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Abstract. We consider the estimation of parameter-dependent statistics of functional outputs of elliptic bound-
ary value problems with parametrized random and deterministic inputs. For a given value of the
deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the cor-
responding expectation and variance of a linear output at the cost of a single solution of a large
block-structured linear algebraic system of equations. We propose a stochastic Galerkin reduced
basis (SGRB) method as a means to lower the computational burden when statistical outputs are
required for a large number of deterministic parameter queries. To derive an SGRB model, we
project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a POD
reduced basis generated from snapshots of the SGFE solution at representative values of the param-
eter. We propose residual-corrected estimates of the parameter-dependent expectation and variance
of linear functional outputs and provide respective computable error bounds. We test the SGRB
method numerically for a convection-diffusion-reaction problem, choosing the convective velocity as
a deterministic parameter and the parametrized reactivity field as a random input. Compared to
a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model
requires a similar number of reduced basis functions to meet a given tolerance requirement. However,
only a single run of the SGRB model suffices to estimate a statistical output for a new determinis-
tic parameter value, while the standard reduced basis model must be solved for each Monte Carlo
sample.

Key words. Model order reduction, reduced basis method, stochastic Galerkin, finite elements, parametrized
partial differential equation, Monte Carlo, proper orthogonal decomposition.
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1. Introduction. We consider linear elliptic boundary-value problems subject to a finite
number of random and deterministic input parameters. We are interested in computing the
parameter-dependent expected value and variance of a functional output of interest. In this
context, a reduced basis model provides a computationally inexpensive map between the
deterministic input parameter and the corresponding output statistics. Moreover, it provides
a computable a posteriori bound for the error between the reduced basis statistical estimate
and a corresponding high-fidelity estimate. Reduced basis methods for linear elliptic boundary
value problems with affinely parametrized deterministic data are well-understood [12, 20, 22].
We consider two approaches to including stochastic parameters:

• Monte Carlo reduced basis (MCRB) method: The underlying equations are formulated

∗Submitted to the editors 2018-12-20.
Funding: Sebastian Ullmann is supported by the German Research Foundation within the Graduate School of

Excellence Computational Engineering (DFG GSC233). Jens Lang is supported by the German Research Foundation
within the collaborative research center TRR154 Mathematical Modeling, Simulation and Optimisation Using the
Example of Gas Networks (DFG-SFB TRR154/2-2014, TP B01), the Graduate School of Excellence Computational
Engineering (DFG GSC233), and the Graduate School of Excellence Energy Science and Engineering (DFG GSC1070).
†Graduate School of Excellence Computational Engineering, Technische Universität Darmstadt, Dolivostraße 15,

64293 Darmstadt, Germany (ullmann@mathematik.tu-darmstadt.de).
‡Department of Mathematics, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany

(lang@mathematik.tu-darmstadt.de).

1

ar
X

iv
:1

81
2.

08
51

9v
1 

 [
m

at
h.

N
A

] 
 2

0 
D

ec
 2

01
8

mailto:ullmann@mathematik.tu-darmstadt.de
mailto:lang@mathematik.tu-darmstadt.de
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weakly regarding the physical space, which means that the problem depends on both
the deterministic and stochastic parameters. Monte Carlo sampling is used to estimate
the parameter-dependent expected value and variance of a functional output. An
MCRB method for linear elliptic problems with error bounds for the expectation and
variance of a linear functional output is derived in [3]. Improved error bounds are
provided by [11]. Further advances are the introduction of a weighted error estimator
[5] and the embedding in a multi-level procedure [28]. MCRB methods have also
been applied to parabolic problems [24], saddle point problems [16], Bayesian inverse
problems [2, 6, 15] and the assessment of rare events [4].
• Stochastic Galerkin reduced basis (SGRB) method: The underlying equations are for-

mulated weakly regarding the spatial and stochastic dimensions, so that the problem
depends on the deterministic parameters, only. Parameter-dependent estimates of the
expected value and variance of a functional output are obtained by direct integration
of the reduced solution. The principle of SGRB methods is introduced in [27] for
stochastic time-dependent incompressible Navier-Stokes problems, formulated weakly
regarding the spatial and stochastic dimensions, with time acting as a parameter. Ap-
plications to linear dynamical systems are studied in [8, 21]. SGRB methods can be
related to space-time reduced basis methods [10, 26], which rely on a weak formula-
tion with respect to space and time. The idea of using SGRB methods to estimate
parameter-dependent expected values is discussed in [29, section 8.2.1].

Our main contribution is the derivation of a stochastic Galerkin reduced basis method to
compute residual-corrected parameter-dependent estimates of the expectation and variance of
statistical outputs together with corresponding error bounds. A Monte Carlo reduced basis
method will be used as a benchmark to assess the accuracy of the SGRB method and compare
the error bounds.

The creation of a Stochastic Galerkin reduced basis model requires an underlying stochas-
tic Galerkin finite element (SGFE) model or an equivalent high-fidelity Galerkin approxima-
tion. At least a few snapshots of the SGFE solution for different values of the deterministic
parameter are needed to provide a suitable reduced basis. Moreover, evaluations of the SGFE
linear and bilinear forms are necessary to derive the respective reduced-order Galerkin model
and error bounds. Therefore, the SGRB method can not reduce the computational burden
associated with a single solution of an SGFE model, as done in [18, 25] using proper general-
ized decomposition and in [19] using a rational Krylov method. Instead, the method targets
the situation where a few SGFE simulations are feasible in an expensive pre-processing step
to create a reduced-order model which can be evaluated cheaply for any given deterministic
parameter. Therefore, SGRB models can be particularly useful in settings where statistical
estimates are required for many values of the deterministic parameter, like in robust optimal
control or the real-time exploration of parameter-dependent statistics.

Compared to Monte Carlo reduced basis methods, stochastic Galerkin reduced basis meth-
ods can substantially decrease the computational cost of estimating the expectation and vari-
ance for a given deterministic parameter value. The reason is that MCRB methods require
sampling the reduced-order solution, which may lead to a large number of reduced-order sim-
ulations for a single query of the deterministic parameter. SGRB methods overcome this
drawback by evaluating the stochastic integrals in the offline stage, i.e., during the setup of



STOCHASTIC GALERKIN REDUCED BASIS METHODS 3

the reduced-order model. As a result, the cost of solving an SGRB model is similar to the
cost of a single solution of a comparable RB model within an MC loop. At the same time,
the SGRB model directly delivers a statistical estimate without sampling. Therefore, one can
expect a speed-up factor in the order of magnitude of the number of MC samples.

2. Monte Carlo reduced basis method. We introduce a complete probability space
(Θ,F ,P) consisting of a set Θ of elementary events, a σ-algebra F on Θ and a probabil-
ity measure P on F . For k = 1, . . . ,K with K ∈ N, we define independent random variables
ξk : Θ → Ξk, where Ξk ⊂ R is the image of ξk. We introduce respective probability distribu-
tions Pξk and probability densities pξk : Ξk → R+, so that Pξk(B) =

∫
B pξk(y) dy = P(ξ−1

k (B))
for all B in the Borel σ-algebra of Ξk. We collect the random variables in a random vec-
tor ξ : Θ → Ξ, where ξ = (ξ1, . . . , ξK)T and Ξ = Ξ1 × · · · × ΞK , with joint distribution
Pξ and density pξ : Ξ → R+. We denote the expectation of any Pξ-measurable function
g : Ξ → R with density pξ by E[g] =

∫
Ξ g(y) dPξ(y) =

∫
Ξ g(y)pξ(y) dy. We define the variance

V[g] = E[(g−E[g])2] for any g ∈ L2
ξ(Ξ), where L2

ξ(Ξ) := { v : Ξ → R |
∫

Ξ v(y)2pξ(y) dy <∞}.
We introduce a deterministic parameter µ ∈ P for some parameter domain P ⊂ RP with

P ∈ N. The final statistical outputs are scalar-valued µ-dependent functions representing
approximations to the expectation and variance of a linear functional of a PDE solution.

We let {ξ1, . . . , ξNξ} be a set of independent copies of the random vector ξ. For some
g ∈ L2

ξ(Ξ), we define Monte Carlo estimators

(1) E[g] :=
1

Nξ

Nξ∑
n=1

g(ξn), E[g] :=
1

Nξ − 1

Nξ∑
n=1

g(ξn), V [g] := E[g2]− E[g]E[g],

for which E[E[g]] = E[g] and E[V [g]] = V[g] hold. We let ΞNξ := {y1, . . . , yNξ} be a realization
of {ξ1, . . . , ξNξ}. A realization of a Monte Carlo estimate is obtained after substituting ξn by
yn in (1), assuming that g(y) is computable for any y ∈ ΞNξ . In our approach, we view Nξ as
a discretization parameter and fix ΞNξ before we build the reduced basis model.

We focus on the case where g depends on its argument via a discretized PDE problem.
In the following, we provide a full-order model (subsection 2.1) and a reduced-order model
(subsection 2.2) to approximate the solution of the PDE for a given realization of the determin-
istic and random input parameters. The computation of linear outputs and the corresponding
statistics are described in subsection 2.3, together with the respective error bounds. For the
separation of the computation into an expensive offline phase and a inexpensive online phase,
we refer to [3, 11].

2.1. Monte Carlo finite element model. We use a stochastic strong form of a parametri-
zed PDE problem with random data to formulate an MCFE model. Samples of the solution of
the PDE problem are characterized by a separable Hilbert space X with inner product (·, ·)X
and norm ‖ · ‖X . We introduce a parametrized bilinear form a(·, ·; y, µ) : X ×X → R as well
as a parametrized linear form f(·; y, µ) : X → R. This allows a stochastic strong formulation
of a linear elliptic PDE problem:

Problem 2.1 (MCFE model). For given (y, µ) ∈ ΞNξ × P, find

(2) u(y, µ) ∈ X : a(u(y, µ), v; y, µ) = f(v; y, µ) ∀v ∈ X.



4 SEBASTIAN ULLMANN AND JENS LANG

We assume that a(·, ·; y, µ) is (y, µ)-uniformly bounded and coercive on X and that f(·; y, µ)
is (y, µ)-uniformly bounded on X. Then Problem 2.1 has a unique solution for any given
(y, µ) ∈ ΞNξ × P according to the Lax-Milgram lemma.

It is a usual premise in reduced basis methods that the discretization space of the under-
lying full-order model is assumed to be large enough to capture the solution with sufficient
precision. The assessment of the error of the full-order solution with respect to the infinite-
dimensional exact solution is delegated to the choice of the full-order discretization. In this
spirit, we assume X to be a sufficiently well-resolving finite element space with MFE degrees
of freedom. Similarly, we assume ΞNξ to be a large enough sample set, so that the error
associated with the MC sampling is sufficiently small. Consequently, the errors associated
with the MC sampling and the FE discretization are not represented in our error estimates.

2.2. Monte Carlo reduced basis model. Let XR ⊂ X be an R-dimensional subspace.
An example is given in subsection 4.1. A reduced-order model of Problem 2.1 is

Problem 2.2 (MCRB model). For given (y, µ) ∈ ΞNξ × P, find

uR(y, µ) ∈ XR : a(uR(y, µ), v; y, µ) = f(v; y, µ) ∀v ∈ XR.

The unique solvability if Problem 2.2 is a direct consequence of Problem 2.1 being well-posed
and XR being a subspace of X.

2.3. Output statistics and error estimates. We derive residual-corrected RB approxima-
tions of MCFE estimates of the expectation and variance of linear outputs of the parametrized
PDE problem. We provide error bounds converging quadratically in terms of residual norms.
In particular, we transfer the dual-based error bounds of [11], considering the true expectation
and variance of RB outputs, to the setting of [3], considering MC approximations of the ex-
pectation and variance. This requires an additional dual problem as well as a careful handling
of different MC discretizations of the expected value, namely E[·] and E[·] according to (1).
Throughout this section, we assume the same dependency on the deterministic and stochastic
parameters as in subsections 2.1 and 2.2, but often omit an explicit notation of the parameter
dependence for clarity.

We introduce a parametrized linear form l(·; y, µ) : X → R, assumed to be (y, µ)-uniformly
bounded on X. We complement Problems 2.1 and 2.2 with auxiliary sets of dual problems to
allow for residual-corrected output computations. For brevity, we provide the definitions and
problems all at once, which results in some interconnections between the following statements:

Definition 2.3. Subspaces XR
(1), . . . , X

R
(4) and linear forms l(1), . . . , l(4) are given by

XR
(1) ⊂ X, l(1)(·) := l(·),

XR
(2) ⊂ X, l(2)(·) := 2(l(uR)− r(uR(1)))l(·),

XR
(3) ⊂ X, l(3)(·) := E[l(uR)− r(uR(1))]l(·),

XR
(4) ⊂ X, l(4)(·) := E[l(uR)− r(uR(1))]l(·).

Problem 2.4 (dual MCFE models). For given (y, µ) ∈ ΞNξ × P, find

u(i) ∈ X : a(v, u(i)) = −l(i)(v) ∀v ∈ X, i = 1, . . . , 4.
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Problem 2.5 (dual MCRB models). For given (y, µ) ∈ ΞNξ × P, find

uR(i) ∈ XR
(i) : a(v, uR(i)) = −l(i)(v) ∀v ∈ XR

(i), i = 1, . . . , 4.

Definition 2.6. A primal residual r and dual residuals r(1), . . . , r(4) are given by

r(·) := f(·)− a(uR, ·),(3)

r(i)(·) := −l(i)(·)− a(·, uR(i)), i = 1, . . . 4.(4)

The following error bounds require a coercivity factor

(5) α(y, µ) := inf
v∈X\{0}

a(v, v; y, µ)

‖v‖2X
∀(y, µ) ∈ ΞNξ × P,

and a dual space X ′ of X, with norm

(6) ‖F‖X′ := sup
v∈X\{0}

|F (v)|
‖v‖X

∀F ∈ X ′.

For efficiency, an offline/online decomposition of the dual norms of the encountered functional
is possible and the coercivity factor can be replaced by a strictly positive lower bound [3, 11].

First, we provide a bound for the error of the RB solution to Problem 2.2 with respect to
the FE solution to Problem 2.1, point-wise in ΞNξ × P, see [11, Proposition 3.1]:

Lemma 2.7 (solution bound). For given (y, µ) ∈ ΞNξ × P,

‖u− uR‖X ≤
‖r‖X′
α

.(7)

Proof. We define e := u− uR and derive

α‖e‖2X
(5)

≤ a(e, e)
(2)
= f(e)− a(uR, e)

(3)
= r(e)

(6)

≤ ‖r‖X′‖e‖X .

Dividing by α‖e‖X gives the result.

We approximate a parameter-dependent linear output l(u(y, µ); y, µ) point-wise with a
residual-corrected reduced-order approximation, see [11, Theorem 3.6]:

Lemma 2.8 (output bound). For given (y, µ) ∈ ΞNξ × P,

|l(u)− l(uR) + r(uR(1))| ≤
‖r‖X′‖r(1)‖X′

α
.(8)

Proof. We define e := u− uR and reformulate

|l(u)− l(uR) + r(uR(1))|
(3)
= |l(e) + f(uR(1))− a(uR, uR(1))|

(2)
= |l(e) + a(e, uR(1))|

(4)
= |r(1)(e)|

(6)

≤ ‖r(1)‖X′‖e‖X
(7)

≤
‖r(1)‖X′‖r‖X′

α
.
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We approximate the MCFE estimate E[l(u(·, µ); ·, µ)] of the parameter-dependent ex-
pected linear output as follows, see [11, Corollary 4.2.]:

Theorem 2.9 (expected output bound). For given µ ∈ P,

|E[l(u)]− E[l(uR)] + E[r(uR(1))]| ≤ E
[
‖r‖X′‖r(1)‖X′

α

]
.

Proof. By Jensen’s inequality

|E[l(u)]− E[l(uR)] + E[r(uR(1))]| ≤ E[|l(u)− l(uR) + r(uR(1))|]
(8)

≤ E

[
‖r‖X′‖r(1)‖X′

α

]
.

Finally, we approximate the MCFE estimate V [l(u(·, µ); ·, µ)] of the parameter-dependent
variance of the linear output, see [11, Theorem 4.5]:

Theorem 2.10 (output variance bound). For given µ ∈ P,∣∣V [l(u)]− V [l(uR)] + V [r(uR(1))] + E[r(uR(2))]− E[r(uR(3))]− E[r(uR(4))]
∣∣

≤ E
[
‖r‖2X′‖r(1)‖2X′

α2

]
+ E

[
‖r‖X′‖r(1)‖X′

α

]
E

[
‖r‖X′‖r(1)‖X′

α

]

+ E

[∥∥r(2) − r(3) − Nξ−1
Nξ

r(4)

∥∥
X′

∥∥r∥∥
X′

α

]
.

Proof. By (1), defining e := u− uR,∣∣E[l(u)2]− E[l(u)]E[l(u)]− E[l(uR)2] + E[l(uR)]E[l(uR)]

+ E[r(uR(1))
2]− E[r(uR(1))]E[r(uR(1))] + E[r(uR(2))]− E[r(uR(3))]− E[r(uR(4))]

∣∣
≤
∣∣∣E[(l(u)− l(uR) + r(uR(1)))

2]
∣∣∣︸ ︷︷ ︸

(8)

≤E
[
‖r‖2

X′
‖r(1)‖

2
X′

α2

]
+
∣∣∣E[l(u)− l(uR) + r(uR(1))]

∣∣∣︸ ︷︷ ︸
(8)

≤E
[
‖r‖X′ ‖r(1)‖X′

α

]
∣∣∣E[l(u)− l(uR) + r(uR(1))]

∣∣∣︸ ︷︷ ︸
(8)

≤E
[
‖r‖X′ ‖r(1)‖X′

α

]
+
∣∣∣ E[ 2(l(uR)− r(uR(1)))l(e) + r(uR(2))︸ ︷︷ ︸

(3),(2),(4)
= −r(2)(e)

]− E[ E[l(uR)− r(uR(1))]l(e) + r(uR(3))︸ ︷︷ ︸
(3),(2),(4)

= −r(3)(e)

]

− E[ E[l(uR)− r(uR(1))]l(e) + r(uR(4))︸ ︷︷ ︸
(3),(2),(4)

= −r(4)(e)

]
∣∣∣,
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where

∣∣E[r(2)(e)]− E[r(3)(e)]− E[r(4)(e)]
∣∣ (6),(7)

≤ E

[∥∥r(2) − r(3) − Nξ−1
Nξ

r(4)

∥∥
X′

∥∥r∥∥
X′

α

]
.

3. Stochastic Galerkin reduced basis method. In the following, we replace the Monte
Carlo sampling by a stochastic Galerkin procedure. We provide a full-order model (subsec-
tion 3.1) and a reduced-order model (subsection 3.2) to approximate the stochastic solution
of the PDE problem for a given realization of the deterministic input parameters. The com-
putation of statistics of linear outputs are described in subsection 3.3, together with the
respective error bounds. The computation can be separated into an expensive offline phase
and a inexpensive online phase by standard means [20].

3.1. Stochastic Galerkin finite element model. We introduce a stochastic Galerkin dis-
cretization space S ⊂ L2

ξ(Ξ). An example is given in subsection 5.2. We define the product

space X̄ := S ⊗ X, which is a Hilbert space with inner product (·, ·)X̄ := (·, ·)L2
ξ (Ξ,X) and

norm ‖ · ‖X̄ := ‖ · ‖L2
ξ (Ξ,X) in terms of L2

ξ(Ξ, X) := { v : Ξ → X |
∫

Ξ ‖v(y)‖2Xpξ(y) dy <∞}.
We derive a stochastic weak form by taking the expectation of (2). Defining ā(w, v;µ) :=

E[a(w, v; ·, µ)] and f̄(v;µ) := E[f(v; ·, µ)] provides

Problem 3.1 (SGFE model). For given µ ∈ P, find

(9) ū(µ) ∈ X̄ : ā(ū(µ), v;µ) = f̄(v;µ) ∀v ∈ X̄.

As a consequence of the coercivity and boundedness properties associated with Problem 2.1,
the bilinear form ā(·, ·;µ) is µ-uniformly bounded and coercive on X̄ and the linear form
f̄(·;µ) is µ-uniformly bounded on X̄. Therefore, Problem 3.1 has a unique solution for any
given µ ∈ P according to the Lax-Milgram lemma.

3.2. Stochastic Galerkin reduced basis model. We introduce an R-dimensional reduced
space X̄R ⊂ X̄. Suitable reduced spaces are provided in subsection 4.2. A reduced form of
Problem 3.1 is given as follows:

Problem 3.2 (SGRB model). For given µ ∈ P, find

ūR(µ) ∈ X̄R : ā(ūR(µ), v;µ) = f̄(v;µ) ∀v ∈ X̄R.

The subspace property X̄R ⊂ X̄ and the well-posedness of Problem 3.1 imply that Problem 3.2
has a unique solution.

3.3. Output statistics and error estimates. We derive SGRB approximations of the
expectation and variance of linear outputs together with error bounds with respect to the
corresponding SGFE approximations. The variance can be interpreted in terms of quadratic
outputs. We follow the ideas of [13, 23] to derive the respective error bounds.

We introduce a linear form l̄(v;µ) := E[l(v; ·, µ)], which is µ-uniformly bounded on X̄.
We complement the primal problem of subsection 3.1 with corresponding dual problems:
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Problem 3.3 (dual SGFE models). For given µ ∈ P, find

ū(1) ∈ X̄ : ā(v, ū(1)) = −l̄(v) ∀v ∈ X̄,
ū(2) ∈ X̄ : ā(v, ū(2)) = −E[l(ū+ ūR)l(v)] ∀v ∈ X̄,
ū(3) ∈ X̄ : ā(v, ū(3)) = −

(
l̄(ū) + l̄(ūR)− 2r̄(ūR(1))

)
l̄(v) ∀v ∈ X̄.

Letting X̄R
(1) ⊂ X̄, X̄R

(2) ⊂ X̄ and X̄R
(3) ⊂ X̄ be R-dimensional subspaces, we introduce the

following set of reduced dual equations:

Problem 3.4 (dual SGRB models). For given µ ∈ P, find

ūR(1) ∈ X̄R
(1) : ā(v, ūR(1)) = −l̄(v) ∀v ∈ X̄R

(1),

ūR(2) ∈ X̄R
(2) : ā(v, ūR(2)) = −2E[l(ūR)l(v)] ∀v ∈ X̄R

(2),

ūR(3) ∈ X̄R
(3) : ā(v, ūR(3)) = −2

(
l̄(ūR)− r̄(ūR(1))

)
l̄(v) ∀v ∈ X̄R

(3).

The error bounds will be provided in terms of dual norms of residuals:

Definition 3.5. Based on Problems 3.1 to 3.4,

r̄(·) := f̄(·)− ā(ūR, ·),(10)

r̄(1)(·) := −l̄(·)− ā(·, ūR(1)),(11)

r̄(2)(·) := −2E[l(ūR)l(·)]− ā(·, ūR(2)),(12)

r̄(3)(·) := −2
(
l̄(ūR)− r̄(ūR(1))

)
l̄(·)− ā(·, ūR(3)).(13)

We define, for any µ ∈ P, the coercivity factor

ᾱ(µ) = inf
v∈X̄\{0}

ā(v, v;µ)

‖v‖2
X̄

and the continuity factor

(14) γ̄(2)(µ) = sup
w,v∈X̄\{0}

E[l(w;µ, ·)l(v;µ, ·)]
‖w‖X̄‖v‖X̄

.

It is possible to replace these factors by efficiently computable upper and lower bounds [13].
We introduce the dual space X̄ ′ of X̄ with norm

(15) ‖F‖X̄′ := sup
v∈X̄\{0}

|F (v)|
‖v‖X̄

∀F ∈ X̄ ′.

We can derive the following error bound for the error in the reduced-order approximation
of the solution:

Lemma 3.6 (solution bound). For given µ ∈ P,

(16) ‖ū− ūR‖X̄ ≤
‖r̄‖X̄′
ᾱ

.
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Proof. Analog to the proof of Lemma 2.7.

In view of the definition of the weak linear form l̄, we obtain the following bounds for the
expected value and variance of the output:

Theorem 3.7 (expected output bound). For given µ ∈ P,

(17) |E[l(ū)]− l̄(ūR) + r̄(ūR(1))| ≤
‖r̄‖X̄′‖r̄(1)‖X̄′

ᾱ
.

Proof. Analog to the proof of Lemma 2.8.

Theorem 3.8 (output variance bound). For given µ ∈ P,∣∣V[l(ū)]− V[l(ūR)]− r̄(ūR(1))
2 + r̄(ūR(2))− r̄(ūR(3))

∣∣
≤
γ̄(2)‖r̄‖2X̄′

ᾱ2
+
‖r̄‖2

X̄′
‖r̄(1)‖2X̄′
ᾱ2

+
‖r̄(2) − r̄(3)‖X̄′‖r̄‖X̄′

ᾱ
.(18)

Proof. Setting e = ū− ūR, we rewrite

r̄(ūR(2))
(10),(9)

= ā(e, ūR(2))
(12)
= −2E[l(ūR)l(e)]− r̄(2)(e),(19)

r̄(ūR(3))
(10),(9)

= ā(e, ūR(3))
(13)
= −2(l̄(ūR)− r̄(ūR(1)))l̄(e)− r̄(3)(e).(20)

After expressing the variance in terms of expectations, the left-hand side of (18) becomes∣∣E[l(ū)2]− E[l(ūR)2] + r̄(ūR(2))︸ ︷︷ ︸
=E[l(e)2]−r̄(2)(e) by (19)

−l̄(ū)2 + l̄(ūR)2 − r̄(ūR(1))
2 − r̄(ūR(3))︸ ︷︷ ︸

=r̄(3)(e)−(l̄(e)+r̄(ūR
(1)

))2 by (20)

∣∣
≤
∣∣E[l(e)2]

∣∣+ (l̄(e) + r̄(ūR(1)))
2 +

∣∣r̄(2)(e)− r̄(3)(e)
∣∣.

The final result follows from the following bounds:

∣∣E[l(e)2]
∣∣ (14)

≤ γ̄(2)‖e‖2X̄
(16)

≤
γ̄(2)‖r̄‖2X̄′

ᾱ2
,(21)

(l̄(e) + r̄(ūR(1)))
2

(17)

≤
‖r̄‖2

X̄′
‖r̄(1)‖2X̄′
ᾱ2

,(22) ∣∣r̄(2)(e)− r̄(3)(e)
∣∣ (15)

≤ ‖r̄(2) − r̄(3)‖X̄′‖e‖X̄
(16)

≤
‖r̄(2) − r̄(3)‖X̄′‖r̄‖X̄′

ᾱ
.

4. Reduced spaces. We introduce candidate reduced spaces XR and X̄R to be used in
Problems 2.2 and 3.2, respectively. For simplicity, we focus on spaces generated by snapshot-
based proper orthogonal decomposition (POD), but the theory of sections 2 and 3 does not
dependent on this choice. For instance, the availability of computable error bounds also allows
the use of greedy snapshot sampling [3, 11, 17].

The procedures described in this section can also be applied to create the dual reduced
spaces encountered in Problems 2.5 and 3.4, by applying the POD to snapshots of the cor-
responding discretized dual solutions. The creation of the dual reduced spaces must follow a
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certain sequence because some of the discretized dual problems contain reduced primal and
dual solutions on their right-hand sides. For instance, creating X̄R

(3) from samples of ū(3)

requires the availability of X̄R and X̄R
(1) due to the right-hand side of the discretized dual

problem that defines ū(3), see Problem 3.3.
We motivate the POD spaces by corresponding continuous minimization problems. We

discretize these minimization problems using quadrature [22, sections 6.4 and 6.5]. The dis-
crete minimization problems can be solved using a weighted singular value decomposition of
a snapshot matrix, based on [14]. Algorithm 1 provides a definition of the POD algorithm in
terms of linear algebra, assuming N snapshot vectors of length M . The algorithm is formu-
lated in a way that allows a general snapshot weighting and the maximum possible number of
output vectors. Actual implementations can benefit from using a simpler (diagonal) snapshot
weighting matrix and assuming a small number of output vectors. Subsections 4.1 and 4.2
describe how to generate the input to the algorithm in order to compute POD basis vectors
from available FE or SGFE snapshots.

Algorithm 1 Proper orthogonal decomposition.

Input: Snapshot matrix U =
(
U1, . . . , UN

)
∈ RM×N . Symmetric positive definite weighting

matrices S ∈ RM×M and W ∈ RN×N .
Output: POD basis matrix Φ = (Φ1, . . . ,ΦM ) ∈ RM×M .

1: Compute Cholesky factor S̃ such that S = S̃T S̃.
2: Compute Cholesky factor W̃ such that W = W̃T W̃.
3: Compute singular value decomposition Φ̃ΣṼT of S̃UW̃T .
4: Solve S̃Φ = Φ̃ for Φ.

4.1. Spatial POD. We provide a POD of snapshots of the solution u of Problem 2.1,
resulting in a spatial POD space XR = span(ϕ1, . . . , ϕR) for R ≤ MFE. One can define a
POD basis as a set of functions which solve the continuous minimization problems

(23) min
ϕ1,...,ϕR∈X

∫
P

∫
Ξ

∥∥∥∥∥u(y, µ)−
R∑
r=1

(u(y, µ), ϕr)Xϕr

∥∥∥∥∥
2

X

dPξ(y) dµ, (ϕi, ϕj)X = δij ,

for R = 1, . . . ,MFE. We approximate the double integral using Monte Carlo quadrature.
Concerning the Monte Carlo quadrature of the Ξ-integral on the one hand, we already

know that the reduced-order model will only be evaluated at the random parameter points
y1, . . . , yNξ , because the Monte Carlo discretization of the final stochastic estimates is fixed
from the beginning. We use exactly these points for the discretization of the POD minimiza-
tion problem, too, because with this choice our reduced basis will be optimal in a mean-square
sense with respect to approximating the finite element solution at y1, . . . , yNξ .

Concerning the Monte Carlo quadrature of the P-integral on the other hand, our model
should be able to estimate the output statistics reasonably well at any point in P. Having no
further information about how the reduced-order model will ultimately be used, we discretize
the deterministic parameter domain using a training set PNtrain

µ = {µ1, . . . , µN
train
µ }, with

µ1, . . . , µN
train
µ distributed independently and uniformly over P. When testing the performance
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of the resulting reduced-order model, we use a different set of points in the parameter domain
in order to verify the robustness of the model with respect to the deterministic parameter.

The Monte Carlo quadrature of the double integral in (23) finally results in a set of
discretized POD minimization problems

(24) min
ϕ1,...,ϕR∈X

1

NξN train
µ

Nξ∑
i=1

Ntrain
µ∑
j=1

∥∥∥∥∥u(yi, µj)−
R∑
r=1

(u(yi, µj), ϕr)Xϕr

∥∥∥∥∥
2

X

, (ϕi, ϕj)X = δij ,

for R = 1, . . . ,MFE. For the POD computation in terms of Algorithm 1, we set N = NξN
train
µ

and M = MFE and let U (i−1)Nξ+j ∈ RM be the coefficient vector corresponding to the
expansion of u(yi, µj) ∈ X in a basis of X for i = 1, . . . , Nξ and j = 1, . . . , N train

µ . By
substituting the finite element basis expansions into (24), we find

S =MX , U =
(
U1, . . . , UN

)
, W =

1

N
IN ,

where MX denotes the mass matrix corresponding to X and IN denotes the N ×N identity
matrix. The output of Algorithm 1 is a POD basis matrix Φ = (Φ1, . . . ,ΦMFE

) ∈ RMFE×MFE .
The i-th POD basis function ϕi can be obtained from the i-th POD basis vector Φi via an
expansion in the available basis of X, using the elements of Φi as expansion coefficients.
Finally, an R-dimensional POD reduced space is given by XR = span(ϕ1, . . . , ϕR) for any
R = 1, . . . ,MFE and the trivial space X0 ⊂ X contains only the zero function.

4.2. Spatial-stochastic POD. We introduce a reduced basis space that can be used to
derive a stochastic Galerkin reduced basis method. It employs a simultaneous reduction of the
spatial and stochastic degrees of freedom of a stochastic Galerkin finite element discretization.

Spatial-stochastic POD reduced basis functions can be defined as solutions to a set of
P-continuous POD minimization problems

min
ϕ̄1,...,ϕ̄R∈X̄

∫
P

∥∥∥∥∥ū(µ)−
R∑
r=1

(ū(µ), ϕ̄r)X̄ ϕ̄r

∥∥∥∥∥
2

X̄

dµ, (ϕ̄i, ϕ̄j)X̄ = δij ,

for R = 1, . . . ,MFEMSG. A Monte Carlo quadrature of the P-integral raises the issue of
choosing the sample points. Using the same training set PNtrain

µ = {µ1, . . . , µN
train
µ } as in

subsection 4.1 leads to discrete POD minimization problems

(25) min
ϕ̄1,...,ϕ̄R∈X̄

1

N train
µ

Ntrain
µ∑
n=1

∥∥∥∥∥ū(µn)−
R∑
r=1

(ū(µn), ϕ̄r)X̄ ϕ̄r

∥∥∥∥∥
2

X̄

, (ϕ̄i, ϕ̄j)X̄ = δij

for R = 1, . . . ,MFEMSG. Regarding the POD computation in terms of Algorithm 1, we set
N = N train

µ and M = MFEMSG and denote the stochastic Galerkin finite element coefficient
vector of ū(µn) by Un. By substituting the stochastic Galerkin finite element basis expansions
into (25), we obtain

S =MS ⊗MX , U =
(
U1, . . . , UN

train
µ

)
, W =

1

N train
µ

INtrain
µ

,
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where INtrain
µ

is the N train
µ ×N train

µ identity matrix andMS is the mass matrix containing the
mutual S-inner products of the basis functions used to represent S. In view of Algorithm 1,
the i-th POD basis function ϕ̄i can be obtained from the i-th POD basis vector Φi via an
expansion in the available basis of X̄, using the elements of Φi as expansion coefficients.
Finally, an R-dimensional POD reduced space is given by X̄R = span(ϕ̄1, . . . , ϕ̄R) for any
R = 1, . . . ,MFEMSG and the trivial space X̄0 ⊂ X̄ contains only the zero function.

5. Numerical experiments. We assess the provided error bounds and compare the accu-
racy of the MCRB and SGRB models in terms of computing the expectation and variance of
a linear output for a convection-diffusion-reaction problem.

5.1. Example problem. Let y = (y1, . . . , yK)T ∈ Ξ ⊂ RK denote the value of a sample of
a random parameter vector, µ = (µ1, µ2)T ∈ P ⊂ R2 the value of a deterministic parameter
vector and x = (x1, x2)T ∈ Ω ⊂ R2 the coordinate in the computational domain Ω. We
model the random input by a second-order random field with expected value κ0 and separable
exponential covariance c(x) = σ2 exp(−|x1|/L−|x2|/L), where σ is the standard deviation and
L is the correlation length. We approximate the random field using a truncated Karhunen-
Loève expansion κ(x; y) = κ0 + σ

∑K
k=1

√
λkκk(x)yk, where λk denote the eigenvalues of

the corresponding eigenvalue problem, ordered decreasingly by magnitude, and κk(x) denote
respective eigenfunctions. The covariance function allows for an analytical solution of the
eigenvalue problem [9]. We assume that the parameters of the Karhunen-Loève expansion
originate from independent uniformly distributed random variables. The truncation index K
can be interpreted as a modeling parameter, because it enters the definition of the bilinear
form. The governing equations of our example problem are provided as follows:

Problem 5.1 (spatial strong form). For any (y, µ) ∈ Ξ × P, find u(·; y, µ) : Ω → R such
that

µ · ∇u(x; y, µ)−∆u(x; y, µ)− κ(x; y)u(x; y, µ) = 1, x ∈ Ω,

u(x; y, µ) = 0, x ∈ ∂Ω.

The deterministic parameter vector µ ∈ P ⊂ R2 can be interpreted as a spatially uniform
convective velocity. The random parameter vector y ∈ Ξ ⊂ RK enters via a parametrized
random reactivity. A concrete instance of the example problem is determined by the model
parameters given in Table 1. The output of the example problem is given by l(u(y, µ); y, µ),
where

(26) l(v; y, µ) =

∫ 1
2

0

∫ 1
2

0
v(x) dx1 dx2.

In order to express the example problem in terms of the spatial weak form of Problem 2.1,
we set

a(w, v; y, µ) = a0(w, v) +

K∑
k=1

yka
k
y(w, v) +

2∑
p=1

µpa
p
µ(w, v),(27)
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Table 1
Model parameters of the test problem.

symbol value description

κ0 −1000 expected value of reactivity
σ 200 standard deviation of reactivity
L 1 correlation length
K 5 Karhunen-Loève truncation index
Ω (−0.5, 0.5)2 spatial domain with boundary ∂Ω
P [−200, 200]2 deterministic parameter domain

Ξ [−
√

3,
√

3]K random parameter domain

with

a0(w, v) =

∫
Ω
∇w(x) · ∇v(x) dx − κ0

∫
Ω
w(x)v(x) dx,

aky(w, v) = σ
√
λk

∫
Ω
κk(x)w(x)v(x) dx, k = 1, . . . ,K,

apµ(w, v) =

∫
Ω
∂xpw(x)v(x) dx, p = 1, 2

and

(28) f(v; y, µ) =

∫
Ω
v(x) dx.

A spatial weak form of Problem 5.1 is provided in terms of the standard infinite-dimensional
Sobolev space H1

0 (Ω) as follows:

Problem 5.2 (spatial weak form). For given (y, µ) ∈ Ξ × P, find

u(y, µ) ∈ H1
0 (Ω) : a(u(y, µ), v; y, µ) = f(v; y, µ) ∀v ∈ H1

0 (Ω).

By taking the expectation and using the notation of subsection 3.1, a spatial-stochastic weak
form is given by

Problem 5.3 (spatial-stochastic weak form). For given µ ∈ P, find

ū(µ) ∈ L2
ξ(Ξ, H

1
0 (Ω)) : ā(ū(µ), v;µ) = f̄(v;µ) ∀v ∈ L2

ξ(Ξ, H
1
0 (Ω)).

5.2. Discretization. The MCFE and SGFE discretizations (Problems 2.1 and 3.1) provide
necessary links between the infinite-dimensional test problems (Problems 5.2 and 5.3) and the
respective reduced-order models (Problems 2.2 and 3.2). In the following, we describe the
computational details of the MCFE and SGFE discretizations of the test problem. Table 2
lists our choice of the relevant discretization parameters.
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Table 2
Discretization parameters of the test problem. The default values are used in the snapshot simulations.

The reference values are used to assess the accuracy of the snapshot discretizations.

symbol default reference description

MFE 225 961 number of FE degrees of freedom
Nξ 1024 16384 number of MC samples of y ∈ Ξ
d 2 3 degree of SG polynomials
MSG 243 1024 number of SG degrees of freedom: (d+ 1)K

Finite element method. We derive an instance of the stochastic strong finite element prob-
lem by replacing H1

0 (Ω) in Problem 5.2 with a finite-dimensional subspace. In particular,
we employ the space X ⊂ H1

0 (Ω) formed by continuous piecewise linear finite elements cor-
responding to a regular graded simplicial triangulation of Ω, characterized by the number
MFE of finite element degrees of freedom. We estimate the spatial discretization error using
simulations on a finer reference triangulation as a substitute for the exact solution.

Monte Carlo method. We provide estimates of the expectation and variance by discretizing
the respective stochastic integrals using Monte Carlo quadrature in the sense of subsection 2.1.
To this end, we generate random samples y1, . . . , yNξ ∈ Ξ according to the distribution Pξ with
a standard pseudorandom number generator. A reference simulation with a higher number of
samples delivers an estimate of the sampling error.

Stochastic Galerkin method. Stochastic Galerkin methods estimate the expectation and
variance by directly evaluating the respective stochastic integrals, given a stochastic Galerkin
solution based on a finite-dimensional subspace of L2

ξ(Ξ). In general, a stochastic Galerkin
finite element method applied to a linear elliptic problem with a random elliptic coefficient
leads to a large, block-structured system of linear algebraic equations. In our case, however,
the underlying random variables y1, . . . , yK are independent and enter the bilinear form lin-
early, see (27). Under these conditions, it is possible to find a double-orthogonal polynomial
basis which decouples the blocks in the system matrix [1, 7]. The resulting block-diagonal
system of equations can be solved efficiently due to the relatively small bandwidth and the
ability to treat the blocks in parallel. To define a suitable double-orthogonal basis, we start
with K spaces of possibly different dimensions, spanned by univariate Legendre polynomials
over the interval [−

√
3,
√

3]. We normalize the polynomials regarding the underlying uniform
distribution and rotate the bases such that they consist of double-orthogonal univariate poly-
nomials, as described in [1]. Finally, a tensor product of these univariate double-orthogonal
polynomial bases forms a basis of an MSG-dimensional subspace S ⊂ L2

ξ(Ξ). In our experi-
ments, we use the same polynomial degree d in all directions. We assess the error associated
with the choice of d by comparing with a reference solution using a higher degree.

Reduced basis. The considered reduced-order models rely on POD spaces generated from
snapshots of the underlying discretized solution. We choose N train

µ = 64 as the number of
training samples in the deterministic parameter domain. Consequently, section 4 specifies the
creation of the reduced spaces.
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Figure 1. Parameter-dependent output expectation E[l(u(·, µ); ·, µ)] and variance V[l(u(·, µ); ·, µ)] for the
functional l given by (26). Crosses mark the snapshot parameter values. The square marks the parameter value
corresponding to Figure 2. Circles mark the parameter values used to obtain Figure 3.

5.3. Results. Figure 1 presents the parameter-dependent output statistics obtained with
the default parameter-dependent SGFE model. The crosses in Figure 1 correspond to the
snapshot training parameter values provided by the pseudo random number generator. Ad-
ditionally, Figure 1 shows the test parameter values that are used to assess the model.

The reduced basis estimates of the output statistics together with the respective error
bounds are provided by Theorems 2.9 and 2.10 for the MCRB method and Theorems 3.7
and 3.8 for the SGRB method. First, we validate the error bounds for a single random re-
alization of the deterministic parameter, marked by a square in Figure 1. The convergence
regarding the number of reduced basis functions R is presented in Figure 2. The error com-
ponents of the underlying discretized solution are provided as a reference. Looking at the
discretization errors only, we see that number of MC samples is sufficient to approximate the
expectation but actually too small to balance the FE error in case of the variance. The SG
error, on the other hand, is smaller than the FE error in all cases, which provides evidence that
the stochastic Galerkin discretization of the stochastic domain is sufficiently fine. Concerning
the reduced basis models, we observe that R ≈ 16 reduced basis functions are sufficient to ob-
tain reduced-order estimates which are on a par with the full-order estimates in all considered
cases. The plots suggest that all error bounds converge at the same rates as the respective
errors. This is useful, because it implies that efficiency of the error bounds does not become
significantly worse when the number of reduced basis functions is increased.

We assess the convergence globally over P in order to confirm that the point-wise obser-
vation in the deterministic parameter space provided by Figure 2 is not a lucky coincidence.
To this end, we employ an L2(P)-norm, approximated using Monte Carlo quadrature with
N test
µ = 64 samples shown as circles in Figure 1. The convergence results are presented in

Figure 3. Since we have averaged over the parameter space, the plots appear less random
than the plots in Figure 2. The convergence of the estimates and the corresponding bounds
correspond quite well. Moreover, the MCRB and SGRB methods perform similar in terms of
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Figure 2. Log-log plots of the errors in the approximation of the expectation (top row) and variance (bottom
row) of a linear functional with an MCRB method (left column) and an SGRB method (right column) depending
on the dimension R of the reduced spaces, for a random point in the deterministic parameter domain. Respective
error bounds and approximate FE/SG/MC discretization errors.
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Figure 3. Log-log plots of the errors in the approximation of the expectation (top row) and variance (bottom
row) of a linear functional with an MCRB method (left column) and an SGRB method (right column) depending
on the dimension R of the reduced spaces, measured in terms of an approximate L2(P)-norm. Respective error
bounds and approximate FE/SG/MC discretization errors. It is a coincidence that the approximate FE and
MC errors of the estimated expectation are very close in this outcome of the random experiment.
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accuracy per number of basis functions.
In Figures 2 and 3, it appears that the SGRB error bound over-estimates the actual

error more severely (by 4 orders of magnitude) than the MCRB error bound (2 orders of
magnitude). A closer inspection of the individual components of the error estimate reveals
that for larger R the lower-order term involving the continuity factor becomes responsible
for the major portion of the error estimate. In particular, for R = 64 at the parameter
point corresponding to Figure 2, the terms on the right-hand side of Theorem 3.8 amount to
approximately 4.2 · 10−12, 1.2 · 10−19 and 5.2 · 10−14, respectively.

6. Conclusion. We have observed that the SGRB method can deliver estimates of the
expectation and variance of linear outputs with an accuracy similar to the MCRB method.
Also, the SGRB error bounds regarding the expected value were very close to the respective
MCRB bounds in our experiments. Concerning the variance, the presented SGRB bounds
overestimate the error more severely than the available MCRB bounds, which opens oppor-
tunities for future improvement of the SGRB variance bound. Nevertheless, the MCRB and
SGRB variance bounds both converge at the same order depending on the number of reduced
basis functions. This behavior is reflected by the theory, which predicts the same order of
convergence in terms of dual norms of residuals.

The MCRB statistical output estimates and error bounds require a Monte Carlo sampling
of the reduced quantities point-wise in the random parameter domain. In our tests, 1024
samples were sufficient to balance the finite element error for the expectation, but an accurate
prediction of the variance would require even more samples. The SGRB estimates and bounds,
on the other hand, are obtained by an exact integration of the corresponding reduced basis
expansions in the setup phase of the reduced-order model, and, thus, do not rely on Monte
Carlo sampling. As a consequence, the primal and dual SGRB problems need to be solved
only once for each new deterministic parameter. In our tests, the SGRB and the MCRB
methods achieved a similar reduction of degrees of freedom for given error tolerance. As a
consequence, the possible speedup of SGRB methods compared to MCRB methods is in the
order of magnitude of the number of Monte Carlo samples.
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