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ABsTrACT. Portfolio optimization is an ongoing hot topic of mathematical
optimization and management science. Due to the current financial market
environment with low interest rates and volatile stock markets, it is getting
more and more important to extend portfolio optimization models by other
types of investments than classical assets. In this paper, we present a mixed-
integer multistage stochastic model that includes investment opportunities in
irreversible and long-term infrastructure projects in the context of renewable
energies, which are also subject to policy risk. On realistic time scales for
investment problems of this type, the resulting instances are by far too large to
be solved with today’s most evolved optimization software. Thus, we present
a tailored moving-horizon approach together with suitable approximations
and simplifications of the model. We evaluate these approximations and
simplifications in a computational sensitivity analysis and derive a final model
that can be tackled on a realistic instance by our moving-horizon approach.

1. INTRODUCTION

Against the background of low interest rates and volatile stock markets, in-
vestments in infrastructure and renewable energy' are increasingly relevant for
institutional investors looking for a stable income; see, e.g., Gatzert and Kosub
(2014). Moreover, renewables become even more important against the background
of a stronger focus on sustainable investments, driven by regulatory developments
such as the EU Directive 2014/95/EU on Corporate Social Responsibility (CSR)
or the introduction of the UN Principles for Responsible Investment (PRI). In this
context, renewable energy investments such as wind parks become increasingly
relevant.? However, such investments often suffer from irreversibility, long invest-
ment periods, and policy or regulatory risk, implying considerable challenges with
respect to portfolio optimization (Gatzert and Kosub 2014, 2016). In this paper, we
extend classic portfolio optimization problems by adding investment opportunities in
irreversible and long-term investments in renewable energy projects.® In particular,
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INote that in what follows, we refer to infrastructure and renewable energy investments
interchangeably.

2As one current industry initiative, on September 23, 2019 the Net-Zero Alliance was founded at
the UN Secretary-General’s Climate Summit in New York. The Net-Zero Alliance is an international
group of institutional investors with more than USD 2 trillion in assets under management, aiming
for Article 2.1c of the Paris Agreement by committing to a carbon-neutral investment portfolio by
2050; see UNEP Finance Initiative (2019).

3For example, Allianz SE reports that “as part of our climate change strategy, we are investing
in renewable energy assets. In total, we have financed 6.8 billion Euro with debt and equity
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the investor has the “real option” to realize irreversible investments in wind farms in
different countries with varying levels of policy risk and cross-country diversification
potential (Gatzert and Vogl 2016).

Starting from Markowitz (1952), who considers mean-variance optimal portfolios,
there is a wide literature on portfolio optimization and selection. For example,
Mansini et al. (2014) provide a comprehensive overview of portfolio optimization
problems solvable by linear optimization. However, the properties of the investments
considered in this paper lead to very hard mixed-integer multistage stochastic
optimization problems, which are also treated, e.g., in Fang et al. (2008), Mansini and
Speranza (1999), or Gustafsson et al. (2005). Fang et al. (2008) consider investments
in research and development (R&D) projects and extend the work of Gustafsson
et al. (2005) by focusing on long investment periods and the inadjustability of
R&D projects. Minimum transaction lots are considered by Mansini and Speranza
(1999) and Lin and Liu (2008), who tackle the related mixed-integer problems using
heuristics. New algorithmic developments for the stochastic mixed-integer linear
programming problem are given in the very recent paper by Zou et al. (2019), where
also a comprehensive literature survey on this topic can be found. For the respective
continuous case see, e.g., Dantzig and Infanger (1993) and the references therein.

Policy risk in the context of investment decisions is also considered by Reuter
et al. (2012) in a renewable energy context. In their model, however, the investor
maximizes the expected net asset value (and thus does not explicitly consider
risk in their investment decision) and has the opportunity to build one plant per
year, i.e., either one coal plant, one wind farm, or nothing. As the importance of
the consideration of risk and return has already been pointed out by Markowitz
(1952), in contrast to Reuter et al. (2012), we explicitly consider risk by maximizing
expected utility—which is also done by, e.g., Gennotte and Jung (1994) and Yu
et al. (2009)—and by additionally allowing investment opportunities in tradable
assets. Finally, for a very recent study on the impact of regulatory uncertainty in
general electricity markets, we refer to Ambrosius et al. (2019).

Irreversible investments in general have been treated by Longstaff (2001), who
points out that irreversibility is usually related to bid-ask spreads, i.e., transaction
costs, or the impossibility of trading (referred to as “thin markets”). Transaction
costs in portfolio optimization are, e.g., considered in Lobo et al. (2007), who
describe a relaxation method yielding an upper bound via convex optimization and
a heuristic method for computing a suboptimal portfolio.

We focus on the investor’s perspective and optimize the portfolio consisting of
tradable assets and irreversible investment opportunities in renewables, which are
subject to policy risk. To this end, we build a multi-period model with discrete
investment opportunities in wind farms using model components from Gatzert and
Vogl (2016). The latter article builds the main basis for the modeling carried out
in the present paper. However, in Gatzert and Vogl (2016), the authors only use
Monte-Carlo simulations for the cash flows, whereas we here take their model, extend
and modify it, and use it for multistage mixed-integer stochastic optimization. In
contrast to Fang et al. (2008), who apply a single-stage model for the R&D projects,
we allow for investments in the renewable projects not only at the beginning of the
time horizon but also monthly, and we further allow for more than one investment.
Contrary to Reuter et al. (2012), we consider risk in the decision-making process,
add investment opportunities in traded assets, and investments in multiple countries

investments, this includes 86 wind parks and 9 solar farms (as of 31 December, 2018).”; see Allianz
(2019). Therefore, since wind parks are highly relevant, they will serve to illustrate an irreversible
(renewable) investment opportunity, while other types of renewables can be modeled as well using
our approach.
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to investigate cross-country diversification. Finally, we integrate shortfall constraints,
which are especially important for regulated institutional investors. For example,
insurance companies in the European Union are subject to the Solvency II directive
and have to assure that their probability of default is less than 0.5% within a
one-year time horizon, which has to be taken into account in their asset portfolio
decisions.

From a mathematical point of view, the described problem leads to extremely
challenging mixed-integer multistage stochastic optimization problems; see, e.g.,
Vigerske (2013) or Romisch and Schultz (2001) as well as the references therein.
These problems are defined on scenario trees that result from the discrete time
setting and a proper discretization of the underlying stochastic processes. After
such discretizations, the resulting finite-dimensional problem is usually by far too
large to be solved in practice. This is especially the case in our application since
we face multiple stochastic processes. As a remedy, we develop a problem-tailored
moving-horizon strategy; see, e.g., Allgéwer et al. (1999) or Griine and Pannek
(2017) as well as the references therein. A similar approach also has been followed
in Brown and Smith (2011), where a related approach is applied in the context of
dynamic portfolio optimization with transaction costs. In such an algorithm, an
optimization problem of the same type as the original one is solved but on a reduced
time horizon. Afterward, the resulting solution is applied and the reduced time
horizon is shifted forward. This strategy has also been used for other stochastic
optimization problems; see, e.g., Drouven et al. (2017) for an application in shale
well development or Cui and Engell (2010) where a similar approach is used for
the planning of multi-product batch plants. Other applications of the moving-
horizon technique applied to multistage stochastic models can be found, e.g., in
Silvente et al. (2015) in the context of demand-side management in microgrids, in
Guigues and Sagastizabal (2012) for the optimization of hydro-thermal power system
planning, or in Moller et al. (2008), where it is applied to airline network revenue
management. Another recently published technique for considering multistage
stochastic optimization problems with strategic and operational investments is
discussed in Kaut et al. (2014), where the authors propose a so-called multi-horizon
approach. However, although the underlying problem has similar characteristics,
the approach is different to the moving-horizon strategy used in this paper.

The remainder of the paper is structured as follows. After presenting the problem
description in Section 2, we discuss the construction of the scenario tree by discretiz-
ing the stochastic processes in Section 3. The tailored moving-horizon strategy for
the fully discretized model is then presented in Section 4. Numerical results are
provided in Section 5, followed by a real-world example and a summary in Section 6.

2. PROBLEM DESCRIPTION

In this section, we introduce the optimization problem to be considered in this
paper. In Section 2.1, we first briefly introduce the main model aspects, which
are then explained in detail in Sections 2.2 and 2.3. Finally, we state the entire
stochastic optimization problem in Section 2.4.

2.1. General Setup and Overview of the Problem. We consider an investor
who dynamically optimizes her portfolio over a given planning horizon [ts,t.]. In
order to obtain a time-discrete setting, we discretize the planning horizon and obtain
the ordered set of trading time points T := {t¢,...,t;} with t; = t; and t; = ¢,
for some I € N. Moreover, we denote the equidistant length of the time steps by
A=A =t —t; fori e [I —1]:={0,1,...,I —1}. For the ease of presentation,
we always consider A to be one month, which can be extended to any other time
discretization as well.
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The considered investment opportunities at each time point include traded
assets and irreversible investments in renewables. Following Longstaff (2001), we
model irreversibility by not allowing any trading in once conducted investments
in renewables. We consider J + 1 € N traded assets with corresponding stochastic
price processes S7, t € [ts,t.], j € [J], as well as a bank account with constant
risk-free interest rate r. The stochastic processes will be described in detail below.
The amount of traded asset j € [J] bought at time ¢;, i € [I — 1], is denoted by aof,

and the amount of traded asset j € [J] sold at time ¢;, ¢ € [I — 1], is denoted by ,Bgl
Note that we do not allow trading at ¢, since it would not have any effect on the
terminal wealth. Moreover, 7 is the amount of traded asset j € [J] held at time ;,
i € [I]. This notation is based on the one used in Fang et al. (2008) and also allows
to easily incorporate transaction costs if desired.

We take K + 1 € N different long-term investment opportunities in infrastructure
into account. In general, this can be different types of investments in different
countries, where the latter enables us to consider infrastructure investment in
different countries and to analyze cross-country diversification; see, e.g., Gatzert and
Vogl (2016). To simplify notation, we only consider one type of investment, namely
in wind farms, in K + 1 different countries. The cash flows of the infrastructure
investments depend on the point in time when the project is initiated as well as on

several stochastic processes. By ny € {0,...,n% .} C Ny, i € [I —1], and k € [K],

’ max

we denote the bounded number of investments in country k € [K] purchased at
time ¢;, and C’t’“i denotes the corresponding infrastructure investment costs. At this
point, the irreversibility is explicitly modeled by excluding negative nﬁ, i.e., we do
not allow any selling. Note that we only take discrete amounts of investments in
infrastructure into account since this is genuinely the case for the specific application
of wind farms (or other large-scale renewable energy projects) that we consider. In
particular, this is in contrast to continuous investments in standard securities like it
is described above. The value of the infrastructure investments, which is considered
in the portfolio optimization as the purchase price, depends on the future cash
flows that are subject to uncertainty. Therefore, we extend the set of discrete time
points T and define stochastic processes related to the infrastructure investments
for all

teTU{tit1,. . tymax} = {to, ..., tr,tr41,. .., tymax}. (1)
Here,

™ =1 —1+max {T": k € [K]}

holds, where T* € N is the length of the investment period in which the infrastructure
investment in country k € [K] generates cash flows. As a consequence, cash flows
are zero after this investment period. The future cash flows generated by the
infrastructure investments of type k made at time t;/, ¢’ € [I — 1], received by the
investor at time #;, i € [I™*], i > i’, are denoted by ~f - All cash flows received

at time t;, i € {i’ + 1,...,7' + T*}, from infrastructure investments made until
time t;/, i’ € [I — 1], in country k € [K] are given by
min{4’,i—1}
koo k k
Fti,ti/ = Z N, Vi te
=0

and for m > I we define

-1
k ) kk
Dttr = Z Tt Vi e
£=0
The explicit consideration of ¢; is necessary to define the investor’s wealth at every
time point of the planning horizon, where future cash flows of all already made
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investments (without possible investments in the future) are taken into account.
Given the initial wealth w, , > 0, we can define the wealth at time t;, i € [I],
depending on the investment strategy by

II[laX
]
wy, = L I e [I 2
t7+ZJ?t+Z Z 1+r+5k)m PR ], (2)
j€lJ] ke[K] m=i+1
with
] =] —toaf - B, ie[I-1], je|J],

=l Sg] jelJ
t t ) )
I I—1 StI .
zl =0, jelJ],

—1

Lti:Lti 1+T Zat'i_ZBt Zntck+zrtta 7;6[[_1]’

JjEJ] j€J] kE[K] k€E[K]
Ltl - LtI 1 1+T Z Ft;,t;a
k€E[K]

Lt—l = wt71(1 + T) 1'

Following Fang et al. (2008), the amount of the traded asset xil is composed of the
amount at time ¢;_1 considering the change of the price process and the difference
of the amounts of assets bought and sold at time t;, i.e., o, 5t The variable L
models the liquid cash dedicated to the bank account. In Equation (2),

Jmax

E: [T}, 4]
DS L

ke[K]| m= H—l

is the present value at time t; € T of future cash flows from the infrastructure
investments that have been purchased until time ¢; € T. It is based on a discounted
cash flow model with (monthly) risk-free interest rate r and risk premium J; of the
corresponding infrastructure investment. Finally, E;, denotes the corresponding
expected value given all the information until ¢;.

The investor’s objective is to maximize the expected utility of her terminal
wealth w;, at time ¢z, i.e., the objective function reads

max B [u(wy,)].

Here, given the initial wealth w; , > 0 and the investment possibilities described
above, we let u : R — R be a monotonically increasing utility function. There are
various utility functions in the literature on portfolio optimization; see, e.g., Yu
et al. (2009). We make use of the quadratic utility function
2
u(w):w—w—, 0<a,
o

which is widely used in the literature (see, e.g., Bodnar et al. (2015)) and which can
be considered as a second-order approximation for more general utility functions;
see Brandt and Santa-Clara (2006). Furthermore, a quadratic utility function is
consistent to the mean-variance framework, i.e., instead of maximizing quadratic
utility we could maximize a function depending on expectation and variance; see,
e.g., Markowitz (2014). Since it is a concave-quadratic objective to be maximized,
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this utility function is also suitable because it alone does not render the problem
intractable. Following Brandt and Santa-Clara (2006), we replace

2
max E [wtl - wtl] (3)
a

2
(wtzl>p<%1) ’
wy_, 2 \wi_,

where p > 0 is a risk-aversion parameter. Note that the second utility function
is only increasing for returns below p and that enables us to work with relative
values, i.e., return on investment, instead of absolute values, which are not as easy
to interpret. Finally, the two utility functions are “equivalent” in the following sense:
For a given a > 0 there exists a p > 0 such that the difference of the two utility
functions is constant for every w;, > 0.

In the following section, we describe the components of the model sketched above
in detail.

with

max E

2.2. Traded Assets. We model the price processes of the traded assets with
geometric Brownian motions, as commonly done in financial economics; see, e.g.,
Merton (1973), given by

dsy
S]
where Wts’j , j € [J], are correlated standard Brownian motions. Using a forward

Euler discretization yields
S gi+1 - SgL

Sd

=S dt 4+ 0BT AW, G e [J], t € [ts,te],

=y 40593 jeld), iell-1),

with normally distributed 5i’j , l.e.,
(5% el ) ~ N (0,35), ielr-1)
where ¥° is the respective covariance matrix.

2.3. Infrastructure Investments. We consider investment opportunities in wind
farms in K + 1 different countries and model the related cash flows following Gatzert
and Vogl (2016) via

Vi, = Exlf Py, —OFPE, i), i e[I-1],i>d, i—i <T* ke[K],

where E), denotes the installed capacity of a single wind farm and foi is its load factor.
Hence, the produced electricity at time i € [I™] is given by Ej(; . Moreover, P, ¢,
(note that possible subsidies depend on the time ¢; the infrastructure investment is
made) denotes the price of a unit of electricity, O are the operation, maintenance,
staffing, and insurance (OMSI) costs, and Ptk is the index modeling the price
development of OMSI costs. Following Gatzert and Vogl (2016) as well as Abadie
and Chamorro (2014), the load factor is given by

e, :max{O 0 +g£i,+sf;’“}, i€ [I™™], k€ [K],

»av

where £F  is the long-term average load factor and gfi accounts for the seasonality
at the respective location. Thus, gfi = gfi 410 holds for a monthly discretization.
Finally, uncertainty of the load factor is modeled by

(Ef;l, C ,Ef;K) NN(O’ZZ) , i€ [Imax].
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Again, ¥¢ is the respective covariance matrix. Note that, in contrast to Gatzert and
Vogl (2016) as well as to Abadie and Chamorro (2014), we exclude negative load
factors. The price of electricity P, ;, depends on the time ¢;; the wind farm was
installed. Applied wind farm investments have a support period 7. During this
support period, we assume that the investor receives a feed-in tariff as minimum
compensation leading to

Py, =max {F P}, ie{d,....i' +T&},
where Ft’j denotes the guaranteed price of the feed-in tariff and P> is the spot-market

price of energy. After the support period, the investor receives Pf* as compensation.
This results in

min{s i—T§—1} min{s,i—1,I1—1}
k _ 1 ok k pex k k ex
Iy, = Ewly, E ng, P+ E Ny, max{Fy;, P}
j=i—Tk j=i—T¥
min{s’i—1,I—1}
k k pk . max
-0 E : ntjpti ) ZE[I ]7 kE[K],
j=i—Tk

for ¢/ € [I],i > 4/, with
nf =0, i€ {l—max{T" T¢},...,0}, k€ [K],

for the total cash flows at time ¢;, i € [I™®], generated by the infrastructure
investments made until time ¢;/, i’ € [I — 1]. The first sum refers to investments
outside of the support period whereas the second sum refers to investments within
the support period. The last sum refers to the OMSI costs, which do not depend
on the support period. For an economic analysis of renewable energy investments
under feed-in tariffs we refer to Boomsma et al. (2012), where the investor’s strategy
is also considered if the support scheme is affected by regulatory uncertainty as it is
the case in our model.

We use a Vasicek model for inflation, which is used for the development of the
OMST costs (Gatzert and Vogl 2016; Vasicek 1977):

drk = kP (67 = o) dt 4 P aw s, e ltatd

¢
PF = P} exp (/ rk ds) , t € [ts,te].
ts

Without loss of generality, we choose 150k = 1. Discretization using a forward Euler
scheme yields

by P bk P
rk rf + HP’]“(I)IJ’IC — rf) + aP’ket_’ , e [rm—1],
K3 k3 k3

tivr

with

A - . . i
(65»1,..-,857K)~N(0,2P)’ Pt]j:exp <erl>’ iE[Imax—l],
=1

The OMSI costs O* > 0 are assumed to be constant but indexed with inflation;
see Gatzert and Vogl (2016). Following Monjas-Barroso and Balibrea-Iniesta (2013),
the spot-market energy prices develop according to the mean-reverting process

AP = k¥ ((a®t 4 ) — PF*) dt + o AW, t € [ts, L],

where a®*t+c®* with ¢®* > 0 and a®* € R is the mean-reversion level, kK > 0 denotes
the speed of mean-reversion, o°* its volatility, and W* is a standard Brownian



8 N. GATZERT, A. MARTIN, M. SCHMIDT, B. SEITH, N. VOGL

motion. Note that we assume that P7* does not depend on k. Again discretizing
using a forward Fuler scheme yields

PEx = P+ ¥ (0™t + ¢) — PPY) + 06y, efX ~ N (0,1)
for i € [[™a* —1].

The feed-in tariff depends on regulations in the specific country. We assume that
it is constant, i.e., without policy risk:

Ff =F; >0, kel[K], ie[I™.

Policy risk is integrated by the (uncertain) time 7% denoting the time the policy risk
scenario materializes. Following Gatzert and Vogl (2016), the scenario is a decrease
of the guaranteed feed-in tariff leading to

P Y for ¢ > t;,
e Fég(l—dk), for Tkgtl‘,

with feed-in reduction dy € [0,1], k € [K], i € [I™®], and 7% is drawn from a
geometric distribution, i.e.,

Prob(t* = t;) = pr(1 — pr)?, i € [I™™].
Using a geometric distribution is a rather natural choice since we assume that the
reduction can occur every month with the same probability. The geometric distribu-
tion then models the waiting time for the policy risk. The probability py € [0, 1]

can be calibrated according to Gatzert and Vogl (2016). Hence, the Markov process
for the feed-in tariff is given by

Prob (Ff: = F§ | FE, = Ff) = (1= po).
Prob (Fk (1—dy) F¥ | Ff —FO) —
Prob (Ft’j = (1—dp) FE|FF = (1—dy) Fo) _ 1
i€ [\ {0}, px € [0,1], k€ [K].

As described in the previous section, the investor’s objective is to maximize expected
utility of terminal wealth w;,. All introduced variables, deterministic parameters,
and stochastic processes are summarized in Table 1. We further assume that short-
selling is not allowed, i.e., 27, > 0, i € [I], j € [J], and that the investor must
guarantee Ly, > 0, i € [I], i.e., no debt is allowed. Moreover, regulated investors like
insurance companies face shortfall constraints, i.e., their probability of default is
required to remain below a certain level; see e.g., Eckert and Gatzert (2018) for the
influence of such constraints on shareholder value of a non-life insurance company.
Therefore, we introduce the chance constraint

Prob(w;, <b) <p, beNy, pe0,1], i € [I],

where w;, denotes the wealth of the investor at time ¢;, ¢ € [I]. For general
information on chance constraints in stochastic optimization see, e.g., Prékopa
(2013) or Nemirovski and Shapiro (2006).

2.4. Model Summary. Insummary, we obtain the stochastic optimization problem

max  Eq, [u(wy,)] (4a)

[max

st wy, —Lt+Zwt+Z 2 1+r+§2§l § o

J€J] ]m=i+1
for all i € [I],
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TABLE 1. Variables (top), deterministic parameters (middle), and
stochastic processes (bottom) of the model

Variable Description Index sets
ny, Number of newly realized infrastructure [I—1] (K]
investments of type k at time ¢;
a{i Amount of traded asset j bought at time ¢; (€) [I-1] [J]
ﬁgl Amount of traded asset j sold at time ¢; (€) [I—1] [J]
xiL Amount of traded asset j at time ¢; (€) 1] [J]
Ly, (Liquid) cash at time ¢; (€) (1] —
wy, Wealth at time ¢; (€) 1] —
Ffi,ti/ Cash flows (€) [Im*] x [I]  [K]
we_, Initial wealth (€) — —
1’{,1 Initial portfolio (typically = 0) — J]
r (Monthly) risk-free rate — —
Ok Spread or risk premium — (K]
Ly, Initial liquid cash (€); Ly, =w:_, /(14 7) — —
CcF Costs of infrastructure investment (€) [I—-1] (K]
o* Operation, maintenance, staffing, and insurance costs (€) — [K]
Ff Initial feed-in tariff (€/MWh) — (K]
dy; Relative reduction in feed-in tariff in case of policy risk — (K]
" Length of investment period — [K]
¥ Length of support period for FIT (typically, T% > T}%) — [K]
Ex Maximum production in each time step (in MWh) — (K]
b Minimum wealth (€) — —
D Shortfall probability — —
p Utility function parameter — —
nE ax Maximum infrastructure investments of type k — (K]
Stji Price process of traded asset (€) 1] [J]
P Spot market price of electricity (€/MWh) [1™%] —
E/ Feed-in tariff with included policy risk (€/MWh) [1™2%] (K]
rfi Inflation rate [174] (K]
]Stki Price index [1™2%] [K]
Zfi Load factor [174] (K]
J J
xl, =i <1 + Stlsjstl—l> +of — B, (4c)
ti1

for all ¢ € [I], j € [J],

Lti = Lti 1 +7” Z Oét =+ Z ﬁn Z ’r'l,ﬁck Z F (4d)

JEJ] JEJ] ke[K] k€[K]
for all ¢ € [I],
min{ii—T§—1} min{s’,i—1}
Ft“t =Bt} Z nfj P+ Z nfj max{FF, P} | (4e)
j=i—Tk j=i—T¥

min{é’ i1}
- OF Z nfjptlj
j=i—T*
for all i € [I™™], i >4 € [I], k € [K],
Prob (wy; < b) <p forall i€ [I], (4f)
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ol Bl >0 forallie[I-1], jel[J], (4g

o =p] =0 foralljel[J], (4h

x] >0 foralliel[l], jel[J], (4i
(

:c{_l =0 forall jel[J],
Ly, >0 foralliell] (4k
L, =w_,(1+7)7h (41
nf €{0,...,nF } forallie[l—1], ke K], (4m
nf =0 forallie{1-T"...,~1}U{I}, k€ [K]. (4n

Note that in (4b), the expectation is calculated given all the information up to
time t;, ¢ € [I].

3. DISCRETIZED MODEL

Problem (4) is a time-discrete stochastic optimization problem. In order to obtain
a finite-dimensional optimization problem, we still need to discretize the continuous
stochastic processes. This discretization yields an optimization problem over a
scenario tree, which models a discrete time filtration on a finite probability space.
The interpretation of such a tree is that the root node represents the starting time
(“here-and-now”) and the other nodes model all possibly occurring future events. In
standard terms of stochastic optimization (see, e.g., Birge and Louveaux (2011)),
the solution of the problem on a tree is called a policy since it contains optimal
decisions for all possible events.

We apply a straightforward discretization of the stochastic processes by drawing
a pre-specified number of samples from the corresponding random distributions.
This involves using the starting values, sampled residuals, and the equations from
the last section to generate the processes one step at a time. This discretization
assigns probabilities to tree nodes in a natural way and the pre-specified number of
samples thus defines the branching in the tree w.r.t. the discretized process. The
implementation details are discussed later in Section 5.

Before we state the fully discretized problem on a scenario tree 7, we need to
introduce some notation. The set of nodes of the tree is denoted by V and the root
node is denoted by 0 € V. For a given node v € V, we denote its predecessor by 7(v)
and TI(v, u) is the path from the node u back to node v.* Moreover, we set II(v) =
I1(0,v) as the path back to the root node, i.e., II(v) = {v, 7 (v), 7(w(v)),...,0}. The
level of node v is called t(v) and the distance d(u,v) between two nodes u, v is given
by [t(u) —t(v)|. The set of all direct successors of node v is denoted by ®(v). Hence,
for u € ®(v) we have t(u) = t(v) + 1. The sub-tree rooted at v is denoted by T,
with node set V,,. Thus, Vo = V holds. Finally, for v € V,,, we denote by p! the
occurrence probability for node v if we are in node w. An illustration of this tree
notation is given in Figure 1. With this notation at hand we can now state the fully
discretized version of Problem (4) on a scenario tree with depth I™a*:

max Z P2 u(w,) (5a)

veV:t(v)=I
k

] pzru,v
stoowy=Lo+ ) al+ Y ) (147 + 6, )dw0) (5b)
jeJ] ke[K] ueV,\{v}

for all v € V with 0 < ¢(v) < I,

4The distinction between the utility function v and a node u of the scenario tree should always
be clear from the context.
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FIGURE 1. Scenario tree notation

o Si— 57 S
“”%:“"J(><1+W>+O¢%—ﬁi (5¢)
(v S;]T(v)
for all j € [J] and v € V with 1 <t(v) < I,
z) =al — B forall je[J], (5d)
Ly=Ley(l+71)= > o+ > pi— > nlCh+ > TF (5e)
JEJ] Jj€lJ] ke[K] ke[K]

for all v € V with 1 < #(v) <1,

Lo=w_, — Y af+ Y B— > nfCs, (5f)

JELJ] jelJ] ke[K]
I, = Bk >oooabp+ Y nFmax{FF P} (5g)
yE(u)\{v}: yeM(u)\{v}:
T <d(y,v)<T* d(y,v)<TE

—oM Y miy
yeIl(u)\{v}:
d(y,w)<T*

for all u,v € V, uw e Il(v), t(u) <I, k € [K],
— Mz, <w, —b< M(1—2,) forallveV with0<t(v)<I, (5h)

Z Pz, <p forallic[l], (51)
veEV:t(v)=i
zy € {0,1} for all v € ¥V with 0 < t(v) <1, (5))
o, 39 >0 forallje[J]andv eV with 0 < t(v) <I, (5k)

=pI =0 forall je[J]andv €V with t(v) = I, (51)
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) >0 forallje[J]and v eV with 0 <t(v) < I, (5m

L,>0 forallveV with0<t(w) <I, (

nkec{0,...,nk.} forallkec[K]andv eV with0<t(w)<I, (50
(

) max
nk =0 forall k€ [K] and v € V with I < t(v) < ™™
where M is a sufficiently large number. Note that the initial wealth w; , in
Constraint (5f) is the same as the one used in Constraint (41).

The discretized stochastic processes on the scenario tree are given as follows. The
load factor is modeled via

Ly = max{0, Iy, + g7 + 25"}
with (g4t ... ebE) ~ N(0, %) for all v € V with 1 < t(v) < ™8 Additionally,

v

we have (bl ... eb®) = (bl ... LK) for all nodes v, u with ¢(v) = t(u) mod 12.
The discretized price processes of the traded assets are given by
Si— 87 ,
@ _ S 5,5 .8
5 AT

m(v)
with (e5°1,...,e57) ~ N(0,5%) for all v € V with 1 < ¢(v) < I and j € [J].
Moreover, we set S} = 1 for all j € [J]. Analogously, spot-market prices are modeled
via
P = Pey + 5 (@t (w(v) + ) = P2, ) +0™es,)

with e ~ A(0,1) for all v € V with 1 < ¢(v) < I'™*. Finally, the discretized
inflation model reads

Tﬁ = rfr(v) + gk (bP’k — rfi(v)) + UP’kEf(’f)
with (21, ePEY ~ N(0,57) for all v € V with 1 < ¢(v) < ™ and k € [K].
Again, we set 75 = 0 for all k£ € [K]. The whole price index development up to node
v € V is thus given by

PF = exp Z rk for v € V with 1 < ¢(v) < I and k € [K].
u€Il(v)

We note that the Constraints (5h)—(5j) are a mixed-integer linear approximation
of the shortfall chance constraint (4f). The assignment z, = 1 indicates a node in
which the wealth is below its prescribed lower bound b. Constraint (5i) then yields
the desired mixed-integer model of (4f).

There is one major difference between the discrete-time stochastic optimization
problem (4) and its fully discretized counterpart (5), namely that, in a first step, we
abstract from integrating policy risks into the discretized model (5). Preliminary
numerical tests revealed that the integration of policy risks into the discretized
problem yields numerically unstable models, since the probabilities of occurring
policy risks are quite low and thus lead to highly ill-conditioned problems. We
discuss in Section 4 how we address policy risk directly in the moving-horizon
solution approach for Model (5).

Finally note that all values of C* can be chosen arbitrarily for nodes v with
I < t(v) < I™** and all k € [K]; see Constraint (5p).

4. A MOVING-HORIZON ALGORITHM

After the discretizations of the stochastic processes we obtain the fully discretized
problem (5) in Section 3. Since this is a finite-dimensional model it can, in princi-
ple, be solved. However, it is well-known that multistage stochastic optimization
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FIGURE 2. Illustration of the moving-horizon algorithm applied
with JoPt = [sim — 9

problems become prohibitively large after discretization of the planning horizon
and the stochastic processes—even for moderate numbers of samples drawn for the
discretization.

In our setting, this aspect is even more drastic, because we have many stochastic
processes so that the cross-product of the discretized processes needs to be considered.
Even for the smallest possible branching of b = 2 for every stochastic process
(load factors, prices of traded assets, spot-market prices, and inflation rate) and a
practically reasonable planning horizon of I = 60, i.e., five years, we obtain a scenario
tree with more than 1.8 x 107 nodes. Obviously, the corresponding mixed-integer
optimization problem defined on this tree is highly intractable. Additionally note
that, regarding this number, we already neglected the investment period until T
that extends the planning horizon of the optimization problem even further; see (1).

This is the reason why we are not able to compute a policy on the entire scenario
tree for the considered problem. Instead, we develop a tailored moving-horizon
algorithm for computing a single investment plan of good quality that is, for every
point in time, hedged against the uncertainty of the stochastic processes for a specific
future planning horizon I°P!, which is smaller than the entire considered planning
horizon and thus yields a tractable (sub)problem.

The basic moving-horizon procedure is described in Section 4.1. Afterward, in
Section 4.2, we describe different possibilities for handling the additional investment
period (up to time tymax) that extends the planning horizon up to time ¢;.

4.1. The Basic Moving-Horizon Procedure. The main idea of the basic moving-
horizon procedure can be described as follows. Instead of considering the fully
discretized problem (5) on the entire tree ranging from the initial time point tg to
the final time point ¢;, we first consider a significantly smaller discretized planning
horizon {to,t1,...,trept}, i.e., [°P* < I. On this reduced planning horizon, we solve
Problem (5) with the originally specified branching for the respective stochastic
processes. For I = 4 and I°P* = 2, the situation is illustrated in Figure 2. In the
first iteration, the sub-tree of the problem to be solved is outlined in dashed lines.
The solution of the discretized stochastic optimization problem on this reduced
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Algorithm 1 The basic moving-horizon algorithm

Require: Problem (5) on the entire scenario tree 7 and optimization as well as
simulation period lengths I°Pt, Jsim,

1: Set £ < 0, v* + 0, and initialize the empty investment plan x € R?.

2. while /5™ < J do

3. Set up and solve the optimization problem (5) on the sub-tree T (v?, [°P*)
rooted at v’ with tree depth min{/°Pt [ — ¢ 5™},

4:  Simulate the stochastic processes to obtain the node vysim and the
path TI(v", vjeim ) from vyeim back to the current root v°.

5. For all nodes v € TI(v%,vfsim), let 2, denote the nodal optimal solution
and extend the investment plan via z < (z T, (:v;!—)UEH/(lesim))T7 where TI'
denotes the reverse of path of path II.

6:  Simulate the stochastic process of the policy risks for all k € [K] along the path
I’ (v, vjeim ). If some policy risk appears, update the data of Constraint (5g)
for the next iteration.

7. Set £+ £+ 1 and v’ < vyeim.

8: end while

9: return investment plan z.

planning horizon gives us a policy for the corresponding sub-tree. In practice, one
would now apply the investment plan of the initial time point ¢y, wait one time
step, observe the realized uncertainty—i.e., whether v; or vy is attained—apply
the respective investment decision, etc. The length of this simulation period is
called Is™ < J°P*. Thus, the simulation is carried out until the time point #sim is
reached so that we know which node on level I5™ is attained. In the example shown
in Figure 2, we have I®"™ = J°P* = 2 and attain the rectangular node vs in t;sim.
Let us call this node vysim. At this point, a new reduced variant of Problem (5) is
set up that corresponds to the sub-tree V(vysim, I°P*) rooted at vysim and with tree
depth I°P*—see the subtree outlined in dotted lines in Figure 2. From now on, we
iterate the sketched procedure.

Note that we abstracted from explicitly integrating a policy risk model in the
fully discretized problem (5). Instead, we handle policy risk directly in the moving-
horizon algorithm in the following way. After the time point ¢7sim has been reached,
we observe along the obtained path through the tree whether policy risk occurred
for some k € [K] by simulating the respective stochastic process. If this is the case,
we update the corresponding data in Constraint (5g) for the next sub-problem that
is to be solved.

A formal listing of this basic moving-horizon algorithm is given in Algorithm 1.
While the stochastic nature of the problem is better addressed for larger I°P* and
smaller 5™ larger I°P* lead to larger and smaller I8"™ lead to more optimization
problems to solve.

4.2. Handling of the Investment Period. Besides the computational challenge
due to the huge size of the scenario tree that we addressed in the last section, the
investment period poses an additional computational burden. In case of infrastruc-
ture investments one is interested in investment steps of, e.g., 20 years—i.e., of
240 additional time steps in our model. If one would consider the moving-horizon
subproblems of length I°P' plus the respective temporal extension as well as the
corresponding branchings due to the discretization of the stochastic processes, this
would still lead to moving-horizon subproblems of intractable size. Unfortunately,
the moving-horizon approach introduced in the last section cannot resolve this
problem since the infrastructure investment decisions in a moving-horizon period



PORTFOLIO OPTIMIZATION WITH IRREVERSIBLE LONG-TERM INVESTMENTS 15

— —»
.
: L oo
‘ —o —»
o
—— —»
s
~— o o
.
. — o —»
‘ —e —o
.
e——e o—o
0 1 --- Jopt Jopt ... JoPt Tr’rclax

F1GURE 3. Mlustration of the maximum-nodes approximation

strongly depend on future cash flows of the respective investment. Hence, considering
a moving-horizon of size I°P* only (as it is described in the last section) would cut
off future cash flows. Since the investment costs stay as they are, this would lead to
unprofitable and thus less infrastructure investments.

As a consequence, we need to find an approximation of the investment period’s
cash flows of reasonable quality that is computational tractable. In the following
sections, we describe three such approximations. They all have in common that
cash flows after the optimization period (of size I°P') are aggregated in surrogate
sub-tree models with a much lower number of nodes than the original formulation.

4.2.1. Mazimum-Nodes Approzimation. Let v’ be the root node of the moving-
horizon subproblem that needs to be solved in Line 3 of Algorithm 1. As before,
the length of the optimization period is I°P* < I. Thus, we consider Problem (5) on
the sub-tree T (v, I°P!) as in Algorithm 1.

In the maximum-nodes approximation of the investment period, we consider for
every leaf node v of the sub-tree 7 (v¢, I°P!) the number of

Tk :max{Tk: ke K]}

max
artificial successor nodes. The structure of the resulting tree is illustrated in Figure 3.
Let us consider a leaf node v of the sub-tree 7 (vf, I°P') and let us denote its T,
successor nodes by ug, u1, ..., ups ;. Then, the discretized stochastic processes
for the load factors lfji, the spot-market prices P;¥, and the inflation rates r,’ji for
i=0,1,...,Tk —1 are replaced with the approximations
l,i = lgv + gf(uﬁ’

Py = Pty + 6% (@t () + &) = P, )

k k Pk (1.P.k k
Ty, = Tr(uy) T K (b -7 ) ,

m(ui)

where 7(ug) = v is used. Thus, we abstracted from the influence of random variables
of the corresponding stochastic processes; see Section 2.3.
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4.2.2. 12-Nodes Approximation. We use the same notation as in the last section 4.2.1.
For every leaf node of the sub-tree 7 (v, I°P), we now consider 12 artificial nodes—
one for every month in a year. The idea is to aggregate all cash flows obtained in
future (i.e., after I°P') Januaries in the first artificial node ug, all cash flows obtained
in future Februaries in the second artificial node uq, etc. Thus, in the artificial
node uy; we aggregate all future cash flows that are realized in future December
months.

The resulting structure of the tree is the same as in Figure 3 but with Tk __
replaced by 12. Note that the monthly aggregated values for the spot-market
prices Py* and the inflation rate r’qji cannot be re-assigned to specific years ex post.
Instead, they are directly addressed in the computation of the cash flows and the
resulting month-wise aggregated cash flow is stored in the corresponding node. The
values for the load factors genuinely depend on yearly seasons, i.e., months, and are
still stored at the nodes as it was the case for the maximum-nodes approximation.

4.2.3. 1-Node Approzimation. If we consider the 12-node approximation of the last
section and also abstract from the seasonality of the load factor, i.e., we approximate
the future load factors by simply using their constant averages l,,, we obtain the
1-node approximation of the investment period. The structure of the resulting tree
is the same as in Figure 3 but with T _ replaced by 1. The nodes after I°P* again
collect all aggregated cash flows, where we directly included the spot-market prices
and inflation rates; see the 12-nodes approximation. The main rationale of this
approach is that the seasonality of the load factors may not be the main driving
factor if long investment period lengths, e.g., 30 years are considered.

5. COMPUTATIONAL STUDY

We apply the solution techniques described in Section 4 to the discretized model
presented in Section 3. In Section 5.1, we start with describing the calibration of the
model in order to obtain a real-world setting. The computational setup and some
implementation details are discussed in Section 5.2. In the following Sections 5.3
and 5.4, we analyze the impact of the different approximations of the investment
period model (see Section 4.2) and the sensitivity of runtimes and the obtained
solutions in dependence of the stochastic processes for the load factors and the
inflation rate. Afterward, in Section 6, we use the results of this section to study a
real-world example.

5.1. Calibration of the Model. We consider the described optimization problem
with an investment period of 5 years with monthly discretization, i.e., I = 60, and
wind farm investment opportunities in two countries, i.e., K = 1. Furthermore, we
consider two traded assets, i.e., J = 1, as well.

The traded assets and the risk-free interest rate are calibrated to indices with
different regional focus and asset classes (stocks and bonds) institutional investors
like insurers typically invest in (Eckert and Gatzert 2018), i.e., MSCI World ex
EMU and JPM GBI Germany All Mats. The parameters are based on data from
November 2005 to November 2015 from the Thomson Reuters Datastream database.
Each index measures the total returns for its assets on a Euro basis including
coupons and dividends where applicable. The empirical (annualized) expected
returns, standard deviations, and the associated variance-covariance matrix for the
two considered assets are given in Table 2.

The parameters of the wind park in two countries are calibrated to Germany and
France following Gatzert and Vogl (2016). Like Abadie and Chamorro (2014), we
assume an installed capacity of 50 MW for both countries leading to Ej = 36 000,
k € [K]. The load factor ¢f , i € [I™*], k € [K], is calibrated using least-squares fits
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TABLE 2. Project assumptions and input parameters.

Description Value
Risk aversion parameter in utility function p=1
Number of traded assets 2,ie,J=1

Expected monthly returns of traded assets

w3 =0.006123
w2 =0.003737

. . s s [1717 —0.126
Covariance matrix of returns of traded assets X~ =107° x [—0.126 0.162 ]
Planning horizon length (in months) I =60
Initial wealth (€) wy_, = 10°
(Monthly) risk-free interest rate r = 0.166 %

Spread or risk premium 0r = 0.214 %
Costs of infrastructure investment (€) CF =80 x 10°
OMSI costs (€) OF = 177000
Initial feed-in tariff (€/MWh) Fl =893
Investment period length T+ = 360
Support period length TF = 240
Installed infrastructure capacity E). = 36000
Maximum infrastructure investments nk =10
Mean-reversion speed of spot-market price k™ =0.1973
Mean-reversion level of spot-market price a® =0.0190

c* = 41.6986
Volatility of spot-market price 0% = 7.749982
Average load factor ¢k =0.2097
Covariance matrix of load factors ¥ =103 x {3'592 0 }

0 3.592

Mean-reversion speed of inflation rate kPl =0.7572

kP2 =1.0098

blf'*l = 0.0009679
bP2 = 0.0011137
; 2.3859 1.9284
P _ —06
> =107 [1.9284 4.0468}
dy = 0.135417, do = 0.130417
p1 = 0.001197, ps = 0.000759

Mean-reversion level of inflation rate

Covariance matrix of inflation rates

FIT reduction size
FIT reduction probability (per month)

and monthly production data of the German Hochfeld windfarm; see also Abadie
and Chamorro (2014). Following Gatzert and Vogl (2016), we assume no (spatial)
correlation between the load factors. The annual OMSI costs are assumed to be
42500 € per installed MW resulting in monthly OMSI costs of 3541.66€ and the
costs of infrastructure investment are assumed to be 80 x 10° € (see Gatzert and
Vogl (2016) and Wekken (2007)). The inflation rates rf, i € [I™*], k € [K], are
based on monthly inflation data of Germany and France and the electricity prices
are calibrated based on German EEX Phelix Month Base values using the method
proposed by Yoshida (1992). The FIT reduction size and probability are taken from
Gatzert and Vogl (2016) using expert opinions. For the length of the investment
and support period and the initial FIT, we also refer to Gatzert and Vogl (2016).

5.2. Computational Setup and Implementation Details. The mixed-integer
quadratic optimization models (MIQPs) as well as the moving-horizon algorithm
are implemented in Python 2.7.14. We used the NetworkX library for modeling
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TABLE 3. Seasonal components gf for all k € [K]

Month Value

January 0.0981
February 0.0240

March 0.0489
April -0.0251
May -0.0313
June -0.0662
July -0.0651
August -0.0661

September -0.0318
October -0.0019
November  0.0411
December  0.0755

the scenario tree; see the website Software for complex networks (2018) for further
details. All MIQPs are solved using Gurobi 7.5.2 with an optimality gap of 2%. The
sampling of the respective stochastic processes has been realized using R 3.4.1 (in
Rstudio 1.0.143) and the given means and variances. All computations have been
carried out on a machine with Intel(R) Xeon(R) CPU E5-2699 v4 processors at
2.20 GHz (with 44 cores and hyper threading) and 755 GiB.

The results of our solution approach strongly depend on two stochastic compo-
nents: the scenario tree and the simulated node in Algorithm 1. Therefore, we base
our results in the following section on different sample paths with new scenario
trees and simulated nodes each time. Here, we use 100 sample paths. We are aware
that one would typically like to use a larger number for the simulations. However,
both the number of sample paths and the optimality gap are chosen to achieve a
reasonable compromise between the accuracy of the results and acceptable runtimes.

For the stochastic processes of the load factor, the spot-market prices, and the
inflation rate, our code uses user-specified branchings that determine the number of
scenario tree nodes and, thus, the accuracy of the approximation of the stochastic
processes. Our finite-dimensional approximation of the price processes is based on the
method presented in Fang et al. (2008). To this end, we consider the interval [ —
3/75, Wi+ 3\/07] that is split in bg many equidistant sub-intervals, where the
number bg denotes the number of discrete realizations used for the approximation
of the process. In what follows, we set bg = 2 due to the computational burden of
larger bg. Thus, we obtain the sub-intervals [ — 3,/57,0] and [0, u57 + 3, /5]
and take the corresponding mean values of these intervals as realizations. Note
that this yields 27 possible scenarios per time step. The rationale here is as follows.
If one would simply draw random numbers from the respective distributions we
could obtain one or multiple assets with only positive performance—which could
even be above the risk-free interest rate. This would, however, give the unrealistic
result in which everything would be invested in these assets. Since we observed
this behavior during our preliminary computational experiments (using the setting
discussed above), we decided to follow the described strategy.

The simulation step in Line 6 of Algorithm 1 is realized by always choosing the
successor node u € ®(v) with highest probabilities and by breaking ties arbitrarily.

5.3. The Impact of Approximating the Investment Period. In Section 4.2,
we propose three alternatives for handling the cash flows within the investment
period that involve different degrees of simplification. Here, we study the impact
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TABLE 4. Total runtime of the moving-horizon approach and mean
runtimes for solving the moving-horizon sub-problems using the
maximum-nodes, 12-nodes, and 1-node approximation (in minutes).

Approximation  Total runtime Mean sub-problem runtime

Maximum-nodes 128.26 10.69
12-nodes 25.03 2.09
1-node 16.39 1.37
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FIGURE 4. Average accumulated number of active infrastructure
investments using the maximum-nodes, 12-nodes, and 1-node ap-
proximation.

of these three approximations on the result of the optimization problem. To this
end, we choose I = 12 (one year) as well as topy = 2 and tgm = 1. These
parameters are chosen such that the maximum-node approximation model, which is
the computationally most challenging one, can also be solved in reasonable time. For
this approximation and ¢,¢ = 2 we obtain a scenario tree with 369 697 nodes, whereas
topt = 3 already results in 11797537 nodes. The solutions and runtimes depend on
the scenario trees and the paths simulated in the moving-horizon algorithm. Table 4
shows the average runtime for the three presented approximation methods. As
expected, the maximum-nodes approximation yields the highest runtime, followed
by the 12-nodes and the 1-node approximation. The approximation also influences
the decision variables and the resulting wealth. Figure 4 shows the average number
of infrastructure investments made until the month stated on the z-axis. The results
for the 12-nodes and the maximum-nodes approximation are comparable, but the
1-node approximation leads to considerably different results. This observation is
also confirmed by Table 5 showing the mean value of infrastructure investments
built during the investment horizon and the mean value given that there is at least
one infrastructure investment. The latter conditional mean is comparable for all
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TABLE 5. Statistical characteristics for the total number of in-
frastructure investments built during the planning horizon using
the maximum-nodes, 12-nodes, and 1-node approximation: mean
value (&) and mean value given that the number of infrastructure
investments is larger than zero (@<o).

Approximation  @sg ]
Maximum-nodes 8.74 4.11
12-nodes 9.03 5.24
1-node 9.62 8.56
Max node — % ************* % o

12nodefo% ************ { o
1 node — %*** ***** {

\ \
o o )
Q N

\
o
F
return over planning horizon (in %)

F1GURE 5. Boxplot of the return over the planning horizon using
the maximum-nodes, 12-nodes, and 1-node approximation.

three models, but the difference to the overall mean is very small for the 1-node
approximation. This indicates that the probabilities of investment are comparable
for the 12-nodes approximation and the maximum-nodes approximation, whereas
the 1-node approximation seems to be too crude. A similar observation holds for
the distribution of the terminal wealth. Figure 5 shows boxplots of the return over
the planning horizon for the three proposed models leading to basic characteristics
that are similar for the maximum-nodes, and the 12-nodes approximation, whereas
the 1-node approximation shows a qualitatively different behavior.

As a result, we will use the 12-nodes approximation in the following sections,
leading to reduced runtimes without heavily influencing the outcome.

5.4. Sensitivity Analysis for the Stochastic Processes. The size of the sce-
nario tree and, thus, the runtime for the considered instances heavily depend on
the number of considered stochastic processes. Table 6 shows the total runtime
for the basic model and its approximations, in which either the load factor, the
inflation, or both stochastic processes are kept constant. Here, we already consider
the setting on the full time horizon as described in Section 5.1. The results are as
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TABLE 6. Total runtime of the moving-horizon approach and mean
runtimes for solving the moving-horizon sub-problems for models
with or without constant stochastic processes (both in min)

Approximation Total runtime Mean sub-problem runtime
basic model 222.01 3.70
const. load factor 55.70 0.93
const. inflation 57.66 0.96
const. load factor and inflation 14.59 0.24

Ah bbb bbb bbb bbb bbb bbb

1 1

no. of infrastructure investments
[}
1

0 5 10 15 20 25 30 35 40 45 50 55 60
month

—& basic model - ® const. inflation =4 const. load factor —®=const. load factor and inflation

FIGURE 6. Average accumulated number of active infrastructure
investments for solving the moving-horizon sub-problems for models
with or without constant stochastic processes

expected: abstracting from one or more stochastic processes significantly reduces
the runtimes. However, not considering these stochastic processes can of course
change the result of our model drastically. Figure 6 shows the effect on the average
number of infrastructure investment. Keeping the processes constant has only a
small influence on the shown average. This allows us to refrain from including
these two stochastic processes as such in the model but replace them using suitable
deterministic approximations in the real-world example of the next section.

6. A REAL-WORLD EXAMPLE AND CONCLUSION

So far, we have set up an extremely challenging mixed-integer multistage stochastic
model with different stochastic processes. We proposed a tailored moving-horizon
approach that also addresses the integration of policy risk and presented different
approximations in order to further reduce the size of the problems to solve. In
the last section, we carried out some sensitivity analyses with respect to these
approximations as well as with respect to the different stochastic processes. The
corresponding discussions show that it is reasonable to simplify the presented model
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FIGURE 7. Average wealth and quartiles for 100 stochastic sample
paths (of w;) over the planning horizon for the real-world case study.
For the input parameters see Table 2. The green line refers to the
mean value for sample paths with occurring policy risk.

because it allows to drastically reduce the running time without loosing too much of
quality in the solutions. Using these results, we now deal with a real-world example
to illustrate the applicability of our approach. The instance consists of a planning
horizon of 5 years, i.e., I = 60, as well as I™®* = 360 and we use the simplifications
presented and analyzed in Sections 5.3 and 5.4. This heavily reduces the runtime
and enables us to choose topy = 3 and tgm = 1. All other input parameters are
given in Table 2. These parameters result in an average runtime for the considered
approach of 157.64 minutes. Since we use 100 randomly drawn sample paths, this
leads to a total computation time of almost 11 days. Again, the results differ for each
simulation run in terms of infrastructure investments and terminal wealth. Figure 7
shows the average wealth and its first and third quartile over the planning horizon.
The average terminal wealth is 1368.46 x 10%, the minimum value is 753.22 x 10°,
and the maximum value is 2555.72 x 105, resulting in an average (annual) return of
6.47 % (fluctuating from —5.51% to 20.64 %). Additionally, the negative effect of
occurring policy risk is visible. The mean value is significantly reduced for those
sample paths with materializing policy risk. Additionally, Figure 8 shows that the
average return is higher if all policy risk is excluded. Hence, this illustrates that
the consideration of policy risk—which is covered by our model—is important for
the investment problem studied in this paper. Figure 9 shows the average number
of infrastructure investments. The average number of infrastructure investments
in the planning horizon over the 100 considered simulation runs is 6.03 and most
infrastructure investments are conducted in the first year of the planning horizon.
With increasing stable returns from the early conducted infrastructure investments,
the average share of traded asset 1 in the portfolio is increasing; see Figure 10.
Thus, most likely, the volatile returns of this traded asset are well diversified by the
infrastructure investments.
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study if no infrastructure investment are allowed. For the input
parameters see Table 2.
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To emphasize the effect of possible infrastructure investments, we also conduct
an analysis in which the investor is not able to carry out infrastructure investments.
Figure 11 shows the average wealth and quartiles over the planning horizon for this
case. There is a rather large effect on risk and return: the inter-quartile range is
increasing by 54.55 %, while the average terminal wealth is decreasing by 7.01 %.

The benefit of diversification with infrastructure investments is reflected both
by a higher expected utility of terminal wealth and by decreasing risk. For the
comparison of terminal wealth (and thus, implicitly, also of the corresponding utility;
see Equation (3)) for the case with and without infrastructure investments we
refer to Figure 7 and 11. The volatility (i.e., the standard deviation) of terminal
wealth is 350.22 (for the case including infrastructure investments) compared to
369.36 without infrastructure investments. Figure 12 also illustrates that the investor
makes siginificant use of the additional investment opportunity in infrastructure:
On average up to 41.18 % of the total wealth is invested in infrastructure.

This example shows that the considered problems can be tackled using the tailored
moving-horizon approach together with suitable approximations and simplifications
of the model. Of course, further sensitivity analyses would be interesting, e.g.,
with respect to the risk aversion parameter. These analyses are out of scope of
the present paper and part of our future work. Moreover, there are still many
open directions of future research. A very general question to answer is if and how
mixed-integer multistage problems like the one considered in this paper can be
solved more effectively. In the literature, there exist techniques that can, in principle,
be used to enhance our solution process. This is part of our future work. However,
due to their complexity and size, there is not much hope for exact methods. On
the other hand, problem-specific scenario reduction techniques might be developed
that allow to solve realistic instances with less simplifications. Moreover, tailored
scenario reduction techniques might also make it possible to address further model
aspects that we abstracted from—e.g., trading of renewable energy investments with



26 N. GATZERT, A. MARTIN, M. SCHMIDT, B. SEITH, N. VOGL

transaction costs is a very interesting (but mathematically extremely challenging)
topic.

ACKNOWLEDGEMENTS

The research of the second and third author has been performed as part of
the Energie Campus Niirnberg and is supported by funding of the Bavarian State
Government. They also thank the DFG for the support within project A05, B07,
and BO8 in CRC TRR 154. The first three authors have been supported by the
Emerging Fields Initiative of FAU (EFI-project “Sustainable Business Models in
Energy Markets”). The first author has been supported by the German Insurance
Science Association. Finally, we thank Michael Miiller for his help in preparing
preliminary implementations of the models.

REFERENCES

Abadie, L. M. and J. M. Chamorro (2014). “Valuation of wind energy projects: A real
options approach.” In: Fnergies 7.5, pp. 3218-3255. DOI: 10.3390/en7053218.
Allgéwer, F., T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright (1999).
“Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory
Overview.” In: Advances in Control. Ed. by P. M. Frank. Springer London, pp. 391—

449. por1: 10.1007/978-1-4471-0853-5_19.

Allianz (2019). Allianz goes for 100 % renewables. Last accessed 2019/11/08. URL:
https://www.allianz . com/en/sustainability/low - carbon - economy /
environmental-management/RE100_initiative.html.

Ambrosius, M., J. Egerer, A. V. Grimm, and A. van der Weijde (2019). The role of
expectations for market design — on structural requlatory uncertainty in electricity
markets. Tech. rep. DOI: 10.17863/CAM.40107.

Birge, J. R. and F. Louveaux (2011). Introduction to stochastic programming.
Springer Science & Business Media. DOI: 10.1007/978-1-4614-0237-4.

Bodnar, T., N. Parolya, and W. Schmid (2015). “A Closed-Form Solution of the Multi-
Period Portfolio Choice Problem for a Quadratic Utility Function.” In: Annals of
Operations Research 229.1, pp. 121-158. DOI: 10.1007/s10479-015-1802-z.

Boomsma, T. K., N. Meade, and S.-E. Fleten (2012). “Renewable energy investments
under different support schemes: A real options approach.” In: Furopean Journal
of Operational Research 220.1, pp. 225-237. DOI: 10.1016/j.ejor.2012.01.017.

Brandt, M. W. and P. Santa-Clara (2006). “Dynamic portfolio selection by aug-
menting the asset space.” In: The Journal of Finance 61.5, pp. 2187-2217. DOI:
10.1111/3j.1540-6261.2006.01055.x.

Brown, D. B. and J. E. Smith (2011). “Dynamic Portfolio Optimization with
Transaction Costs: Heuristics and Dual Bounds.” In: Management Science 57.10,
pp. 1752-1770. DOL: 10.1287/mnsc.1110.1377.

Cui, J. and S. Engell (2010). “Medium-term planning of a multiproduct batch plant
under evolving multi-period multi-uncertainty by means of a moving horizon
strategy.” In: Computers € Chemical Engineering 34.5, pp. 598-619. DoOI: 10.
1016/ j . compchemeng.2010.01.013.

Dantzig, G. B. and G. Infanger (1993). “Multi-stage stochastic linear programs for
portfolio optimization.” In: Annals of Operations Research 45.1, pp. 59-76. DOTI:
10.1007/BF02282041.

Drouven, M. G., I. E. Grossmann, and D. C. Cafaro (2017). “Stochastic programming
models for optimal shale well development and refracturing planning under
uncertainty.” In: AIChE Journal 63.11, pp. 4799-4813. DOIL: 10.1002/aic.15804.


https://doi.org/10.3390/en7053218
https://doi.org/10.1007/978-1-4471-0853-5_19
https://www.allianz.com/en/sustainability/low-carbon-economy/environmental-management/RE100_initiative.html
https://www.allianz.com/en/sustainability/low-carbon-economy/environmental-management/RE100_initiative.html
https://doi.org/10.17863/CAM.40107
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/s10479-015-1802-z
https://doi.org/10.1016/j.ejor.2012.01.017
https://doi.org/10.1111/j.1540-6261.2006.01055.x
https://doi.org/10.1287/mnsc.1110.1377
https://doi.org/10.1016/j.compchemeng.2010.01.013
https://doi.org/10.1016/j.compchemeng.2010.01.013
https://doi.org/10.1007/BF02282041
https://doi.org/10.1002/aic.15804

REFERENCES 27

Eckert, J. and N. Gatzert (2018). “Risk-and Value-Based Management for Non-
Life Insurers under Solvency Constraints.” In: Furopean Journal of Operational
Research 266.2, pp. 761-774. DOI: 10.1016/j.ejor.2017.10.030.

Fang, Y., L. Chen, and M. Fukushima (2008). “A mixed R&D projects and securities
portfolio selection model.” In: Furopean Journal of Operational Research 185.2,
pp. 700-715. DOI: 10.1016/j.ejor.2007.01.002.

Gatzert, N. and T. Kosub (2014). “Insurers’ Investment in Infrastructure: Overview
and Treatment under Solvency I1.” In: The Geneva Papers on Risk and Insurance
Issues and Practice 39.2, pp. 351-372. DOI: 10.1007/978-1-137-57479-4_4.

Gatzert, N. and T. Kosub (2016). “Risks and risk management of renewable energy
projects: The case of onshore and offshore wind parks.” In: Renewable and
Sustainable Energy Reviews 60, pp. 982-998. DOI: 10.1016/j.rser.2016.01.
103.

Gatzert, N. and N. Vogl (2016). “Evaluating Investments in Renewable Energy
under Policy Risks.” In: Energy Policy 95, pp. 238-252. DOI: 10.1016/j.enpol.
2016.04.027.

Gennotte, G. and A. Jung (1994). “Investment strategies under transaction costs:
the finite horizon case.” In: Management Science 40.3, pp. 385-404. poOI: 10.
1287/mnsc.40.3.385.

Griine, L. and J. Pannek (2017). “Nonlinear Model Predictive Control.” In: Non-
linear Model Predictive Control: Theory and Algorithms. Springer International
Publishing, pp. 45—69. DOI: 10.1007/978-3-319-46024-6_3.

Guigues, V. and C. Sagastizébal (2012). “The value of rolling-horizon policies for risk-
averse hydro-thermal planning.” In: Furopean Journal of Operational Research
217.1, pp. 129-140. DOL: 10.1016/j.ejor.2011.08.017.

Gustafsson, J., B. De Reyck, Z. Degraeve, and A. Salo (2005). Project valuation in
mized asset portfolio selection. Tech. rep.

Kaut, M., K. T. Midthun, A. S. Werner, A. Tomasgard, L. Hellemo, and M. Fodstad
(2014). “Multi-horizon stochastic programming.” In: Computational Management
Science 11.1, pp. 179-193. poI: 10.1007/s10287-013-0182-6.

Lin, C.-C. and Y.-T. Liu (2008). “Genetic algorithms for portfolio selection problems
with minimum transaction lots.” In: Furopean Journal of Operational Research
185.1, pp. 393-404. DOI: 10.1016/j.ejor.2006.12.024.

Lobo, M. S., M. Fazel, and S. Boyd (2007). “Portfolio optimization with linear and
fixed transaction costs.” In: Annals of Operations Research 152.1, pp. 341-365.
DOI: 10.1007/s10479-006-0145-1.

Longstaff, F. A. (2001). “Optimal portfolio choice and the valuation of illiquid
securities.” In: Review of financial studies 14.2, pp. 407-431. DOI: 10.1093/rfs/
14.2.407.

Mansini, R., W. Ogryczak, and M. G. Speranza (2014). “Twenty years of linear
programming based portfolio optimization.” In: Furopean Journal of Operational
Research 234.2, pp. 518-535. DOI: 10.1016/j.ejor.2013.08.035.

Mansini, R. and M. G. Speranza (1999). “Heuristic algorithms for the portfolio
selection problem with minimum transaction lots.” In: Furopean Journal of
Operational Research 114.2, pp. 219-233. DOI: 10.1016/380377-2217 (98) 00252~
5.

Markowitz, H. (1952). “Portfolio selection.” In: The Journal of Finance 7.1, pp. 77—
91. por: 10.1111/3.1540-6261.1952.tb01525. x.

Markowitz, H. (2014). “Mean-variance approximations to expected utility.” In:
European Journal of Operational Research 234.2, pp. 346-355. DOI: 10.1016/j .
ejor.2012.08.023.


https://doi.org/10.1016/j.ejor.2017.10.030
https://doi.org/10.1016/j.ejor.2007.01.002
https://doi.org/10.1007/978-1-137-57479-4_4
https://doi.org/10.1016/j.rser.2016.01.103
https://doi.org/10.1016/j.rser.2016.01.103
https://doi.org/10.1016/j.enpol.2016.04.027
https://doi.org/10.1016/j.enpol.2016.04.027
https://doi.org/10.1287/mnsc.40.3.385
https://doi.org/10.1287/mnsc.40.3.385
https://doi.org/10.1007/978-3-319-46024-6_3
https://doi.org/10.1016/j.ejor.2011.08.017
https://doi.org/10.1007/s10287-013-0182-6
https://doi.org/10.1016/j.ejor.2006.12.024
https://doi.org/10.1007/s10479-006-0145-1
https://doi.org/10.1093/rfs/14.2.407
https://doi.org/10.1093/rfs/14.2.407
https://doi.org/10.1016/j.ejor.2013.08.035
https://doi.org/10.1016/S0377-2217(98)00252-5
https://doi.org/10.1016/S0377-2217(98)00252-5
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1016/j.ejor.2012.08.023
https://doi.org/10.1016/j.ejor.2012.08.023

28 REFERENCES

Merton, R. C. (1973). “An intertemporal capital asset pricing model.” In: Economet-
rica: Journal of the Econometric Society, pp. 867-887. DOI: 10.2307/1913811.

Moller, A., W. Romisch, and K. Weber (2008). “Airline network revenue management
by multistage stochastic programming.” In: Computational Management Science
5.4, pp. 355-377. DOIL: 10.1007/510287-007-0058-8.

Monjas-Barroso, M. and J. Balibrea-Iniesta (2013). “Valuation of projects for power
generation with renewable energy: A comparative study based on real regulatory
options.” In: Energy Policy 55, pp. 335-352. DOI: 10.1016/j.enpol.2012.12.
019.

Nemirovski, A. and A. Shapiro (2006). “Scenario approximations of chance con-
straints.” In: Probabilistic and randomized methods for design under uncertainty.
Ed. by G. Calafiore and F. Dabbene. Springer, pp. 3-47. DOI: 10.1007/1-84628-
095-8_1.

Prékopa, A. (2013). Stochastic programming. Vol. 324. Springer Science & Business
Media. DOI: 10.1007/978-94-017-3087-7.

Reuter, W. H., J. Szolgayova, S. Fuss, and M. Obersteiner (2012). “Renewable energy
investment: Policy and market impacts.” In: Applied Energy 97, pp. 249-254. DOI:
10.1016/j.apenergy.2012.01.021.

Romisch, W. and R. Schultz (2001). “Multistage Stochastic Integer Programs:
An Introduction.” In: Online Optimization of Large Scale Systems. Ed. by M.
Grotschel, S. O. Krumke, and J. Rambau. Springer Berlin Heidelberg, pp. 581-600.
DOI: 10.1007/978-3-662-04331-8_29.

Silvente, J., G. M. Kopanos, and A. Espuna (2015). “A rolling horizon stochastic
programming framework for the energy supply and demand management in
microgrids.” In: 12th International Symposium on Process Systems Engineering
and 25th Furopean Symposium on Computer Aided Process Engineering. Ed. by
K. V. Gernaey, J. K. Huusom, and R. Gani. Vol. 37. Computer Aided Chemical
Engineering. Elsevier, pp. 2321-2326. pDOI: 10. 1016 /B978 - 0 - 444 - 63576 -
1.50081-9.

Software for complex networks (2018). Last accessed 2020/04/16. URL: https :
//networkx.github.io.

UNEP Finance Initiative (2019). UN-convened Net-Zero Asset Owner Alliance. Last
accessed 2019/11/08. URL: https://wuw.unepfi.org/net-zero-alliance.
Vasicek, O. (1977). “An equilibrium characterization of the term structure.” In:
Journal of Financial Economics 5.2, pp. 177-188. DOI: 10.1016/0304-405X(77)

90016-2.

Vigerske, S. (2013). “Decomposition in multistage stochastic programming
and a constraint integer programming approach to mixed-integer nonlinear
programming.” PhD thesis. Humboldt-Universitdt zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultat II. por: 10.18452/16704.

Wekken, T. van de (2007). Distributed Generation and Renewables: Wind Farm
Case Study. Tech. rep.

Yoshida, N. (1992). “Estimation for diffusion processes from discrete observation.”
In: Journal of Multivariate Analysis 41.2, pp. 220-242. DOI: 10.1016/0047 -
259X (92)90068-Q.

Yu, B. W.-T., W. K. Pang, M. D. Troutt, and S. H. Hou (2009). “Objective
comparisons of the optimal portfolios corresponding to different utility functions.”
In: European Journal of Operational Research 199.2; pp. 604—610. DOI: 10.1016/
j.ejor.2008.11.044.

Zou, J., S. Ahmed, and X. A. Sun (2019). “Stochastic dual dynamic integer program-
ming.” In: Mathematical Programming 175.1, pp. 461-502. DOI: 10.1007/s10107-
018-1249-5.


https://doi.org/10.2307/1913811
https://doi.org/10.1007/s10287-007-0058-8
https://doi.org/10.1016/j.enpol.2012.12.019
https://doi.org/10.1016/j.enpol.2012.12.019
https://doi.org/10.1007/1-84628-095-8_1
https://doi.org/10.1007/1-84628-095-8_1
https://doi.org/10.1007/978-94-017-3087-7
https://doi.org/10.1016/j.apenergy.2012.01.021
https://doi.org/10.1007/978-3-662-04331-8_29
https://doi.org/10.1016/B978-0-444-63576-1.50081-9
https://doi.org/10.1016/B978-0-444-63576-1.50081-9
https://networkx.github.io
https://networkx.github.io
https://www.unepfi.org/net-zero-alliance
https://doi.org/10.1016/0304-405X(77)90016-2
https://doi.org/10.1016/0304-405X(77)90016-2
https://doi.org/10.18452/16704
https://doi.org/10.1016/0047-259X(92)90068-Q
https://doi.org/10.1016/0047-259X(92)90068-Q
https://doi.org/10.1016/j.ejor.2008.11.044
https://doi.org/10.1016/j.ejor.2008.11.044
https://doi.org/10.1007/s10107-018-1249-5
https://doi.org/10.1007/s10107-018-1249-5

REFERENCES 29

INADINE GATZERT, NIKOLAI VOGL, FRIEDRICH- ALEXANDER-UNIVERSITAT ERLANGEN-NURN-
BERG (FAU), INSURANCE EcoNomics AND Risk MANAGEMENT, ScHOOL OF BusiNEss, Eco-
NOMICS AND SOCIETY, LANGE GassE 20, 90403 NURNBERG, GERMANY; 2ALEXANDER MARTIN,
FRIEDRICH- ALEXANDER- UNIVERSITAT ERLANGEN-NURNBERG (FAU), DISCRETE OPTIMIZATION,
CAUERSTR. 11, 91058 ERLANGEN, GERMANY; >MARTIN ScHMIDT, TRIER UNIVERSITY, DEPART-
MENT OF MATHEMATICS, UNIVERSITATSRING 15, 54296 TRIER, GERMANY; *BENJAMIN SEITH,
NURNBERGER VERSICHERUNG, OSTENDSTRASSE 100, 90334 NURNBERG, GERMANY

Email address: 1{nadine.gatzert,nikolai.vogl}@fau.de

Email address: 2alexander.martin@fau.de

Email address: 3martin.schmidt@uni-trier.de

Email address: *b.seith@gmx.net



	1. Introduction
	2. Problem Description
	2.1. General Setup and Overview of the Problem
	2.2. Traded Assets
	2.3. Infrastructure Investments
	2.4. Model Summary

	3. Discretized Model
	4. A Moving-Horizon Algorithm
	4.1. The Basic Moving-Horizon Procedure
	4.2. Handling of the Investment Period

	5. Computational Study
	5.1. Calibration of the Model
	5.2. Computational Setup and Implementation Details
	5.3. The Impact of Approximating the Investment Period
	5.4. Sensitivity Analysis for the Stochastic Processes

	6. A Real-World Example and Conclusion
	Acknowledgements
	References

