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Abstract This paper provides a first contribution to port-Hamiltonian modeling of district
heating networks. By introducing a model hierarchy of flow equations on the network,
this work aims at a thermodynamically consistent port-Hamiltonian embedding of the par-
tial differential-algebraic systems. We show that a spatially discretized network model
describing the advection of the internal energy density with respect to an underlying incom-
pressible stationary Euler-type hydrodynamics can be considered as a parameter-dependent
finite-dimensional port-Hamiltonian system. Moreover, we present an infinite-dimensional
port-Hamiltonian formulation for a compressible instationary thermodynamic fluid flow
in a pipe. Based on these first promising results, we raise open questions and point out
research perspectives concerning structure-preserving discretization, model reduction, and
optimization.
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1 Introduction

A very important part of a successful energy transition is an increasing supply of renewable
energies. However, the power supply through such energies is highly volatile. That is why a
balancing of this volatility and more energy efficiency is needed. An important player in this
context are district heating networks. They show a high potential to balance the fluctuating
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supply of renewable energies due to their ability to absorb more or less excess power while
keeping the heat supply unchanged. A long-term objective is to strongly increase energy
efficiency through the intelligent control of district heating networks. The basis for achieving
this goal is the dynamic modeling of the district heating network itself, which is not available
in the optimization tools currently used in industry. Such a dynamic modeling would allow
for optimization of the fluctuating operating resources, e.g., waste incineration, electric power,
or gas. However, as power and heating networks act on different time scales and since their
descriptions lead to mathematical problems of high spatial dimension, their coupling for a
dynamic simulation that is efficiently realizable involves various mathematical challenges.
One possible remedy is a port-Hamiltonian modeling framework: Such an energy-based
formulation brings the different scales on a single level, the port-Hamiltonian character is
inherited during the coupling of individual systems, and in a port-Hamiltonian system the
physical principles (stability, passivity, conservation of energy and momentum) are ideally
encoded in the algebraic and geometric structures of the model. Deriving model hierarchies by
using adequate Galerkin projection-based techniques for structure-preserving discretization as
well as model reduction, and combining them with efficient adaptive optimization strategies
opens up a new promising approach to complex application issues.

Against the background of this vision, this paper provides a first contribution to port-
Hamiltonian modeling of district heating networks, illustrating the potential for optimization
in a case study, and raising open research questions and challenges. Port-Hamiltonian (pH)
systems have been elaborately studied in literature lately; see, e.g., [3,23,35,38] and the
references therein. The standard form of the finite-dimensional dissipative pH-system appears
as

dz
dt

= (J−R)∇zH (z)+(B−P)u, y = (B+P)T
∇zH (z)+(S+N)u (1a)

with

W =W T ≥ 0, W =

[
R P

PT S

]
, (1b)

cf., e.g., [35]. The Hamiltonian H is an energy storage function, J =−JT is the structure
matrix describing energy flux among energy storage elements, R = RT is the dissipation
matrix, B±P are port matrices for energy in- and output, and S = ST , N =−NT are matrices
associated with the direct feed-through from input u to output y. The system satisfies a
dissipation inequality, which is an immediate consequence of the positive (semi-)definiteness
of the passivity matrix W . This also holds even when the coefficient matrices depend on
the state z, [8], or explicitly on time t, [24], or when they are defined as linear operators
on infinite-dimensional spaces [16,20,36]. Including time-varying state constraints yields a
pH-descriptor system of differential-algebraic equations [3,23,34]. Port-Hamiltonian sys-
tems on graphs have been studied in [37]. Port-Hamiltonian partial differential equations
on networks (port-Hamiltonian PDAE) are topic in, e.g., [10] for linear damped wave equa-
tions or in [22] for nonlinear isothermal Euler equations. The adequate handling of thermal
effects is a novelty of this work. Thermodynamical aspects have been investigated in the
port-Hamiltonian formalism on top of infinite-dimensional pH-models with entropy bal-
ance in different fields (such as thermo-magneto-hydrodynamics of plasmas; anisotropic
heterogeneous heat equation), see, e.g., [31,39,41,45,46]. In non-equilibrium thermody-
namics the GENERIC-framework (GENERIC – General Equation for Non-Equilibrium
Reversible-Irreversible Coupling) handles systems with both reversible and irreversible dy-
namics generated by energy and entropy, respectively, [14,29,30]. This framework has been



Port-Hamiltonian modeling of district heating networks 3

brought together with the port-Hamiltonian formalism in [26,27]. In this paper we extend
the work of [26,27]. We make use of a thermodynamically consistent generalization of
the port-Hamiltonian framework in which the Hamiltonian is combined with an entropy
function. The resulting dynamic system consists of a (reversible) Hamiltonian system and a
generalized (dissipative) gradient system. Degeneracy conditions ensure that the flows of the
two parts do not overlap. Respective pH-models in operator form can be found, e.g., for the
Vlasov–Maxwell system in plasma physics in [18,19], for the Navier–Stokes equations for
reactive flows in [1] or for finite strain thermoelastodynamics in [4].

The paper is structured as follows. Starting with the description of a district heating
network as a connected and directed graph in Sect. 2, we present models associated to the
arcs for the pipelines, consumers, and the depot of the network operator that are coupled with
respect to conservation of mass and energy as well as continuity of pressure at the network’s
nodes. We especially introduce a hierarchy of pipe models ranging from the compressible
instationary Navier–Stokes equations for a thermodynamic fluid flow to an advection equation
for the internal energy density coupled with incompressible stationary Euler-like equations
for the hydrodynamics. Focusing on the latter, we show that the associated spatially dis-
cretized network model can be embedded into a family of parameter-dependent standard
port-Hamiltonian systems in Sect. 3 and numerically explore the network’s behavior in
Sect. 4. In a study on operating the heating network with respect to the avoidance of power
peaks in the feed-in, we particularly reveal the potential for optimization. In view of the other
pipe models, a generalization of the port-Hamiltonian framework to cover the dissipative
thermal effects is necessary. In Sect. 5 we develop an infinite-dimensional thermodynamically
consistent port-Hamiltonian formulation for the one-dimensional partial differential equa-
tions of a compressible instationary turbulent pipe flow. From this, we raise open research
questions and perspectives concerning structure-preserving discretization, model reduction,
and optimization in Sect. 6.

2 Network modeling

The district heating network is modeled by a connected and directed graph G = (N,A) with
node set N and arc set A. This graph consists of (i) a foreflow part, which provides the
consumers with hot water; (ii) consumers, that obtain power via heat exchangers; (iii) a
backflow part, which transports the cooled water back to the depot; and (iv) the depot, where
the heating of the cooled water takes place; see Fig. 1 for a schematic illustration. The nodes
N = Nff ∪Nbf are the disjoint union of nodes Nff of the foreflow part and nodes Nbf of the
backflow part of the network. The arcs A = Aff∪Abf∪Ac∪{ad} are divided into foreflow
arcs Aff, backflow arcs Abf, consumer arcs Ac, and the depot arc ad of the district heating
network operator. The set of pipelines is thus given by Ap = Aff∪Abf.

In the following we introduce a model hierarchy for the flow in a single pipe (cf. Fig. 2)
and afterward discuss the nodal coupling conditions for the network. Models for consumers
(households) and the depot yield the closure conditions for the modeling of the network.

2.1 Model hierarchy for pipe flow

Let a ∈ Ap be a pipe. Starting point for the modeling of the flow in a pipe are the cross-
sectionally averaged one-dimensional instationary compressible Navier–Stokes equations
for a thermodynamic fluid flow [40]. We assume that the pipe is cylindrically shaped, that
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Figure 1 A schematic district heating network: Foreflow arcs are plotted in solid black, backflow arcs in
dashed black, consumers (households) in dotted blue, and the depot in dash-dotted red.

it has constant circular cross-sections, and that the flow quantities are only varying along
the cylinder axis. Consider (x, t) ∈ (0, `)× (t0, tend] ⊆ R2 with pipe length ` as well as
start and end time t0, tend > 0. Mass density, velocity, and internal energy density, i.e.,
ρ,v,e : (0, `)× (t0, tend]→ R, are then described by the balance equations

0 = ∂tρ +∂x(ρv),

0 = ∂t(ρv)+∂x(ρv2)+∂x p+
λ

2d
ρ|v|v+ρg∂xh,

0 = ∂te+∂x(ev)+ p∂xv− λ

2d
ρ|v|v2 +

4kw

d
(T −ϑ).

(2)

Pressure and temperature, i.e., p,T : (0, `)× (t0, tend]→R, are determined by respective state
equations. In the momentum balance the frictional forces with friction factor λ and pipe
diameter d come from the three-dimensional surface conditions on the pipe walls, the outer
forces arise from gravity with gravitational acceleration g and pipe level h (with constant pipe
slope ∂xh). The energy exchange with the outer surrounding is modeled by Newton’s cooling
law in terms of the pipe’s heat transmission coefficient kw and the outer ground temperature
ϑ . System (2) are (Euler-like) non-linear hyperbolic partial differential equations of first
order for a turbulent pipe flow.

The hot water in the pipe is under such a high pressure that it does not turn into steam.
Thus, the transition to the incompressible limit of (2) makes sense, yielding the following
partial differential-algebraic system for velocity v and internal energy density e, where the
pressure p acts as a Lagrange multiplier to the incompressibility constraint:

0 = ∂xv,

0 = ∂tv+
1
ρ

∂x p+
λ

2d
|v|v+g∂xh,

0 = ∂te+ v∂xe− λ

2d
ρ|v|v2 +

4kw

d
(T −ϑ).

(3)

The system is supplemented with state equations for density ρ and temperature T . Note that
the energy term due to friction is negligibly small in this case and can be omitted.

Since the hydrodynamic and thermal effects act on different time scales, System (3) may
be simplified even further by setting ∂tv = 0. This can be understood as a balancing of the
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compressible instationary thermodynamic turbulent flow (2)

incompressible instationary thermodynamic turbulent flow (3)

energy advection with outer cooling
w.r.t. incompressible stationary hydrodynamic equations (4)

energy advection without outer cooling
w.r.t. incompressible stationary hydrodynamic equations (8)

∂xv = 0

∂t v = 0, λ

2d ρ|v|v2 small

4kW
d (T −ϑ) = 0

Figure 2 Hierarchy of pipe flow models

frictional and gravitational forces by the pressure term, while the acceleration is negligibly
small, i.e.,

0 = ∂xv,

0 = ∂x p+
λ

2d
ρ|v|v+ρg∂xh,

0 = ∂te+ v∂xe+
4kw

d
(T −ϑ),

(4)

again supplemented with state equations for ρ , T . System (4) describes the heat transport
in the pipe where flow velocity and pressure act as Lagrange multipliers to the stationary
hydrodynamic equations. However, the flow field is not stationary at all because of the
time-dependent closure (boundary) conditions (at households and the depot). In the presented
model hierarchy one might even go a step further and ignore the term concerning the heat
transition with the outer surrounding of the pipe, i.e., 4kw(T −ϑ)/d = 0, when studying the
overall network behavior caused by different operation of the depot; see Sect. 3 and Sect. 4.

State equations and material models In the pressure and temperature regime being rele-
vant for operating district heating networks, we model the material properties of water by
polynomials depending exclusively on the internal energy density, and not on the pressure.
The relations for temperature T , mass density ρ , and kinematic viscosity ν̄ summarized in
Table 1 are based on a fitting of data taken from the NIST Chemistry WebBook [28]. The
relative error of the approximation is of order O(10−3), which is slightly higher than the
error O(5×10−4) we observe due to neglecting the pressure dependence. The quadratic state
equation for the temperature allows a simple conversion between e and T , which is necessary
since closure conditions (households, depot) are usually stated in terms of T ; cf. Sect. 2.3.
Obviously, e?(T?) = 0.5T−1

2 (−T1 +(T 2
1 − 4T2(T0− T?))1/2) holds for T?(e?) = ∑

2
i=0 Tiei

?,
e? ≥ 0, where the subscript ? indicates the associated dimensionless quantities.

Remark 1 Alternatively to the specific data-driven approach, the state equations can be
certainly also deduced more rigorously from thermodynamic laws. A thermodynamic fluid
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Table 1 Material properties of water as functions of the internal energy density z(e) = z0 z?(e/e0), z ∈
{T,ρ, ν̄}, where z? denotes the dimensionless quantity scaled with the reference value z0; in particular
e? = e/e0 with e0 = 109 Jm−3. The stated relative errors of the underlying polynomial approximation hold in
the regime e ∈ [0.2,0.5]GJm−3 and p ∈ [5,25] bar, implying T ∈ [50,130] °C.

Reference Material model Rel. error

T0 = 1 °C T?(e?) = 59.2453e2
?+220.536e?+1.93729 1.2×10−3

ρ0 = 103 kgm−3 ρ?(e?) =−0.208084e2
?−0.025576e?+1.00280 6.0×10−4

ν̄0 = 10−6 m2 s−1 ν̄?(e?) = 11.9285e4
?−22.8079e3

?+17.6559e2
?−7.00355e?+1.42624 9.9×10−4

flow described by (2) satisfies the entropy balance for s : (0, `)× (t0, tend]→ R, i.e.,

0 = ∂ts+∂x(sv)− λ

2d
1
T

ρ|v|v2 +
4kw

d
1
T
(T −ϑ).

Considering the entropy as a function of mass density and internal energy density, s =
s(ρ,e), yields the Gibbs identities which can be used as state equations for pressure p and
temperature T , i.e.,

∂ρ s =−(ρT )−1(e+ p−T s), ∂es = T−1.

Pipe-related models The pipe flow is mainly driven in a turbulent regime, i.e., with Reynolds
number Re > 103. Thus, the pipe friction factor λ can be described by the Colebrook–White
equation in terms of the Reynolds number Re and the ratio of pipe roughness and diameter
kr/d,

1√
λ
(v,e) =−2 log10

(
2.52

Re(v,e)
√

λ (v,e)
+

1
3.71

kr

d

)
, Re(v,e) =

|v|d
ν̄(e)

.

The model is used for technically rough pipes. Its limit behavior corresponds to the relation
by Prandtl and Karman for a hydraulically smooth pipe, i.e., 1/

√
λ = 2log10(Re

√
λ )−0.8

for kr/d → 0, and to the relation by Prandtl, Karman, and Nikuradse for a completely
rough pipe, i.e., 1/

√
λ = 1.14−2log10(kr/d) for Re→ ∞, [44]. The underlying root finding

problem for λ can be solved using the Lambert W-function; see [7]. However, in view of the
computational effort it can also be reasonable to consider a fixed constant Reynolds number
for the pipe as further simplification.

The pipe quantities – length `, diameter d, slope ∂xh, roughness kr, and heat transmission
coefficient kw – are assumed to be constant in the pipe model. Moreover, note that in this
work we also consider the outer ground temperature ϑ as constant, which will play a role for
our port-Hamiltonian formulation of (2) in Sect. 5 .

2.2 Nodal coupling conditions

For the network modeling it is convenient to use the following standard notation. Quantities
related to an arc a = (m,n) ∈ A, m,n ∈ N, are marked with the subscript a, quantities
associated to a node n ∈ N with the subscript n. For a node n ∈ N, let δ in

n , δ out
n be the sets of

all topological ingoing and outgoing arcs, i.e.,

δ
in
n = {a ∈ A : ∃m with a = (m,n)}, δ

out
n = {a ∈ A : ∃m with a = (n,m)},
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and let In(t), On(t), t ∈ [t0, tend], be the sets of all flow-specific ingoing and outgoing arcs,

In(t) = {a ∈ δ
in
n : qa(`a, t)≥ 0}∪{a ∈ δ

out
n : qa(0, t)≤ 0},

On(t) = {a ∈ δ
in
n : qa(`a, t)< 0}∪{a ∈ δ

out
n : qa(0, t)> 0};

see, e.g., [12,13,15] where a similar notation is used in the context of gas networks. Note
that In(t)∪On(t) = δ in

n ∪δ out
n holds for all t and that the sets In(t), On(t) depend on the

flow qa, a ∈ A, in the network, which is not known a priori.
The coupling conditions we require for the network ensure the conservation of mass and

energy as well as the continuity of pressure at every node n ∈ N and for all time t ∈ [t0, tend],
i.e.,

∑
a∈δ in

n

qa(`a, t) = ∑
a∈δ out

n

qa(0, t), (5a)

∑
a∈δ in

n

q̂a(`a, t)ea(`a, t) = ∑
a∈δ out

n

q̂a(0, t)ea(0, t), ea(0, t) = en(t), a ∈ On(t), (5b)

pa(`a, t) = pn(t), a ∈ δ
in
n , pa(0, t) = pn(t), a ∈ δ

out
n . (5c)

Here, qa and q̂a denote the mass flow and the volumetric flow in pipe a, respectively. They
scale with the mass density, i.e., qa = ρavaςa and q̂a = qa/ρa, where ςa = d2

aπ/4 is the
cross-sectional area of the pipe. In case of incompressibility, it holds that q̂a(x, t) = q̂a(t) is
constant along the pipe. The functions en and pn are auxiliary variables describing internal
energy density and pressure at node n. Note that the second condition in (5b), namely that
the out-flowing energy densities are identical in all (flow-specific outgoing) pipes, rests upon
the assumption of instant mixing of the in-flowing energy densities.

2.3 Households, depot, and operational constraints

The network modeling is closed by models for the consumers (households) and the depot
of the network operator. Quantities associated to the arc a at node n are indicated by the
subscript a : n.

For the consumer at a = (m,n) ∈ Ac, where the nodes m and n belong to the foreflow and
backflow part of the network, respectively (cf. Fig. 1), the following conditions are posed for
t ∈ [t0, tend],

Pa(t) = q̂a(t)∆ea(t), va(t)≥ 0, ∆ea(t) = ea:m(t)− ea:n(t), (6a)

Ta:n(t) = T bf, Ta:m(t) ∈ [T ff
− ,T

ff
+ ], Ta:m(t)−Ta:n(t)≤ ∆T c, (6b)

pa:n(t) ∈ [pbf
− , pbf

+ ], pa:m(t) ∈ [pff
−, pff

+], pa:m(t)− pa:n(t) ∈ [∆ pc
−,∆ pc

+]. (6c)

The prescribed power consumption Pa of the household is realized by the product of the energy
density difference at the arc and the volumetric flow in (6a). Moreover, the underlying flow
velocity has a pre-specified direction. The consumer’s outflow temperature is set to be equal
to the contractually agreed temperature T bf. Moreover, the operational constraints ensure
a certain temperature range at each consumption point and define a maximal temperature
difference between foreflow and backflow part of the consumers. In addition, minimal and
maximal values for the pressure level at both backflow and foreflow part of the consumer
arcs are prescribed. Finally, the pressure difference between foreflow and backflow part is
bounded.
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The depot ad = (m,n) for operating the district heating network is modeled by the
following conditions for t ∈ [t0, tend]:

ead:n(t) = ue(t), Tad:n(t)≤ T net, vad(t)≥ 0, (7a)

pad:m(t) = up(t), pad:n(t) = pad:m(t)+u∆p(t). (7b)

Here, up prescribes the so-called stagnation pressure of the network and u∆p is the realized
pressure increase at the depot. The energy density injected at the depot to the foreflow part of
the network is denoted by ue. The resulting temperature is bounded above by T net, which
also acts as temperature limit for all network nodes.

In addition to the operational constraints in (6) and (7), the pressure in all network nodes
is bounded, i.e., pn(t)≤ pnet for n ∈ N and t ∈ [t0, tend].

3 Port-Hamiltonian formulation of a semi-discrete network model

In this section we present a spatially semi-discrete model variant for the district heating
network and discuss its formulation in the port-Hamiltonian context. Making use of the
different hydrodynamic and thermal time scales, a finite volume upwind discretization yields
a port-Hamiltonian descriptor system for the internal energy density, in which the solenoidal
flow field acts as a time-varying parameter.

We describe the network by means of the following partial differential-algebraic system
for t ∈ [t0, tend],

∂tea =−va∂xea, a ∈ Ap, (8a)

ea(0, t) = en(t), a ∈ On(t), ∑
a∈δ in

n

q̂aea(`a, t) = ∑
a∈δ out

n

q̂aea(0, t), n ∈ N, (8b)

ea:n(t) = ebf, a ∈ Ac, (8c)

ea:n(t) = ue(t), a = ad, (8d)

g(e,v, p) = 0. (8e)

This system results from the incompressible pipe model in (4) and neglecting the cooling term
in the energy balance (i.e., kw = 0). Here, the condition on the backflow temperature for the
consumers is expressed in terms of the internal energy density, cf., ebf = e(T bf) in (8c). In the
formulation we use the separation of thermal and hydrodynamic effects and state the temporal
advection of the internal energy density with respect to the algebraic equations covering
the hydrodynamics. So, g(e,v, p) = 0 in (8e) contains the hydrodynamic pipe equations, the
pressure continuity at the nodes (5c), the condition on the households’ power consumption
(6a), the pressure conditions at the depot (7b), and the conservation of volume

∑
b∈δ in

n

q̂b(t) = ∑
a∈δ out

n

q̂a(t), n ∈ N. (9)

Considering the volume balance (9) instead of the mass balance (5a) is very convenient in
the incompressible setting, since the velocity field and hence the induced volumetric flow are
constant along a pipe. Moreover, this description naturally fits the numerical method of finite
volumes.
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For the spatial discretization of the hyperbolic-like system (8) we apply a classical finite
volume upwind scheme [21]. Let α ∈ Ap, α ∈ On(t0), n ∈ N, and consider an equidistant
mesh of cell size ∆xα , then

d
dt

eα,β =− vα

∆xα

(eα,β − eα,β−1), β ∈Vα ,

eα,0 = en, en =
∑b∈In q̂b eb,|Vb|

∑a∈On q̂a
,

where eα,β denotes the internal energy density with respect to the finite volume cell β of
pipe α with cell index set Vα . For the first cell (β = 1) we make use of the quantity at
the node that results from (8b). We summarize the unknown energy densities in a vector
e = (e1, ...,eκ)

T , e f (α,β ) = eα,β by ordering pipe- and cell-wise according to the mapping
f (α,β ) = β +∑

α−1
k=1 |Vk|, α ∈ Ap, β ∈Vα , in particular κ =∑α∈Ap |Vα |. Then, a semi-discrete

version of the network model (8) is given by the following descriptor system

d
dt

e = A(v)e+B(v)u, y =Ce, (10)

subject to v = G(e).

The system matrices A(w) ∈ Rκ×κ and B(w) ∈ Rκ×2 can be interpreted as parameter-
dependent quantities, where the (vector-valued) parameter w represents a spatially discretized
solenoidal volume-preserving velocity field. So,

A f (α,β ), f (µ,σ)(w) = ∂
d
dt

eα,β (w)/∂eµ,σ

holds. The special velocity field belonging to the hydrodynamic network equations (8e) is
formally stated as v = G(e). We assume a setting in which v is time-continuous. In (10) the
input u consists of the energy densities ue injected at the depot into the foreflow part and
ebf returning from the consumers into the backflow part of the network, u = (ue,ebf)T ∈ R2.
The output y typically refers to energy densities in pipes supplying the consumers, implying
C ∈ Rc×κ .

Theorem 1 Let w be a (spatially discretized) solenoidal volume-preserving time-continuous
velocity field. Then, the semi-discrete network model (10) can be embedded into a family of
parameter-dependent port-Hamiltonian systems

d
dt

e = (J(w)−R(w))Qe+ B̃(w)ũ, ỹ = B̃T (w)Qe, (11)

with ũ = (uT ,0, . . . ,0)T ∈ R2+c which contains the original outputs as subset.

Remark 2 Theorem 1 implies that there exists an energy matrix Q such that

QA(w)+AT (w)Q≤ 0 (12)

for all solenoidal volume-preserving velocity fields w. Thus, the Hamiltonian H (e) = eT Qe
is a Lyapunov function for the parameter-dependent system [2]. The energy matrix Q can
be particularly constructed as a diagonal matrix with positive entries, i.e., Q f (α,β ), f (α,β ) =
ςα ∆xα for α ∈ Ap, β ∈Vα , where ςα ∆xα is the volume of each discretization cell in pipe α .

Note that a change of the flow direction, which might occur in case of cycles, yields a
structural modification of the system matrix A(w), but does not affect the stability of the
system. However, it might cause a discontinuity in the velocity field such that (10), or (11)
respectively, only allows for a weak solution.
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Proof (of Theorem 1) Let the positive definite diagonal matrix Q∈Rκ×κ with Q f (α,β ), f (α,β ) =
ςα ∆xα > 0 be given. Then, we define the matrices J and R by

J(w) =
1
2
(A(w)Q−1− (A(w)Q−1)T ), R(w) =−1

2
(A(w)Q−1 +(A(w)Q−1)T ).

Obviously, A(w) = (J(w)−R(w))Q holds. The properties J = −JT and R = RT of port-
Hamiltonian system matrices are satisfied by construction for any parameter w. The positive
semi-definiteness of R follows from the Lyapunov inequality (12). Considering

L(w) = QA(w)+AT (w)Q, L f (α,β ), f (α,β )(w) =−2Q f (α,β ), f (α,β )
wα

∆xα

=−2q̂α ≤ 0,

the volume-preservation of w ensures that the symmetric matrix L(w) is weakly diagonal
dominant. Hence, L(w) is negative semi-definite, yielding

xT R(w)x =−1
2
(Q−1x)T L(w)(Q−1x)≥ 0 for all x ∈ Rκ .

Here, R(w) acts as the passivity matrix since the system has no feed-through term. The port
matrix B̃(w) ∈ Rκ×2+c defined by

B̃(w) = [B(w), (CQ−1)T ]

ensures that the outputs of the network model are contained in the output set of the port-
Hamiltonian system, i.e., B̃T (w)Q= [BT (w)Q, C]T . Finally note that the parameter-dependent
port-Hamiltonian system matrices J(w), R(w), and B̃(w) are continuous in time due to the
given time-regularity of the parameter w.

Remark 3 We point out that applying the stated framework to the other pipe models presented
in Sect. 2.1 is non-trivial. Already the consideration of the cooling term in the energy balance,
cf. pipe model (4), which acts dissipative requires a generalization of the port-Hamiltonian
description. We refer to Sect. 5 for an infinite-dimensional port-Hamiltonian formulation of
the compressible thermodynamic pipe flow (2).

4 Numerical study on network operation

In this section we demonstrate the potential for optimization of district heating networks.
Operating the network according to certain exogenously given temporal profiles for the
internal energy densities injected at the depot may lead to high amplitudes in the feed-in
power. The avoidance of such power peaks in the feed-in prevents that using additional energy
sources, such as gas storages, is required for covering the heating demand of the consumers.
This is environmental friendly, while saving resources and operational costs.

In the numerical case study we employ a real-world district heating network supplying
different streets by means of the port-Hamiltonian semi-discrete network model (10). The
model describes the advection-driven internal energy density with respect to an underlying
incompressible flow field with negligible acceleration. Thermal losses / outer cooling effects
are neglected. For the time integration we use an implicit midpoint rule with constant time
step ∆ t. The topology of the network and the data of the pipelines come from the Technische
Werke Ludwigshafen AG; see Fig. 3 and Table 2. Mass density and friction factor are taken
as constant in time for every pipeline. For the presented simulation, a time horizon of 50 h is
studied. The consumption behavior of the households is modeled by standardized profiles
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50 m

50 m

59.3 67.5 75.8 84.0
Temp./◦C

Figure 3 Real-world heating network supplying several streets. The network consists of the foreflow part
(top) and the backflow part (bottom), where the households are indicated by circles. The topology has been
provided by Technische Werke Ludwigshafen AG, Germany. The color plot visualizes a simulated temperature
distribution for a certain time t?, where T (ue(t?)) = 84°C. The backflow temperature is constant at T bf = 60°C
due to the use of the network model (8) where cooling effects are neglected.

Table 2 Graph-associated outline data for the street network in Fig. 3. The total pipe length of the foreflow
part is 835.5 m and of the backflow part 837.0 m.

Pipes |Ap| Consumers |Ac| Depot Arcs |A| Nodes |N| Loops

162 32 1 195 162 2

used in the operation of district heating networks [5] for a mean environmental temperature
of 3 °C. The total consumption of all households is 108 kW on temporal average and rises up
to a maximum of 160 kW. Given the internal energy density ue injected at the depot as input,
the feed-in power can be considered as the response of the network system, i.e.,

Pin = (ue− ead:m) ∑
a∈Ac

q̂a.

Note that due to the neglect of cooling in (8), ead:m = e(T bf) holds, where the backflow
temperature at the consumers is fixed here to T bf = 60°C.

The traveling time of the heated water from the depot to the consumers (households)
allows to choose from different injection profiles, when covering the aggregated heating
demand in the network. Figure 4 shows the injected temperature T (ue) and the corresponding
feed-in power for two different input profiles. Supplying an almost constant energy density ue

over time yields pronounced power peaks (dashed-dotted red curves). These undesired peaks
can be avoided when using an input that is varying in time with respect to the expected
consumer demands. The improved input conducts a preheating strategy. By anticipating
typical maxima in demand patterns, the injected input energy density is increased in times of
small power demands. If the dynamically changing transport time from the power plant to the
households is reflected correctly, the additionally injected thermal energy is then available to
the consumers in times of high consumption. This strategy allows to successfully bound the
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Figure 4 Flow temperature at depot T (ue) (top) and corresponding feed-in power (bottom) over time for two
different injection profiles marked in dashed-dotted red and dashed green, ∆ t = 5min. The upper solid, black
line indicates the power threshold P̄, the lower one the mean feed-in power over time.

feed-in power, here, as illustrated, by P̄in = 134kW (dashed green curves). This promising
result asks for a rigorous optimal control of the network in further studies.

5 Port-Hamiltonian formulation of compressible thermodynamic pipe flow

The adequate handling of thermal effects requires the generalization of the port-Hamiltonian
framework by combining the Hamiltonian with an entropy function. In this section we
embed the partial differential model (2) for a compressible thermodynamic turbulent pipe
flow into the GENERIC-formalism, which has lately been studied in [26,27], and present
an infinite-dimensional thermodynamically consistent port-Hamiltonian description. The
following state space model encodes (2) in a weak form. Assuming the existence of a smooth
solution and nicely behaving boundary terms, the partial differential model can be obtained
through integration by parts as shown for a simplified example in [26].

The thermodynamic pipe flow model (2) can be reformulated as a generalized (non-linear)
port-Hamiltonian system in operator form for z = (ρ,M,e)T , M = (ρv),

dz
dt

= (J (z)−R(z))
δE (z)

δ z
+B(z)u(z) in D∗z ,

y(z) = B∗(z)
δE (z)

δ z
in D∗u ,

(13)

where Z = {z ∈ Dz |ρ ≥ δ with δ > 0 almost everywhere} ⊂ Dz denotes the state space
with the Sobolev space Dz = W 1,3((0, `);R3) being a reflexive Banach space. For z ∈ Z
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the operators J (z)[·], R(z)[·] : Dz → D∗z are linear and continuous, moreover J (z) is
skew-adjoint and R(z) is self-adjoint semi-elliptic, i.e., 〈ϕ,J (z)ψ〉=−〈ψ,J (z)ϕ〉 and
〈ϕ,R(z)ψ〉 = 〈ψ,R(z)ϕ〉 ≥ 0 for all ϕ,ψ ∈ Dz. The system theoretic input is given by
u(z) ∈Du = Lq({0, `}) with linear continuous operator B(z)[·] : Du→D∗z and dual space
D∗u = Lp({0, `}), 1/q+1/p = 1. The system theoretic output is denoted by y(z). The form
of the energy functional E and the port-Hamiltonian operators J (z)[·], R(z)[·] and B(z)[·]
are derived as follows.

Remark 4 We assume that all relevant mathematical statements hold for an arbitrary but
fixed time parameter t ∈ (t0, tend]. The function spaces Dz and Du associated with the spatial
evolution are chosen in an ad-hoc manner, i.e., we assume that the considered fields and func-
tions satisfy certain regularity requirements. A mathematically rigorous justification requires
an analytical consideration of the generalized port-Hamiltonian system. The corresponding
functional analytical and structural questions are the focus of ongoing work.

Accounting for the thermodynamic behavior of the pipe flow, (13) is composed of a
Hamiltonian and a generalized gradient system. This is reflected in the energy functional that
is an exergy-like functional consisting of a Hamiltonian and an entropy part, i.e.,

E (z) = H (z)−ϑS (z), H (z) =
∫ `

0

(
|M|2

2ρ
+ e+ρgh

)
dx, S (z) =

∫ `

0
s(ρ,e)dx.

where the outer ground temperature ϑ is assumed to be constant. Introducing the ballistic free
energy H(ρ,e) = e−ϑs(ρ,e) [11], the functional E and its variational derivatives become

E (z) =
∫ `

0

(
|M|2

2ρ
+H(ρ,e)+ρgh

)
dx

δE (z)
δ z

=

(
δE (z)

δρ
,

δE (z)
δM

,
δE (z)

δe

)T

=

((
−|M|

2

2ρ2 +
∂H
∂ρ

+gh
)
,

M
ρ
,

∂H
∂e

)T

.

The port-Hamiltonian operators in (13) are assembled with respect to the (block-) structure
of the state z. Let ϕ,ψ ∈Dz be two block-structured test functions, i.e., ϕ = (ϕρ ,ϕM,ϕe)

T .
Then the skew-adjoint operator J (z) is given by

J (z) =

 0 Jρ,M(z) 0
JM,ρ(z) JM,M(z) JM,e(z)

0 Je,M(z) 0

 , (14a)

associated with the bilinear form

〈ϕ,J (z)ψ〉= 〈ϕρ ,Jρ,M(z)ψM〉+ 〈ϕM,JM,ρ(z)ψρ〉+ 〈ϕM,JM,M(z)ψM〉
+ 〈ϕM,JM,e(z)ψe〉+ 〈ϕe,Je,M(z)ψM〉.

Its entries are particularly defined by the following relations,

〈ϕρ ,Jρ,M(z)ψM〉=−〈ψM,JM,ρ(z)ϕρ〉=
∫ `

0
ρ(ψM∂x)ϕρ dx, (14b)

〈ϕM,JM,M(z)ψM〉=−〈ψM,JM,M(z)ϕM〉=
∫ `

0
M((ψM∂x)ϕM− (ϕM∂x)ψM)dx, (14c)

〈ϕe,Je,M(z)ψM〉=−〈ψM,JM,e(z)ϕe〉=
∫ `

0
e(ψM∂x)ϕe +(ψM∂x)(ϕe p)dx (14d)



14 Hauschild et al.

that result from the partial derivatives in (2). The self-adjoint semi-elliptic operator R(z)
is composed of two operators that correspond to the friction in the pipe Rλ (z) and the
temperature loss through the pipe walls Rkw(z). It is given by

R(z) = Rλ (z)+Rkw(z) =

 0 0 0
0 Rλ

M,M(z) Rλ
M,e(z)

0 Rλ
e,M(z) Rλ

e,e(z)+Rkw
e,e(z)

 , (15a)

associated with the bilinear form,

〈ϕ,R(z)ψ〉= 〈ϕM,Rλ
M,M(z)ψM〉+ 〈ϕM,Rλ

M,e(z)ψe〉+ 〈ϕe,R
λ
e,M(z)ψM〉

+ 〈ϕe,(R
λ
e,e(z)+Rkw

e,e(z))ψe〉.

Its entries are

〈ϕM,Rλ
M,M(z)ψM〉=

∫ `

0
ϕM

(
λ

2d
T
ϑ

ρ|v|
)

ψM dx, (15b)

〈ϕM,Rλ
M,e(z)ψe〉= 〈ψe,R

λ
e,M(z)ϕM〉=

∫ `

0
−ϕM

(
λ

2d
T
ϑ

ρ|v|v
)

ψe dx, (15c)

〈ϕe,(R
λ
e,e(z)+Rkw

e,e(z))ψe〉=
∫ `

0
ϕe

(
λ

2d
T
ϑ

ρ|v|v2 +
4kw

d
T
)

ψe dx. (15d)

Note that the state dependencies of pressure p = p(ρ,e) and temperature T = T (ρ,e) occur-
ring in (14d) and (15b)-(15d) are prescribed by the state equations, cf. Remark 1. Moreover,
v = M/ρ and λ = λ (v,e) hold for the velocity and the friction factor, respectively. Assuming
consistent state equations, e.g., ideal gas law, cf. Remark 5, the operators in (14) and (15)
fulfill the non-interacting conditions

J (z)
δS (z)

δ z
= 0, Rλ (z)

δH (z)
δ z

= 0,

which arise in the GENERIC context [26,27] and ensure that the flows of the Hamiltonian
and the gradient system do not overlap. Finally, concerning the system theoretic input and
output, the state dependent input is given as u(z) ∈ Du by u(z) = [M/ρ]|`0. Then, the port
operator B(z)[·] : Du→D?

z is specified through the pairing

〈ϕ,B(z)u(z)〉=−
[
(ϕρ ρ +ϕMM+ϕe(e+ p))u(z)

]∣∣`
0 ,

which originates from the boundary terms, when applying partial integration to parts of
(2). With the adjoint operator B∗(z)[·] : Dz→D∗u , i.e., 〈ϕ,B(z)u(z)〉= 〈B∗(z)ϕ,u(z)〉, the
system theoretic output reads

y(z) = B∗(z)
δE (z)

∂ z
=−

[
|M|2

2ρ
+ p+H(ρ,e)+ρgh

]∣∣∣∣`
0
.

Remark 5 In the port-Hamiltonian framework the choice of the state variables in the interplay
with the energy functional is crucial for encoding the physical properties in the system
operators. Hence, asymptotic simplifications as, e.g., the limit to incompressibility in the
hydrodynamics (3), are not straightforward, since they change the underlying equation
structure. However, system (13) is well suited when, e.g., dealing with gas networks. Then, it
can be closed by using, e.g., the ideal gas law, implying

s(ρ,e) =
R
2

ρ ln
(

cp
e3

ρ5

)
, T (ρ,e) =

2
3R

e
ρ
, p(ρ,e) =

2
3

e,

with specific gas constant R and heat capacity cp.
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6 Research perspectives

An energy-based port-Hamiltonian framework is very suitable for optimization and control
when dealing with subsystems coming from various different physical domains, such as
hydraulic, electrical, or mechanical ones, as it occurs when coupling a district heating
network with a power grid, a waste incineration plant, or a gas turbine. The formulation is
advantageous as it brings different scales on a single level, the port-Hamiltonian character is
inherited by the coupling, and the physical properties are directly encoded in the structure
of the equations. However, to come up with efficient adaptive optimization strategies based
on port-Hamiltonian model hierarchies for complex application issues on district heating
networks, there are still many mathematical challenges to be handled.

In this paper we contributed with an infinite-dimensional and thermodynamically consis-
tent formulation for a compressible turbulent pipe flow, which required to set up a (reversible)
Hamiltonian system and a generalized (dissipative) gradient system with suitable degener-
acy conditions. In particular, the choice of an appropriate energy function was demanding.
The asymptotic transition to an incompressible pipe flow is non-trivial in this framework,
since it changes the differential-algebraic structure of the equations and hence requires
the reconsideration of the variables and the modification of the energy function. In view
of structure-preserving discretization and model reduction the use of Galerkin projection-
based techniques seems to be promising. Lately, partitioned finite element methods for
structure-preserving discretization have been developed in [42,43]. However, the choice of
the variables and the formulation of the system matrices crucially determine the complexity
of the numerics as, e.g., the works [6,9,22] show. Especially, the handling of the nonlineari-
ties requires adequate complexity-reduction strategies. Interesting to explore are certainly
also structure-preserving time-integration schemes, see, e.g., [17,24]. The port-Hamiltonian
formulation of the complete network is topic of current research.

In the special case of the presented semi-discrete district heating network model that
makes use of the different hydrodynamic and thermal time scales and a suitable finite volume
upwind discretization we came up with a finite-dimensional port-Hamiltonian system for the
internal energy density where the solenoidal flow field acts a time-varying parameter. This
system is employed for model reduction (moment matching) in [32] and for optimal control
in [33].

The application of the port-Hamiltonian modeling framework for coupled systems leads
to many promising ideas for the optimization of these systems. Due to the complexity and
size of the respective optimization models, a subsystem-specific port-Hamiltonian modeling
together with suitable model reduction techniques allows for setting up a coupled model
hierarchy for optimization, which paves the way for highly efficient adaptive optimization
methods; cf., e.g., [25], where a related approach has shown to be useful for the related field
of gas network optimization.
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