc type 1 items, the
remaining capacity would be filled with type 2 items and the resulting approxi-
mation ratio would be even lower.) Thus, the profit of the solution Ŝ produced
by the greedy algorithm is given by

p(Ŝ) = (s+ r)p(1) + (m− s)`p(2)

= s+
(m− s)(k2 − `2)

k2 + 2k`
+

(m− s)`(1 + 2`)

k2 + 2k`

= s+
(m− s)(k2 + `2 + `)

k2 + 2k`

= m

[
s

m
+

(1− s
m)(1 + `2

k2 + `
k2)

1 + 2 `k

]

= m

[
s

m
+

(1− s
m)(1 + q2 + q

k)

1 + 2q

]
,

where q := `
k .

On the other hand, consider the solution S∗ = (S∗1 , S
∗
2) with S∗1 = [m] and

S∗2 = ∅. It fulfills p(S) = m and w(S) = mk2. Thus, we have

ρ(q) := lim
k,m→∞

p(Ŝ)

p(S∗)
=

1 + q2

1 + 2q
.

Under the constraint q ∈ (0, 1), the ratio ρ(q) attains its minimum at q = φ with

value q(φ) = φ, where φ =
√

5−1
2 is the golden ratio. ut

5 Monotone Algorithms

To illustrate the need for monotone algorithms, reconsider the situation de-
scribed in Example 1 with a set of n selfish agents requesting permission to send
gas through a pipeline. Each agent j has a private value pj expressing the mon-
etary gain from being allowed to send the gas. A natural objective of a system
provider is to maximize social welfare, i.e., to solve (P). Since the true value
pj is the private information of agent j, the system designer has to employ a
mechanism that incentivizes the agents to report their true values pj .

2 It is with-
out loss of generality [9,19] to assume the following form of a direct revelation

2 We here make the standard assumption that the true values of the source vertex sj ,
the target vertex tj , and the quantity of gas qj are public knowledge. This is rea-
sonable since these values are physically measurable by the system provider so that
misreporting them would be pointless for the agent. This assumption is also fre-
quently made in the knapsack auction literature [1,4,18].

19

Algorithm 3: Monotone greedy algorithm

1 y∗ ← solution of (R1)

2 if max
i∈[n]

pi ≥
(
1−

√
3
e

)
/
(
1 + 4√

5−1

)
p>y∗ then

3 return χi∗ for i∗ ∈ argmax
i∈[n]

pi
4 else
5 return solution of Greedy algorithm without partial enumeration.

mechanism. The mechanism elicits a (potentially misrepresented) bid p′j from
each agent j and computes a solution x(p′) ∈ {0, 1}n to (P) based on these
values. Further, the mechanism computes a payment gj for each agent j. The
utility of agent j, when their true valuation is pj and the agents report p′, is then
pjxj(p

′) − gj(p′). The mechanism is strategyproof if truthtelling is a dominant
strategy of each agent j in the underlying game where each agent chooses a value
to report.

Myerson [19] shows that an algorithm A can be turned into a strategyproof
mechanism if and only if it is monotone in the following sense. Let x(p′) denote
the feasible solution to (P) computed by A as a function of the reported valua-
tions. Then A is monotone if for all agents j the function xj(p

′) is nondecreasing
in p′j for all fixed values p′i with i 6= j. For a monotone algorithm, charging every
agent j with xj(p

′) = 1 the critical bid inf {z ∈ R≥0 : xj(z, p
′
−j) = 1} and charg-

ing all other agents nothing yields a strategyproof mechanism. Here, xj(z, p
′
−j)

denotes the binary variable xj as a function of the bid of agent j, when the bids
p′−j of the other agents are fixed.

We note that the algorithms designed in Sections 3 and 4 are unlikely to
be monotone, since the partial enumeration schemes in both of them are not
monotone. On the other hand, without the enumeration scheme, they do not
provide a constant approximation, even when W is a diagonal matrix. However,
by combining ideas from both algorithm, we derive a monotone algorithm with
constant approximation guarantee.

Theorem 4. Algorithm 3 is a monotone α-approximation algorithm for (P),
where α =

(
1−

√
3
e

)
/
(
1 + 4√

5−1

)
≈ 0.086. The corresponding critical payments

can be computed in polynomial time.

Proof. We first prove the approximation ratio. For φ :=
√

5−1
2 and ρ := 1−

√
3
e ,

we have α = ρ/1+ 2
φ . Let p∗ and q∗ be the optimal values of Problems (P) and

(R1), respectively. Since (R1) is a relaxation of (P) we have that q∗ ≥ p∗. If
pi ≥ αq∗ for some i ∈ [n] it follows that p>χi ≥ αp∗.

Assume that pi < αq∗ for all i ∈ [n], and let x be the solution computed
by the greedy algorithm (without partial enumeration). Following the proof of
Theorem 2 we see that p>x ≥ ρp∗ − pj for some item j ∈ [n]. Since pj < αq∗,
and by Corollary 1 we have q∗ ≤ 2

φp
∗, we obtain

p>x ≥
(
ρ− 2α

φ

)
p∗ = αp∗.

20

Next, we prove the monotonicity of the algorithm. To this end, let p, p̂ ∈ Nn
be two declared profit vectors such that there is i ∈ [n] with p̂i = pi + 1 and
p̂j = pj for all j 6= i. Let x and x̂ be the corresponding solutions computed by
Algorithm 3 and assume that xi = 1. It is to show that x̂i = 1. Let q∗ and q̂∗

be the optimal values of (R1) with respect to p and p̂. Then q∗ ≤ q̂∗ ≤ q∗ + 1.
Let H := {j ∈ [n] : pj ≥ αq∗} and Ĥ := {j ∈ [n] : p̂j ≥ αq̂∗}.

First, assume that H 6= ∅. Since by assumption xi = 1, it follows that
pi ≥ αq∗ and pi = maxj∈[n] pj . Therefore,

p̂i = pi + 1 ≥ αq∗ + 1 ≥ α(q∗ + 1) ≥ αq̂∗,

and thus Ĥ 6= ∅. Furthermore, i is the only item in argmaxj∈[n] p̂j and hence
x̂i = 1.

Next, assume that H = ∅. Then either Ĥ = {i} and thus x̂i = 1, or Ĥ = ∅.
In the latter case, Algorithm 3 executes the greedy algorithm for both p and p̂.
But since for every S ⊆ [n] \ {i}

p̂i
w(S ∪ {i})− w(S)

>
pi

w(S ∪ {i})− w(S)

and for every j ∈ [n] \ {i} and every S ⊆ [n] \ {j}

p̂j
w(S ∪ {j})− w(S)

=
pj

w(S ∪ {j})− w(S)
,

when the greedy algorithm adds item i to its solution after k iterations for p,
then it also adds i to its solution after at most k iterations for p̂.

The critical payments can be computed with binary search. ut

6 Constantly Many Packing Constraints

In this section we generalize Problem (P) by allowing a constant number of
convex quadratic constraints and derive a constant-factor approximation al-
gorithm using randomized rounding combined with partial enumeration. To
this end, let r ∈ N be a constant natural number, and for every k ∈ [r] let
W k = (wkij)i,j∈[n] ∈ Nn×n be a symmetric psd matrix with non-negative entries.
Furthermore, let p ∈ Nn and ck ∈ N, k ∈ [r]. We consider packing problems
with r convex quadratic knapsack constraints of the form

maximize p>x

subject to x>W kx ≤ ck for all k ∈ [r],

x ∈ {0, 1}n.
(P k)

21

Algorithm 4: Randomized rounding

1 y ← ε-optimal solution of (Rk)
2 repeat
3 x← realization of Ber(αy)

4 until x is feasible for (P k)
5 return x

Denote by dk the vector consisting of the diagonal elements of W k. We obtain
the following convex relaxation of (P k),

maximize p>x

subject to x>W kx ≤ ck for all k ∈ [r],

(dk)>x ≤ ck for all k ∈ [r],

x ∈ [0, 1]n.

(Rk)

For ε > 0 we call a solution y of (Rk) ε-optimal if p>y ≥ (1− ε)q∗, where q∗

is the optimal value of (Rk). Convex problems of type (Rk) can be solved ε-
optimally in polynomial time by interior points methods [20].

Lemma 7. For every ε > 0 the relaxation (Rk) can be solved ε-optimally in
polynomial time.

We proceed to derive an approximation algorithm based on solving (Rk).
For some fixed value δ ∈ (0, 1), we call items i with wkii ≤ δck for all k ∈ [r]
δ-light. All other items are called δ-heavy. We first assume that all items are δ-
light and devise a randomized constant-factor approximation algorithm for (P k)
based on randomized rounding; see Algorithm 4. To that end, for some vector
y ∈ [0, 1]n, denote by Ber(y) the vector of stochastically independent binary
random variables X = (X1, . . . , Xn)> with the property P[Xi = 1] = yi and
P[Xi = 0] = 1− yi, for i ∈ [n].

Lemma 8. Let δ ∈ (0, 1) and assume that all items i ∈ [n] are δ-light. Let
ε ∈ (0, 1), p∗ be the optimal value of (P k), y be an ε-optimal solution of (Rk),
α ∈ (0, 1), and X = Ber(αy). Then, E[p>X | X is feasible] ≥ f(α, δ)(1 − ε)p∗,
where f(α, δ) = α

(
1− g(α, δ)

)r
and g(α, δ) = α

(
1 + (1 + δ

1
3)3
)

+ (1− α)δ.

Proof. By Bayes’ theorem we have

E[p>X | X feasible] =
∑
`∈[n]

p`E[X` | X feasible]

=
∑
`∈[n]

p`P[X` = 1 | X feasible]

=
∑
`∈[n]

p`
P[X` = 1]P[X feasible | X` = 1]

P[X feasible]

22

≥ α
∑
`∈[n]

p` y`P[X>W kX ≤ ck for all k ∈ [r] | X` = 1]

≥ α
∑
`∈[n]

p` y`

r∏
k=1

P[X>W kX ≤ ck | X` = 1], (4)

where the last inequality follows from the monotonicity of the functions X 7→
X>W kX with respect to the natural partial order on Rn and the FKG inequal-
ity; see [7]. In the following, we show that for every ` ∈ [n] and k ∈ [r] we have

P[X>W kX ≤ ck | X` = 1] ≥ 1− g(α, δ). (5)

Combining (4) and (5), and using that p>y ≥ (1− ε)p∗ we then obtain

E[p>X | X feasible] ≥ αp>y (1− g(α, δ))r = f(α, δ) p>y ≥ f(α, δ)(1− ε)p∗,

and we are finished.
We proceed as follows. Let ` ∈ [n] and k ∈ [r]. Define z ∈ Rn by zi = yi

for all i ∈ [n] \ {`} and z` = 1. We derive an upper bound on z>W kz and then
use this bound to prove that E[X>W kX | X` = 1] ≤ g(α, δ) ck. Using Markov’s
inequality yields (5). For the sake of readability, throughout the rest of the proof
we omit the superscripts and simply write W = W k and c = ck.

Claim. We have

z>Wz ≤ min
γ∈(0,1)

[
δ

(1− γ)2
+

1

γ2

]
c =

(
1 + δ

1
3

)3
c. (6)

Proof (of the claim). Let W = U>U , with U = (uij)i,j∈[n], be the Cholesky
decomposition of W and denote by ui ∈ Rn, i ∈ [n], the rows of U . It follows
that

z>Wz = z>U>Uz = ‖Uz‖2 =
∑
i∈[n]

(u>i z)
2.

Let γ ∈ (0, 1) and i ∈ [n]. There are two possible cases. Either |u>i y| ≥ γ|u>i z|
and thus |u>i z| ≤ 1

γ |u
>
i y|. Or we have |u>i y| < γ|u>i z|. But then,

|u>i z| = |u>i y + (1− y`)ui`| ≤ |u>i y|+ (1− y`)|ui`| < γ|u>i z|+ |ui`|.

Hence,

|u>i z| <
1

1− γ
|ui`| =

1

1− γ
|u>i χ`|.

It follows that in any of the two cases we have

(u>i z)
2 ≤ 1

(1− γ)2
(u>i χ`)

2 +
1

γ2
(u>i y)2.

23

Using that w`` ≤ δc, we conclude that

z>Wz =
∑
i∈[n]

(u>i z)
2 ≤ 1

(1− γ)2

∑
i∈[n]

(u>i χ`)
2 +

1

γ2

∑
i∈[n]

(u>i y)2

=
χ>` Wχ`
(1− γ)2

+
y>Wy

γ2
≤ δc

(1− γ)2
+

c

γ2

=

[
δ

(1− γ)2
+

1

γ2

]
c.

Applying standard calculus we see that the function γ 7→ δ
(1−γ)2 + 1

γ2 attains its
minimal value (1 + δ

1
3)3 at γ = (1 + δ

1
3)−1. This completes the proof of the

claim. ut

Using the bound (6) we proceed to derive an upper bound on the expected
value of X>WX conditioned on X` = 1. To that end, let N` := [n] \ {`}. We
have

E[X>WX | X` = 1]

= E

 ∑
i,j∈N`

wijXiXj + 2
∑
i∈N`

wi`Xi + w``

=

∑
i,j∈N`:
i6=j

wijE[Xi]E[Xj] +
∑
i∈N`

wiiE[X2
i] + 2

∑
i∈N`

wi`E[Xi] + w``

= α2
∑

i,j∈N`:
i6=j

wijyiyj + α
∑
i∈N`

wiiyi + 2α
∑
i∈N`

wi`yi + αw`` + (1− α)w``,

≤ α
(∑
i,j∈N`:
i6=j

wijyiyj + 2
∑
i∈N`

wi`yi + w``

)
+ α

∑
i∈N`

wiiyi + (1− α)w``,

= αz>Wz + α
∑
i∈N`

wiiyi + (1− α)w``, (7)

where the inequality follows from α ∈ (0, 1). Since y is a feasible solution of
(Rk), we have

∑
i∈N`

wiiyi ≤ c. (8)

Plugging (6), (8), and w`` ≤ δc into (7) yields

E[X>WX | X` = 1] ≤ α(1 + δ
1
3)3c+ αc+ (1− α)δc = g(α, δ)c.

24

Therefore, by Markov’s inequality,

P[X>WX ≤ c | X` = 1]

= 1− P[X>WX > c | X` = 1]

≥ 1− P
[
X>WX ≥ E[X>WX | X` = 1]

g(α, δ)
| X` = 1

]
≥ 1− g(α, δ).

This establishes Inequality (5) and completes the proof. ut

In order to maximize the approximation guarantee of Algorithm 4, we need
to find α ∈ (0, 1) that maximizes f(α, δ).

Lemma 9. For every δ ∈ (0, 1) the function (0, 1)→ R, α 7→ f(α, δ) attains its
maximum at

αδ :=
1− δ

(r + 1)
[
1− δ + (1 + δ

1
3)3
] ,

and it holds that

lim
δ→0

f(αδ, δ) =
1

2(r + 1)

(
r

r + 1

)r
≥ 1

2e(r + 1)
.

Proof. The fact that the function (0, 1)→ R, α 7→ f(α, δ) attains its maximum
value at αδ can be verified using standard calculus. By the continuity of f and
αδ it follows that

lim
δ→0

f(αδ, δ) = f(α0, 0) =
1

2(r + 1)

(
r

r + 1

)r
≥ 1

2e(r + 1)
,

which completes the proof. ut

We proceed to show that for this α, the probability that the random vector
X = Ber(αy) produced by Algorithm 4 is infeasible for (P k) can be bounded
from above by 1

2 .

Lemma 10. Let y be an optimal solution to (Rk), α ∈ (0, 1), and X = Ber(αy).
Then P[X infeasible for (P k)] ≤ r(α2 + α). In particular, if α = αδ, then
P[X infeasible for (P k)] ≤ 1

2 .

Proof. Since for every i, j ∈ [n] with i 6= j, Xi and Xj are stochastically inde-
pendent, it holds for every k ∈ [r] that

E[X>W kX] =
∑

i,j∈[n]:i 6=j

wkijE[Xi]E[Xj] +
∑
i∈[n]

wkiiE[X2
i]

= α2
∑

i,j∈[n]:i 6=j

wkijyiyj + α
∑
i∈[n]

wkiiyi

≤ (α2 + α)ck,

25

Algorithm 5: Randomized rounding with partial enumeration

1 Hδ ← {i ∈ [n] : ∃k ∈ [r] with wkii > δck}
2 zδ ← optimal solution of (P k) with xi = 0 ∀i ∈ [n] \Hδ and |N1(x)| ≤ r

δ
(via

enumeration)

3 yδ ← approximate solution of (P k) with xi = 0∀i ∈ Hδ computed by
randomized rounding (Algorithm 4) with α = αδ

4 return argmaxx∈{yδ,zδ} p
>x

where the inequality follows from the fact that y is a feasible solution of (Rk).
Thus, Markov’s inequality implies

P[X not feasible] = P[X>W kX > ck for some k ∈ [r]]

≤
r∑

k=1

P[X>W kX > ck]

≤
r∑

k=1

P

[
X>W kX ≥ E[X>W kX]

α2 + α

]
≤ r(α2 + α).

Finally, for every δ ∈ (0, 1)

r[α2
δ + αδ] ≤ r[α2

0 + α0]

= r

[
1

4(r + 1)2
+

1

2(r + 1)

]
≤ 1

2
,

as required. ut

To finish the proof, we show that for any constant δ ∈ (0, 1), any optimal
solution to (P k) contains a constant number of δ-heavy items only.

Lemma 11. Let x∗ be an optimal solution to problem (P k), let δ ∈ (0, 1), and
let H∗ := {i ∈ [n] : x∗i = 1 and i is δ-heavy}. Then |H∗| ≤ r

δ .

Proof. Let N1(x∗) := {i ∈ [n] : x∗i = 1} and H := {i ∈ [n] : i is δ-heavy}. Then
H∗ = N1(x∗) ∩H. Furthermore, we have H =

⋃r
k=1Hk, where Hk := {i ∈ [n] :

wkii > δck}. Since x∗ is feasible for (P k), for every k ∈ [r] we have

ck ≥ (x∗)>W kx∗ ≥
∑

i∈N1(x∗)

wkii ≥ |N1(x∗) ∩Hk|δck,

and thus |N1(x∗) ∩Hk| ≤ 1
δ . It follows that

|H∗| =
∣∣∣N1(x∗) ∩

r⋃
k=1

Hk

∣∣∣ ≤ r∑
k=1

|N1(x∗) ∩Hk| ≤
r∑

k=1

1

δ
=
r

δ
,

which completes the proof. ut

26

We are now in position to devise a randomized constant-factor approximation
algorithm for Problem (P k). The algorithm first enumerates all solutions using
only heavy items, then computes a solution with randomized rounding involving
only the light items, and returns the better of the two solutions; see Algorithm 5.

Theorem 5. For every ε̄ > 0, there are ε > 0 and δ > 0 such that Algorithm 5
yields an (α+ ε̄)-approximation for (P k) where

α =
1

1 + 2(r + 1)(r+1
r)r

≥ 1

1 + 2e(r + 1)
.

Proof. Let ε > 0 and δ > 0 be arbitrary. We claim that Algorithm 5 yields a
ρε,δ-approximation where

ρε,δ :=
fε,δ

1 + fε,δ
,

with fε,δ := f(αδ, δ)(1− ε).
Let x∗ be an optimal solution of (P k). We distinguish two cases.

First case:
∑
i∈Hδ pix

∗
i ≥ ρε,δp>x∗. Then, by Lemma 11,

p>zδ ≥
∑
i∈Hδ

pix
∗
i ≥ ρε,δp>x∗.

Second case:
∑
i∈Hδ pix

∗
i < ρε,δp

>x∗. Thus,
∑
i∈[n]\Hδ pix

∗
i ≥ (1− ρε,δ)p>x∗.

Lemma 8 yields

p>yδ ≥ fε,δ
∑

i∈[n]\Hδ

p>i x
∗
i ≥ fε,δ(1− ρε,δ)p>x∗ = ρε,δp

>x∗.

Finally, by the continuity of f and αδ we obtain

lim
ε,δ→0

ρε,δ =
f(α0, 0)

1 + f(α0, 0)
=

1

1 + 2(r + 1)
(
r+1
r

)r ,
which completes the proof. ut

7 Approximation Hardness

In this section, we show that packing problems with convex quadratic constraints
of type (P) are APX-hard.

Theorem 6. It is NP-hard to approximate packing problems with convex qua-
dratic constraints by a factor of 91

92 + ε, for any ε > 0.

Proof. We reduce from the 6-set packing problem which is NP-hard to approxi-
mate by a factor of 22

23 + ε for all ε > 0; see Hazan et al. [11]. An instance of a

6-set packing is given by a ground set [m] and a family S ⊆ 2[m] of subsets of
[m] such that |S| = 6 for all S ∈ S. A subfamily S∗ ⊆ S is a feasible solution to
the 6-set packing problem if S ∩ T = ∅ for all S, T ∈ S∗. For a given instance
of 6-set packing, and a value k ∈ N the gap problem is the decision problem to
decide whether:

27

Yes: there is a solution to the 6-set packing problem of size at least k, or
No: every solution has size strictly smaller than 22

23k.

For optimal sizes in the interval [22
23k, k) any answer is admissible. The approx-

imation hardness of 6-set packing implies that the gap problem is an NP-hard
decision problem.

Let n := |S| and number the sets S = {S1, S2, . . . , Sn}. Let A = (aij)i,j ∈
{0, 1}m×n be defined as aij = 1 if and only if i ∈ Sj , and let W = A>A. Consider
the problem

maximize 1>x

subject to x>Wx ≤ 6k,

x ∈ {0, 1}n,
(SP)

where 1 = (1, . . . , 1)> is the all-ones vector. We calculate

x>Wx = ‖Ax‖22 =

m∑
i=1

(n∑
j=1

aij xj

)2

=

m∑
i=1

(∑
j∈[n]:i∈Sj

xj

)2

. (9)

Suppose, we have a Yes-instance for the gap problem and let S∗ be a subset
of pairwise disjoint sets of cardinality k. Then a feasible solution for (SP) is
given by x∗ defined as x∗j = 1 if Sj ∈ S∗, and x∗j = 0, otherwise. Since every set
Sj , j ∈ [n], contributes at least 6 to the left hand side of the knapsack constraint
(9), this solution is also optimal for (SP) and has an objective value of k.

Next, consider a No-instance for the gap problem, let x∗ be a corresponding
optimal solution of (SP), and let k′ be its objective value. Since for a No-instance
every solution of the 6-set packing problem has size strictly less than 22

23k, every
set that is picked beyond the first b 22

23kc sets, intersects at least once with at
least one of the first b 22

23kc sets. Thus, the first b 22
23kc sets each contribute at

least 6 to (9), and each of the further k′ − b 22
23kc sets each contributes at least

5 + 4− 1 = 8 to (9). We obtain

6k ≥ (x∗)>Wx∗

≥ 6

⌊
22

23
k

⌋
+ 8

(
k′ −

⌊
22

23
k

⌋)
≥ 8k′ − 44

23
k

implying k′ ≤ 91
92k. We conclude that for a Yes-instance the objective value of

(SP) is at least k while for a No-instance it is strictly less than 91
92k. Therefore,

the problem is NP-hard to approximate by a factor of 91
92 + ε for any ε > 0. ut

8 Computational results

We apply our algorithms to a problem of the type described in Example 1.
Specifically, we solve the welfare maximization problem for instance 134 of the

28

t45

s1

s2

s3

Fig. 4. The Gaslib-134 instance. Sources are shown in blue, sinks in red.

GasLib library [26]; see Figure 4 for an illustration of the network G = (V,E).
The instance contains upper and lower pressure bounds for every node v ∈ V as
well as all physical properties to compute the pipe resistances βe, e ∈ E.

Sources and sinks are denoted by S and T , respectively. Every sink t ∈ T
requests a transportation of qt units of gas to t. To ensure the robustness of
the network in the sense of [15], we assume that all sinks between s1 and s2

are (possibly) supplied by s1, all sinks between s3 and t45 by s3, and all other
sinks by s2. Denote the set of all sinks that are (possibly) supplied by si by Ti,
i = 1, 2, 3. For simplicity, we assume that the economic welfare is proportional
to the amount of transported gas. That is, there is a constant θ > 0 such that
for every sink t ∈ T the economic welfare pt of transporting qt units of gas to t
equals θqt.

Our goal is to choose a welfare-maximal subset of transportations that can
be satisfied simultaneously while the pressures at the first sink s1 and the last
source t45 are within their feasible interval. To that end, let Ē denote the path
from s1 to t45, and for every t ∈ Ti denote by Et the set of edges on the
unique path from si to t, i = 1, 2, 3. Let p = (pt)t∈T , W = (wt,t′)t,t′∈T , with
wt,t′ =

∑
e∈Ē∩Et∩Et′

βeqtqt′ , and let c = π̄s1 − π¯t45 , where for a node v ∈ V ,
π̄v and π

¯v
denote the upper and lower bound on the squared pressure at v,

respectively. Finally, let x = (xt)t∈T ∈ {0, 1}T , where xt = 1 if and only if sink t
is supplied. Then, the welfare-maximization problem can be formulated as (P);
see Example 1.

The GasLib-134 instance contains 1234 different scenarios, where for each
scenario demands q̂t are given for every sink t ∈ T . In order to make the opti-
mization problem non-trivial we increase the node demands by setting qt = γq̂t,
for γ ∈ Γ := {5, 10, 50, 100}. We apply the golden ratio algorithm, the greedy
algorithm, and randomized rounding to the first 100 scenarios. For each scenario
we consider every γ ∈ Γ . Each of the three algorithms is executed in three dif-

29

Greedy Golden ratio Rand. rounding

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Approximation ratios (k = 0)

Greedy Golden ratio Rand. rounding
0.00

0.01

0.02

0.03

0.04

se
co

nd
s

Computing times (k = 0)

Greedy Golden ratio Rand. rounding

0.6

0.7

0.8

0.9

1.0

Approximation ratios (k = 1)

Greedy Golden ratio Rand. rounding

0.0

0.2

0.4

0.6

0.8

1.0

1.2

se
co

nd
s

Computing times (k = 1)

Greedy Golden ratio Rand. rounding

0.6

0.7

0.8

0.9

1.0

Approximation ratios (k = 2)

Greedy Golden ratio Rand. rounding

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

se
co

nd
s

Computing times (k = 2)

Fig. 5. Approximation ratios (top row) and computation times (bottom row)
of the three algorithms when executed with partial enumeration of k = 0, 1, 2
elements. The red line indicates the median.

ferent versions, one without partial enumeration, one with partial enumeration
with one initial item, and one with partial enumeration with two initial items.

We run randomized rounding with α chosen uniformly at random from [0, 1].
Instead of a single feasible realization, we generate 100 feasible realizations of
Ber(φy) and return the one with the highest profit. With the golden ratio algo-
rithm, instead of scaling an optimal solution y of (R1) by φ in order to obtain a
feasible solution of (R2), we scale it by the largest number λ ∈ [φ, 1] such that
λy is feasible for (R2). We find this number λ using binary search. In addition,
we use the improvements described in Remark 1.

The result of each algorithm is compared to an optimal solution computed
with a standard MIP solver applied to the following MIP

maximize p>x

subject to

n∑
i=1

zi ≤ c,

zi ≥
n∑
j=1

wij(xi + xj − 1) for all i ∈ [n],

zi ≥ 0 for all i ∈ [n],

x ∈ {0, 1}n,

which can be shown to be equivalent to (P).

30

No enumeration 1-enumeration 2-enumeration
Mean SD Mean SD Mean SD

Greedy 0.925 0.0837 0.985 0.0228 0.996 0.0079
Golden ratio 0.875 0.1288 0.944 0.0773 0.962 0.0639
Rand. rounding 0.948 0.0504 0.984 0.0220 0.991 0.0160

Table 1. Mean and standard deviation (SD) of the approximation ratio of the
greedy algorithm, the golden ratio algorithm, and randomized rounding. Each
algorithm has been executed without partial enumeration (left), with partial
enumeration with one initial item (middle), and with partial enumeration with
two initial items (right).

The computations are executed on a 6-core AMD Phenom II X6 1090T pro-
cessor with 3.3 GHz. The code is implemented in Python 3.6 and we use the
SLSQP algorithm of the SciPy optimize package to solve the convex relaxation
(R1). The results are shown as box plots in Figure 5 and in Table 1.

We observe that the greedy algorithm on average achieves the best approxi-
mation ratios when combined with partial enumeration. At the same time it runs
approximately 20 times faster than the golden ratio algorithm and randomized
rounding. The slower running time of these two algorithms is due to the fact
that they rely on solving the convex relaxation first. The approximation ratio
of all three algorithms is on average much higher than their proven worst case
lower bounds. However, the quality of the solutions produced by the golden ratio
algorithm is subject to strong fluctuations. By running the algorithm with par-
tial enumeration with three initial items we could guarantee a ratio of at least
φ for every instance, as was shown in Theorem 1.

References

1. Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In Proc. 17th Annu.
ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 1083–1092, 2006.

2. Nikhil Bansal, Tracey Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage
energy and temperature. In Proc. 45th Annu. IEEE Sympos. Foundations Comput.
Sci. (FOCS), pages 520–529, 2004.

3. Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices.
World Scientific Publishing, 2003.

4. Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for
utilitarian mechanism design. SIAM J. Comput, 40:1587–1622, 2011.

5. Chi-Kin Chau, Khaled M. Elbassioni, and Majid Khonji. Truthful mechanisms for
combinatorial allocation of electric power in alternating current electric systems
for smart grid. ACM trans. Econ. Comput., 5:Art. nr. 7, 2016.

6. Khaled M. Elbassioni and Trung T. Nguyen. Approximation algorithms for bi-
nary packing problems with quadratic constraints of low cp-rank decompositions.
Discrete Applied Mathematics, 230:56–70, 2017.

31

7. Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre. Correlation inequal-
ities on some partially ordered sets. Communications in Mathematical Physics,
22(2):89–103, 1971.

8. Giorgio Gallo, Peter L. Hammer, and Bruno Simeone. Quadratic knapsack prob-
lems. Math. Programming Study, 12:132–149, 1980.

9. Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica,
41:587–601, 1973.

10. Johan H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999.

11. Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximat-
ing k-dimensional matching. In S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai,
editors, Proc. 7th Int. Workshop Approximation Algorithms for Combinatorial Op-
tim. (APPROX), volume 2764 of Lecture Notes in Computer Science, pages 83–97,
2003.

12. Oscar H. Ibarra and Chul. E. Kim. Fast approximation algorithms for the knapsack
and sum of subsets problems. J. ACM, 22:463–468, 1975.

13. Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power management.
SIGACT News, 36(2):63–76, 2005.

14. Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computa-
tions, The IBM Research Symposia Series. Springer, Boston, MA, 1972.

15. Max Klimm, Marc Pfetsch, Rico Raber, and Martin Skutella. On the robustness
of potential-based flow networks. Technical report, 2019.

16. Mikhail K Kozlov, Sergei P Tarasov, and Leonid G Khachiyan. The polynomial
solvability of convex quadratic programming. USSR Computational Mathematics
and Mathematical Physics, 20(5):223–228, 1980.

17. Kevin A. McCabe, Stephen J. Rassenti, and Vernon L. Smith. Designing ‘smart’
computer-assisted markets: An experimental auction for gas networks. European
Journal of Political Economy, 5:259–283, 1989.

18. Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for re-
stricted combinatorial auctions. Games Econ. Behav., 64:612–631, 2008.

19. Roger B. Myerson. Optimal auction design. Math. Oper. Res., 6:58–73, 1981.
20. Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in

convex programming, volume 13. SIAM, 1994.
21. David M. Newbery. Network capacity auctions: promise and problems. Utilities

Policy, 11:27–32, 2002.
22. Ulrich Pferschy and Joachim Schauer. Approximation of the quadratic knapsack

problem. INFORMS J. Comput, 28:308–318, 2016.
23. David J. Rader Jr. and Gerhard J. Woeginger. The quadratic 0–1 knapsack problem

with series–parallel support. Oper. Res. Lett., 30:159–166, 2002.
24. Stephen J. Rassenti, Stanley S. Reynolds, and Vernon L. Smit. Cotenancy and

competition in an experimental auction market for natural gas pipeline networks.
Econ. Theory, 4:41–65, 1994.

25. Sartaj Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM,
22(1):115–124, 1975.

26. Martin Schmidt, Denis Aßmann, Robert Burlacu, Jesco Humpola, Imke Joor-
mann, Nikolaos Kanelakis, Thorsten Koch, Djamal Oucherif, Marc E. Pfetsch,
Lars Schewe, Robert Schwarz, and Mathias Sirvent. GasLib – A Library of Gas
Network Instances. Data, 2(4):article 40, 2017.

27. Maxim Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett., 32:41–43, 2004.

32

28. Thos R. Weymouth. Problems in natural gas engineering. Trans. Am. Soc. Mech.
Eng., 34:185–231, 1912.

29. Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. Power-aware speed scaling
in processor sharing systems: Optimality and robustness. Perform. Eval., 69:601–
622, 2012.

30. Gerhard J. Woeginger. When does a dynamic programming formulation guar-
antee the existence of a fully polynomial time approximation scheme (FPTAS)?
INFORMS Journal on Computing, 12:57–74, 2000.

33

	Packing under Convex Quadratic Constraints

