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Abstract. Mixed-integer supply chain models typically are very large but
are also very sparse and can be decomposed into loosely coupled blocks. In
this paper, we use general-purpose techniques to obtain a block decomposition
of supply chain instances and apply a tailored penalty alternating direction
method, which exploits the structural properties of the decomposed instances.
We further describe problem-specific enhancements of the algorithm and present
numerical results on real-world instances that illustrate the applicability of the
approach.

1. Introduction

Ongoing globalization and rapid changes in information technology produce sig-
nificant challenges in managing operations in today’s competitive market places. To
address these challenges for integrated business planning, Supply Chain Management
(SCM) has been introduced in 1982 in [16]. Since then, SCM attracts increasing
attention both in industrial practice as well as in academic research. In [18], SCM
is defined as the task of integrating organizational units along a supply chain and
of coordinating materials, information, and financial flows in order to satisfy the
customers’ demands with the aim of improving competitiveness of the supply chain
as a whole. One part of SCM is Advanced Planning and computer-based methods
for this purpose are called Advanced Planning Systems (APS). APS are based on
hierarchical planning [11] and make extensive use of instance-specific heuristics as
well as of exact mathematical optimization. In the late 1990s, various software ven-
dors started to offer APS that help companies to coordinate and plan their growing
supply chains. Following this trend, SAP, as one of the leading vendors of business
software, started to develop and sell products such as the SAP Advanced Planning
and Optimization software. One specific function thereof is called Supply Network
Planning Optimization (SNP optimization), which relies on mixed-integer linear
optimization (MIP) models and solvers [6]. SNP optimization aims at providing
quantitative decision support for typical supply chain processes such as material
procurement, production, transportation, demand fulfillment, stock keeping, and
resource capacity utilization. Some quantities may be produced and transported
only in discrete lots. The granularity of these quantities is determined according
to the planning horizon, which is subdivided into so-called time-buckets (or simply
buckets). Typical supply chain scenarios possess a planning horizon of one or two
years and may consist of up to about 100 time-buckets.

Solving real-world supply chain instances is rather hard since these models are
typically of mixed-integer type and very large. Fortunately, these instances possess
a special structure: They are very sparse and contain many so-called independent
components [5]. These properties allow to decompose supply chain instances into
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block-structured MIPs (cf. Section 2 and 3) in which the separate blocks are
only coupled by comparably few variables; see, e.g., [3, 15] for general discussions
of block-structured MIPs and [1, 14] for computational studies regarding block-
detection and exploiting block-structure in MIPs. Moreover, see the very recent
paper [19] for a combination of two classical MIP solution approaches; branch-and-
bound and decomposition. In this paper, we present a tailored penalty alternating
direction method (PADM) that exploits the block-structure of SNP instances and
that serves as a theory-driven general-purpose primal heuristic. See [7] for a
detailed description of PADM and [8, 9, 13], where it is successfully applied to
gas network optimization and bilevel problems. We describe the general method,
present problem-specific algorithmic enhancements in Section 4, and then discuss
numerical results in Section 5. The presented method has the advantage that it
can be used as a general-purpose heuristic that detects the block-structure of the
problem automatically as well as a highly-tailored instance-specific heuristic if user
knowledge about the structure of the instance is at hand. It turns out that the
PADM heuristic is competitive with Gurobi w.r.t. finding feasible solutions of good
quality quickly.

2. Problem Statement

For finding a feasible or even optimal solution for the supply chain problem, SNP
optimization tools typically map the data into a MIP model. The variables of this
model represent the planning decisions per time-bucket, the constraints constitute
business-specific rules or restrictions, and the objective function represents the
overall costs to be minimized. Some of the variables may be integral because supply
chains often require certain quantities of production or transport to be planned in
discrete lots. After SNP optimization has built the mathematical model, it typically
instructs MIP software to solve it. The solver’s result is then converted into a supply
chain plan proposed to the planner or customer.

The supply chain structure itself yields numerous different constraints. These
emerge from restrictions entered by the customer like limited resource capacities but
also from essential requirements as stock balance consistency. In what follows, we
present a basic model containing typical elements of more general or complex supply
chain problems. Our aim here is to keep the setup rather simple to later focus on
the algorithmic development exploiting the structure of the problem at hand.

The presented model is based on the sets, parameters, and variables defined in
Table 1 and 2. All parameters of the model are denoted with Greek letters whereas
all variables are denoted with Latin letters and all variables are given a default
lower bound of 0. Upper bounds are implied by the constraints. Apart from the
binary indicator variables wo(t) for minimum lot sizes, all variables of the model
are continuous. Not that in practical applications, some other variables may also be
restricted to discrete values. For instance, the variables uo(t) are often required to
be discrete, which allows to realize fixed lot sizes for production. Also, it is quite
common to use discrete transport variables zap(t).

The main goal of SCM is to satisfy requested demands. However, there are no
cost-relevant benefits or rewards generated by satisfying a demand. Instead, in
order to initiate activity within the supply chain—besides the costs of production
and transportation—the model incorporates non-delivery penalties. A demand d
for product p may allow a late delivery by at most δdp(t) time-buckets. To obtain
the non-delivered amount regarding a demand in bucket t, all deliveries for that
demand, even the delayed ones, are subtracted from the original demand quantity
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Table 1. Basic sets used in the supply chain model

Symbol Explanation

T Time-buckets; T = {1, . . . , |T |}
L Locations; nodes of the transport graph G = (L,A)
A Arcs of the transport graph G
δin(l) Transport arcs with location l ∈ L as destination
δout(l) Transport arcs with location l ∈ L as origin
D Demands
Dt Demands in bucket t ∈ T
Dl Demands at location l ∈ L
P Products
Pl Products handled at location l ∈ L
Pa Products transported on arc a ∈ A
Ol Production models at location l ∈ L
Rl Resources at location l ∈ L

Table 2. Parameters (above) and variables (below) of the model

Symbol Explanation

αdp(t) Quantity of demand d for product p in bucket t
δdp(t) Maximum allowed lateness for demand d for product p in bucket t
βdp(t) Non-delivery costs for demand d for product p in bucket t
γdp(t, t

′) Late-delivery costs for delivering demand d from bucket t
for product p if it is t′ − t buckets late

ζap(t) Costs for transporting one unit of product p via arc a in bucket t
ηo(t) Costs of applying production model o ∈ Ol once at location l in bucket t
θlp(t) Costs of procuring product p at location l in bucket t
π+
op(t) Output quantity of product p from production model o in bucket t
π−op(t) Input quantity of product p to production model o in bucket t
σlp(t) Costs of storing product p at location l in bucket t
ρor(t) Requirement of resource r ∈ Rl for production model o ∈ Ol

at location l and in bucket t
ψr(t) Capacity of resource r ∈ Rl at location l and bucket t
ϕo(t) Minimum lot size for production model o ∈ Ol

at location l and in bucket t
M Large constant used in big-M method

xdp(t) Quantity not delivered for demand d of product p in bucket t
ydp(t, t

′) Quantity delivered in bucket t′ for demand d of product p in bucket t
zap(t) Quantity of product p transported on arc a in bucket t
uo(t) Number of applications of production model o ∈ Ol

at location l in bucket t
vlp(t) Quantity procured of product p at location l in bucket t
slp(t) Stock level at location l of product p in bucket t
wo(t) Binary indicator variable for minimum lot sizes

in that bucket:

xdp(t) = αdp(t)−
t+δdp(t)∑
t′=t

ydp(t, t
′) for all d ∈ D, p ∈ P, t ∈ T. (1)
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The following stock-level balance equation contains all information on input and
output to and from a location by production, transport, or procurement as well as
on stock quantities from the previous time-bucket. For the initial stock level slp(0),
usually a value of zero is assumed. Note that in the stock-level balance equation for
bucket t ∈ T possible late deliveries to satisfy demands of product p from earlier
time-buckets τ ∈ T need to be taken into account as long as their maximum allowed
lateness δdp(τ) permits a delivery up to time-bucket t, i.e., t− δdp(t) ≤ τ ≤ t:

slp(t) = slp(t− 1) + vlp(t) +
∑
o∈Ol

π+
op(t)uo(t) +

∑
a∈δin(l)

zap(t)

−
∑
o∈Ol

π−op(t)uo(t)−
∑

a∈δout(l)

zap(t)−
∑
d∈Dl

∑
τ≤t

ydp(τ, t)

for all l ∈ L, p ∈ Pl, τ, t ∈ T.

(2)

Resource restrictions can be considered for different activities. For simplicity, we
only refer to production as a showcase. Resource capacities in production usually
represent allocatable time on production machines or available man hours. Usually,
different product lines may share the same resources and there are no costs for
resource consumption. Production resource capacity restrictions are realized by∑

o∈Ol

ρor(t)uo(t) ≤ ψr(t) for all l ∈ L, r ∈ Rl, t ∈ T. (3)

The minimum lot size for production describes the minimum number of appli-
cations of a production model. Two constraints are needed to model minimum lot
sizes. First, we need to decide whether production takes place or not (which is
modeled with the big-M method) and, second, we need to model the minimum
quantity requirement:

uo(t)−Mwo(t) ≤ 0 for all l ∈ L, o ∈ Ol, t ∈ T, (4a)
ϕo(t)wo(t)− uo(t) ≤ 0 for all l ∈ L, o ∈ Ol, t ∈ T. (4b)

Finally, the objective function is obtained by summing up all costs that are to be
minimized. Thus, the entire problem is given by

min
x,y,z,s,
u,v,w

∑
t∈T

∑
d∈Dt

∑
p∈P

t+δdp(t)∑
t′>t

(
γdp(t, t

′)ydp(t, t
′) + βdp(t)xdp(t)

)
(5a)

+
∑
a∈A

∑
p∈Pa

ζap(t)zap(t) +
∑
l∈L

∑
o∈Ol

ηo(t)uo(t) (5b)

+
∑
l∈L

∑
p∈Pl

(
θlp(t)vlp(t) + σlp(t)slp(t)

) (5c)

s.t. (1)–(4). (5d)

It should be noted that, in contrast to representations of production planning
models in [17], the binary indicator variables wo(t) do not appear in the objective
function coefficients of zero and thus contribute only implicitly over uo(t) to the
value of the objective function. However, this aspect has no effect on the later
proposed method for solving large-scale SNP instances.

The variables and constraints described above comprise a basic core of typical
SNP models. In addition, there are many further features that we omit here in
order to focus on the core model ingredients. These further features include, e.g.,

fixed lot sizes: the requirement to produce only multiples of a fixed quantity,
safety stock: keep material inventory above a certain minimum level,
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Table 3. SNP Optimization instances

ID cons vars intvars nnz 0-vars primal dual gap time

scm01 65 473 111 628 4738 231 430 84 868 4.90× 108 4.45× 108 9.07 18 000

scm02 189 286 330 378 9522 681 772 249 924 6.08× 108 5.74× 108 5.48 18 001

scm03 98 871 169 018 6918 350 124 128 235 5.69× 108 5.05× 108 11.25 18 000

scm04 129 662 221 437 9092 459 205 168 562 7.85× 108 7.33× 108 6.55 18 000

scm05 257 078 441 219 18 252 916 248 333 129 1.00× 109 9.49× 108 5.42 18 001

scm06 195 616 334 684 13 436 693 612 305 026 1.13× 1010 1.83× 109 83.78 18 000

scm07 320 836 549 020 22 118 1 138 755 517 166 2.59× 1010 5.77× 109 77.68 18 000

scm08 648 150 1 115 101 44 398 2 313 528 1 050 307 5.04× 1010 9.83× 109 80.49 18 001

scm09 1 388 032 2 589 531 1265 10 289 151 2 469 885 4.44× 1011 4.44× 1011 0.00 107

scm10 2 911 965 5 423 599 9694 20 504 298 5 133 363 5.76× 1012 5.76× 1012 0.00 413

scm11 26 360 84 578 189 239 740 61 012 5.86× 107 5.83× 107 0.39 18 000

scm12 29 407 94 955 210 309 292 68 930 7.09× 108 3.37× 108 52.54 18 000

scm13 28 169 92 212 231 286 368 68 195 1.79× 108 1.78× 108 0.49 18 000

scm14 121 006 371 681 1050 1 227 952 264 274 1.56× 108 1.37× 108 12.20 18 001

scm15 229 244 724 777 1750 2 193 682 529 058 1.34× 109 6.14× 108 54.21 18 000

scm16 131 742 424 074 2014 1 312 760 311 283 1.84× 109 1.83× 109 0.70 18 001

scm17 23 110 44 591 5337 107 496 33 453 8.98× 1012 8.98× 1012 0.00 417

scm18 83 387 382 995 3676 751 995 277 966 2.32× 1016 2.32× 1016 0.00 7105

scm19 226 605 227 316 91 462 1 062 673 216 549 3.17× 1012 3.17× 1012 0.27 18 000

scm20 80 852 174 824 8887 354 806 112 938 1.19× 1014 1.19× 1014 0.07 18 000

scm21 40 583 67 843 20 886 230 225 56 740 8.71× 108 8.71× 108 0.02 18 000

scm22 53 584 87 991 26 210 309 421 73 365 1.68× 109 1.68× 109 0.02 18 000

scm23 73 084 118 266 34 196 425 993 98 557 2.60× 109 2.60× 109 0.02 18 000

scm24 19 112 40 797 2170 97 333 26 791 −2.93× 108 −2.94× 108 0.11 18 000

scm25 21 663 46 207 2448 110 118 30 532 −3.31× 108 −3.31× 108 0.11 18 000

scm26 38 521 83 403 4433 198 419 55 367 −5.82× 108 −5.82× 108 0.12 18 000

scm27 50 773 137 703 6787 302 871 105 950 5.20× 1014 5.20× 1014 0.00 20

scm28 73 053 207 352 7431 459 840 161 100 5.20× 1014 5.20× 1014 0.00 76

scm29 108 710 318 396 7431 710 150 245 990 6.79× 1014 6.79× 1014 0.00 1135

scm30 87 260 383 794 1443 1 593 694 334 291 2.45× 1011 2.45× 1011 0.00 47

scm31 150 529 612 007 4633 2 512 992 539 938 2.45× 1011 2.45× 1011 0.00 536

scm32 29 264 61 966 3214 331 730 36 573 1.52× 1011 1.52× 1011 0.00 936

scm33 98 357 181 483 7866 1 560 108 112 203 1.75× 1011 1.62× 1011 7.39 18 000

scm34 189 919 354 328 8563 2 921 421 222 337 2.01× 1011 1.79× 1011 11.18 18 006

scm35 271 263 288 070 103 070 866 238 277 371 6.16× 1011 6.16× 1011 0.00 96

scm36 84 372 129 580 34 196 449 062 99 956 2.63× 109 2.63× 109 0.02 18 000

scm37 51 480 87 651 3573 206 186 49 191 −5.81× 108 −5.82× 108 0.11 18 000

scm38 113 566 323 072 7431 721 168 247 824 5.98× 1015 5.98× 1015 0.00 298

scm39 169 291 634 241 6535 2 433 653 557 851 2.47× 1011 2.47× 1011 0.00 372

scm40 265 554 438 373 9638 3 097 682 279 949 2.68× 1011 2.40× 1011 10.39 18 001

shelf life: limit material inventory not to exceed a certain maximum level,
capacity extension: extend resource capacity at some costs, or
cost functions: convex and concave piecewise linear cost functions on basic

decisions such as production, transport, or inventory.
Let us finally note that, in principle, our heuristic can be applied to all these variants
of SNP models. However, our method prefers models that can be decoupled into
blocks so that only a few linking variables remain. This will be discussed in the
next section.

3. Sparsity and Block-Structure of SNP Instances

The basis of our experiments is a set of 60 real-world supply chain instances
from our industry partner SAP. SNP instances typically contain many independent
components [5], i.e., parts of the original problem that share no common variables
and constraints. The 60 instances contain more than 14 000 independent components.
We have chosen all components with more than 100 integer variables and for which
Gurobi needs at least 20 s for solving them to optimality. In addition, for composing
a representative selection of instances, we preferred components that have different
original instances as sources. This leads to a test set of 40 SNP instances, cf. Table 3,
that all consist of a single component.

The computational results in Table 3 have been obtained using Gurobi 8.0.1 [10]
(with default parameter settings and a time limit of 18 000 s) on a HPC cluster with
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Figure 1. Decomposition of the instance scm24 into 2 (left) and 4
blocks (right).

Intel Xeon E5-2680 v4 (“Broadwell”) processors 2.4 GHz and 512 GB RAM. The
columns specify the name of the instance (ID), the number of constraints (cons), the
number of variables (vars), the number of integer variables (intvars), the number of
non-zeros (nnz) in the constraint matrix, the number of variables with value zero in
the best solution (0-vars), the primal (bp) and dual bound (bd), the corresponding
gap (gap), and finally the time for determining the best solution (time; in s). Gurobi
was able to solve 13 instances to optimality within the time limit. However, the
test set also contains very hard instances for Gurobi, e.g., scm06–scm08, scm12, or
scm15.

From Table 3 it becomes obvious that SNP instances have two typical properties:
(i) They are very sparse and (ii) the majority of the variables are 0 in a solution.
Property (i) together with the existence of many loosely coupled blocks motivates
us to apply a hypergraph partitioning approach to these instances. Our aim is to
decompose the instances into blocks so that we obtain a minimum number of linking
variables, i.e., of variables that connect different blocks of the decomposed instance.
Property (ii) will turn out to be a valuable observation that we later exploit in our
tailored decomposition method.

For decomposing the SNP instances we use k-way hypergraph partitioning as it
is implemented in the software package hmetis; cf. [12] for the details. For hmetis,
we use the imbalance tolerance 5. Figure 1 (left) shows a decomposition of the
instance scm24 into two blocks (highlighted in gray) with 1004 linking variables,
which form the full columns block at the right end of the matrix. The black dots
indicate non-zero entries of the matrix. The same instance decomposed into four
blocks is shown in the right plot of the figure. The number of linking variables is
2826. We can observe that a decomposition into more blocks usually results in a
larger number of linking variables.

4. Algorithm

The basic problem (5) described in the last section has a so-called quasi block-
separable structure. That means, it decomposes rather naturally in subproblems
that are only weakly coupled. For such problems, the class of penalty alternating
direction methods (PADM) have proven useful for practical applications; see [7] for
a detailed description and theoretical analysis of these methods as well as [8, 9, 13]
for applications of PADMs. Here, we briefly review these methods in Section 4.1,
show how to apply the method to block-structured SNP instances in Section 4.2,
and present some problem-specific algorithmic enhancements in Section 4.3.

4.1. Basic Framework. In a nutshell, a penalty alternating direction method
is a standard alternating direction method (ADM) that is embedded within a
penalty framework. For describing this class of methods let us consider optimization
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Algorithm 1 The `1 Penalty Alternating Direction Method

1: Choose initial values (x0,0, y0,0) ∈ X × Y and penalty parameters µ0 ≥ 0.
2: for j = 0, 1, . . . do
3: Set i = 0.
4: while (xj,i, yj,i) is not a partial minimum of (7) with µ = µj do
5: Compute xj,i+1 ∈ arg minx{φ1(x, yj,i;µj) : x ∈ X}.
6: Compute yj,i+1 ∈ arg miny{φ1(xj,i+1, y;µj) : y ∈ Y }.
7: Set i← i+ 1.
8: end while
9: Choose new penalty parameters µj+1 ≥ µj .

10: end for

problems of the form

min
x,y

f(x, y) s.t. x ∈ X, y ∈ Y, g(x, y) = 0. (6)

Here and in what follows, we assume that the objective function f and the so-
called coupling constraints g are continuous and that the disjoint feasible sets X ⊆
Rnx × Zmx and Y ⊆ Rny × Zmy are non-empty and compact. Note that we allow
both the variable vector x and y to be mixed-integer. We also make the informal
assumption that the number k of coupling constraints g = (gi)

k
i=1 is small. Obviously,

without this weak coupling the feasible set of the problem completely decomposes
into the disjoint sets X and Y .

Classical ADMs proceed as follows. Given an iterate (xj , yj) they fix y to yj and
solve Problem (6) for x only. The result is the new x-iterate xj+1. Then, x is fixed
to xj+1 and Problem (6) is solved for y only, giving the new y-iterate yj+1. ADMs
repeat this procedure until there is no more progress, i.e., until (xj , yj) = (xj−1, yj−1)
holds for some j. Such points are called partial minima (see, e.g., [7]) and it can be
shown that ADMs converge to partial minima under rather mild assumptions.

In practice, it turns out that the coupling constraints g may significantly harm
the solution process of the ADM. This motivates to remove these conditions from
the constraint set in (6) and instead penalizing them in a weighted `1 penalty term:

min
x∈X,y∈Y

φ1(x, y;µ) := f(x, y) +

k∑
i=1

µi|gi(x, y)|. (7)

A penalty ADM (PADM) now proceeds very similar to standard ADMs. For a
given iterate we solve the two separate subproblems for (7) in x- and y-direction
until no more progress is made. In this case, it is checked whether the coupling
constraints are satisfied, i.e., if ‖g(x, y)‖1 = 0 holds. If this is the case, the PADM
terminates; if not, the penalty parameters µi are updated. The formal listing for this
method is given in Algorithm 1. For a more thorough discussion and the respective
convergence theory, we refer the interested reader to [7].

4.2. PADM Applied to Block-Decomposed SNP Instances. We now briefly
describe how to apply the PADM to the block-decomposed instances described in
Section 2. For the ease of presentation, we explain the main ideas for the case of a
decomposed problem with two blocks like in Figure 1 (left). That is, we have two
blocks of variables and constraints x ∈ X and y ∈ Y as well as linking variables
(with indices in L) that appear in both blocks. Every such linking variable is now
copied, yielding two new variables xi and yi that replace the original linking variable.
The variable xi is supposed to belong to X and yi is supposed to belong to Y . Since
these copies need to have the same value, all coupling constraints in g are of the
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type xi = yi. Hence, Problem (7) is of the form

min
x∈X,y∈Y

φ1(x, y;µ) := f(x, y) +
∑
i∈L

µi|xi − yi|.

The absolute values can be reformulated and the first PADM subproblem (i.e., for y
fixed to ȳ) then reads

min
x∈X,s

φ1(x, s;µ) := f(x, ȳ) +
∑
i∈L

(
µ+
i s

+
i + µ−i s

−
i

)
s.t. s+i − s

−
i = xi − ȳi, s+i , s

−
i ≥ 0 for all i ∈ L

with s+ = (s+i )i∈L, s− = (s−i )i∈L, and s = ((s+)>, (s−)>)>. The same can be done
for the second PADM subproblem in an analogous way. Note that applying this
decomposition and the respective PADM ensures convergence to partial minima of
the original problem; cf., e.g., [7].

4.3. Problem-Specific Enhancements. In the plain version as described in the
last section, it turns out that the method is rather sensitive w.r.t. algorithmic
parameters like the MIP gap used for solving the subproblems or w.r.t. how we
update the penalty parameters. To this end, we next present some enhancements
and implementation details of the general algorithm described in Section 4.1.

4.3.1. Sigmoid Rescaling of Penalty Parameters. Increasing the penalty parame-
ters µ ∈ Rk needs to be performed carefully since too large penalty parameters in
the objective function may lead to numerical instabilities. To this end, we apply a
sigmoid rescaling of the penalty parameters in certain cases. In what follows, let
S : R→ R be a sigmoid function having an “S”-shaped graph like the simple sigmoid
function given by S(x) := x/(1 + |x|).

Let c ∈ Rn be the coefficients of the original objective function. If ‖µ‖∞ ≥ θ‖c‖∞
for some θ > 1, we apply the sigmoid-based penalty parameter rescaling

S̄(µi) := β
µi − σ

α+ |µi − σ|
+ ω for all i = 1, . . . , k.

The parameters σ and ω lead to shifts of the sigmoid function and β ≥ 1 controls
the width of the rescaling interval. Finally, the parameter α ≥ 1 controls the
flatness of the curve. By applying S̄, all penalty parameters are mapped into a
controllable interval and since S̄ is a monotonically increasing function, the ordering
of the penalty parameters w.r.t. their size stays the same and the medium-sized
penalty parameters are compressed around the center of the interval. Based on
our extensive preliminary numerical experiments, we chose the parameter values
α = ‖µ‖∞, σ = ‖µ‖∞, β = 5, ω = 5, and θ = 103.

4.3.2. Influence of the MIPGap Parameter. The MIP solver Gurobi allows to adjust
the parameter MIPGap, which has a default value of 10−4. Let bp be the bound of
the best known incumbent solution and let bd be the current dual bound. If

|bp − bd| ≤ MIPGap · |bp|
is satisfied, Gurobi terminates with the current incumbent solution. Using larger
values for the MIPGap parameter leads to Gurobi stopping earlier with an approximate
solution. Our preliminary numerical experiments revealed that in most cases the
quality of subproblem solutions caused by larger MIPGap values are sufficient for
the algorithm to converge. The respective trade-off is as expected: We observe
that using larger values often results in a considerably shorter running times of our
algorithm. On the other hand, applying smaller values sometimes leads to PADM
solutions of better quality.
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In our implementation of Algorithm 1 we use an adaptive rule for choosing the
MIPGap parameter. We start with a large value in order to obtain solutions of the
early subproblems quickly and then reduce this value to max{MIPGap/2, 10−3} in
two situations: First, if the inner ADM loop of the algorithm does not converge and,
second, after every sigmoid rescaling of the penalty parameters. We use the same
MIPGap value for all subproblems.

4.3.3. Handling of Unbounded Subproblems. Decomposing a mixed-integer linear
program may lead to unbounded subproblems. Consider the following mixed-integer
linear program

min
x1,x2,x3

− 2x1 (8a)

s.t. x1 − x2 ≤ 0, x2 + x3 = 3, x1, x2, x3 ≥ 0, x1 ∈ Z, (8b)

with optimal solution (x∗1, x
∗
2, x
∗
3) = (3, 3, 0), which is also the solution of the linear

programming relaxation. In this example, the only linking variable is x2. Thus,
decomposing Problem (8) as described in Section 4.2 yields the first subproblem

min
x1,x′2,s

+
2 ,s
−
2

− 2x1 + s+2 + s−2 (9a)

s.t. x1 − x′2 ≤ 0, s+2 − s
−
2 = x′2 − x̄′′2 , x1, x

′
2, s

+
2 , s
−
2 ≥ 0. (9b)

The second subproblem can be stated in an analogous way. In the first iteration,
the initial value of x̄′′2 could be chosen, e.g., as the corresponding value (3) in the
LP relaxation.

In our implementation, we initialize the penalty parameters of the slack variables
using the objective function coefficient of the corresponding variables incremented
by 1. In the example, this leads to a penalty parameter of 1 for s+2 and s−2 . In
this case, however, it can be seen that Subproblem (9) is unbounded although
the original problem (8) has an optimal solution. This issue cannot appear for
sufficiently large penalty parameters. In our implementation, we solve the current
subproblem and check if it is unbounded. If this is the case, we iteratively increase
all penalty parameters by a factor of 10 until the subproblem gets bounded. Note
that, in the above example, it is sufficient to set the penalty parameters to 2 to
achieve a bounded subproblem.

5. Numerical Results

The numerical results presented in this section have been obtained using HPC
cluster machines with Intel Xeon E5-2643 v4 (“Broadwell”) processors with 3.4 GHz
and 256 GB RAM, running Linux in 64 bit mode. We have implemented our
algorithm using the C++ API of Gurobi 8.0.1. Within our algorithm, Gurobi is
always applied with its default settings except of the initial value MIPGap = 2 for
solving the individual subproblems within the PADM. All penalty parameters are
updated using a factor of 10.

Since, to the best of our knowledge, there are no general-purpose supply chain
heuristics to compare with (see, e.g., [6]), we compare different parameter settings
of our algorithm with Gurobi running with default parameter settings except for the
parameter MIPFocus, which is set to 1, so that Gurobi is focusing on finding feasible
points quickly. To this end, we apply the PADM until a first feasible solution is
found and use the time required by PADM as the time limit for Gurobi. We then
analyze whether Gurobi is also able to compute a feasible solution within this time
limit and, if this is the case, how the quality of the feasible solutions compare to
each other. For brevity, we only present instance decompositions into 2 or 4 blocks
because using more than 4 blocks always increased the number of linking variables
and typically lead to larger running times in our preliminary numerical experiments.
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Table 4. Numerical results for 2 blocks, zero objective function
coefficients, and 0 as initial values for the linking variables. All
times are given in seconds.

Gurobi 8.0.1 PADM

ID obj. value time obj. value |L| h-time time

scm01 4.03× 109 4 4.03× 109 514 3 4

scm02 1.17× 1010 14 8.28 × 109 851 11 14

scm03 6.58× 109 7 6.58× 109 771 5 7

scm04 8.60× 109 9 8.60× 109 1028 7 9

scm05 1.64× 1010 20 1.64× 1010 2026 16 19

scm06 1.38× 1010 15 1.38× 1010 1541 12 15

scm07 2.59× 1010 27 2.59× 1010 2568 21 27

scm08 5.04× 1010 61 5.04× 1010 4998 54 61

scm09 4.44 × 1011 95 4.61× 1011 601 199 223

scm10 5.76 × 1012 353 1.32× 1013 877 505 556

scm11 – 3 2.66 × 109 84 2 3

scm12 3.44× 1011 4 9.22 × 109 105 3 4

scm13 1.17 × 109 4 1.34× 109 105 2 4

scm14 2.05× 1012 18 2.42 × 109 336 15 18

scm15 – 34 8.60 × 109 578 29 34

scm16 – 19 8.73 × 109 42 16 19

scm17 1.59× 1016 2 6.38 × 1015 835 1 2

scm18 – 22 9.56 × 1016 2640 14 22

scm19 3.23 × 1012 39 2.26× 1013 2360 29 39

scm20 – 7 5.61 × 1014 688 5 7

scm21 8.84 × 108 11 9.37× 109 1751 3 11

scm22 1.74 × 109 6 1.21× 1010 2184 5 6

scm23 2.67 × 109 11 1.66× 1010 2850 9 11

scm24 −2.91 × 108 3 −2.45× 108 1004 2 3

scm25 −3.28 × 108 3 −2.74× 108 762 2 3

scm26 −5.75 × 108 6 −4.83× 108 734 4 6

scm27 5.21 × 1014 6 1.20× 1018 1159 4 6

scm28 5.21 × 1014 9 2.96× 1018 2072 7 9

scm29 6.80 × 1014 16 2.90× 1018 3472 11 16

scm30 2.45 × 1011 14 3.35× 1011 55 17 20

scm31 – 36 7.12 × 1011 363 30 36

scm32 5.89 × 1011 4 1.55× 1012 115 3 4

scm33 – 17 1.26 × 1013 629 13 17

scm34 – 45 2.56 × 1013 1644 33 45

scm35 6.25 × 1011 22 2.74× 1012 332 17 22

scm36 2.70 × 109 13 1.75× 1010 2853 8 13

scm37 −5.76 × 108 5 −5.12× 108 464 3 5

scm38 5.98 × 1015 17 9.02× 1017 3478 13 17

scm39 – 36 7.29 × 1011 441 31 36

scm40 – 45 2.56 × 1013 1632 39 45

For initializing the linking variables we tested two methods: (i) Initial values of
0 or (ii) using the corresponding value of the LP relaxation. The first method is
motivated by Property (ii) in Section 3. Moreover, the handling of the original
objective function has a major impact on solving the PADM subproblems. Again,
we have tested two different versions. First, we use the objective function with
its original coefficients. Second, we ignore the original objective function, i.e., we
set all respective coefficients to 0. The results are as expected: Using the original
objective function can lead to feasible solutions with better objective function value
but typically increases the running time significantly. Since our main focus is on
finding feasible solutions quickly, we only present results for the case in which we
ignore the original objective function. Note that this is comparable to the rationale
in early publications on the feasibility pump heuristic [2, 4].

We discuss the results for using 2 blocks, setting the objective function to 0,
and using initial values of zero for the linking variables in detail; see Table 4. The
results for the case of 2 blocks and using the LP relaxation as initial values for the
linking variables as well as the case of 4 blocks and using zero as initial values for
the linking variables are given in Table 5 and 6 in the appendix. The first column
in Table 4 denotes the ID of the instance, the second column contains the objective
value obtained by Gurobi, the third column displays the running time of Gurobi, the
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fourth column illustrates the objective function value obtained with the PADM,
the fifth column contains the number of linking variables (|L|), the sixth column
(h-time) contains the time used by hmetis, and the last column states the complete
time used by PADM (including the hmetis time).

First, it can be seen that the PADM finds a feasible solution for every SNP
instance. A dash indicates that Gurobi was not able to find a solution within the
time required by the PADM. This was the case for 10 instances, i.e., for 25 % of
all instances PADM finds a feasible solution faster than Gurobi. In 19 cases Gurobi
determines a better solution and in 14 cases PADM determines a better solution.
The latter result is quite surprising since we completely ignore the original objective
function. The better solution is always printed in bold in the table. For 7 instances
Gurobi and PADM achieved the same solution. Taking a closer look into Table 5
and 6 in the appendix, one can see that the general behavior stays the same for
a different initialization of the linking variables and for larger number of blocks—
however, the computation times are longer compared to those in Table 4. Thus, we
suggest to use 2 blocks as a default value for the heuristic if no instance-specific
knowledge is at hand.

Comparing the results of the PADM and Gurobi no clear trend is visible for
which kind of instances PADM or Gurobi performs better. For instance, PADM is
the faster method for instances like scm11 and scm12 that only contain relatively
few integer variables (189 and 210, respectively; cf. Table 3) but is also faster for
instance scm40 that contains more than 9600 integers. Instances with many integer
variables are usually solved to a better objective value using Gurobi. On the other
hand, the table slightly indicates that PADM is the better performing method if
an instance contains a large number of nonzero entries and if the solution is rather
sparse. However, the latter cannot be checked a priori.

If Gurobi is applied with default settings, i.e., using MIPFocus =0, it is performing
slightly worse compared to the results in tables. For example, no solution is found
for instance scm35 within the time limit.

Finally, note that the solution time of the PADM is strongly dominated by the
running time required by hmetis for computing the decomposition of the instance.
The PADM itself is typically very fast. This property is particularly of interest if
a proper decomposition of an instance is known by the modeler. In this case, no
general-purpose decomposition software need to be applied and the overall approach
will be much faster than with using hmetis. However, let us note that the presented
results are given for the case of the PADM as a general-purpose heuristic and—even
in this case—the results are comparable to the ones of the commercial solver Gurobi.

6. Conclusion

In this paper, we propose a tailored penalty alternating direction method for
solving block-decomposed mixed-integer supply chain instances. The sparsity of these
instances and the well known fact that they contain many blocks of variables and
constraints that are only coupled by a few linking variables are naturally exploited by
the method, which (i) breaks down the instance into several blocks, (ii) solves these
blocks separately, and that (iii) uses a penalty framework to put the separate block
solutions together to a feasible point of the original problem. Our computational
results show that the performance of the method used as a general-purpose heuristic,
i.e., without a user-specified decomposition, is competitive with commercial MIP
solvers. Thus, the method can, in principle, be used standalone as well as a heuristic
within an exact branch-and-cut code to speed up the solution process by finding
feasible points of good quality quickly. Another option might be to run the heuristic
as a standalone heuristic in parallel to Gurobi and use the first solution found. Both
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aspects get even more pronounced if a problem-specific decomposition is at hand,
e.g., by using structural knowledge of the instances that are often available for the
modeler. In this case, the time-consuming general-purpose decomposition obtained
by using hmetis can be replaced by directly using a problem-specific decomposition.
Finally, the method can also be parallelized in a rather natural way, which might
lead to further computational speed-ups for very large supply chain instances.
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Further Numerical Results

Table 5. Numerical results for the case of 2 blocks, zero objective
function coefficients, and using the LP relaxation for initializing
the linking variables. All times are given in seconds.

Gurobi 8.0.1 PADM

ID obj. value time obj. value |L| h-time time

scm01 4.03× 109 6 4.03× 109 514 3 6

scm02 1.17× 1010 22 8.28 × 109 851 12 22

scm03 6.58× 109 9 6.58× 109 771 5 9

scm04 8.60× 109 13 8.60× 109 1028 7 13

scm05 1.64× 1010 30 1.64× 1010 2026 16 29

scm06 1.38× 1010 21 1.38× 1010 1541 11 21

scm07 2.59× 1010 41 2.59× 1010 2568 21 41

scm08 5.04× 1010 110 5.04× 1010 4998 55 110

scm09 4.44 × 1011 95 4.61× 1011 601 201 273

scm10 5.76 × 1012 343 1.23× 1013 877 502 717

scm11 1.23 × 109 4 2.74× 109 84 2 4

scm12 3.44× 1011 6 9.22 × 109 105 3 6

scm13 7.14 × 108 5 1.34× 109 105 2 5

scm14 2.05× 1012 34 2.42 × 109 336 15 34

scm15 – 67 8.60 × 109 578 29 67

scm16 4.85 × 109 33 9.51× 109 42 15 33

scm17 1.59× 1016 2 6.43 × 1015 835 1 2

scm18 – 50 1.70 × 1017 2640 14 50

scm19 3.19 × 1012 68 1.95× 1013 2360 29 68

scm20 – 10 5.39 × 1014 688 5 10

scm21 8.84 × 108 11 9.00× 109 1751 3 11

scm22 1.74 × 109 10 1.15× 1010 2184 5 10

scm23 2.67 × 109 11 1.71× 1010 2850 8 11

scm24 −2.91 × 108 3 −2.45× 108 1004 1 3

scm25 −3.28 × 108 4 −2.74× 108 762 2 4

scm26 −5.75 × 108 7 −4.83× 108 734 3 7

scm27 5.21 × 1014 7 6.90× 1017 1159 4 7

scm28 5.21 × 1014 10 2.08× 1018 2072 7 10

scm29 6.80 × 1014 18 2.00× 1018 3472 12 18

scm30 2.45 × 1011 14 3.28× 1011 55 17 26

scm31 – 59 6.81 × 1011 363 30 59

scm32 5.89 × 1011 5 1.34× 1012 115 3 5

scm33 – 23 9.60 × 1012 629 13 23

scm34 – 56 1.91 × 1013 1644 33 56

scm35 6.25 × 1011 24 2.74× 1012 332 17 24

scm36 2.70 × 109 14 1.80× 1010 2853 8 14

scm37 −5.76 × 108 6 −5.12× 108 464 3 6

scm38 5.98 × 1015 24 1.26× 1018 3478 12 24

scm39 2.47 × 1011 62 6.92× 1011 441 30 62

scm40 – 58 1.37 × 1013 1632 39 58

(L. Schewe) The University of Edinburgh, School of Mathematics, James Clerk
Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

Email address: lars.schewe@ed.ac.uk

(D. Weninger) Friedrich-Alexander-Universität Erlangen-Nürnberg, Discrete Opti-
mization, Cauerstr. 11, 91058 Erlangen, Germany

Email address: dieter.weninger@fau.de

(M. Schmidt) Trier University, Department of Mathematics, Universitätsring 15,
54296 Trier, Germany

Email address: martin.schmidt@uni-trier.de



REFERENCES 15

Table 6. Numerical results for the case of 4 blocks, zero objective
function coefficients, and 0 as initial values for the linking variables.
All times are given in seconds.

Gurobi 8.0.1 PADM

ID obj. value time obj. value |L| h-time time

scm01 4.03× 109 6 4.03× 109 815 5 6

scm02 1.17× 1010 21 8.28 × 109 2371 18 21

scm03 6.58× 109 10 6.58× 109 1183 9 10

scm04 8.60× 109 13 8.60× 109 1595 11 13

scm05 1.64× 1010 30 1.64× 1010 3077 26 30

scm06 1.38× 1010 22 1.38× 1010 2366 18 22

scm07 2.59× 1010 39 2.59× 1010 3928 34 39

scm08 5.04× 1010 96 5.04× 1010 7702 86 96

scm09 4.44 × 1011 104 4.61× 1011 2113 324 347

scm10 5.76 × 1012 320 1.60× 1013 1818 827 873

scm11 1.23 × 109 5 2.24× 109 397 4 5

scm12 3.44× 1011 6 9.22 × 109 732 5 6

scm13 3.58 × 108 6 1.34× 109 642 5 6

scm14 2.05× 1012 25 2.42 × 109 609 23 25

scm15 – 50 8.58 × 109 993 45 50

scm16 4.85 × 109 30 9.30× 109 676 24 30

scm17 1.37× 1016 4 6.53 × 1015 2237 3 4

scm18 3.27× 1017 295 1.59 × 1017 4561 21 295

scm19 3.19 × 1012 114 2.17× 1013 7190 54 114

scm20 – 9 3.64 × 1014 1431 7 9

scm21 8.84 × 108 19 9.61× 109 3532 6 19

scm22 1.74 × 109 16 1.23× 1010 4458 9 16

scm23 2.67 × 109 19 1.79× 1010 5996 14 19

scm24 −2.91 × 108 7 −2.45× 108 2826 3 7

scm25 −3.30 × 108 10 −2.74× 108 2426 4 10

scm26 −5.77 × 108 21 −4.83× 108 2341 7 21

scm27 5.21 × 1014 8 5.57× 1016 2188 6 8

scm28 5.21 × 1014 14 5.83× 1016 4097 11 14

scm29 6.80 × 1014 38 7.13× 1017 6852 19 38

scm30 2.45 × 1011 14 3.23× 1011 98 27 31

scm31 – 52 6.84 × 1011 647 47 52

scm32 5.89 × 1011 6 1.47× 1012 223 4 6

scm33 – 26 1.25 × 1013 1019 21 26

scm34 – 60 2.54 × 1013 2787 48 60

scm35 6.17 × 1011 33 2.74× 1012 1067 28 33

scm36 2.70 × 109 21 1.87× 1010 6037 13 21

scm37 −5.76 × 108 12 −5.12× 108 1392 6 12

scm38 5.98 × 1015 23 9.75× 1017 6431 19 23

scm39 2.47 × 1011 54 6.87× 1011 700 49 54

scm40 – 68 2.60 × 1013 2695 60 68
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