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Abstract. For a mixed-integer linear problem (MIP) with uncertain con-
straints, the radius of robust feasibility (RRF) determines a value for the
maximal “size” of the uncertainty set such that robust feasibility of the MIP
can be guaranteed. The approaches for the RRF in the literature are restricted
to continuous optimization problems. We first analyze relations between the
RRF of a MIP and its continuous linear (LP) relaxation. In particular, we
derive conditions under which a MIP and its LP relaxation have the same RRF.
Afterward, we extend the notion of the RRF such that it can be applied to
a large variety of optimization problems and uncertainty sets. In contrast to
the setting commonly used in the literature, we consider for every constraint
a potentially different uncertainty set that is not necessarily full-dimensional.
Thus, we generalize the RRF to MIPs as well as to include “safe” variables
and constraints, i.e., where uncertainties do not affect certain variables or
constraints. In the extended setting, we again analyze relations between the
RRF for a MIP and its LP relaxation. Afterward, we present methods for com-
puting the RRF of LPs as well as of MIPs with safe variables and constraints.
Finally, we show that the new methodologies can be successfully applied to the
instances in the MIPLIB 2017 for computing the RRF.

1. Introduction

Robust optimization is a well-established method for protecting an optimization
problem from data uncertainties that are usually defined via so-called uncertainty
sets. Such data uncertainties may arise as a result of estimation and prediction
errors as well as from a lack of (future) information. Robust optimization plays an
important role in many applications such as finance, energy, supply chain, health care,
etc., see [25] and the literature therein. For detailed overviews of the research area
of robust optimization, we refer to [3, 5, 7, 10, 25]. One of the main goals consists in
finding robust feasible solutions, i.e., solutions which are feasible for all realizations
of a given uncertainty set. A solution is robust optimal if it is robust feasible and
attains the best possible objective value. The corresponding robust optimization
problem, also called robust counterpart, is, in general, semi-infinite. Nevertheless,
for several important classes of optimization problems and uncertainty sets, it is
possible to reformulate the robust counterpart as an algorithmically tractable finite
optimization problem. This is in particular true for mixed-integer linear optimization
and convex uncertainty sets, see for example [4] for a comprehensive treatment.

Intensive research has been conducted in developing algorithmically tractable
robust counterparts. However, in applications it also important to construct ap-
propiate uncertainty sets. Some proposals for constructing “good” uncertainty sets
are given in [6, 8, 25]. High-volume uncertainty sets may lead to overly conservative
solutions that are overly protected and furthermore lead to bad objective function
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values, when compared to the nominal solution. The overall goal of constructing
“good” uncertainty sets consists in prohibiting too conservative, intractable, or even
infeasible robust optimization problems due to the choice of the uncertainty set.
In order to achieve these goals, it is useful to know the maximal “size” of a given
uncertainty set such that a robust feasible solution still exists. In this paper, we
study one notion of “size”: the radius of robust feasibility (RRF). It is motivated by
the notion of the consistency radius used in the linear semi-infinite programming,
see [11–13].

In this work, we investigate the problem of determining the RRF for a mixed-
integer linear optimization problem (MIP), both from a theoretical as well as from
a practical point of view. To evaluate our methods on a set of realistic MIPs
from different applications, we apply them to compute the RRF for the benchmark
instances of the MIPLIB 2017 library.

In general, the RRF is defined as the supremum over all scaled sizes of a given
uncertainty set such that robust feasibility is guaranteed. Consequently, it is
possible that the supremum is not attained, i.e., the RRF is not attained. In
this case, the uncertain problem is not feasible for the uncertainty set scaled by
the RRF, but it is feasible for every smaller scaling, see [23]. The RRF has been
researched only for continuous problems. For linear problems (LPs), theoretical
and numerical tractable models for the RRF w.r.t. different compact and convex
uncertainty sets are provided in [19, 23, 24]. The RRF is introduced in robust convex
optimization in [22]. The authors further provide an upper bound of the RRF for
convex problems with convex polynomial constraints and establish a method for
computing the RRF of convex problems with SOS-convex polynomial constraints.
In [18, 29], exact analytical formulas for the RRF of convex problems with general
convex and compact uncertainty sets are established. We also note that in the recent
paper [18] lower and upper bounds for the RRF of convex problems with different
full-dimensional uncertainty sets for every constraint are given. We note that the
RRF has connections to recent developments in the fields of stability and sensitivity
analysis of robust optimization problems, see e.g., [16, 20], because it computes the
solution that is most insensitive w.r.t. feasibility and changes, in form of scaling, of
the uncertainty set.

We generalize the above-mentioned approaches in three directions: We allow
that the uncertainty sets are different and not necessarily full-dimensional for every
constraints. We do not require zero to be in the interior of the uncertainty set and
finally, we allow integer variables in the optimization problem. This enables us to
consider a wider variety of applications for the RRF. For instance, we can include
“safe” constraints and variables, i.e., constraints and variables that are not affected
by uncertainty. For example, if all coefficients of a constraint are deterministic,
this constraint is safe. If all coefficients of some variable are deterministic in the
constraint system, this variable is safe. The drawback of this generalization is, that
we lose some of the nice theoretical properties of the RRF, e.g., finiteness, see [23].
Furthermore, the generalizations require the developement of new algorithmic
techniques to compute the RRF.

The RRF has been studied for specific applications. For instance, in [14] the
authors try to find the “most robust” facilities w.r.t. demand uncertainties for the
Weber problem of facility location design. One can show that their problem is
equivalent to computing the RRF. However, for this equivalence to hold, one cannot
use the standard definition of the RRF, but one needs to extend it to include safe
constraints and variables as in Section 3. The core idea in [14] is to remove the
objective of the original problem and reintroduce it into the problem as a budget
constraint for a fixed budget (e.g. the original optimal value). Then one can compute
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the RRF, with the budget constraint considered safe, to obtain a solution that can
be seen as a “most robust” solution. The budget specifies how much a decision
maker is willing to pay to obtain a robust solution. With the help of varying the
budget, one can support decision makers by showing them the trade-off between
robustness and worse objective values. With our work, the same idea can now
be applied to general MIPs. The authors of [15] also use the concept of the RRF
in facility location design. They consider a bi-objective problem that consists of
maximizing robustness via the RRF and minimizing the estimated total cost. For
LPs another example is the flexibility index problem, e.g., the RRF of an LP with a
box uncertainty set, see [33].

A more complex variant of the RRF plays an important role in the context of
design and control of gas networks. In the European Entry-Exit market system, the
transmission system operator is obliged to allocate so called technical capacities in
the network while guaranteeing the feasibility of the gas transport for any injection
and withdrawal within these capacities, see [28] for a more detailed explanation.
The computation of technical capacities leads to a two-stage nonlinear robust
optimization problem that has not been solved in general so far. The latter problem
can be solved by applying a complex variant of the extended RRF including “safe”
constraints and variables and different radii for different constraints. Thus, this work
is a first step towards computing technical capacities in gas network operations.

The key contributions of our paper are as follows:
(i) We first introduce the RRF for MIPs in Section 2. We then analyze in

detail the relations between the RRF of a MIP and its LP relaxation in
the common setting of the literature, i.e., where the uncertainty set is full-
dimensional. We prove the main result that if the RRF of the LP relaxation
is not attained, then this RRF equals the RRF of the corresponding MIP.
The latter result enables us to compute the RRF of a MIP using known
techniques for the RRF of LPs under certain conditions.

(ii) We extend the concept of the RRF to include “safe” variables and constraints
in Section 3 in order to make the RRF applicable to a broader spectrum
of problems and applications. We then again analyze relations between
the RRF of a MIP and its LP relaxation. Further, we prove a necessary
optimality condition for the RRF which is also sufficient under additional
assumptions.

(iii) We provide first algorithms for computing the RRF including “safe” variables
and constraints in Section 4. Finally, we present a computational study
of the RRF w.r.t. the MIPLIB 2017 library, see [30]. We compare the
performance of the proposed methods and the computed RRF. We also
consider the price of robustness which measures the difference between the
optimal objective value of the nominal problem and the corresponding value
of the robust problem and discuss the obtained results.

2. Relations between the RRF of a MIP and of its LP Relaxation

In this section, we first introduce the radius of robust feasibility for a MIP and
then relate it to that of its LP relaxation. In the following, let us consider a feasible
MIP with coefficients āj ∈ Rn and b̄j ∈ R, j ∈ J , of the constraints and finite index
set J ⊂ N that is composed of

min
x∈Zk×Rn−k

{cTx : (āj)Tx ≤ b̄j , j ∈ J}. (P)
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For fixed α ≥ 0, let the robust counterpart for the uncertain MIP (P) with uncertainty
set αU ⊆ Rn+1 be given by

min
x∈Zk×Rn−k

{cTx : (aj)Tx ≤ bj , ∀(aj , bj) ∈ {(āj , b̄j) + αu : u ∈ U}, j ∈ J}, (PRα)

whereby U ⊆ Rn+1 is a convex and compact uncertainty set. In analogy
to [19, 22, 23, 29], we further assume that the uncertainty set U contains zero
in its interior.

Assumption 1. Uncertainty set U includes zero in its interior, i.e., 0 ∈ int U holds.

This implies that the uncertainty set U is full-dimensional, i.e. every variable is
affected by uncertainties. We note that one can transform a robust optimization
problem with an uncertainty set that does not contain zero to an equivalent robust
problem with an uncertainty set that contains zero, see Chapter 1 of the book [3]. It
is, however, not possible to guarantee that zero is in the interior of the uncertainty
set U . This is the case, for instance, if one variable is not affected by uncertainty,
i.e., the projection of U on a single variable is just the set containing only zero.
Furthermore, we note that the standard transformation of the uncertainty set does
not maintain the form of (PRα).

Assumption 1 guarantees that the radius of robust feasibility of LPs is finite, as
shown in [23]. Additionally, we assume that the nominal problem (PR0) is feasible,
i.e., {x ∈ Zk × Rn−k : ājx ≤ b̄j , j ∈ J} 6= ∅. Following the notion of [19, 23], who
consider the radius of robust feasibility for linear problems, we define the radius of
robust feasibility (RRF) for the parametric uncertain mixed-integer problem (P) as

ρMIP := sup{α ≥ 0: (PRα) is feasible}.
The definition of the RRF ρMIP does not necessarily imply the feasibility of (PRρMIP),
even in the case of linear problems, see Example 2.2 in [23]. If (PRρMIP) is feasible,
we say that the RRF is attained, otherwise it is not attained. Proposition 2.3 in [23]
states a sufficient condition so that the RRF is attained by a feasible solution.

We note that (PRα) is a semi-infinite MIP that consists of infinitely many
constraints and finitely many variables. Thus, it cannot easily be solved by known
techniques. We now reformulate (PRα) with the help of Fenchel duality in order
to obtain an ordinary robust counterpart, i.e., the robust counterpart consists of
finitely many variables and constraints. For ease of notation, we use index set
I := {1, ..., n} and b := n+ 1 in the remainder of this paper. We further introduce
the indicator function δ(x | U) for x ∈ Rn+1, which evaluates to zero if x ∈ U holds
and otherwise to +∞. Moreover, let δ?(y | U) = supu∈U y

Tu denote the conjugate
function of the indicator function, which is also called support function.

Proposition 2.1. Let α ≥ 0 be fixed. Then, the feasible region of (PRα) equals
the feasible region of the ordinary counterpart

{x ∈ Zn × Rn−k | (āj)Tx+ αδ?((x,−1)T | U) ≤ b̄j , j ∈ J}. (1)

Proof. The claim follows from Theorem 2 in [4] and the positive homogeneity
of δ?(y | U). �

Consequently, we obtain

min
x∈Zk×Rn−k

{cTx : (āj)Tx+ αδ?((x,−1)T | U) ≤ b̄j , j ∈ J}. (PRCα)

as the ordinary robust counterpart of (PRα).
In general, for fixed α ≥ 0, problem (PRCα) is a convex constrained mixed-

integer problem. This holds, because for a convex and compact set U the support
function δ?(y | U) is convex in y, see [9]. For many uncertainty sets U such as boxes,
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balls, cones, polyhedrals, or convex functions, an explicit formulation of (PRCα),
especially the computation of the support function, can be found in [4].

All existing techniques for computing the RRF of continuous problems, such
as [18, 19, 22, 23, 29], are based on concepts that are not transferable to MIPs.
Hence, we now analyze relations about the RRF of (P) and of its LP relaxation

min
x∈Rn
{cTx : (āj)Tx ≤ b̄j , j ∈ J}. (LP)

The robust counterpart for the uncertain linear problem (LP) with uncertainty
set αU ⊆ Rn+1 and its ordinary reformulation equal the continuous relaxations
of (PRα) and (PRCα). We denote them by

min
x∈Rn
{cTx : (aj)Tx ≤ bj , ∀(aj , bj) ∈ {(āj , b̄j) + αu : u ∈ U}, j ∈ J}, (LPRα)

min
x∈Rn
{cTx : (āj)Tx+ αδ?((x,−1)T | U) ≤ b̄j , j ∈ J}. (LPRCα)

We first prove some basic results, which show among other things that the RRF
of (LP) is always an upper bound for ρMIP.

Theorem 2.2. Let ρMIP be the RRF of (P). The RRF of its continuous relax-
ation (LP) is denoted by ρLP. Then, the following statements hold:

(i) 0 ≤ ρMIP ≤ ρLP.
(ii) RRF ρMIP is finite.

Proof. Each feasible solution of a MIP is feasible for its LP relaxation. Thus,
the RRF of (LP) is always an upper bound for the corresponding RRF of (P).
Furthermore, the RRF of an LP is finite if 0 ∈ int U holds, see [23]. Consequently,
the RRF of (P) is finite as well. �

Next, we state a monotonicity fact regarding the feasibility of (PRα). It is based
on the observation that if a robust optimization problem is feasible, then so is the
same problem for a subset of the uncertainty set.

Observation 2.3. If x is a feasible solution to (PRα), then x is also feasible for (PRα′)
for all α′ ∈ [0, α].

We now show with the help of an example that the RRF of (P) and of its
LP relaxation (LP) are not necessarily equal.

Example 2.4. The constraints of the nominal problem are given by

− 2x1 ≤ −1.5, 2x1 ≤ 3.5, x1 ∈ Z, (2)

with uncertainty set U := [−1, 1]2. Since

δ?((x1,−1) | [−1, 1]2) = max
u1,u2∈[−1,1]

(u1x1 − u2) = |x1|+ 1

holds, Proposition 2.1 leads to the following robust counterpart of (2)

− 2x1 + α|x1| ≤ −1.5− α, 2x1 + α|x1| ≤ 3.5− α, x1 ∈ Z. (3)

The only feasible solution for the nominal problem (2) is x1 = 1. Further, x1 = 1
is feasible to (3) if and only if α ∈ [0, 0.25] holds. Consequently, the RRF of (2)
equals 0.25. Now, we consider the LP relaxation of (2). The corresponding robust
counterpart equals the relaxation of (3). If x1 is a feasible solution of the relaxation
of (3), then it is a feasible solution of (2). Consequently, 0.75 ≤ x1 ≤ 1.75 holds.
Since x1 > 0, one has

1.5 + α

2− α
≤ x1 ≤

3.5− α
α+ 2

which entails α ≤ 4
9 . Conversely, if 0 ≤ α ≤ 4

9 , then every x1 satisfying the previous
inequalities is a feasible solution of the relaxation of (3). Thus, the RRF of the



6 F. LIERS, L. SCHEWE, J. THÜRAUF

relaxation is 4
9 that is attained by x1 = 1.25. We note that the RRF of (2) and its

relaxation are attained, i.e., (PR0.25) and (LPR 4
9
) are feasible.

This leads to the following.

Observation 2.5. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relax-
ation (LP). MIPs with ρMIP < ρLP exist.

We now state the main result of this section, namely that if ρLP is not attained,
then (P) and (LP) have the same RRF. This result provides sufficient conditions
such that the RRF of a MIP can be computed by the RRF of the LP relaxation.
In detail, we first compute the RRF of the LP relaxation with known techniques.
If this RRF is not attained, then it is also the RRF of the corresponding MIP.
Otherwise, we obtain an upper bound which is useful for computing the RRF as
we will see in Section 4. Additionally, we show that a similar connection between
the RRF of a MIP and its LP relaxation is not necessarily given if ρLP is attained.
These findings are summarized in the next theorem.

Theorem 2.6. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relax-
ation (LP). Then, the following statements hold:

(i) If the RRF of (LP) is not attained, then ρMIP = ρLP holds.
(ii) If the RRF of (P) is attained, then the RRF of (LP) is also attained.
(iii) MIPs exist such that the RRF ρLP is attained and ρMIP is attained.

MIPs exist such that the RRF ρLP is attained and ρMIP is not attained.

We will now present several examples and lemmas. With their help, we will prove
Theorem 2.6 at the end of this section.

In general, the RRF is not necessarily attained by a feasible solution. If (P) and
(LP) have the same RRF and (PRρMIP

) is feasible, then the RRF of (LP) is also
attained because each feasible solution of (PRρMIP

) is also feasible to (LPRρLP
). A

reversal of this relation is not true in general. That means, if the RRF of (LP) is
attained, then (PRρMIP) is not necessarily feasible. We show this with the help of
the following example.

Example 2.7. The constraints of the nominal problem are given by

− x1 − 2x2 ≤ 0.5, −x1 + 2x2 ≤ 2.5, x1, x2 ∈ Z, (4)

with uncertainty set U := [−1, 1]3. From Proposition 2.1 the robust counterpart
of (4) reads as

−x1 + α|x1| − 2x2 + α|x2| ≤ 0.5− α, (5a)
−x1 + α|x1|+ 2x2 + α|x2| ≤ 2.5− α, x1, x2 ∈ Z. (5b)

For α ∈ [0, 1), we set x2 = 0 and (−1+α) < 0 holds. Consequently, (x1, 0) is feasible
for (5) whenever x1 ∈ N satisfies x1 ≥ 0.5−α

α−1 . Thus, the RRF of (4) is at least 1. We
now consider α = 1. Since −x1 +α|x1| ≥ 0 holds for every x1 ∈ R, it follows x2 > 0
by (5a). Consequently, from (5) we obtain −x2 ≤ −0.5 and 3x2 ≤ 1.5 that has to
be satisfied by an integer solution which leads to a contradiction. Consequently,
the RRF of (4) equals 1 due to Observation 2.3 and further it is not attained. We
now consider the relaxation of (4), i.e., x1, x2 ∈ R. Its robust counterpart equals
the relaxation of (5). Then, x1 = 0, x2 = 0.5 is a feasible solution for α ∈ [0, 1] of
the corresponding robust counterpart. For α > 1 the inequality −x1 + α|x1| ≥ 0
holds for x1 ∈ R and thus, from (5a) it follows x2 > 0. Consequently, we obtain
from (5) the inequalities −x2 < −0.5 and x2 < 0.5 that have to be satisfied, which is
a contradiction. Thus, the RRF of the relaxation of (4) equals 1 and it is attained.
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If we slightly increase the right-hand side of (4), then we obtain the same result
that (LPRρLP

) is feasible and (PRρMIP
) is infeasible, but this time ρMIP < ρLP holds.

An example for this adaption is given as follows.

Example 2.8. The constraints of the nominal problem are given by

−x1 − 2x2 ≤ 0.6, −x1 + 2x2 ≤ 2.6, x1, x2 ∈ Z.
Then, the RRF of (P) equals 1 and it is not attained. The RRF of (LP) equals 16

15
that is attained by x1 = 0, x2 = 0.5.

We now show several statements that lead to the proof of the main result (i) of
Theorem 2.6. The latter says that if (LP) does not attain its RRF, then (P) and
(LP) have the same RRF. We first prove that if the RRF ρMIP is not attained, then
an unbounded sequence of solutions exists such that for every α < ρMIP an element
of the sequence solves (PRCα).

Lemma 2.9. If the RRF ρMIP of (P) is not attained, then a positive and strictly
increasing sequence (αl)l∈N and an unbounded sequence in Rn, (xl)l∈N, exist such
that (αl)l∈N converges to ρMIP and xl is feasible to (PRCαl) for all l ∈ N.

Proof. Since (P) is feasible and ρMIP is not attained, ρMIP > 0 holds. Consequently,
a positive and strictly increasing sequence (αl)l∈N that converges to ρMIP exists.
Furthermore, a sequence in Rn, (xl)l∈N, exists such that xl is feasible to (PRCαl)
for all l ∈ N. We now have to show that the sequence (xl)l∈N is unbounded. To this
end, we contrarily assume that (xl)l∈N is bounded. Consequently, and by passing
to a subsequence if necessary, we may assume that xl −→ x̄ holds, with x̄i ∈ Z for
i = 1, . . . , k thanks to the closedness of Z. Considering (PRCαl) together with a
solution xl for an arbitrary j ∈ J leads to

(āj)Txl + αlδ?((xl,−1)T | U) ≤ b̄j . (6)

Passing to the limit in (6), we obtain

(āj)T x̄+ ρMIPδ
?((x̄,−1)T | U) ≤ b̄j .

Thus, x̄ is a feasible solution to (PRCρMIP), which contradicts the requirements. �

We next prove that under the given conditions we can arbitrarily expand the
slack of any constraint of (PRαl).

Lemma 2.10. Let (αl)l∈N be a strictly increasing positive sequence and an un-
bounded sequence in Rn, (xl)l∈N, exist such that xl is feasible to (PRαl) for all l ∈ N.
Then, for an arbitrary value M ≥ 0 and index l̂ ∈ N there exists an index l̄ > l̂ such
that for all u = ( uI

ub
) ∈ U , j ∈ J , and l ≥ l̄ the inequality

(āj)Txl + αl̂(uTI x
l − ub) +M ≤ b̄j

holds.

Proof. For a sufficiently small number β > 0, we know that ±βev ∈ U for v ∈ I
holds, whereby ev is the vth unit vector of Rn+1, because 0 ∈ int U . Passing to
a subsequence if necessary, we know that v ∈ I with |xlv| −→ +∞ exists because
the sequence (xl)l∈N is unbounded. We can assume w.l.o.g. that xlv −→ +∞ holds
due to ±βev ∈ U . Additionally, we can assume that (xlv)l>l̂ is strictly increasing
and we know that (αl)l∈N is strictly increasing. Consequently, an index l̄ exists
such that for all l ≥ l̄ the inequality (αl − αl̂)βxlv ≥ M holds. We now choose an
arbitrary index j ∈ J , u ∈ U , and consider l > l̄. From the convexity of U it follows
u′ := αl̂

αlu+ (1− αl̂

αl )βev ∈ U . The element xl is a feasible solution to (PRαl). Hence,

(āj)Txl + αl((u′I)
Txl − u′b) = (āj)Txl + αl̂(uTI x

l − ub) + (αl − αl̂)βxlv ≤ b̄j (7)
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is satisfied for every l > l̄. The inequality (αl − αl̂)βxlv ≥M , which is independent
from the chosen u, holds and thus, (7) shows the claim. �

Due to the compactness of U , we know that rounding down any solution leads to
a bounded difference in the left side of any constraint in (PRCα). For x ∈ Rn, bxc
denotes the vector whose vth component is the lower integer part of xv.

Lemma 2.11. For fixed α ≥ 0, a positive value M > 0 exists such that the
inequalities

|(āj)T (x− bxc) + αuTI (x− bxc)| ≤M (8)
are satisfied for any u ∈ U , x ∈ Rn, and j ∈ J .

Finally, we can prove Theorem 2.6.

Proof of Theorem 2.6. Examples 2.4, 2.7, and 2.8 show Statement (iii).
We now prove Statement (i). To this end, we assume w.l.o.g. that ρLP is positive.

The RRF ρLP is not attained and hence, from Lemma 2.9 it follows that a strictly
increasing positive sequence (αl)l∈N with 0 < αl < ρLP and an unbounded sequence
in Rn, (xl)l∈N, exist such that αl converges to ρLP and xl is feasible to (LPRαl) for
all l ∈ N. For an arbitrary fixed index l̂ ∈ N, we now construct a solution x̂l̂ that
is feasible to (PRαl̂). Due to Lemma 2.11, we can choose M > 0 such that (8) is
satisfied. We now apply Lemma 2.10 for this value M . Consequently, a solution xl
exists such that the inequalities

(āj)Txl + αl̂(uTI x
l − ub) +M ≤ b̄j , u ∈ U , j ∈ J, (9)

are satisfied. For an arbitrary element u ∈ U and j ∈ J , the inequalities

b̄j ≥ (āj)Txl + αl̂(uTI x
l − ub) +M

= (āj)T bxlc+ αl̂(uTI bxlc − ub) + (āj)T (xl − bxlc) + αl̂uTI (xl − bxlc) +M

≥ (āj)T bxlc+ αl̂(uTI bxlc − ub),

follow from (8) and (9). Thus, x̂l̂ := bxlc is an integer solution to (PRαl̂). We
have arbitrarily chosen l̂ ∈ N and hence, we can construct for each l̂ ∈ N an integer
solution which is feasible for (PRαl̂). This, the convergence of (αl̂)l̂∈N to ρLP, and
Statement (i) of Theorem 2.2, prove that ρMIP = ρLP holds.

We now show Statement (ii). We contrarily assume that the RRF of (LP) is not
attained. Thus, ρMIP = ρLP follows from Statement (i) of Theorem 2.6. Due to
the requirements, (PRρMIP) is feasible, which is a contradiction to the assumption,
because each feasible solution of (PRρMIP) is feasible to (LPRρLP). �

The proof of this theorem closes the section. We will extend our investigations
to linear optimization problems that contain safe constraints and variables in the
following section.

3. Extension of the RRF to Include Safe Constraints and Variables

As mentioned in the introduction, there is a need to integrate safe variables and
constraints into the concept of the RRF since often only parts of optimization models
are affected by uncertainty in practice. Thus, a full-dimensional uncertainty set U
with 0 ∈ int U such as in Assumption 1 is not given in this context. Consequently,
many known techniques for computing the RRF of LPs such as in [18, 19, 22, 23, 29]
are not applicable anymore. Moreover, it is sometimes necessary to choose different
not necessarily full-dimensional uncertainty sets for different constraints. In this case,
the setting of Section 2, in which we consider in line with the common literature
the same full-dimensional uncertainty set U for all constraints, is not suitable.
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Additionally, a general weakness of the common definition of the RRF in view of
comparing the RRF for different models of the same problem is that scaling the
constraints of the nominal problem (P) changes the RRF, which can make the RRF
values meaningless in practice. We illustrate this by the following example.

Example 3.1. We consider the uncertainty set U = [−1, 1]2. Then, a nominal
problem with constraints given by −x1 ≤ 1, x1 ∈ R, has RRF 1 whereas scaling
this nominal problem by a factor of 2 leads to −2x1 ≤ 2, x1 ∈ R, with RRF 2.

The latter example and the above mentioned limitations of the setting for the
RRF from Section 2 motivate us to extend this setting. This will allow us to apply
the concept of the RRF to more MIP instances and applications such as computing
the “most robust” solution in robust facility location design.

We now introduce our extended setting for the RRF of a MIP. In analogy to
Section 2, we consider the nominal MIP (P). Let α ≥ 0 be a fixed value and µj
the smallest absolute nonzero coefficient of the jth constraint of (P). The robust
counterpart for the uncertain MIP (P) with uncertainty sets αŪ j , j ∈ J, is now
given by

min
x∈Zk×Rn−k

{cTx : (aj)Tx ≤ bj , ∀(aj , bj) ∈ {(āj , b̄j)+αu : u ∈ Ū j}, j ∈ J}, (EPRα)

whereby for j ∈ J the uncertainty set Ū j := µj Uj ⊂ Rn+1 is composed of a convex
and compact set Uj that is scaled by µj . In contrast to (PRα) of Section 2, we
now consider in (EPRα) for every constraint an own uncertainty set. These sets are
not necessarily equal. Additionally, for j ∈ J every uncertainty set Ū j is scaled by
the smallest absolute nonzero coefficient of the jth constraint. The latter prevents
that the RRF of a MIP can be increased by scaling the nominal problem such as
in Example 3.1, which we will show later in this section, see Lemma 3.6. We note
that the uncertain problem (PRα) of the previous section is a special case of the
extended uncertain problem (EPRα).

In contrast to the setting of Section 2 that requires zero in the interior of
the uncertainty set, see Assumption 1, we relax this condition such that zero
is only a part of our uncertainty set. Consequently, the uncertainty set is not
necessarily full-dimensional and we now can model safe variables and constraints. A
variable xi, i ∈ I, is said to be safe for the jth constraint, j ∈ J , if the projection of
Ū j on the ith axis equals {0}. Further, a variable xi, i ∈ I, is said to be safe if it is
safe for each constraint (āj)Tx ≤ b̄j , j ∈ J .

For constraints, we now differentiate between two notions of being safe. A
constraint (āj)Tx ≤ b̄j , j ∈ J, is syntactically safe if Ū j = {0}. It is semantically
safe, if δ?((x,−1)T | Ū j) = 0 for all feasible points x ∈ Rn of (P). Whereas a
syntactically safe constraint is also semantically safe, the converse statement is not
necessarily true.

Considering the input data of the optimization problem, we can easily check
whether a constraint is syntactically safe but not whether it is semantically safe.
We note that decision makers can explicitly model syntactically safe constraints by
setting the corresponding uncertainty set to zero. Throughout the following sections,
we use safe as short form of semantically safe, if not explicitly stated otherwise.

The requirement that the uncertainty set contains zero is reasonable because it
ensures that the nominal problem (EPR0) is feasible for the RRF.

Assumption 2. Zero is contained in every uncertainty set Ū j for j ∈ J .

In analogy to Section 2, we define the radius of robust feasibility (RRF) of a given
MIP in our extended setting by

ρMIP := sup{α ≥ 0: (EPRα) is feasible}.
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Similar to Proposition 2.1, we reformulate the feasible region of the semi-infinite
problem (EPRα) and obtain the ordinary robust counterpart

min
x∈Zk×Rn−k

{cTx : (āj)Tx+ αδ?((x,−1)T | Ū j) ≤ b̄j , j ∈ J}. (EPRCα)

In analogy to Section 2, the robust counterparts corresponding to the continuous
relaxation of (EPRα) equal the continuous relaxation of (EPRCα). We note that
the setting of Section 2 is included in our extended setting of this section. We now
compare the two settings and highlight similarities and differences.

First, we summarize all statements of Section 2 that are satisfied in our extended
setting and can be shown analogously to the previous section.

Observation 3.2. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relax-
ation (LP). Then, the following statements hold:

(i) 0 ≤ ρMIP ≤ ρLP.
(ii) MIPs with ρMIP < ρLP exist.
(iii) MIPs exist such that the RRF ρLP is attained and ρMIP is attained.

MIPs exist such that the RRF ρLP is attained and ρMIP is not attained.

We also note that Observation 2.3 and Lemma 2.9 are valid in our new setting,
which can be shown in analogy to Section 2.

We now turn to the differences between the two considered settings for the RRF.
Using counterexamples we show that several statements of the previous Section 2
are not satisfied in our extended setting. Especially, the main result, Statement (i)
of Theorem 2.6, is not satisfied anymore. First, we note that the RRF is not
necessarily finite in our new setting, which especially holds for every feasible nominal
problem (P) if the uncertainty set contains only zero.

Observation 3.3. MIPs exist such that the RRF of (P) is infinite.

The next example shows that if the RRF ρLP of the LP relaxation (LP) is not
attained, then the RRF ρMIP of (P) is not necessarily equal to ρLP.

Example 3.4. The constraints of the nominal problem are given by

x1 ≤ 1, −x1 ≤ 0.1, −x2 ≤ −2, x1 ∈ Z, x2 ∈ R, (10)

with the uncertainty sets Ū1 = [0]2 × [−0.5, 0.5], Ū2 = 0.1 · ([0]2 × [−5, 5]), and
Ū3 = [0]× [−1, 1]× [0]. Proposition 2.1 leads to the robust counterpart of (10)

x1 ≤ 1− 0.5α, −x1 ≤ 0.1− 0.5α, −x2 + α|x2| ≤ −2, x1 ∈ Z, x2 ∈ R. (11)

From Counterpart (11) it follows that the RRF ρMIP of (10) equals 0.2 and it is
attained by any point (0, x2) such that x2 ≥ 2.5.

We now consider the LP relaxation of (10) and the corresponding counterpart,
which is the continuous relaxation of (11). For every α ∈ [0, 1) the element (x1, x2) =
(0.5, 2/(1− α)) is feasible for the continuous robust counterpart. Furthermore, for
α = 1 the corresponding counterpart is infeasible because −x2 + |x2| ≤ −2, x2 ∈ R,
cannot be satisfied. Consequently, the RRF ρLP of the LP relaxation of (10) equals 1
and is not attained by a feasible solution.

From Example 3.4 it follows that the main result of Section 2, Statement (i) of
Theorem 2.6, is not valid in our new setting for the RRF. Furthermore, Statement (ii)
of Theorem 2.6 does not hold.

Lemma 3.5. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relax-
ation (LP). Then, the following statements hold:

(i) MIPs exist such that ρLP is not attained and ρMIP < ρLP holds.
(ii) MIPs exist such that the RRF ρMIP is attained and ρLP is not attained.
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In addition that we can now handle safe constraints and variables in our extended
setting, we now prove that scaling the nominal problem by a positive factor does
not change the RRF, which is not valid for the RRF in the setting of Section 2, see
Example 3.1.

Lemma 3.6. Let ρMIP be the RRF of (P) and λj > 0, j ∈ J, positive factors. Then,
ρMIP is also the RRF of the λ-scaled problem (P), i.e., ρMIP is the RRF of

min
x∈Zk×Rn−k

{cTx : λj(āj)Tx ≤ λj b̄j , j ∈ J}. (12)

Proof. For every j ∈ J , scaling the jth constraint of the nominal problem (P) by λj
also scales the smallest absolute nonzero coefficient µj of the jth constraint by λj .
Hence, for j ∈ J the uncertainty set Ū j is scaled by λj . From this it follows that the
uncertain problem of (12) equals (EPRα). Thus, ρMIP is also the RRF of (12). �

We now have analyzed similarities and differences for the setting of the RRF in
Section 2 and our extended setting. To conclude this section, we present a necessary
optimality condition for the RRF of a MIP in our extended setting that we then
extend to a necessary and sufficient condition under additional assumptions. Its
basic idea is rather simple, if none of the constraints is tight for a considered feasible
solution, then we can increase the uncertainty set which implies that the chosen size
of the uncertainty set was not maximal.

Theorem 3.7. Let α ≥ 0 be the finite RRF of (P). Then, for every feasible solution
x ∈ Zk × Rn−k of (EPRCα) there exists an index j ∈ J which satisfies

(āj)Tx+ αδ?((x,−1)T | Ū j) = b̄j .

Proof. Let α ∈ R be the finite RRF of (P). We contrarily assume that (ε, x) with
ε > 0 exists such that x is feasible for (EPRCα) and

(āj)Tx+ αδ?((x,−1)T | Ū j) + ε ≤ b̄j , j ∈ J \ S, (13)

is satisfied, whereby δ?((x,−1)T | Ū j) is positive only for j ∈ J \ S. We note
that J \ S is nonempty, because the RRF is finite. Further, the support function
δ?((x,−1)T | Ū j) is nonnegative because for j ∈ J the uncertainty set Ū j contains
zero. The inequalities

α ≤ b̄j − (āj)Tx− ε
δ?((x,−1)T | Ū j)

, j ∈ J \ S

hold, which follows from (13). We now set

α′ = min
l∈J\S

b̄l − (āl)Tx

δ?((x,−1)T | Ū l)
.

Then, α′ > α holds because ε is positive. Furthermore, for j ∈ J \ S the inequality

(āj)Tx+ α′δ?((x,−1)T | Ū j) ≤ (āj)Tx +
b̄j − (āj)Tx

δ?((x,−1)T | Ū j)
δ?((x,−1)T | Ū j) ≤ b̄j

is satisfied. Consequently, the solution x is feasible for (EPRCα′). This shows
together with Observation 2.3 that α cannot be the RRF of (P). �

In the following, the index set SMIP ⊆ J contains all “safe” constraints, i.e.,
for every feasible solution x of (P) the equality δ?((x,−1)T | Ū j) = 0 holds for
j ∈ SMIP. If the RRF of a given MIP is attained and for each feasible solution
x of (P) the counterpart δ?((x,−1)T | Ū j) is positive for j ∈ J \ SMIP, then the
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previous necessary optimality condition can be extended to a necessary and sufficient
optimality condition. To this end, we introduce the optimization problem (SPRCα)

sup
x,ε

ε

s.t. (āj)Tx+ αδ?((x,−1)T | Ū j) + ε ≤ b̄j , j ∈ J \ SMIP, (SPRCα)

(āj)Tx ≤ b̄j , j ∈ SMIP, x ∈ Zk × Rn−k, ε ≥ 0.

Lemma 3.8. Let ρMIP be the RRF of (P), α ≥ 0, and for every feasible solution x
of (P) the inequality δ?((x,−1)T | Ū j) > 0 holds for j ∈ J \ SMIP. If the optimal
objective value of (SPRCα) is zero, then it is attained and α equals ρMIP.

Proof. Due to the optimal objective value being zero and constraint ε ≥ 0, Prob-
lem (SPRCα) is feasible and every feasible solution (ε, x) satisfies ε = 0 . Conse-
quently, the optimal objective value is attained. For a given α ≥ 0, let (0, x) be an
optimal solution of (SPRCα). We now assume that α 6= ρMIP holds. If α > ρMIP

is satisfied, then this is a contradiction to the optimality of the RRF ρMIP due to
Observation 2.3 and the feasibility of (SPRCα). We now assume 0 ≤ α < ρMIP.
Consequently, α′ with 0 ≤ α < α′ ≤ ρMIP and a solution x′ exists such that

(āj)Tx′ + α′δ?((x′,−1)T | Ū j) ≤ b̄j , j ∈ J, (14)

holds. Due to the requirements δ?((x′,−1)T | Ū j) > 0 for j ∈ J \ SMIP is satisfied
and thus, from (14) follows

(āj)Tx′ + αδ?((x′,−1)T | Ū j) < b̄j , j ∈ J \ SMIP.

Consequently, the objective value of (SPRCα) is

ε = min
j∈J\SMIP

b̄j − (āj)Tx′ − αδ?((x′,−1)T | Ū j) > 0

for (ε, x′). This is a contradiction to the optimality of (0, x) for α. Thus, α = ρMIP

is satisfied. �

Finally, we present our necessary and sufficient optimality condition for the RRF.

Theorem 3.9. Let the RRF ρMIP of (P) be attained, SMIP 6= J , and for every
feasible solution x of (P) the inequality δ?((x,−1)T | Ū j) > 0 holds for j ∈ J \SMIP.
Then, the value α equals ρMIP if and only if the optimal objective value of (SPRCα)
equals zero.

Proof. The RRF is attained, i.e., (EPRCρMIP) is feasible. Moreover, for every
feasible solution x of (P) the inequality δ?((x,−1)T | Ū j) > 0 holds for j ∈ J \SMIP
with SMIP 6= J and thus, the RRF is finite. Let α be equal to the RRF ρMIP and
ε the optimal objective value of (SPRCα). Since the RRF is attained, (EPRα)
and (SPRCα) are feasible. Consequently, ε cannot equal zero while being not
attained. If ε is positive, then a feasible solution (ε, x) of (SPRCα) with ε > 0 exists.
This is a contradiction to the optimality of α because of Theorem 3.7 and its proof.
Consequently, ε equals zero and is attained by a feasible solution of (SPRCα). Thus,
the claim is shown by Lemma 3.8. �

Theorem 3.9 is valid for the setting of Section 2 without assuming
δ?((x,−1)T | U) > 0 for every feasible solution x of (P) because Assumption 1
implies the latter.

We now move on to the computation of the RRF for LPs as well as MIPs including
safe variables and constraints in our extended setting.
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4. Computing the RRF Including Safe Constraints and Variables

Many known techniques for computing the RRF rely on full-dimensional uncer-
tainty sets and compute the RRF for continuous problems, see [18, 19, 22, 23, 29].
Hence, it is not obvious if and how these techniques can be applied to our extended
setting of Section 3 in which MIPs with different not necessarily full-dimensional
uncertainty sets are considered. The latter enables us to consider MIPs including
safe variables and constraints. Consequently, there is a lack of methods that compute
the RRF for LPs as well as for MIPs including safe variables and constraints. This
section is structured as follows. We first show a method for computing the RRF of
LPs including safe variables and constraints. We then briefly show that the RRF
of a bounded integer problem can be computed by solving maximally two integer
problems. Finally, we present first methods for computing the RRF of MIPs in our
extended setting of Section 3.

4.1. Computing the RRF for Linear Problems. In this subsection, we present
a method for computing the RRF of (LP). To this end, we consider our general
setting of Section 3. Throughout this section, we split the constraints of (LP) into
“safe” constraints SLP ⊆ J , i.e. for every feasible solution x of (LP) the equality
δ?((x,−1) | Ū j) = 0 holds for j ∈ SLP, and into “uncertain” constraints J \ SLP.
Additionally, we require the following assumption for the uncertainty sets.

Assumption 3. We assume for the uncertain constraints that, up to scaling, all
uncertainty sets are identical, i.e., Ū j = µj λj U ⊂ Rn+1 for j ∈ J \ SLP holds
whereby U is a convex and compact uncertainty set and λj is positive for j ∈ J \SLP.

We note that typically the uncertainty sets Ū j , j ∈ J , are positive multiples of
the Euclidean unit closed ball or of some cartesian product U =

∏
i∈I [−δi, δi], with

δi ≥ 0 for all i ∈ I, which is in line with Assumption 3. Moreover, the positive
homogeneity of δ?(x | Ū j) for j ∈ J and Assumption 3 lead to

δ?((x,−1)T | Ū j) = µjλjδ?((x,−1)T | U), j ∈ J \ SLP. (15)

Thus, under Assumption 3, for all feasible points x ∈ Rn of (LP), the equality
δ?((x,−1)T | Ū j) = 0 either holds for all j ∈ J \ SLP or for no index j ∈ J \ SLP.

We note that this setting is more general than that of Section 2 because it does
not require a full-dimensional uncertainty set and thus, we allow safe variables and
constraints. We further consider objective functions as extended-value functions
whereby we follow the extended-value definition in [27]. Consequently, if an op-
timization problem is infeasible, then its objective value is +∞ for minimization
problems, respectively −∞ for maximization problems. Furthermore, 1

+∞ := 0 and
1
0 := +∞ hold.

We now give a derivation of our method that is based on fractional programming.
We first handle the case that a feasible solution x of (LP) without uncertainty
exists, i.e., δ?((x,−1)T | U) = 0. Then, we consider the case that the RRF is zero.
Afterward, we present a method that computes the RRF if the latter is positive.
Finally, we combine these results in an algorithm that computes the RRF for LPs.

Clearly, if a feasible solution of (LP) which is not affected by any uncertainty
exists, then the RRF is infinite.

Proposition 4.1. Let x ∈ Rn be a feasible solution to (LP) such that the equality
δ?((x,−1)T | U) = 0 holds. Then, the RRF of (LP) is infinite.

Next, we show that the requirement of Proposition 4.1 can be checked algorithmi-
cally. We know that δ?((·,−1)T | U) ≥ 0 holds due to Assumption 2. Consequently,
we can verify if the equation δ?((x,−1)T | U) = 0 holds for any feasible solution x
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of (LP) by checking the feasibility of the convex problem

min
x

0 (16a)

s.t. (āj)Tx ≤ b̄j for all j ∈ J, (16b)

δ?((x,−1)T | U) ≤ 0. (16c)

Lemma 4.2. A feasible solution x of (LP) with δ?((x,−1)T | U) = 0 exists if and
only if Problem (16) is feasible.

We now assume that for every feasible solution x of the nominal problem (LP)
the inequality δ?((x,−1)T | U) > 0 holds, since otherwise the RRF is infinite which
we can detect by the previously stated model.

Due to the definition of the RRF, the feasibility of (LP), and Assumption 3, the
RRF of Problem (LP) can be computed by the nonlinear problem

sup
α,x

α

s.t. (āj)Tx+ αµjλjδ?((x,−1)T | U) ≤ b̄j for all j ∈ J \ SLP,

(āj)Tx ≤ b̄j for all j ∈ SLP,

which we can reformulate as

sup
x

min
j∈J\SLP

b̄j − (āj)Tx

µjλjδ?((x,−1)T | U)
(17a)

s.t. (āj)Tx ≤ b̄j for all j ∈ SLP. (17b)

Problem (17) is a generalized fractional program. Additionally, for every feasible
solution of the nominal problem (LP) and for every ratio in the objective function
the corresponding nominator is nonnegative and concave and the denominator is
positive and convex. Thus, Problem (17) has the form of a concave generalized
fractional program, see [2, Chapter 7]. We now reduce Problem (17) to a concave
single ratio fractional program, which then can be reformulated as a concave problem.
To this end, we reformulate Problem (17) as follows

sup
x,ε,z

z

δ?((x,−1)T | U)
(18a)

s.t. (āj)Tx+ εj ≤ b̄j for all j ∈ J \ SLP, (18b)

(āj)Tx ≤ b̄j for all j ∈ SLP, (18c)
εj ≥ 0 for all j ∈ J \ SLP, (18d)
εj
µjλj

≥ z ≥ 0 for all j ∈ J \ SLP. (18e)

We note that Problem (18) is a concave fractional program with a single ratio in the
objective function. Furthermore, the RRF of (LP) is strictly positive if and only if a
feasible solution (x, ε, z) of (18) with z > 0 exists because δ?((x,−1)T | U) > 0 holds.
We now assume that the variable z is positive and show that we can algorithmically
check if the RRF is zero with the help of a linear problem.

sup
x,ε,z

z

δ?((x,−1)T | U)
s.t. (18b)− (18e), z > 0. (19)

Lemma 4.3. Problem (19) is feasible if and only if the RRF of (LP) is strictly
positive.

Proof. Let (x, ε, z) satisfy constraints (18b)–(18e). Then, (x, ε, z) is feasible for
Problem (19) if and only if z > 0 holds, which in turn is equivalent to the optimal
value of Problem (18) being strictly positive. �
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Clearly, we can check if Problem (19) is feasible by solving a linear problem.

Lemma 4.4. Problem (19) is feasible if and only if the objective value of problem

max
x,ε,z

z s.t. (18b)− (18e) (20)

is positive.

Using linear Problem (20), we can detect whether the RRF of (LP) is strictly
positive or zero. We now handle the case that the RRF is strictly positive. Thus,
we consider the optimization problem, in which we minimize the reciprocal of the
original objective function of (19)

inf
x,ε,z

δ?((x,−1)T | U)

z
s.t. (18b)− (18e), z > 0. (21)

We note that Problem (19) and (21) have the same feasible region and for every
feasible solution the corresponding objective value is positive. Both problems share
the same optimal solutions and the optimal values are reciprocal to each other.
Throughout this section, we consider objective values in the extended-value sense.

Lemma 4.5. Let (x, ε, z) be a feasible solution of Problem (19). Then, (x, ε, z) is
an optimal solution of Problem (19), if and only if (x, ε, z) is an optimal solution of
Problem (21).

Let v and v̂ be the optimal values of (19) and (21). Then, the equation v = 1
v̂

holds in the extended-value sense.

Due to Lemma 4.5, the optimal value of (21) is zero if and only if the RRF of (LP)
is infinite. Problem (21) is equivalent to a concave fractional program with affine
denominator. Thus, we can apply a variable transformation that was suggested
by Charnes and Cooper [17] for linear fractional programs and later extended to
nonlinear fractional programs by Schaible [31], see also [2] and the references therein.
The transformation is given by

y =

yxyε
yz

 =
1

z

xε
z

 , t =
1

z
. (22)

Applying this variable transformation to Problem (21) together with Proposition 7.2
in Chapter 7 of [2] and the positive homogeneity of the support function lead us to
the following lemma.

Lemma 4.6. Let (x, ε, z) and (y, t) be given such that Transformation (22) holds.
Then (x, ε, z) is feasible for Problem (21) if and only if (y, t) is feasible to problem

inf
y,t

δ?((yx,−t)T | U) (23a)

s.t. (āj)T yx + yεj − tb̄j ≤ 0 for all j ∈ J \ SLP, (23b)

(āj)T yx − tb̄j ≤ 0 for all j ∈ SLP, (23c)

yεj ≥ µjλj for all j ∈ J \ SLP, (23d)
t > 0. (23e)

Furthermore, the optimal values of Problems (21) and (23) are equal.

We now relax Problem (23) by requiring t ≥ 0 instead of t > 0 in order to obtain
the computationally tractable convex optimization problem

inf
y,t

δ?((yx,−t)T | U) s.t. (23b)− (23d), t ≥ 0. (24)
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All constraints of Problem (24) are linear. Furthermore, optimizing (24) has
the same computational complexity as optimizing a linear function over the given
uncertainty set U with additional linear constraints.

We note that if Problem (23) is feasible, then the objective values of (23) and (24)
are finite due to Assumption 2, which implies δ?((yx,−t)T | U) ≥ 0. Further, we
now prove that these objective values are equal.

Lemma 4.7. Let Problem (23) be feasible. Then, the optimal values of Problems (23)
and (24) are equal.

Proof. Let v be the optimal value of Problem (23) and vrelax the optimal value of
Problem (24). As Problem (24) is a relaxation of Problem (23), vrelax ≤ v holds.

So, assume, by contradiction, that there exists a solution (y∗, t∗) of Problem (24)
with corresponding objective value v∗ and v∗ < v. Thus, t∗ = 0 holds. As
Problem (23) is feasible, there exists a feasible point (ȳ, t̄) with t̄ > 0.

Now, set [
yk

tk

]
=
k − 1

k

[
y∗

t∗

]
+

1

k

[
ȳ
t̄

]
for all k ∈ N.

Then, the pairs (yk, tk) are feasible for Problem (24) as its feasible region is convex.
Since tk > 0 holds, (yk, tk) is also feasible to (23). The objective values vk of these
solutions converge to v∗ as the support function, δ?((ykx,−tk)T | U), is continuous.
Hence, there exists a k̄ ∈ N such that vk̄ < v holds, which contradicts the fact
that v is the optimal value of Problem (23). Consequently, the optimal values of
Problem (24) and of Problem (23) are equal. �

Again, we use extended-values in this section.

Lemma 4.8. Let Problem (23) be feasible and v the optimal value of (24). Then,
the RRF of (LP) is given by 1

v .

Proof. The claim follows from combining the previous Lemmas 4.7, 4.6, and 4.5. �

Using the previous results, we now state a complete procedure to compute the
RRF of (LP) whereby the uncertainty sets satisfy Assumption 2 and 3.

Algorithm 1: Computing the RRF of a Linear Problem
Input: Linear Problem (LP) and uncertainty sets Ū j for j ∈ J.
Output: RRF of (LP).

1 if Problem (16) is feasible then return +∞ .
2 Solve (x, ε, z)← (20).
3 if z = 0 holds then return 0.
4 Compute optimal objective v of Problem (24).
5 return 1

v .

Theorem 4.9. Let the robust counterpart for the uncertain linear problem (LP)
with uncertainty sets αŪ j , j ∈ J , satisfy Assumptions 2 and 3. Then, Algorithm 1
computes the RRF of (LP).

Proof. If Algorithm 1 stops in Line 1, then the RRF is infinite due to Proposition 4.1
and Lemma 4.2. If Algorithm 1 stops in Line 3, then the RRF is zero due to
Lemmas 4.3 and 4.4. If Algorithm 1 stops in Line 5, then the feasibility of (23)
follows from the positive objective value of (20) and Lemmas 4.4–4.6. Thus, we can
apply Lemma 4.8, which proves the claim. �
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In summary, we can efficiently compute the RRF of (LP) including safe variables
and constraints by solving at most one linear and two convex optimization problems.
Especially, solving the latter problems has the same computational complexity as
optimizing a linear objective function over the given uncertainty set with additional
linear constraints. In addition to the benefit for computing the RRF of LPs, the
results can be used as an upper bound for the RRF of the corresponding MIPs which
will be helpful for the later presented methods. We also note that under certain
conditions the RRF of a MIP can be computed by the RRF of its LP relaxation,
see Theorem 2.6.

4.2. Computing the RRF of Bounded Integer Problems. In this subsection,
we briefly show that for a bounded linear integer problem we can compute its RRF
in the setting of Section 3 by maximally solving two convex integer problems. The
latter problems have the same complexity as solving an integer problem with linear
objective function over the given uncertainty set with additional linear constraints.
For the remainder of this subsection, we assume w.l.o.g. that our bounded integer
problem (P) is a binary problem.

We first show that the compactness of the feasible region of (P) ensures that its
RRF is either attained or infinite and the latter can be checked algorithmically. To
this end, we note that Lemma 2.9 is also valid for a finite RRF in the setting of
Section 3 which can be proven analogously.

Lemma 4.10. If the feasible region of (P) is compact, then the corresponding RRF
is either attained or infinite.

Proof. We contrarily assume that the RRF is not attained and finite. Due to
Lemma 2.9 an unbounded sequence of feasible solutions to (P) exists, which contra-
dicts the compactness of the feasible region of (P). �

Additionally, we can detect if the RRF is infinite. In doing so, the index set SMIP
contains all safe constraints of (P) that are not affected by uncertainty.

Lemma 4.11. Let the feasible region of (P) be compact. Then, the RRF of (P) is
infinite if and only if the convex integer problem

min
x

0 s.t. (16b), δ?((x,−1)T | Ū j) ≤ 0, j ∈ J \ SMIP, x ∈ {0, 1}n, (25)

is feasible.

Proof. We first assume that the RRF of (P) is infinite. Due to the requirements
and the definition of the RRF, a positive and strictly increasing sequence (αl)l∈N
that converges to +∞ exists. Furthermore, a sequence in Rn, (xl)l∈N, exists such
that xl is feasible to (EPRCαl) for all l ∈ N. Due to the compactness of the feasible
region of (P), the sequence (xl)l∈N is bounded. Consequently, and by passing to a
subsequence if necessary, we may assume that xl −→ x̄ holds. Considering (EPRCαl)
together with a solution xl leads to the feasible inequalities

(āj)Txl + αlδ?((xl,−1)T | Ū j) ≤ b̄j , j ∈ J \ SMIP.

Since sequence (xl)l∈N is bounded, (αl)l∈N converges to +∞, and δ?((xl,−1)T | Ū j)
is nonnegative for j ∈ J \ SMIP, it follows from the previous inequalities that for
j ∈ J \ SMIP the support function δ?((xl,−1)T | Ū j) converges to zero. Due to this,
xl −→ x̄, and the continuity of δ?((xl,−1)T | Ū j) for j ∈ J \ SMIP, the equality
δ?((x̄,−1)T | Ū j) = 0 holds for j ∈ J \ SMIP. Because of the compactness of the
feasible region and xl −→ x̄, the solution x̄ is feasible to (P). Thus, it is feasible
to (25).

If Problem (25) is feasible, then from the nonnegativity of the support function
δ?((·,−1)T | Ū j) for j ∈ J \ SMIP, it directly follows that the RRF is infinite. �
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Due to the previous two lemmas, we can algorithmically check if the RRF of (P)
is infinite. Thus, we now assume that the RRF is finite. Consequently, the RRF
is attained because of Lemma 4.10 and we can compute the RRF by solving the
nonlinear problem

max
α,x

α (26a)

s.t. (āj)Tx+ δ?((αx,−α)T | Ū j) ≤ b̄j for all j ∈ J \ SMIP, (26b)

(āj)Tx ≤ b̄j for all j ∈ SMIP, (26c)
α ≥ 0, x ∈ {0, 1}n. (26d)

We can equivalently replace the nonlinear term αx in (26) by suitable Big-M
constraints because the RRF of (P) is finite and x are binaries.

In summary, we can compute the RRF for bounded integer problems in the setting
of Section 3 by solving (25) and (26). This method is straightforward and is mainly
presented for the sake of completeness. Furthermore, preliminary computational
results showed that its performance is bad in general and cannot be used for practical
computations. It is also massively worse in comparison to the methods of the next
section that are based on improved effective binary search algorithms.

4.3. Computing the RRF of Mixed-Integer Problems. In this subsection, we
present different methods to compute the RRF of MIPs (P) in our extended setting
of Section 3 in the case that the RRF is finite. In doing so, the presented methods
share a common basic structure, see Algorithm 2. We note that the considered
setting of the RRF includes safe constraints, respectively variables, and an own not
necessarily full-dimensional uncertainty set for every constraint.

For the remainder of this subsection, we assume that the RRF of (P) is finite and
bounded from above by ū. Further, we know that the RRF is bounded from below
by zero. In analogy to Observation 2.3 for α ≥ 0 a monotonicity statement w.r.t. the
corresponding ordinary counterpart (EPRCα) holds. Thus, we can apply a classic
binary search (ClassicBin) on α w.r.t. (EPRCα) in order to find an approximation
of the RRF. This approximation differs from the RRF no more than an a priori given
error tol > 0. Binary search is already in itself an efficient algorithm. However, we
show in addition that our theoretical findings on RRF can be used to even improve
on binary search in practical computations.

Lemma 4.12. Let ρMIP be the RRF of (P). Further, let α be the output of
ClassicBin with initial lower bound zero, ū an upper bound of the RRF, and the
tolerance tol. Then, (EPRCα) is feasible, |ρMIP − α| ≤ tol holds, and ClassicBin
performs at most dlog2( ū

tol )e many iterations.

An important benefit of this simple approach is that in each step of the binary
search it is sufficient to only check the feasibility of (EPRCα). With the help of
standard techniques of robust optimization, e.g., see [4], Problem (EPRCα) can
be reformulated such that its computational complexity is equal to checking the
feasibility of an optimization problem over the given uncertainty set with additional
linear constraints.

We now improve ClassicBin by adding a scaling argument so that whenever
(EPRCα) is feasible, we tighten the lower bound in the binary search. To this end,
Algorithm 2 represents the basic structure of this scaling binary search (ScalingBin)
and its explicit components are given in Table 1. Method ScalingBin still maintains
the properties of ClassicBin.

Lemma 4.13. Let ρMIP be the RRF of (P). Further, let α be the output of
ScalingBin. Then, (EPRCα) is feasible, |ρMIP − α| ≤ tol holds, and ScalingBin
performs at most dlog2( ū

tol )e many iterations.
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Algorithm 2: Basic Algorithm
Input: Nominal problem (P), uncertainty sets Ū j for j ∈ J , tolerance tol > 0,

RRF upper bound ū.
Output: RRF of (P).

1 Initialization. Init
2 while Condition do
3 Update Estimate RRF. Estim
4 Solve Subproblem. Subp
5 Check Optimality. Optim
6 Update Upper Bound. Upper
7 Update Lower Bound. Lower

8 return Results.

Table 1. Overview of algorithms with their specific components
in Algorithm 2

ScalingBin MaxScalingBin PureScaling

Init l← 0, u← ū l← 0

Condition |u− l| > tol (EPRC(l+tol)) feasible

Estim α← u+l
2 α← l + tol

Subp x← (EPRCα) (ε, x)← (SPRCα)

Optim if ε = 0 then return (α, optimal)

Upper if (EPRCα) infeasible
then ū← α

if (SPRCα) infeasible
then ū← α

Lower SMIP ← {j ∈ J | δ?((x,−1)T | Ū j) = 0}, l← minj∈J\SMIP
b̄j−(āj)T x

δ?((x,−1)T |Ūj)

Results l (l, non optimal)

Proof. If we replace the operation Lower of ScalingBin, see Table 1, by l = α, then
ScalingBin equals a classic binary search. Thus, we have to prove that the outcome
α′ of Lower satisfies α ≤ α′ ≤ ū and that Problem (EPRCα′) is feasible. From
the proof of Theorem 3.7 it follows the inequality α ≤ α′ and the feasibility of
Problem (EPRCα′). Consequently, α′ ≤ ū holds due to the monotonicity of (EPRCα)
w.r.t. α and ū being an upper bound for ρMIP. �

We note that if the RRF is attained by the solution x in the operation Subp, then
ScalingBin directly scales the lower bound l to the RRF in the operation Lower,
which is shown in the following lemma.

Lemma 4.14. Let the RRF ρMIP of (P) be attained and 0 ≤ α ≤ ρMIP. Addi-
tionally, let x be a feasible solution to (EPRCα) as well as to (EPRCρMIP) and
SMIP = {j ∈ J | δ?((x,−1)T | Ū j) = 0}. Then, minj∈J\SMIP

b̄j−(āj)T x
δ?((x,−1)T |Ūj)

= ρMIP

holds.

Proof. The claim follows in analogy to the proof of Theorem 3.7. �

We now integrate in ScalingBin the optimality condition for the RRF of Lemma 3.8
and Theorem 3.9 as an additional termination condition. Algorithm MaxScalingBin
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preserves the properties of ClassicBin for every feasible solution x of (P) under the
additional assumption δ?((x,−1)T | Ū j) > 0 for j ∈ J . Furthermore, in the case
that the RRF is attained MaxScalingBin immediately stops if the RRF is computed.
The latter is not guaranteed in ScalingBin because it possibly has to tighten the
upper bound first before it stops. In order to avoid this effect, MaxScalingBin solves
Problem (SPRCα) to optimality in every iteration whereas ScalingBin only checks
the feasibility of (EPRCα) in every iteration. We note that the computational
complexities of (SPRCα) and (EPRCα) are equal.

Lemma 4.15. Let the inequalities δ?((x,−1)T | Ū j) > 0 for j ∈ J \ SMIP hold for
every feasible solution x of (P). Let ρMIP ∈ R be the finite RRF of (P) and (α, flag)
the output of MaxScalingBin. Then, (EPRCα) is feasible. Additionally, if flag is
equal to optimal, then α = ρMIP, otherwise, |ρMIP − α| ≤ tol holds. Furthermore,
MaxScalingBin performs at most dlog2( ū

tol )e many iterations.

Proof. Problem (SPRCα) is feasible if and only if (EPRCα) is feasible. Consequently,
if MaxScalingBin returns (α, non optimal) the claim follows from Lemma 4.13. Oth-
erwise, the claim follows from Lemma 3.8. �

Finally, we present an approach that is similar to MaxScalingBin and needs the
same assumption, i.e., the inequalities δ?((x,−1)T | Ū j) > 0 for j ∈ J hold for every
feasible solution x of (P). The method, given by Algorithm PureScaling, is based
on computing the maximal slack in each iteration and then scaling the current value
of the RRF. The main goal is that if we get close to the RRF very fast, then we can
detect this without tightening the upper bound of the RRF in many iterations such
as it can happen in the previous presented approaches. We note that PureScaling is
not based on a binary search. Additionally, the upper bound of the RRF is only
necessary to guarantee a finite runtime.

Lemma 4.16. Let the inequalities δ?((x,−1)T | Ū j) > 0 for j ∈ J \ SMIP hold
for every feasible solution x of (P). Let (α, flag) be the output of PureScaling and
ρMIP ∈ R the finite RRF of (P). Then, (EPRCα) is feasible. Additionally, if flag
is equal to optimal, then α = ρMIP, otherwise, |ρMIP − α| ≤ tol holds. Furthermore,
PureScaling performs at most dρMIP

tol e many iterations.

Proof. The claim follows from Lemma 4.15 and the construction of PureScaling. �

We note that the worst-case runtime of PureScaling is inferior to the worst-
case runtime of the presented approaches based on binary search. But in practice
PureScaling detects faster if the computed RRF is in the a priori given tolerance
than the approaches based on binary search, which we investigate experimentally in
the next section.

5. Computational Results

In this section, we present a computational study for the previously described
methods to compute the RRF for MIPs of the MIPLIB 2017 library, see [30]. To be
more precise, we evaluate the impact of the aspects:

(a) The chosen method: We compare the bounded IP approach (26), the classic
binary search, and Methods ScalingBin, MaxScalingBin, and PureScaling.

(b) The performance: We compare the runtime of every method and the corre-
sponding number of iterations.

(c) Characterization of the instances: We analyze the instances w.r.t. their
computed RRF ρMIP and the impact of the uncertainties. In particular, we
compare the optimal nominal objective value to the optimal objective value
of (PRρMIP

). This comparison quantifies the price of robustness.
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We implemented the algorithms in Python 3.6.5 and solved the MIPs with
Gurobi 8.0.1, see [26]. All computations were executed on a 4-core machine with a
Xeon E3-1240 v5 CPU and 32GB RAM. Our test set consists of 165 instances from
the MIPLIB 2017 library. Out of the entire MIPLIB 2017 library of 1065 instances,
we only considered the benchmark set of 240 instances. We further excluded
38 instances that are classified as hard in the MIPLIB 2017. This guarantees that
we can solve the nominal problem by state-of-the-art available programs within a
reasonable runtime. Additionally, we excluded the remaining 5 infeasible instances.
We next determine the types of constraints that we consider as syntactically safe, i.e.,
these constraints have an uncertainty set consisting only of the zero vector. First,
we consider every constraint that consists just of a single variable as safe because it
directly represents a lower bound of the corresponding variable. Additionally, every
constraint that contains only binary variables with coefficients ±1 is safe because
these constraints usually represent combinatorial structures. Considering the latter
constraints as unsafe leads to infeasibility in most of the cases, i.e., the RRF is
zero. Due to the same reason, we consider equalities as safe. In doing so, we also
exclude equalities that are simply rewritten as two linear inequalities. No further
presolve routines for detecting implicit equalities are processed. Considering the
previously mentioned constraints as safe leads to 32 instances that only contain safe
constraints. Consequently, these instances are also excluded, which finally results in
our test set of 165 instances.

In all computations, we used Gurobi with standard settings with the following
adaptions. For all methods, we disabled dual reductions in order to have a more
definitive conclusion about infeasibility of the model. For the classical binary
search and ScalingBin, we set the parameter solution limit to 1 because we are
only interested in the feasibility of the corresponding MIP in every iteration. In
contrast to this, we solve the upcoming MIPs in every iteration of MaxScalingBin
and PureScaling to optimality. In order to prevent that the extended runtime of
solving these MIPs to optimality exceeds the potential benefit of maximizing the
slack together with scaling the RRF, described in MaxScalingBin and PureScaling,
we set the relative MIP gap to 0.5 as this value turned out to be reasonable in our
preliminary computational results. We consider an absolute tolerance of 10−4 and
set the time limit to 2 h. Furthermore, we introduced a relative tolerance of 10−4 as
an additional termination condition in order to avoid numerical issues.

We next turn to the considered uncertainty set. We compute the RRF in the
extended framework of Section 3. Consequently, the jth unsafe constraint has the
uncertainty set Ū j := µj Uj ⊂ Rn+1, composed of a convex and compact set Uj
that is scaled by the smallest absolute nonzero coefficient µj of the jth constraint.
In our computational study, the uncertainty set Uj for the jth unsafe constraint is
given as follows. For each variable with nonzero coefficient in the jth constraint,
the uncertainty set for this variable is given by the interval [−1, 1]. The latter
interval is also the uncertainty set of the right-hand side. If a variable has coefficient
zero in the considered constraint, then it is considered safe for this constraint, i.e.,
its corresponding uncertainty set contains only zero. In total, the uncertainty set
Uj is given by the corresponding cross products of intervals [−1, 1] and sets {0}.
For Ū j 6= {0}, it follows from the the construction of Ū j that the (n + 1)th unit
vector of Rn+1 is in Ū j and thus, δ?((x,−1) | Ū j) > 0 holds for every x ∈ Rn.
Consequently, each constraint with uncertainty set unequal to zero is (semantically)
unsafe.

We next turn to the computation of an upper bound of the RRF w.r.t. the
considered uncertainty set, which is necessary for the proposed methods. For the
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chosen uncertainty set, an upper bound ū of the RRF for (P) is given by

ū = min
j∈K

max{0, b̄j ,max{|āji | : i = 1, ..., n}}
µj

,

whereby K is the index set of the unsafe constraints. The value ū is an upper bound
for the RRF due to the following short explanation. If we assume that the RRF α
satisfies α > ū, then an index k ∈ K exists such that ±āki ∈ α Ūki for i ∈ {1, ..., n}
and −(max{0, b̄k}+ ε) ∈ α Ūkb̄ for a sufficient small ε > 0 holds. Consequently, for
every solution x a realization u ∈ Ūk exists such that

(āk)Tx+ α((uI)
Tx− ub̄)− b̄k > 0

holds, which directly implies the infeasibility of (EPRα).
We now turn to the presentation and discussion of the numerical results. We

note that we excluded the bounded IP approach in this numerical analysis because
preliminary results showed that its performance is massively worse when compared
to the other proposed methods. The performance of the proposed methods might
differ between instances with positive RRF and instances with RRF zero. For
example, if the RRF is zero, then only PureScaling automatically terminates af-
ter a single iteration independent from the chosen MIP gap. Consequently, we
will separately analyze the numerical results for instances with positive RRF and
with RRF zero. According to our results, the considered 165 instances split into
the following sets: 66 instances with positive RRF, 85 instances with RRF zero,
13 instances which could not be solved in the timelimit of 2 h by any method, and
one instance (rmatr100-p10) which could not be solved due to numerical issues.
We now use log-scaled performance profiles to compare runtimes as proposed in [21].
We note that all runtimes include the computation of the upper bound. Figure 1
shows the performance profiles for instances with positive RRF and Figure 2 for
instances with RRF zero. Furthermore, a short statistical summary of the run-
times and number of iterations is given in Tables 2 and 3. Overall, we see that
the performance of the classical binary search and ScalingBin is nearly the same,
independent from the RRF values. For instances with positive RRF, we see that
the classical binary search, ScalingBin, and PureScaling solve the same number
of instances, 97% overall, while MaxScalingBin solves one instance less. In doing
so, the best performance is given by PureScaling which outperforms the remaining
methods. The performance of MaxScalingBin follows which is slightly better in
comparison to the classic binary search, respectively ScalingBin. For instances with
RRF zero, we recognize a similar performance pattern. This time the performances
of MaxScalingBin and PureScaling are nearly identical and they outperform the
other approaches in most of the cases. This improved performance of MaxScalingBin
and PureScaling for instances with RRF zero is mainly explained by the fact that
both algorithms almost always terminate after the first iteration, see Table 3. We
note that this behavior is not necessarily guaranteed for MaxScalingBin in contrast
to PureScaling due to the chosen MIP gap. However, the numerical results show
that in most of the cases (SPRCα) is solved to optimality in the first iteration,
i.e., the corresponding objective value is zero. Consequently, a RRF of zero is
immediately detected. MaxScalingBin as well as PureScaling solve 96% of the
instances with RRF zero, whereas the classic binary search and ScalingBin solve
all of these instances. The effect that the latter two approaches solve slightly more
instances can be explained by the fact that both methods only check feasibility
in every iteration instead of solving the corresponding MIPs to optimality as in
MaxScalingBin and PureScaling. Generally, the latter is more time-consuming.

Considering the number of iterations, maximizing the slack together with scaling
the RRF, as proposed in MaxScalingBin and PureScaling, significantly reduces the
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Figure 1. Log-scaled performance profiles of runtimes for instances
with positive RRF
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Figure 2. Log-scaled performance profiles of runtimes for instances
with RRF zero

number of necessary iterations. In general, the number of iterations in MaxScalingBin
is higher than in PureScaling because the latter checks in every iteration if the
computed RRF is already in tolerance and does not have to lower an upper bound
such as MaxScalingBin. Furthermore, it is interesting to see that scaling the RRF
without maximizing the slack, as we do in ScalingBin, does not significantly decrease
the necessary number of iterations, respectively the runtime, in comparison with the
classical binary search. Furthermore, the statistical parameters of Tables 2 and 3
indicate that in most cases the RRF can be computed quickly (< 60 s). Only for a
minority of the instances the runtimes drastically increase.

Based on the previous analysis of the results, we suggest to compute the RRF
of a MIP as follows. First, run PureScaling with a small time or iteration limit. If
the RRF could not be computed within the set limit, then we suggest to switch to
the classical binary search, respectively to ScalingBin, because these methods solve
more instances overall.

Finally, we turn to a short discussion about the price of robustness. To this
end, we compare the optimal objective value of the nominal problem (P) and of
the robust problem (PRρMIP). In the time limit of 2 h, we could optimally solve
51 of the 66Problems (PRρMIP

) with positive RRF. We then computed the price
of robustness p as follows. Let the value w be the optimal nonzero objective value
of (P) and w∗ of (PRρMIP

). Then, the price of robustness is given by p = w∗−w
|w| . As

we can see in Table 4, the price of robustness is subject to strong fluctuations. On
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Table 2. Number of solved instances (out of 66 instances with
positive RRF) and statistics for the runtimes and number of
iterations (always taken only for all instances solved to optimality)

ClassicBin ScalingBin MaxScalingBin PureScaling

#solved 64 64 63 64

time/s niter time/s niter time/s niter time/s niter

Minimum 0.23 15.00 0.13 1.00 0.11 1.00 0.11 1.00
1st Quartile 1.56 15.00 1.69 15.00 1.48 10.50 0.63 1.00
Median 7.30 15.00 9.20 15.00 6.85 14.00 3.35 1.00
Mean 315.12 17.50 259.72 16.13 196.18 13.38 251.98 3.22
3rd Quartile 82.98 18.00 83.27 17.00 42.59 17.00 42.67 3.00
Maximum 5800.64 32.00 6857.40 32.00 4276.22 32.00 4622.70 29.00

Table 3. Number of solved instances (out of 85 instances with
RRF zero) and statistics for the runtimes and number of iterations
(always taken only for all instances solved to optimality)

ClassicBin ScalingBin MaxScalingBin PureScaling

#solved 85 85 82 82

time/s niter time/s niter time/s niter time/s niter

Minimum 0.26 15.00 0.32 15.00 0.17 1.00 0.16 1.00
1st Quartile 5.69 15.00 5.95 15.00 2.14 1.00 2.15 1.00
Median 23.46 15.00 24.03 15.00 6.69 1.00 6.84 1.00
Mean 199.03 16.41 201.30 16.41 117.00 1.35 115.28 1.00
3rd Quartile 102.61 16.00 105.57 16.00 29.74 1.00 29.60 1.00
Maximum 4447.14 35.00 4490.15 35.00 2565.66 16.00 2567.18 1.00

the one hand instances with a small or even zero price of robustness exist. On the
other hand for some instances the robustness of the solution comes along with an
immense deterioration of the objective value. Surprisingly, the median shows that
for many instances the price of robustness is in a reasonable limit keeping in mind
that the considered uncertainty set has its maximal size w.r.t. robust feasibility. The
results illustrate that choosing the “most robust” solution, as proposed in Section 1,
does not necessarily come along with a high price of robustness. Furthermore, the
price of robustness can be limited a priori by a so called budget constraint that is
often desired in applications, see Section 1. Overall, the RRF can be useful as a
decision rule to decide between different robust optimal solutions w.r.t. the size
of the uncertainty set. We further note that the numerical results do not indicate
relations between the percentage of unsafe constraints, the size of the RRF, and the
price of robustness.

In practice, a decision maker often faces the following bi-objective challenge: On
the one hand, one aims at guaranteeing robust feasibility of an optimal solution
for the largest possible uncertainty set αŪ j , j ∈ J , i.e., one wants to maximize
α ∈ [0, ρMIP], respectively α ∈ [0, ρMIP[ if the RRF is not attained. On the other
hand, however, one wants to minimize the optimal value of the robust counterpart
or, equivalently, the price of robustness, which usually comes with a smaller α.
Consequently, a trade-off between robustness and minimum cost has to be made. We
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Table 4. Statistics for the best computed RRF and price of ro-
bustness (always taken only for all instances solved to optimality).

Unsafe Constraints (%) RRF Price of Robustness (%)

Minimum 0.003 0.0001 0.00
1st Quartile 4.118 0.6200 93.28
Median 37.848 0.9901 384.16
Mean 43.015 67.0442 29 368 526 813.18
3rd Quartile 83.777 1.1509 20 877.96
Maximum 100.000 1006.0000 1 297 693 684 636.35

exemplarily illustrate three different characteristics for this trade-off in Figures 3-5,
that we found in our computational experiments. To this end, we first discretized
the interval [0, ρMIP] equidistantly and then computed the optimal value of the
robust counterpart for each of these points. From Figure 3, it can be concluded that
an increase in robustness comes with increasing cost, i.e., the price of robustness
increases. Here, the trade-off between robustness and the optimal value is quite
regular, i.e., for a possibly small increase of robustness, we always find a solution
with a modest increase of cost. In contrast to this, we have a stepwise effect in
Figure 4. Here, increasing the robustness can lead to two different effects regarding
the cost. On the one hand, an increase of robustness can have almost no effect on
the cost, which is for example the case for the interval (0, 0.20). But on the other
hand, pushing the robustness above a certain level, even by a really small increase,
can lead to a very large increase of the cost, which is for example the case for a
robustness level of at least 0.20. In Figure 5, both previously mentioned effects
between robustness and cost exist. For α ∈ [0, 0.35], an increase of the robustness
comes with larger cost, i.e., the price of robustness increases. In contrast to this, for
α ∈ [0.35, 0.8509] an increase of the robustness comes with no or a modest increase
of the optimal value of the robust counterpart.

Overall, an increase of robustness usually comes with an increase of the optimal
value, i.e. the price of robustness increases. But as Figure 4 and 5 show, sometimes
there is a possibility to significantly increase the robustness for small or no cost.

6. Conclusion

In this paper, we studied the problem of finding the “maximal” size of a given
uncertainty set for a MIP such that its robust feasibility is guaranteed. In doing so, we
determined this maximal size with the help of the radius of robust feasibility (RRF).
We first motivated the investigations of this paper. We introduced the RRF for
MIPs and then analyzed it w.r.t. its LP relaxation in the common setting of the
literature. The latter requires a full-dimensional uncertainty set and thus, every
variable is “unsafe”. In particular, we proved that the RRF of a MIP and of its
LP relaxation equal if the RRF of the relaxation is not attained. In special cases,
this allows us to compute the RRF of a MIP with known techniques for the RRF of
LPs. In order to make the RRF applicable to a broader spectrum of optimization
problems, we extended the common setting of the RRF such that the uncertainty
set is not necessarily full-dimensional and potentially different for every constraint.
This allows to model safe variables and constraints, which are not affected by any
uncertainty. We then proposed methods for computing the RRF of linear as well as
mixed-integer problems in our extended setting. These methods can be seen as a
first benchmark for computing the RRF including safe variables and constraints.
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Figure 3. Trade-off between robustness and cost, i.e., optimal
value of robust counterpart (EPRCα) as a function of the size
of αŪ j , j ∈ J , for instance binkar10_1 with RRF ρMIP = 0.9459.

Figure 4. Trade-off between robustness and cost, i.e., optimal
value of robust counterpart (EPRCα) as a function of the size
of αŪ j , j ∈ J , for instance comp07-2idx with RRF ρMIP = 0.3333.

Finally, we illustrated the applicability of our methods by computing the RRF for
MIPs of the MIPLIB 2017 library.

Further research and methods for computing the RRF in the extended framework
are desirable, especially for a comparison with our methods. Also the extended RRF
can now be applied to compute the “most robust” solution within an a priori budget
for different applications. Additionally, it seems promising to use the information
about the “maximal” size of an uncertainty set, computed by the RRF, in order
to construct suitable uncertainty sets for robust optimization models. Moreover,
sizing uncertainty sets w.r.t. alternative concepts of robustness, e.g., adjustable
robustness, plays an important role in many applications: e.g., in gas networks
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Figure 5. Trade-off between robustness and cost, i.e., op-
timal value of robust counterpart (EPRCα) as a function
of size of αŪ j , j ∈ J , for instance drayage-100-23 with
RRF ρMIP = 0.8509.

it can be used for validating the feasibility of a booking [32] and for the optimal
operation under technical uncertainties [1]. Thus, introducing the RRF for other
concepts of robustness, especially adjustable robustness, are interesting topics for
future research.
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Appendix. Detailed Numerical Results

In this section, we provide the detailed numerical results of our computational
study. We list all instances for which we could not compute the RRF in our time
limit of 2 h in Table 5. For instances with positive RRF, the best computed RRF,
the percentage of unsafe constraints, and its price of robustness are given in Table 6.
The detailed runtimes and number of iterations for instances with positive RRF are
given in Table 7 and for instances with RRF zero in Table 8.

Table 5. Summary of instances that hit the timelimit of 2 h
or could not be solved due to numerical issues (rmatr100-p10)

Instances Unsafe Constraints (%) RRF

cryptanalysiskb128n5obj16 44.950 –
glass4 90.909 –
neos-1456979 96.750 –
neos-2746589-doon 48.436 –
neos-3004026-krka 66.321 –
neos-3024952-loue 97.166 –
neos-3046615-murg 51.807 –
neos-3381206-awhea 99.165 –
neos-5107597-kakapo 98.938 –
nursesched-sprint02 0.568 –
rmatr100-p10 99.986 –
rmatr200-p5 99.997 –
supportcase26 95.402 –
swath3 42.986 –
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