
Nonlinear Optimization of District Heating Networks

Richard Krug, Volker Mehrmann, Martin Schmidt

Abstract. We develop a complementarity-constrained nonlinear optimiza-
tion model for the time-dependent control of district heating networks. The
main physical aspects of water and heat flow in these networks are governed
by nonlinear and hyperbolic 1d partial differential equations. In addition, a
pooling-type mixing model is required at the nodes of the network to treat the
mixing of different water temperatures. This mixing model can be recast using
suitable complementarity constraints. The resulting problem is a mathematical
program with complementarity constraints subject to nonlinear partial differen-
tial equations describing the physics. In order to obtain a tractable problem, we
apply suitable discretizations in space and time, resulting in a finite-dimensional
optimization problem with complementarity constraints for which we develop
a suitable reformulation with improved constraint regularity. Moreover, we
propose an instantaneous control approach for the discretized problem, discuss
practically relevant penalty formulations, and present preprocessing techniques
that are used to simplify the mixing model at the nodes of the network. Finally,
we use all these techniques to solve realistic instances. Our numerical results
show the applicability of our techniques in practice.

1. Introduction

Many countries in the world are striving to make a transition towards an energy
system that is mainly based on using energy from renewable sources like wind and
solar power, complemented by classical energy sources like gas, oil, coal, or waste
incineration. The increasing use of highly fluctuating renewable energy sources leads
to many challenging problems from the engineering, mathematical, and economic
point of view. A key to the success of this energy transition is the efficient and
intelligent coupling of the energy resources and the optimal operation of the energy
networks and energy storage. In this direction, district heating networks play an
important role, since they can be used as energy storage, e.g., to balance fluctuations
at the electricity exchange. To this end, district heating networks need to be operated
efficiently so that no unnecessary energy is used and, on the other hand, security of
supply should not be compromised. This is a hard task since uncertainties of the
heat demand of households need to be considered and because the physics-based
time delays in these networks make it difficult to react to changes in short periods
of time.

To make the described intelligent use of district heating networks possible, one
needs (i) a proper mathematical model of the network as well as fast and stable (ii)
simulation and (iii) optimization techniques. In this paper, we develop a continuous
optimization model for the short-term optimal operation of a district heating network.
To this end, we assume that the heat demand of the households is given and set
up a nonlinear optimization model (NLP) for the control of the heat supply and
the pressure control of the network. The building blocks of the entire model are
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nonlinear models of the households, where thermal energy is withdrawn, the network
depot, in which the heat is supplied to the network and the pressure is controlled,
and a model of the transport network itself.

The model of the transport network is governed by two main mathematical
components; a system of one-dimensional (1d) nonlinear hyperbolic partial dif-
ferential equations (PDEs) to model the relations of mass flows, water pressure,
and temperature in a pipe over time, and a system of algebraic equations that is
used at every node of the network to model mass conservation, pressure continuity,
and the mixing of water temperatures. The last aspect is very challenging, since
these mixing models are genuinely nonsmooth due to their dependence on flow
directions, which are part of the solution of the PDE and not known a priori. To
avoid integer-valued variables, we develop a mixing model using complementarity
constraints. In summary, we consider a PDE-constrained nonlinear mathematical
program with complementarity constraints (MPCC), which is a highly challenging
class of optimization problems; see, e.g., [29].

Somehow surprisingly, there is not much literature about the mathematical
optimization of district heating networks. A branch of applied publications focuses
on specific case studies. For instance, in [33], a case study for a simplified model
of a district heating project in South Wales is carried out. The focus is more on
an economic analysis than on mathematical and physical modeling or optimization
techniques. The resulting problems are solved by a linear solver invoked in a
sequential linear programming approach. A more general discussion about the
technology and potentials of district heating networks is presented in [37]. In [42],
the authors discuss different discrete and continuous optimization problems. As in
our contribution, the authors start with a PDE-constrained optimization problem
and apply the first-discretize-then-optimize approach yielding a finite-dimensional
problem that is then solved. Energy storage or storage tanks combined with district
heating networks are discussed in [9, 44] and the impact of load variations and
the integration of solar energy is considered in [21]. The design of district heating
networks for stationary mathematical models is carried out in [4, 11, 38]. In contrast
to the mid- to long-term planning problems addressed in these papers, in [39], the
authors consider a model predictive control (MPC) approach for computing a good
operational control of a network with a given design. The resulting models are
continuous nonlinear problems that need to be solved in every iteration of the MPC
loop. A related approach is discussed in [45], where an MPC control is computed for
a district heating system with thermal energy storage and flexible loads. Numerical
simulation of district heating networks using a local time stepping method is studied
in [5] and model order reduction techniques for the hyperbolic equations in district
heating networks are discussed in [35] or [34, 36]. In the last two papers, however,
no optimization tasks are considered.

As discussed above, a very important aspect of district heating network models
is the mixing of different water temperatures at the nodes of the network. Since the
models are similar, related literature can also be found in the field of optimization
for gas transport networks; cf., e.g., [16, 17, 20, 40, 41, 43].

Our contribution is to consider the optimization of district heating networks at a
great level of detail and physical accuracy; see Section 2 for our modeling approach
that includes both 1d nonlinear PDEs and mixing models. In order to obtain
tractable optimization problems, we present tailored discretizations of the PDEs in
space and time in Section 3 and also provide different equivalent formulations for
the nodal mixing conditions; see Section 4. In Section 5, we present problem-specific
optimization techniques that enable us to solve instances on realistic networks
with reasonable space and time discretizations. To be more specific, we set up
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Figure 1. A schematic district heating network: Forward-flow
arcs are plotted in solid black, backward-flow arcs in dashed blue,
consumers in dotted violet, and the depot in dashed-dotted red.

an instantaneous control approach that can both be used stand-alone and as a
procedure for computing initial values of good quality for the problem on the entire
time horizon. Additionally, we derive suitable penalty formulations of the problem
that render the instances numerically more tractable. Moreover, we present an
easy-but-useful preprocessing technique to decide flow directions in advance so that
the amount of nonsmoothness and the number of complementarity constraints for
modeling the nodal mixing conditions is reduced. The described techniques are then
used to solve realistic instances in Section 6. Finally, we close the paper with a
conclusion and some comments on possible directions of future work in Section 7.

2. Modeling

We use a connected and directed graph G = (V,A) to model the district heating
network. The network consists of

• a forward-flow part, which provides the consumers with hot water;
• consumers, that use the hot water for heating;
• a backward-flow part, which transports the cooled water back to the depot;
• and the depot, where the heating of the cooled water takes place.

See Figure 1 for a schematic district heating network.
The nodes V = Vff ∪ Vbf are the disjoint union of nodes Vff of the forward-flow

part and nodes Vbf of the backward-flow part of the network. The arcs A are divided
into forward-flow arcs Aff, backward-flow arcs Abf, consumer arcs Ac, and the depot
arc ad of the district heating network provider. Therefore, A = Aff∪Abf∪Ac∪{ad}
and we have

a = (u, v) ∈ Aff =⇒ u ∈ Vff, v ∈ Vff,
a = (u, v) ∈ Abf =⇒ u ∈ Vbf, v ∈ Vbf,
a = (u, v) ∈ Ac =⇒ u ∈ Vff, v ∈ Vbf,

ad = (u, v) =⇒ u ∈ Vbf, v ∈ Vff.
We optimize the district heating network in the time horizon T := [0, T ] with
predefined final time T > 0. In what follows, we introduce mathematical models for
the different parts of the network; namely pipes, nodes, consumers, and the depot
of the network provider. After that, we introduce bounds for some of the quantities
and state the objective function. To conclude this section, we summarize the parts
to obtain a complete model of the entire district heating network.
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2.1. Pipe Modeling. We use the 1d Euler equations to model the physics of hot
water flow in the pipe network [5, 28, 36]. In what follows, we use x ∈ [0, La] to
denote the spatial coordinate, with La being the length of pipe a ∈ Aff ∪Abf. The
continuity equation then is given by

∂ρa
∂t

(x, t) +
∂(ρava)

∂x
(x, t) = 0, a ∈ Aff ∪Abf. (1)

The 1d momentum equation for compressible fluids in cylindrical pipes has the form
∂(ρava)

∂t
(x, t) +

∂pa
∂x

(x, t) +
∂(ρav

2
a)

∂x
(x, t)

+ gρa(x, t)h′a + λa
|va|vaρa

2Da
(x, t) = 0, a ∈ Aff ∪Abf;

(2)

see, e.g., [32, 40].
Here and in what follows, ρa, pa, and va denote the density, pressure, and velocity

of the water in pipe a. Furthermore, Da is the diameter and h′a is the slope of
pipe a, which we assume to be constant. The gravitational acceleration is denoted
by g. The friction factor λa for turbulent flow is modeled by the flow-independent
law of Nikuradse (see, e.g., [15]), i.e.,

λa =

(
2 log10

(
Da

ka

)
+ 1.138

)−2
, a ∈ Aff ∪Abf,

where ka is the roughness of the inner pipe wall. We are aware that there are also
other empirical models of the friction factor for the turbulent case, which might
also render λ being dependent on x and t. Moreover, there is Hagen–Poiseuille’s
exact law for laminar flow; see, e.g., [15] and the references therein. For the ease of
presentation, we restrict ourselves to the law of Nikuradse, which only depends on
the data of the pipe. However, other models can in principle also be incorporated.
For a list of all parameters and variables of the model see Table 1, where we also
distinguish between directly controllable variables at the depot and physical state
variables in the network.

Since we assume that the water is incompressible, i.e.,
∂ρa
∂t

(x, t) + va(x, t)
∂ρa
∂x

(x, t) = 0, a ∈ Aff ∪Abf; (3)

see, e.g., [30] for details on fluid flow modeling, we can rewrite the continuity
equation (1) as

0 =
∂ρa
∂t

(x, t) +
∂(ρava)

∂x
(x, t)

=
∂ρa
∂t

(x, t) + ρa
∂va
∂x

(x, t) + va
∂ρa
∂x

(x, t)

= ρa
∂va
∂x

(x, t).

Since the density ρa(x, t) is always positive, we can divide by it and obtain
∂va
∂x

(x, t) = 0.
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Table 1. Controllable variables at the depot (top), physical state
variables in the network (mid), and given parameters (bottom) of
the district heating network model

Symbol Explanation Unit

Pw(t) Power production through waste incineration W
Pg(t) Power production through gas combustion W
Pp(t) Pumping power to increase the water pressure W

ρa(x, t) Density of the water in pipe a kg m−3

va(x, t) Flow velocity in pipe a m s−1

pa(x, t) Pressure in pipe a Pa
Ta(x, t) Water temperature in pipe a K
qa(x, t) Mass flow in pipe a; qa = Aaρava kg s−1

pu(t) Pressure at node u Pa
Tu(t) (Mixed) water temperature at node u K

t Time coordinate; t ∈ T s
T Time horizon T := [0, T ] —
x Spatial coordinate in a pipe m
La Length of pipe a m
Da Diameter of pipe a m

Aa Cross-sectional area of pipe a; Aa = π (Da/2)
2

m2

h′a Slope of pipe a 1
λa Friction factor of pipe a 1
Pa(t) Power consumption of the consumer at arc a W
ka Roughness of the inner wall of pipe a m
Ua Heat transfer coefficient of the wall of pipe a W m−2 K−1

Tff
a Consumers’ minimum inlet water temperature K
T bf Consumers’ outlet water temperature K
T0 Surrounding temperature K
cp Specific heat capacity of water J kg−1 K−1

ps Stagnation pressure of the network Pa
ξP Max. change in power over time at depot W s−1

ξT Max. change in outlet temperature over time at depot K s−1

g Gravitational acceleration m s−2

ωw Cost coefficient for waste incineration e/W
ωg Cost coefficient for gas combustion e/W
ωp Cost coefficient for pumps e/Pa

Using these consequences of incompressibility, the momentum equation (2) simplifies
to

∂(ρava)

∂t
(x, t) +

∂(ρav
2
a)

∂x
(x, t)

= ρa
∂va
∂t

(x, t) + va
∂ρa
∂t

(x, t) + (ρava)
∂va
∂x

(x, t) + va
∂(ρava)

∂x
(x, t)

= ρa
∂va
∂t

(x, t) + va

(
∂ρa
∂t

(x, t) +
∂(ρava)

∂x
(x, t)

)
= ρa

∂va
∂t

(x, t)
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and we thus obtain the simplified 1d system of incompressible Euler equations
∂va
∂x

(x, t) = 0, a ∈ Aff ∪Abf, (4a)

ρa(x, t)
∂va
∂t

(x, t) +
∂pa
∂x

(x, t) + gρa(x, t)h′a

+λa
|va|vaρa

2Da
(x, t) = 0, a ∈ Aff ∪Abf, (4b)

that we use for setting up our optimization problem.
It should be noted that (4a) implies constant velocity in the pipe, i.e., va(x, t) =

va(t) for all x ∈ [0, La].
The thermal energy equation for each pipe a ∈ Aff ∪Abf is given by
∂Ta
∂t

(x, t) + va(t)
∂Ta
∂x

(x, t) +
4Ua

cpρa(x, t)Da
(Ta(x, t)− T0) = 0, a ∈ Aff ∪Abf; (5)

see [5, 36, 39]. In (5), Ta describes the water temperature, Ua is the heat transfer
coefficient of the pipe’s wall, cp is the specific heat capacity of water, and T0 is the
temperature in the environment surrounding the pipe.

To close the system, one finally needs initial and boundary conditions as well as
an equation of state. In the literature one can find formulas for the density of water
depending on the temperature; see, e.g., [28]. Since we make the incompressibility
assumption (3), in the context of our optimization model, we assume as another
simplification that the density of the water is constant, i.e., ρa(x, t) = ρ.

This assumption allows us to rewrite the momentum equation (4b) as follows:
∂pa
∂x

(x, t) = −ρ∂va
∂t

(t)− gρh′a − λa
|va|vaρ

2Da
(t), a ∈ Aff ∪Abf.

Since the right-hand side does not depend on the spatial coordinate x, the pressure
pa(x, t) is linear in x. Thus, it holds that

pa(La, t)− pa(0, t)

La
= −ρ∂va

∂t
(t)− gρh′a − λa

|va|vaρ
2Da

(t), a ∈ Aff ∪Abf. (6)

In this subsection, we have presented a simplified model of the 1d compressible
Euler equations for the description of the pipe flow. More sophisticated models, or
even complete hierarchies of models for example those constructed in gas flow [10],
should be used for detailed simulation methods or the analysis of the flow. However,
in the context of our optimization methods, already the discussed modeling level
presents a mathematical and computational challenge.

2.2. Nodal Coupling Equations. In this subsection, we expand our network
model by suitable coupling conditions on the nodes for mass flow, pressure, and
temperature. These conditions are modeled by algebraic equations.

The mass balance equation for each node u ∈ V is described by∑
a∈δin(u)

qa(t) =
∑

a∈δout(u)

qa(t), u ∈ V, t ∈ T , (7)

where qa = Aaρva denotes the mass flow of pipe a with cross-sectional area Aa =
π(Da/2)2. Here and in what follows, we use the standard δ-notation, i.e., we define

δout(u) := {a ∈ A : ∃v with a = (u, v)},
δin(u) := {a ∈ A : ∃v with a = (v, u)},

and δ(u) := δout(u) ∪ δin(u). Note that (7) implies that we have no in- and outflow
to or from the network.
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u

pu(t)
a ∈ δin(u)

pa(La, t)

b ∈ δout(u)

pb(0, t)

Figure 2. Pressure continuity at node u

The pressure continuity equations for each node are given by

pu(t) = pa(0, t), u ∈ V, a ∈ δout(u), t ∈ T , (8a)

pu(t) = pa(La, t), u ∈ V, a ∈ δin(u), t ∈ T , (8b)

where pu(t) denotes the pressure at node u; see Figure 2 for an illustration. We
also need to introduce temperature mixing equations to describe the behavior of
the water temperature in the nodes, where water of different temperatures is mixed.
Since the mixing model depends on the flow directions, we define the inflow and
outflow arcs of a node u at a given time t ∈ T as

I(u, t) := {a ∈ δin(u) : va(t) ≥ 0} ∪ {a ∈ δout(u) : va(t) ≤ 0}, u ∈ V, t ∈ T ,
O(u, t) := {a ∈ δin(u) : va(t) < 0} ∪ {a ∈ δout(u) : va(t) > 0}, u ∈ V, t ∈ T .

The temperature mixing equations for each node are modeled as

Tu(t) =

∑
a∈I(u,t)|qa(t)|cpTa:u(t)∑

a∈I(u,t)|qa(t)|cp
, u ∈ V, t ∈ T , (9a)

Tu(t) = Ta:u(t), u ∈ V, a ∈ O(u, t), t ∈ T , (9b)

where Tu(t) denotes the mixed water temperature at node u and where we use the
notation

Ta:u(t) :=

{
Ta(0, t), u ∈ V, a ∈ δout(u), t ∈ T ,
Ta(La, t), u ∈ V, a ∈ δin(u), t ∈ T ;

see, e.g., [20, 40, 41], where a similar model is considered for mixing effects in natural
gas transport networks.

Equation (9a) can be derived from the conservation of energy if the specific heat
capacities in (9) are independent of the water temperature. Since we consider the
mixing of water only, the additional assumption that all heat capacities are the
same is appropriate. Using this, (9) can be simplified to

Tu(t) =

∑
a∈I(u,t)|qa(t)|Ta:u(t)∑

a∈I(u,t)|qa(t)| , u ∈ V, t ∈ T , (10a)

Tu(t) = Ta:u(t), u ∈ V, a ∈ O(u, t), t ∈ T . (10b)

Obviously, the discussed mixing model is only defined at nodes u with inflow, i.e., if∑
a∈I(u,t)

|qa(t)| > 0.

Note further that the mixing model in (10) cannot be used directly in an opti-
mization context because the sets I(u, t) and O(u, t) depend on the solution and
are thus not known a priori. In Sections 4.1 and 4.2, we present a reformulation of
the mixing model that deals with this difficulty.
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2.3. Consumer and Depot Models. Consumers at arcs a = (u, v) ∈ Ac are
modeled by

va(t) ≥ 0, t ∈ T , (11a)
Pa(t) = qa(t)cp (Ta:u(t)− Ta:v(t)) , t ∈ T , (11b)

Ta:v(t) = T bf, t ∈ T , (11c)

Ta:u(t) ≥ Tff
a , t ∈ T , (11d)

pa:v(t) ≤ pa:u(t), t ∈ T , (11e)

where Pa(t) is the given power consumption of the consumer a ∈ Ac, T bf is the
contractually agreed temperature of the water that flows into the backward-flow
network, and Tff

a is the minimum inlet water temperature of the consumer a ∈ Ac.
Later in our numerical experiments, we will relax the equality constraint (11c) to
Ta:v(t) ∈ [T bf − ε, T bf + ε] for a small ε > 0, since this leads to a significantly
improved convergence behavior of the tested solvers in our numerical experiments.

The depot at arc a = ad = (u, v) is modeled by

va(t) ≥ 0, t ∈ T , (12a)
pu(t) = ps, t ∈ T , (12b)

Pp(t) =
qa(t)

ρ
(pa:v(t)− pa:u(t)) , t ∈ T , (12c)

Pw(t) + Pg(t) = qa(t)cp (Ta:v(t)− Ta:u(t)) , t ∈ T , (12d)∣∣∣∣∂Pw

∂t
(t)

∣∣∣∣ ≤ ξP , t ∈ T , (12e)∣∣∣∣∂Ta:v∂t
(t)

∣∣∣∣ ≤ ξT , t ∈ T , (12f)

where ps is the so-called stagnation pressure of the network. Since all other physical
and technical equations of the model are stated in pressure differences, the fixation
of one pressure value leads to unique pressure values everywhere in the network,
which is the reason for introducing the stagnation pressure. In our implementation,
we however will allow a variation in an interval pu(t) ∈ [ps − ε, ps + ε] instead;
cf. the relaxation of the backward-flow temperature constraint (11c) above. The
power to run the pumps to realize a pressure increase in the depot of the district
heating network provider is denoted by Pp(t). A temperature gain is obtained by
thermal power production in the depot. The corresponding equation (12d) is similar
to the power consumption equation (11b) for consumers, where Pw(t) and Pg(t)
describe the thermal power produced by waste incineration and gas combustion,
respectively. Finally, (12e) and (12f) bound the change over time of the power from
waste incineration as well as the change over time of the depot’s outflow temperature.

2.4. Bounds, Objective Function, and Model Summary. The different vari-
ables of the network that are used in the model are subject to the following bounds
for all t ∈ T ,

pu(t) ∈ [p−u , p
+
u ], Tu(t) ∈ [T−u , T

+
u ], u ∈ V, (13a)

Pw(t) ∈ [0, P+
w ], Pg(t) ∈ [0, P+

g ], Pp(t) ∈ [0, P+
p ]. (13b)

The objective function to minimize is given by∫ T

0

(ωwPw(τ) + ωgPg(τ) + ωpPp(τ)) dτ, (14)

where ωw, ωg, and ωp are cost coefficients of the waste incineration, the gas com-
bustion, and the pumping power, respectively. Here, we assume that these cost
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coefficients are constant over time. However, time-dependent costs can also be
considered in a similar manner. Note that, in principle, other methods of thermal
power production, e.g., power-to-heat, can be modeled in an analogous way.

In summary, we obtain the following nonlinear optimization problem with PDE
constraints

min (14)
s.t. Incompressible Euler equation: (6),

Thermal energy equation: (5),
Mass balance equation: (7),
Pressure continuity equations: (8),
Temperature mixing equations: (10),
Consumer constraints: (11),
Depot constraints: (12),
Bounds: (13).

(15)

Note that (15) is a nonsmooth and infinite-dimensional nonlinear optimization
problem subject to PDEs and algebraic constraints. While the separate parts of
the model such as the incompressible Euler equations or the mixing models at
nodes are known in the literature, the novelty of the modeling discussed here is the
combination of these aspects that leads to a highly accurate representation of the
physical behavior.

Since we want to solve the presented model as an NLP, we apply a first-discretize-
then-optimize approach by using suitable finite difference discretizations of the
differential equations. This will be discussed in the next section.

3. PDE Discretizations

In this section, we discuss the discretization in space and time via finite difference
schemes.

3.1. Implicit Euler Discretization in Space and Time. For the time discretiza-
tion, we partition the time horizon T = [0, T ] equidistantly in N + 1 ∈ N time
points

ti :=
iT

N
, i ∈ {0, . . . , N}.

Thus, the length of the discretization intervals is ∆t := T/N .
For the discretization in space of pipe a ∈ Aff ∪ Abf, we use Ma + 1 ∈ N

discretization points

xa,k :=
kLa
Ma

, k ∈ {0, . . . ,Ma}, and ∆xa :=
La
Ma

.

To obtain a large stability region for the method, we use an implicit Euler discretiza-
tion for the momentum equation (6), which leads to the difference equation

ρ
va(ti+1)− va(ti)

∆t
+
pa(La, ti+1)− pa(0, ti+1)

La

+ gρh′a + λa
|va(ti+1)|va(ti+1)ρ

2Da
= 0

(16)

for a ∈ Aff ∪ Abf and i ∈ {0, . . . , N − 1}. Note that in the context of a forward
simulation, to avoid the solution of (large) nonlinear systems, we could have also
used an explicit integration scheme for the momentum equation. However, since
we are using the discretization method within an optimization model, the implicit
discretization does not lead to increased costs anyway.
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For the spatial semi-discretization of the thermal energy equation (5) we use an
implicit Euler discretization, yielding

∂Ta
∂t

(xa,k+1, t) + va(t)
Ta(xa,k+1, t)− Ta(xa,k, t)

∆xa

+
4Ua
cpρDa

(Ta(xa,k+1, t)− T0) = 0

for a ∈ Aff∪Abf and k ∈ {0, . . . ,Ma−1}. Note that in the optimality conditions for
the discretized optimization problem, which form a boundary value problem, there
is no preferred space direction, so we will discuss an alternative approach based on
central differences in the next section.

The time discretization of the space-discretized thermal energy equation is again
done in an implicit way via

Ta(xa,k+1, ti+1)− Ta(xa,k+1, ti)

∆t

+ va(ti+1)
Ta(xa,k+1, ti+1)− Ta(xa,k, ti+1)

∆xa

+
4Ua
cpρDa

(Ta(xa,k+1, ti+1)− T0) = 0

(17)

for a ∈ Aff ∪ Abf, k ∈ {0, . . . ,Ma − 1}, and i ∈ {0, . . . , N − 1}. The differential
depot constraints (12e) and (12f) are discretized as
|Pw(ti+1)− Pw(ti)|

∆t
≤ ξP ,

|Ta:v(ti+1)− Ta:v(ti)|
∆t

≤ ξT , i = 0, . . . , N − 1.

Discretizing the algebraic equations just means formulating them for each dis-
cretization point in time. For example, the discretized version of the mass balance
equation (7) reads∑

a∈δin(u)

qa(ti) =
∑

a∈δout(u)

qa(ti), u ∈ V, i ∈ {0, . . . , N}.

Finally, discretizing the objective function (14) with the trapezoidal rule, which is the
appropriate discretization of the costs associated with the space-time discretization
that we have chosen, gives

∆t

2

N−1∑
i=0

ωw(Pw(ti)+Pw(ti+1))+ωg(Pg(ti)+Pg(ti+1))+ωp(Pp(ti)+Pp(ti+1)). (18)

3.2. A Space Discretization Scheme based on Central Differences. Since
in the discretized optimization problem there is no preferred space direction, in
this section we present an alternative spatial discretization scheme using central
differences. Later in our numerical results, we then compare this scheme with the
implicit scheme of the last section.

Using the notation of Section 3.1, i.e., ti, i ∈ {0, . . . , N}, for the discrete time
points and xa,k, k ∈ {0, . . . ,Ma}, for the discrete points in space, we obtain the
following discretized system for i = 0, . . . , N − 1 and k = 1, . . . ,Ma − 1 that
contains (16) and

Ta(xa,k, ti+1)− Ta(xa,k, ti)

∆t

+ va(ti+1)
Ta(xa,k+1, ti+1)− Ta(xa,k−1, ti+1)

2∆x

+
4Ua
cpρDa

(Ta(xa,k, ti+1)− T0) = 0.

(19)
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Because the central difference scheme in (19) takes two spatial steps at a time, we
are missing one equation in every timestep. Therefore, an additional discretization
step is needed at the beginning or the end of the pipe, where we arbitrarily choose
the end of the pipe:

Ta(xa,Ma
, ti+1)− Ta(xa,Ma

, ti)

∆t

+ va(ti+1)
Ta(xa,Ma , ti+1)− Ta(xa,Ma−1, ti+1)

∆xa

+
4Ua
cpρDa

(Ta(xa,Ma
, ti+1)− T0) = 0.

(20)

Note that we do not discretize the continuity equation since it simply states that
velocities only depend on time and not on space. Finally, the algebraic constraints
and the objective function are discretized as in the last section.

4. Mixing Models

As already mentioned in Section 2, the mixing model originally is not well-posed
since it is based on arc sets that are not known a priori. To handle this issue, we
present two different reformulations that we later compare numerically in Section 6.

4.1. A Complementarity-Constrained Temperature Mixing Model. The
sets I(u, t) and O(u, t) used in the temperature mixing constraints (10) of Prob-
lem (15) are not known a priori, which makes it difficult to use them in an op-
timization model. We resolve this problem by replacing them with nonsmooth
max-constraints introduced in [20] for a similar setting in gas transport networks.
The newly introduced variable

βa(t) := max{0, qa(t)}, a ∈ Aff ∪Abf, (21)

models the positive part of the mass flow qa(t) of arc a. This is equivalent to

βa(t)− qa(t) = max{0,−qa(t)}, a ∈ Aff ∪Abf.

The variable γa(t) := βa(t) − qa(t) thus models the negative part of the mass
flow qa(t). For each node u ∈ V and all t ∈ T , then the following implications are
satisfied,

a ∈ I(u, t) ∩ δin(u) =⇒ βa(t) = qa(t), γa(t) = 0,

a ∈ O(u, t) ∩ δin(u) =⇒ βa(t) = 0, γa(t) = −qa(t),

a ∈ I(u, t) ∩ δout(u) =⇒ βa(t) = 0, γa(t) = −qa(t),

a ∈ O(u, t) ∩ δout(u) =⇒ βa(t) = qa(t), γa(t) = 0.

We can thus reformulate the temperature mixing equations (10) at node u ∈ V
without explicitly using the sets I(u, t) and O(u, t) and obtain

Tu(t) =

∑
a∈δin(u) βa(t)Ta:u(t) +

∑
a∈δout(u) γa(t)Ta:u(t)∑

a∈δin(u) βa(t) +
∑
a∈δout(u) γa(t)

, (22a)

0 = βa(t)(Ta:u(t)− Tu(t)), a ∈ δout(u), (22b)

0 = γa(t)(Ta:u(t)− Tu(t)), a ∈ δin(u), (22c)

for all t ∈ T . In Lemma 1 of [20], it is shown that Condition (21) is equivalent to
the complementarity-constrained model

qa(t) = βa(t)− γa(t), βa(t) ≥ 0, γa(t) ≥ 0, βa(t)γa(t) = 0 (23)

for u ∈ V and a ∈ δ(u). This is a classical mathematical program with complemen-
tarity constraints (MPCC) formulation, since for all u ∈ V , a ∈ δ(u), and t ∈ T ,
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the positive mass flow βa(t) or the negative mass flow γa(t) is equal to zero. Thus,
βa(t) and γa(t) form a complementarity pair.

Using this constraint, we obtain the finite-dimensional MPCC model
min (18)
s.t. Discretized Euler equation: (16),

Discretized thermal energy equation: (17) or (19) and (20),
Discretized mass balance equation: (7),
Discretized pressure continuity equations: (8),
Discretized temperature mixing equations: (22),
Discretized MPCC max-reformulation: (23),
Discretized consumer constraints: (11),
Discretized depot constraints: (12),
Discretized bounds: (13)

(24)

for optimizing the control of the district heating network, which is equivalent to a
discretized version of the original problem (15).

In general, MPCCs are hard to solve, since they usually do not satisfy standard
constraint qualifications of nonlinear optimization [25]. To see this, consider the
complementarity constraints (23). If βa(t) = γa(t) = 0 holds, i.e., if there is no flow,
then the tangential cone of (24) restricted to the constraints (23) is nonconvex. In
this case, the tangential cone cannot coincide with the linearized tangential cone,
because the latter cone is always convex. Thus, the Abadie constraint qualification
(ACQ) is not satisfied; see, e.g., [3] for some details on constraint qualifications.

4.2. A Nonlinear Programming Based Temperature Mixing Model. Some
of our preliminary numerical experiments showed that the MPCC-based formulation
of the mixing model tends to be hard to solve for standard NLP solvers. For this
reason, in this section we develop a reformulation for which we later demonstrate
that it has better numerical properties.

The thermal energy balance equation in the nodes given by∑
a∈δin(u)

qa(t)Ta:u(t)cp =
∑

a∈δout(u)

qa(t)Ta:u(t)cp, u ∈ V, t ∈ T

ensures that no thermal energy is added or lost in the mixing process. Assuming
that the specific heat capacity cp of water is constant, we can rewrite these equations
as ∑

a∈δin(u)

qa(t)Ta:u(t) =
∑

a∈δout(u)

qa(t)Ta:u(t), u ∈ V, t ∈ T . (25)

However, only formulating the thermal energy balance is not sufficient to get
a complete mixing model, since multiple outflow arcs still could have different
temperatures after mixing. To prevent this, we explicitly include the temperature
propagation equations at the nodes, which equate the temperatures of all outflow
arcs with the mixed node temperature,

va(t)|Ta:u(t)− Tu(t)| ≤ 0, u ∈ V, a ∈ δout(u), t ∈ T , (26a)

va(t)|Ta:u(t)− Tu(t)| ≥ 0, u ∈ V, a ∈ δin(u), t ∈ T . (26b)

For a ∈ I(u, t), these inequalities are always fulfilled independent of the absolute
value of the temperature difference |Ta:u(t)−Tu(t)|. For a ∈ O(u, t), the inequalities
are only satisfied if |Ta:u(t)− Tu(t)| = 0 holds. See also [5], where a similar model
is used in a simulation model with known flow directions. The following theorem
shows that this reformulation is equivalent to the original one.
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Theorem 1. Suppose that all nodes have a positive inflow, i.e.,∑
a∈I(u,t)

|qa(t)| > 0, u ∈ V.

Then, the mixing model (25) and (26) is an equivalent reformulation of the mixing
equations (10).

Proof. Let u ∈ V . We rewrite the mass balance equation (7) using inflow- and
outflow-arcs and obtain

0 =
∑

a∈δin(u)

qa(t)−
∑

a∈δout(u)

qa(t)

=

 ∑
a∈δin(u)∩I(u,t)

qa(t)−
∑

a∈δout(u)∩I(u,t)

qa(t)


+

 ∑
a∈δin(u)∩O(u,t)

qa(t)−
∑

a∈δout(u)∩O(u,t)

qa(t)


=

∑
a∈I(u,t)

|qa(t)| −
∑

a∈O(u,t)

|qa(t)|.

(27)

The same ideas applied to the thermal energy balance equation (25) lead to

0 =
∑

a∈δin(u)

qa(t)Ta:u(t)−
∑

a∈δout(u)

qa(t)Ta:u(t)

=

 ∑
a∈δin(u)∩I(u,t)

qa(t)Ta:u(t)−
∑

a∈δout(u)∩I(u,t)

qa(t)Ta:u(t)


+

 ∑
a∈δin(u)∩O(u,t)

qa(t)Ta:u(t)−
∑

a∈δout(u)∩O(u,t)

qa(t)Ta:u(t)


=

∑
a∈I(u,t)

|qa(t)|Ta:u(t)−
∑

a∈O(u,t)

|qa(t)|Ta:u(t).

(28)

We now assume that the mixing equations (10) hold. Using (27), we obtain

0 =

 ∑
a∈I(u,t)

|qa(t)| −
∑

a∈O(u,t)

|qa(t)|

Tu(t)

=

 ∑
a∈I(u,t)

|qa(t)|

Tu(t)−

 ∑
a∈O(u,t)

|qa(t)|Tu(t)


=

 ∑
a∈I(u,t)

|qa(t)|

∑a∈I(u,t)|qa(t)|Ta:u(t)∑
a∈I(u,t)|qa(t)| −

∑
a∈O(u,t)

|qa(t)|Ta:u(t)

=
∑

a∈I(u,t)

|qa(t)|Ta:u(t)−
∑

a∈O(u,t)

|qa(t)|Ta:u(t),

which implies the thermal energy balance equation (25) by using (28).
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Consider now an arc a ∈ δout(u). Then, the temperature propagation equa-
tion (26a) is satisfied by using (10b),

va(t)|Ta:u(t)− Tu(t)| = 0 if a ∈ O(u, t),

va(t)︸ ︷︷ ︸
≤0

|Ta:u(t)− Tu(t)|︸ ︷︷ ︸
≥0

≤ 0 if a ∈ I(u, t).

For an arc a ∈ δin(u), the temperature propagation equation (26b) is also fulfilled

va(t)|Ta:u(t)− Tu(t)| = 0 if a ∈ O(u, t),

va(t)︸ ︷︷ ︸
≥0

|Ta:u(t)− Tu(t)|︸ ︷︷ ︸
≥0

≥ 0 if a ∈ I(u, t),

and hence, we have shown the first implication.
For the reverse implication, we assume that (25) and (26) hold. For a ∈ O(u, t),

because of (26), we have

va(t)︸ ︷︷ ︸
>0

|Ta:u(t)− Tu(t)| ≤ 0 if a ∈ δout(u),

va(t)︸ ︷︷ ︸
<0

|Ta:u(t)− Tu(t)| ≥ 0 if a ∈ δin(u).

Thus, |Ta:u(t)− Tu(t)| = 0 holds, which implies (10b). Then, we use the thermal
energy balance equation (25) to prove (10a)

0 =
∑

a∈δin(u)

qa(t)Ta:u(t)−
∑

a∈δout(u)

qa(t)Ta:u(t)

=
∑

a∈I(u,t)

|qa(t)|Ta:u(t)−
∑

a∈O(u,t)

|qa(t)|Ta:u(t)

=
∑

a∈I(u,t)

|qa(t)|Ta:u(t)−
∑

a∈O(u,t)

|qa(t)|Tu(t)

=

 ∑
a∈I(u,t)

|qa(t)|

∑a∈I(u,t)|qa(t)|Ta:u(t)∑
a∈I(u,t)|qa(t)| −

 ∑
a∈O(u,t)

|qa(t)|

Tu(t)

=

 ∑
a∈I(u,t)

|qa(t)|

∑a∈I(u,t)|qa(t)|Ta:u(t)∑
a∈I(u,t)|qa(t)| −

 ∑
a∈I(u,t)

|qa(t)|

Tu(t)

=

 ∑
a∈I(u,t)

|qa(t)|

(∑a∈I(u,t)|qa(t)|Ta:u(t)∑
a∈I(u,t)|qa(t)| − Tu(t)

)
.

Since ∑
a∈I(u,t)

|qa(t)| > 0

holds by assumption, the mixing equation (10a) follows. �
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By introducing a new variable ∆Ta,u for all u ∈ V and a ∈ δ(u) one can
rewrite (26) to also avoid absolute values in the equations:

va(t)∆Ta,u(t) ≤ 0, u ∈ V, a ∈ δout(u), (29a)

∆Ta,u(t) ≥ Ta:u(t)− Tu(t), u ∈ V, a ∈ δout(u), (29b)

∆Ta,u(t) ≥ Tu(t)− Ta:u(t), u ∈ V, a ∈ δout(u), (29c)

va(t)∆Ta,u(t) ≥ 0, u ∈ V, a ∈ δin(u), (29d)

∆Ta,u(t) ≥ Ta:u(t)− Tu(t), u ∈ V, a ∈ δin(u), (29e)

∆Ta,u(t) ≥ Tu(t)− Ta:u(t), u ∈ V, a ∈ δin(u). (29f)

We have the following result.

Theorem 2. System (29) is feasible if and only if the temperature propagation
equations (26) are feasible.

Proof. It is easy to see that (29b) and (29c) are smooth and linear reformulations of

∆Ta,u(t) ≥ |Ta:u(t)− Tu(t)|, u ∈ V, a ∈ δout(u),

and (29e) and (29f) are smooth and linear reformulations of

∆Ta,u(t) ≥ |Ta:u(t)− Tu(t)|, u ∈ V, a ∈ δin(u).

Suppose now that (26) is feasible. Then,

∆Ta,u(t) := |Ta:u(t)− Tu(t)|, u ∈ V, a ∈ δout(u) ∪ δin(u),

satisfy (29).
Next, assume that (29) is feasible. For a node u ∈ V and an outgoing arc

a ∈ δout(u), we have va(t)∆Ta,u(t) ≤ 0 by (29a). Thus, either va(t) ≤ 0 or
∆Ta,u(t) = 0. In the first case, it follows that

va(t)|Ta:u(t)− Tu(t)| ≤ 0.

In the second case, we obtain that

0 ≤ |Ta:u(t)− Tu(t)| ≤ ∆Ta,u(t) = 0,

which implies Ta:u(t) = Tu(t). Hence, (26a) is fulfilled. The case of a node u ∈ V
and an ingoing arc a ∈ δin(u) can be handled analogously. �

Using the reformulated constraints, we obtain the finite-dimensional NLP model
min (18)
s.t. Discretized Euler equation: (16),

Discretized thermal energy equation: (17) or (19) and (20),
Discretized mass balance equation: (7),
Discretized pressure continuity equations: (8),
Discretized thermal energy balance equation: (25),
Discretized temperature continuity equations: (29),
Discretized consumer constraints: (11),
Discretized depot constraints: (12),
Discretized bounds: (13)

(30)

for optimizing the control of the district heating network.
The temperature propagation equations (29) still imply a complementarity struc-

ture similar to the complementarity constraints (23) of the MPCC-based mixing
model. In particular, this means that for va(t) = ∆Ta,u(t) = 0, the tangential cone
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βa:u(t)

γa:u(t)

va(t)

∆Ta,u(t)

Figure 3. Illustration of the tangential cones (thick blue axes and
shaded area) of the MPCC- (left) and NLP-based (right) mixing
model.

of (30) restricted to the constraints (29) is nonconvex. In this case, the ACQ is
not satisfied, which was also the case for the formulation discussed in Section 4.1.
Nevertheless, the reformulation presented in this section results in a larger tangential
cone; see Figure 3. Later, in Section 6, we will see that this gain in constraint
regularity can lead to significantly improved numerical results for some NLP solvers.

5. Optimization Techniques

In this section, we present several optimization techniques that allow to solve the
challenging problem presented and discussed in the last sections.

5.1. An Instantaneous Control Approach. The discretizations described in
Section 3 lead to finite-dimensional but typically very large NLPs or MPCCs. Since
the solution of these problems is very hard in practice, in this section we develop an
instantaneous control approach. Instantaneous control has been frequently used for
challenging control problems; cf., e.g., [7, 8] for flow control, and in [1, 24, 26] for
the control of linear wave equations, of wave equations in networks, or of vibrating
string networks, respectively. An application to traffic flows can be found in [23] as
well as to mixed-integer nonlinear gas transport networks models in [19], and for
MPEC-type optimal control problems in [2].

The basic idea of instantaneous control is the following. Starting from the first
time period of the discretization and with a given initial state, we only solve the
control problem for this first time period of our discretized time horizon. We then
apply the resulting control, move one time period forward in time, solve the control
problem restricted to the second period, etc. In other words, we solve a series of
quasi-stationary problems while moving forward in time.

This heuristic control approach can be used in two different ways. First, if
successful, i.e., if an overall feasible control is obtained, this resulting control can be
applied directly in practice. However, this control typically will be far away from
being optimal for the complete time horizon. Second, the resulting control can be
used to initialize the full NLP (or MPCC) to obtain a feasible initial point, which
usually helps significantly in solving the overall problem to (local) optimality.
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Let us now formally describe the instantaneous control approach. To this end,
we denote the fully discretized problem as

min
x

N∑
i=1

fi(xi, xi−1) (31a)

s.t. cEi (xi, xi−1) = 0, i = 1, . . . , N, (31b)

cIi (xi, xi−1) ≥ 0, i = 1, . . . , N, (31c)

dEi (xi) = 0, i = 1, . . . , N, (31d)

dIi (xi) ≥ 0, i = 1, . . . , N, (31e)

where x = (xi)
N
i=0 and xi contains all variables associated to the time point ti. The

super-indices E , I stand for equality and inequality constraints. The constraints
cEi , cIi represent the constraints coupling the time points ti−1 and ti and dEi and dIi
couple all constraints that only depend on the single time point ti.

Restricted to the time period [ti−1, ti] and for given xi−1 = x̂i−1, this problem
can be formulated as

min
xi

fi(xi, x̂i−1) (32a)

s.t. cEi (xi, x̂i−1) = 0, cIi (xi, x̂i−1) ≥ 0, (32b)

dEi (xi) = 0, dIi (xi) ≥ 0, (32c)

With this problem at hand, the instantaneous control method can be described as
in Algorithm 1.

Algorithm 1 Instantaneous Control Algorithm

Require: The original problem, a discretized time horizon {t0, . . . , tN}, a full
discretization of the problem, and initial conditions x0 = x̂0.

1: for i = 1, . . . , N do
2: Solve the problem (32) for time step i and variables xi−1 fixed to x̂i−1.
3: Denote the optimal solution by x̂i.
4: end for

Note that this approach is usually very fast in practice because the variables xi
in the NLP (32) can be reasonably initialized with the values x̂i−1. Note again that
if Algorithm 1 is successful, i.e., if every problem in Line 2 is solved, the method
results in an overall feasible control for the entire time horizon.

5.2. Penalty Formulations. In this section, we consider the fully discretized
version (31) of our problem. This problem is mainly governed by equality constraints
from physics and has rather few controls. Thus, it contains only very few degrees of
freedom, which renders the problem hard to solve in practice; see, e.g., [41], where
the same phenomenon is discussed for the case of nonlinear gas network optimization
models. One possible remedy in such situations is to consider the relaxed version

min
x,s≥0

N∑
i=1

fi(xi, xi−1) + ‖Ws‖ (33a)

s.t. cEi (xi, xi−1) + sE,c,+i − sE,c,−i = 0, i = 1, . . . , N, (33b)

cIi (xi, xi−1) + sI,c,+i ≥ 0, i = 1, . . . , N, (33c)

dEi (xi) + sE,d,+i − sE,d,−i = 0, i = 1, . . . , N, (33d)

dIi (xi) + sI,d,+i ≥ 0, i = 1, . . . , N. (33e)
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Here, every equality constraint cEi is equipped with a slack variable sE,c,+i for the
negative and a slack variable sE,c,−i for the positive violation of the constraint.
Obviously, inequality constraints only require slack variables for their negative
violation and the constraints d are handled in the same way. The vector s in
the objective function then denotes the vector of all slack variables used in the
constraints and the matrix W is a diagonal matrix with positive diagonal entries
representing scaling factors for the respective slack variables. Obviously, a solution
with s = 0 is also a solution of the original problem.

We also combine the penalty formulation with the instantaneous control approach
described in the last section. In practice, it may happen that a sub-problem in the
for-loop of Algorithm 1 cannot be solved to a feasible point. Thus, we also introduce
a corresponding penalty formulation in every iteration of the instantaneous control
algorithm. If, in an iteration, the slack variables are too large, then we consider the
constraint violations of the infeasible point (for the original problem) and increase
the respective weights in W in order to penalize the violation of the most violated
constraints even stronger. Then, the sub-problem is solved again and the process is
repeated until the sub-problem is solved to feasibility (or a maximum number of
re-iterations is reached). Finally note that it is often preferable in practice to not
equip all constraints with slack variables but only a subset of constraints, e.g., all
nonlinear constraints. See [27] for a detailed discussion of relaxed penalty models in
the related field of gas network optimization.

5.3. A Preprocessing Technique for Fixing Flow Directions. Due to their
complementarity structure, the temperature mixing equations of the MPCC-based
mixing model as well as of the NLP-based mixing model usually lead to difficulties in
the solution process. To avoid these difficulties, we first identify nodes with incident
arcs on which the flow direction is known, which helps to reduce the hardness of the
model. In addition to simplifying the mixing equations, one can also smoothen the
friction term

λa
|va|vaρa

2Da
(x, t)

in the momentum equation (6) if the sign of the velocity va is known a priori. This
leads to a simple but powerful preprocessing strategy to identify arcs with fixed flow
direction in Algorithm 2. The idea behind Algorithm 2 is to return the depot arc,

Algorithm 2 Flow Direction Presolve

Require: The graph G = (V,A) of the district heating network.
Ensure: Sets Apos and Aneg only containing arcs with fixed positive flow direction

or fixed negative flow direction, respectively.
1: Set Apos := Ac ∪ {ad} and Aneg := ∅.
2: Consider the undirected graph Ĝ = (V,A \Apos).
3: Find all 2-edge-connected components of Ĝ.
4: Contract every 2-edge-connected component in Ĝ to a single node, yielding a

forest, because the bridge arcs are the only arcs that remain in Ĝ, so that all
flow directions in Ĝ are known.

5: Assign all arcs in Ĝ to the sets Apos or Aneg using depth-first search starting
in u and v for ad = (u, v).

6: return Apos and Aneg.

all consumer arcs, and all arcs that are not contained in a cycle. Some arcs in cycles
can also have a fixed flow direction as well. To detect such arcs, other algorithms
would be needed, which we do not discuss.
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Given the result of Algorithm 2, the velocity va and mass flow qa of arcs a in Apos
or Aneg can be bounded by zero from below or above, respectively.

va ≥ 0, qa ≥ 0, a ∈ Apos,

va ≤ 0, qa ≤ 0, a ∈ Aneg.

Additionally, all friction terms in the momentum equations can be reformulated as

λa
|va|vaρa

2Da
= 0, a ∈ (Aff ∪Abf) \ (Apos ∪Aneg) ,

λa
v2aρa
2Da

= 0, a ∈ (Aff ∪Abf) ∩Apos,

−λa
v2aρa
2Da

= 0, a ∈ (Aff ∪Abf) ∩Apos,

where, for better readability, we have omitted the dependence on x and t. In this
way, the friction terms are smoothed for all arcs a ∈ Apos ∪Aneg.

Consider now the MPCC-based mixing model. For arcs a ∈ Apos, one can fix the
variable for the negative part of the mass as γa to 0 and for arcs a ∈ Aneg, one can
fix the variable for positive part of the mass flow βa to 0. The MPCC-based mixing
equation (22a) then turns into

Tu(t) =

∑
a∈δin(u)\Aneg

βa(t)Ta:u(t) +
∑
a∈δout(u)\Apos

γa(t)Ta:u(t)∑
a∈δin(u)\Aneg

βa(t) +
∑
a∈δout(u)\Apos

γa(t)
, t ∈ T ,

and (22b) and (22c) can be simplified to

0 = βa(t)(Ta:u(t)− Tu(t)), a ∈ δout(u) \ (Apos ∪Aneg) , t ∈ T ,
0 = Ta:u(t)− Tu(t), a ∈ δout(u) ∩Apos, t ∈ T ,
0 = γa(t)(Ta:u(t)− Tu(t)), a ∈ δin(u) \ (Apos ∪Aneg) , t ∈ T ,
0 = Ta:u(t)− Tu(t), a ∈ δin(u) ∩Aneg, t ∈ T .

This means that for a ∈ Apos, Equation (22c) is not needed any more and for
a ∈ Aneg, Equation (22b) can be removed. Thus, every MPCC-mixing equation
that contains an arc in Apos or Aneg either gets simplified or is dropped. Moreover,
the number of nonlinearities is reduced as well.

Similarly, for the NLP-based mixing model, we can simplify the temperature
propagation equations (29) as

va(t)∆Ta,u(t) ≤ 0, u ∈ V, a ∈ δout(u) \ (Apos ∪Aneg) ,

∆Ta,u(t) ≥ Ta:u(t)− Tu(t), u ∈ V, a ∈ δout(u) \ (Apos ∪Aneg) ,

∆Ta,u(t) ≥ Tu(t)− Ta:u(t), u ∈ V, a ∈ δout(u) \ (Apos ∪Aneg) ,

Ta:u(t)− Tu(t) = 0, u ∈ V, a ∈ δout(u) ∩Apos,

va(t)∆Ta,u(t) ≥ 0, u ∈ V, a ∈ δin(u) \ (Apos ∪Aneg) ,

∆Ta,u(t) ≥ Ta:u(t)− Tu(t), u ∈ V, a ∈ δin(u) \ (Apos ∪Aneg) ,

∆Ta,u(t) ≥ Tu(t)− Ta:u(t), u ∈ V, a ∈ δin(u) \ (Apos ∪Aneg) ,

Ta:u(t)− Tu(t) = 0, u ∈ V, a ∈ δin(u) ∩Aneg.

Again, all equations in (29) that are defined on arcs in Apos or Aneg either get
simplified or dropped. The thermal energy balance equation (25) remains unchanged.
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Figure 4. The forward-flow part of the AROMA network

5.4. Initial Conditions. To compute a good and realistic control of the district
heating network, physically reasonable initial conditions are required. To obtain such
conditions, we compute a stationary solution of the network for the first time step.
The stationary model we use is the same as our standard model at t = 0, except
that all time derivatives are zero. In this case, the Euler momentum equation (6)
becomes

pa(La, 0)− pa(0, 0)

La
= −gρh′a − λa

|va|vaρ
2Da

(0), a ∈ Aff ∪Abf,

and the thermal energy equation (5) becomes

va(0)
∂Ta
∂x

(x, 0) +
4Ua

cpρa(x, 0)Da
(Ta(x, 0)− T0) = 0, a ∈ Aff ∪Abf.

All algebraic equations stay the same but are only considered at t = 0. The solution
of this stationary model is then used to identify the initial conditions.

6. Numerical Results

In this section, we present and discuss numerical results for the models and
techniques introduced in the previous sections. The models have been formulated
using GAMS 25.1.2 [31]. The resulting instances are solved using the solvers
Ipopt 3.12 [46], KNITRO 10.3.0 [6], CONOPT4 4.06 [12–14], and SNOPT 7.2-12.1 [18].
We apply our technique to two different realistic district heating networks; the so-
called AROMA network given in Figure 4 and the so-called STREET network given in
Figure 5. The AROMA network consists of 18 nodes, 24 arcs (1 depot, 5 consumers,
and 18 pipes), and one cycle each in the forward-flow and the backward-flow network.
Its total pipe length is 7262.4 m. The STREET network is a part of a real-world
district heating network with 162 nodes, 195 arcs (1 depot, 32 consumers, and
162 pipes), and a total pipe length of 7627.106 m. Both networks contain a cycle.
Thus, not all flow directions are known in advance. The preprocessing technique
described in Section 5.3 can fix the flow directions for 6 out of the 18 pipes of the
AROMA network and for 150 out of the 162 pipes for the STREET network. The
larger number of fixations for the STREET network follows from the fact that it
only contains a small cycle whereas the major part of the network is tree-shaped.

Let us also note that we used the `1 norm throughout this section for the penalty
terms in (33).

The remainder of this section is split up into two parts. In Section 6.1, we
compare different variants of our model (namely the MPCC- and the NLP-based
mixing model as well as the two different discretization schemes for the PDEs) and
different NLP solvers. In Section 6.2 we then discuss properties of optimized heat
and flow controls at the depot for the AROMA and the STREET network.
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Figure 5. The forward-flow part of the STREET network

6.1. Comparison of Model Variants and NLP Solvers. We now compare the
performance of different NLP solvers applied to the two different spatial discretization
schemes (the implicit Euler and the scheme based on central differences) as well as
the two mixing models (the MPCC- and the NLP-based model). To this end, we
consider the AROMA network with a time horizon of one day equipped with a time
discretization using 30 minute intervals. The stepsize of the spatial discretization is
150 m.

The numerical results are given in Table 2. The columns of the table contain the
following information.

Mixing: The mixing model; MPCC-based (Section 4.1) or NLP-based (Sec-
tion 4.2).

Discr.: The implicit Euler discretization (Section 3.1) or the discretization
based on central differences (Section 3.2).

t (all): The overall solution time including the initial value computation using
the instantaneous control approach (Section 5.1), the presolve step to fix
flow directions (Section 5.3), and the computation of the initial physical
state (Section 5.4). All running times in the table are given in seconds.
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Table 2. Numerical results for all combination of model variants
and NLP solvers for the AROMA network with ∆t = 1800 s and
∆xa = 150 m.

Mixing Disrc. t (all) t (NLP) t (IC) #IC Mean Median Min. Max. t (stat) #stat Obj. Cost

CONOPT4

MPCC Centr. diff. 82.593 80.731 1.862 60 0.031 0.030 0.028 0.042 0.295 4 97.863 28.318
MPCC Impl. Euler 16.152 13.742 2.410 78 0.031 0.030 0.027 0.046 0.200 3 275.101 57.291
NLP Centr. diff. 16.732 14.910 1.822 60 0.030 0.030 0.028 0.043 0.218 2 119.036 26.416
NLP Impl. Euler 18.828 16.634 2.194 72 0.030 0.029 0.028 0.041 0.131 1 100.812 27.647

Ipopt

MPCC Centr. diff. 272.993 261.890 11.103 56 0.198 0.166 0.101 0.954 2.721 2 65.405 23.203
MPCC Impl. Euler 447.746 431.985 15.761 79 0.200 0.148 0.110 1.135 2.842 2 91.031 49.329
NLP Centr. diff. 326.375 319.468 6.907 51 0.135 0.126 0.087 0.250 0.262 1 62.012 47.153
NLP Impl. Euler 242.349 68.533 173.816 98 1.774 0.229 0.116 62.834 0.313 1 198.393 53.842

KNITRO

MPCC Centr. diff. 933.063 900.254 32.809 74 0.443 0.104 0.046 22.293 0.142 1 42.013 21.018
MPCC Impl. Euler 925.191 900.289 24.902 83 0.300 0.147 0.072 6.032 1.527 1 — 18.170
NLP Centr. diff. 61.115 57.636 3.479 50 0.070 0.068 0.044 0.109 0.056 1 44.570 43.987
NLP Impl. Euler 38.068 32.102 5.966 71 0.084 0.069 0.048 0.430 0.187 1 — 57.043

SNOPT

MPCC Centr. diff. 25.146 23.621 1.525 48 0.032 0.030 0.026 0.071 0.116 2 51.592 46.923
MPCC Impl. Euler 24.639 20.852 3.787 114 0.033 0.032 0.025 0.053 0.138 2 195.360 54.798
NLP Centr. diff. 44.661 42.024 2.637 71 0.037 0.035 0.028 0.060 0.062 1 182.363 55.140
NLP Impl. Euler 45.769 43.914 1.855 53 0.035 0.033 0.028 0.072 0.067 1 — 50.311

t (NLP): The time to solve the NLP on the entire time horizon, which is
initialized with the solution of the instantaneous control approach.

t (IC): The time required to apply the instantaneous control approach.
#IC: The total number of instantaneous control steps including re-iterations

applied if the scaled max-norm of all slack values exceeds the tolerance
of 10−2.

Mean, Median, Min. Max.: The mean, median, minimum, and maximum
time of all (re-)iterations of the instantaneous control approach.

t (stat): The time required to compute the stationary solution that is used
as an initial physical state.

#stat: The required number of re-iterations for computing the stationary
solution.

Obj.: The objective function value of the problem, which is the sum of the
control costs and the scaled penalty terms. Here, “—” means that the final
value of the max-norm of all scaled slack values exceeds the tolerance of
10−2.

Cost: The control costs part of the objective function value; see (18).
If we first consider the overall time required to solve the problem (“t (all)”), we

see that the results are highly heterogeneous w.r.t. the chosen NLP solver. The
fastest approach (16.732 s) is obtained by CONOPT4 applied to the MPCC-based
mixing model and the implicit Euler discretization. In contrast, KNITRO applied
to the MPCC-based mixing model and the discretization scheme based on central
differences takes 933.063 s, which corresponds to a factor larger then 55. Since every
solver gets exactly the same models to be solved, this strongly indicates the hardness
of the district heating network optimization problems.

It also strongly depends on the chosen solver whether the MPCC- or the NLP-
based mixing model is used. For instance, KNITRO performs very poor on the
MPCC-based model and significantly benefits from the NLP-based reformulation.
On the other hand, for SNOPT it is exactly the other way around (although the
difference in solution times is not as drastic as for KNITRO). The choice of the
discretization scheme for the PDEs does not influence the solution times significantly.
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However, it may influence how the solvers are able to reduce the penalty terms in
the objective function; see, e.g., KNITRO, which is not able to reduce the penalty
terms so that the max-norm of all scaled slack values is below 10−2 if the implicit
Euler scheme is used. A comparable behavior can also be seen in the instantaneous
control approach: All solvers require more re-iterations to reduce the penalty terms
for the implicit Euler discretization. The only exception is SNOPT applied to the
NLP-based mixing model.

As expected, the instantaneous control approach is solved very fast for all solvers.
The single iterations are all solved in less then a second on average. The only
exception is Ipopt applied to the NLP-based mixing model and the implicit Euler
discretization, where some convergence issues occur within the instantaneous control
approach. The running times required to compute the stationary solution that we
use as the initial physical state are in the same orders of magnitude as a single
instantaneous control approach iteration but slightly longer, since no good initial
point can be used by the NLP solvers.

Finally, let us also discuss the (local) optimal solutions obtained by the different
NLP solvers applied to the different model variants. The objective function of the
overall NLP consists of two parts: the original control costs and the scaled penalty
terms. Scaling the penalty terms is always an issue in practical physical applications
for which different penalty terms have different physical units. Obviously, the
applicability of the obtained depot control strongly depends on the size of the
penalty part of the objective, since large slack values correspond to violated physical
or technical constraints. The table shows that different solvers find very different
local optima of the problem. For instance, CONOPT4 is a rather fast solver but the
obtained local optima also contain large slack values. Contrarily, KNITRO applied
to the discretization based on central differences computes local optima with almost
vanishing slack values. Compromising between the difference of the values in the
last two columns (which is the size of the scaled penalty terms in the objective) and
the solution times, KNITRO applied to the discretization based on central differences
and the NLP-based mixing model seems to be the best combination of model variant
and NLP solver.

6.2. Optimized Depot Controls. We now present some exemplary optimal depot
controls. In Figure 6 (top), the control profile is given for the AROMA network and
the “winner setting” discussed in the last section. For the given profiles, we first
assume that the amount of power generated by waste incineration is unbounded.
This leads to a control (solid line) that mainly follows the aggregated consumption
of the households (dashed line). Due to the heat losses in the transport network,
the generated power at the depot is slightly larger than the aggregated consumption.
Since pressure losses are small in the network, the pressure increase at the depot is
almost negligible. The power control qualitatively changes if power generated by
waste incineration is bounded; see the dashed-dotted line in Figure 6 (bottom). Since
aggregated power consumption is above this bound in some morning and evening
hours, the optimized power control anticipates this and pre-heats the network in
the hours before. This is obviously required because again simply following the
aggregated consumption curve would result in hours where the power consumption
would need to be curtailed. The same effect can be observed for the optimized
depot control for the STREET network in Figure 7. For the STREET network, our
preliminary numerical experiments revealed that the NLP solver Ipopt applied to
the NLP-based mixing model, the discretization scheme based on central differences
as well as ∆t = 1800 s and ∆xa = 100 m delivers the best results; cf. also the
respective discussion for the AROMA network in Section 6.1.
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Figure 6. Aggregated power consumption (dashed curve), power
generated by waste incineration at the depot (solid curve), and
pressure increase at the depot (dotted curve) for the AROMA
network without (top) and with (bottom) waste incineration bound

Let us now finally discuss the interplay between mass flow and water temperature
on the example of the STREET network. Considering the power constraints of the
consumers and the depot (11b) and (12d), we see that power consumption is mainly
satisfied by the product of mass flow and temperature differences. Thus, to satisfy
demand we can either increase the mass flow or the outlet temperature of the depot.
These two values are shown in Figure 8 for the entire time horizon. It can be seen
that power consumption during night is mainly covered by high outlet temperatures
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Figure 7. Aggregated power consumption (dashed curve), power
generated by waste incineration at the depot (solid curve), and
pressure increase at the depot (dotted curve) for the STREET
network with waste incineration bound (dashed-dotted line)

at the depot. Here, this temperature is at its upper bound (403.15 K), which is
obtained by waste incineration at the depot. Around 4 AM it is anticipated that in
the morning hours high outlet temperatures will not be enough either due to the
upper bound of the temperature or the upper bound on waste incineration. Thus,
mass flows need to be increased, which then leads to outlet temperatures that can
be decreased. During the remainder of the day it can be seen that mass flows and
temperatures change in an opposed way—decreasing outlet temperatures require
increased mass flows and vice versa.

7. Conclusion

In this paper, we presented an accurate dynamic optimization model for the
control of district heating networks. The model is mainly governed by the nonlinear
partial differential equations for water and heat flow as well as by nodal mixing
models for tracking different water temperatures in the network. This results in a
PDE-constrained MPCC or NLP model, depending on the chosen option for the
genuinely nonsmooth mixing models. After applying suitable discretizations for
the PDEs, we obtain a finite-dimensional but large and highly nonlinear MPCC or
NLP, for which we develop different optimization techniques that then allow us to
solve realistic instances. The applicability of the discussed models and techniques is
illustrated by a numerical case study on different networks.

The literature on mathematical optimization for district heating networks is not
as mature as for other utility networks like gas or water networks. Thus, many
research topics remain to be addressed. In our future work, we plan to consider
adaptive techniques as in [32] that are based on model hierarchies for the physics
model. Here, port-Hamiltonian modeling frameworks seem to be favorable. A first
step in this direction is already done in [22]. In terms of the application, we think
that the most urgent research topics are to develop mathematical optimization
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Figure 8. Outlet temperature and mass flow at the depot arc for
the STREET network.

techniques for dealing with uncertainties (especially w.r.t. the consumption of the
households) as well as the coupling of district heating networks with power networks.
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