I'-RoBUST LINEAR COMPLEMENTARITY PROBLEMS

VANESSA KrREBS'2, MARTIN SCHMIDT?

AssTrACT. Complementarity problems are often used to compute equilibria
made up of specifically coordinated solutions of different optimization prob-
lems. Specific examples are game-theoretic settings like the bimatrix game or
energy market models like for electricity or natural gas. While optimization
under uncertainties is rather well-developed, the field of equilibrium models
represented by complementarity problems under uncertainty—especially using
the concepts of robust optimization—is still in its infancy. In this paper, we
extend the theory of strictly robust linear complementarity problems (LCPs)
to I-robust settings, where existence of worst-case-hedged equilibria cannot be
guaranteed. Thus, we study the minimization of the worst-case gap function of
T'-robust counterparts of LCPs. For box and ¢;-norm uncertainty sets we derive
tractable convex counterparts for monotone LCPs and study their feasibility
as well as the existence and uniqueness of solutions. To this end, we consider
uncertainties in the vector and in the matrix defining the LCP. We additionally
study so-called p-robust solutions, i.e., solutions of relaxed uncertain LCPs.
Finally, we illustrate the I'-robust concept applied to LCPs in the light of the
above mentioned classical examples of bimatrix games and market equilibrium
modeling.

1. INTRODUCTION

Optimization under uncertainty has become a very active field of research in
the last decades. While often deterministic assumptions are used regarding the
parameters of optimization models, optimization under uncertainty explicitly takes
into account that many parameters of practical models are not known. In mathe-
matical optimization, there are two main approaches towards uncertainty—namely
stochastic [6, 20] and robust optimization [1, 3, 33]. Both methodologies have been
proven to be useful in various fields. However, in the area of equilibrium models
much less research has been done although this setting seems to be a rather canonical
field of application of optimization under uncertainty.

In this paper, we consider a special type of equilibrium models—namely the
linear complementarity problem (LCP), which is defined as follows: Given a ma-
trix M € R™*™ and vector ¢ € R™, the LCP(g, M) consists in finding a point € R™
satisfying

0<zl Mzx+q>0, (1)
or to show that no such point exists. Here and in what follows, we use the standard
1 -notation, which abbreviates

0<alb>0 <= 0<a, b>0a'b=0

for a,b € R™. For an overview and many details we refer to the seminal textbook [11].
In most cases, if at all, uncertain LCPs are treated in a stochastic setting. To
this end, one uses the gap function formulation of the LCP, which is the quadratic
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optimization problem (QP)

. T

min g(x) =2 (Mz+q) )

st. zeX:={zeR":2>0, Mx+q > 0}.
Note that the the so-called gap function g, i.e., the objective function of Problem (2),
is bounded below by zero on the polyhedral feasible set X', which ensures the
existence of a minimizer by the theorem of Frank-Wolfe [14] if X # (. Obviously, a
point z € R™ is a solution of the LCP (1) if and only if it is global minimizer of (2)
with objective function value 0.

In the stochastic setting, one assumes knowledge about the distribution of the
uncertain parameters of the LCP and then minimizes the expected value of the gap
function, i.e., one considers the problem

iy By oo unr )], glaiuan,ug) =" (M(unn)a + (), (3)
instead of (2). For more details on stochastic LCPs, we refer to [8-10, 24] and the
references therein. One important drawback of stochastic optimization and thus
also of the stochastic consideration of LCPs is that one needs knowledge about the
distributions of the uncertain parameters. This, however, is often not the case in
practice, which is why robust optimization has become important.

In robust optimization, one does not impose distributions but considers given
uncertainty sets in which the parameters may vary. Hence, one does not minimize
expected values but hedges against the worst-case realization within these uncertainty
sets. For LCPs, this means that one considers the situation in which the entries
in the problem’s data M and ¢ are uncertain, i.e., we have M (uys) and g(u,) with
un € Unr, ug € Uy, and Uy, Uy are given uncertainty sets. For example, we define
q(uq) := § + uq in the following, where § is the vector containing the so-called
nominal values of the LCP vector ¢g. The definition of M (uys) will be given later.
Taking these uncertainty sets into account means that we have an infinite family of
complementarity problems

{0 <z L M(um)z+ q(uqg) > 0}(uM,uq)equuq (4)

instead of the single nominal LCP (1). We call Problem (4) an uncertain linear
complementarity problem (ULCP). Moreover, we call a point = strictly robust
feasible if z > 0 and M (upr)z + ¢(ug) > 0 holds for all (ups,uy) € Uns x Uy and the
point is called a strictly robust LCP solution if it additionally satisfies

T (M(upr)x + qug)) =0 for all (ups,ug) € Uns X Uy, (5)
The ULCP (4) can also be stated in terms of the gap function. Instead of minimizing
the expected value of the gap function as in (3), in the robust case, we consider
worst-case minima, i.e., we study the robust counterpart

min sup g(x;unr, ug) (6)
TEX (U tq) (upg,ug)EUM XU

of (2), where the robust feasible set is given by
X(upryug) :=={x € R": >0, M(up)z + q(ug) > 0}.

Note that this can be seen as the feasible set of a semi-infinite optimization problem:;
see, e.g., [30].

Regarding the application of robust techniques to complementarity problems
there are only a few publications. The earliest one—at least to the best of our
knowledge—is the paper [34]. The authors consider the concept of strict robustness
and develop the notion of p-robust solutions. These are strictly robust feasible
points that satisfy =" (M (up)z + q(ug)) < p, p > 0, for all (unr,ug) € Unr x Uy,
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which is a relaxation of (5). The main contribution is the development of sufficient
and necessary conditions for p-robust solutions for the case of different uncertainty
sets. More recently, tractable strictly robust counterparts of uncertain LCPs have
been analyzed in detail in [35, 36]. The authors consider different uncertainty sets
and distinguish between monotone and non-monotone LCPs. However, existence
and uniqueness of robust solutions are not considered in the mentioned articles.
There are also only a few papers that apply robust techniques to complementarity
problems. We are only aware of [7, 21, 27| that consider robust equilibrium problems
in the context of energy market models.

The major criticism of strictly robust optimization is that it tends to yield highly
conservative solutions, which lead to the development of less conservative notions of
robustness; see, e.g., [5] for I-robustness, [23] for recoverable robustness, [13] for
light robustness, or [2] for adjustable robustness. In this paper we adopt the concept
of T-robustness, which has been developed in [4, 5, 32|, to consider uncertain LCPs.
This means that the parameters of the LCP may vary in given uncertainty sets as
above but that only I'y; € {1,...,n%} many values in M (up) and T', € {1,...,n}
many values in ¢(u,) are allowed to realize in a worst-case way. For I'jy = n? and
I'y = n being the total number of parameters, this corresponds to the classical
concept of strict robustness. However, by adjusting I'3; and I'; the modeler can
control on how conservative the solutions will be. Let us also briefly comment
on the min-sup-structure of (6). This corresponds to the classical structure that
one faces in robust optimization. However, also the reverted structure could be
considered in principle, which would correspond to a setting as it is studied in
adjustable robustness; see, e.g., [2].

The contribution of this paper is the following. First, we state I'-robust LCPs
and derive the equivalence to a properly chosen gap minimization problem. This
equivalence reveals that existence of robust LCP solutions cannot be expected in the
classical sense of robust optimization. This has also been discussed in [35] for the
case of strict robustness. As a consequence, we afterward analyze global minimizers
of the worst-case gap function and study the settings of uncertain LCP vector ¢ and
LCP matrix M for different types of uncertainty sets Uy, and U,. We are able to
derive finite-dimensional robust counterparts, which are typically convex if the LCP
matrix is positive semidefinite. Thus, we can explicitly characterize the tractable
cases, which is a classical topic in robust optimization; see, e.g., [3] for a survey on
tractability of robust counterparts for linear programming, quadratic programming,
and even more general but still convex problems. The tractable convex cases then
allow us to study the worst-case gap minimization problem again as an LCP for which
we then consider the classical questions of existence and uniqueness of solutions.
Finally, we also study the concept of p-robust solutions as it is introduced in [34].
Due to its relation to the worst-case gap function minimization, we readily obtain
results in analogy to those in [34] also for the I'-robust case. Finally, we briefly
study the impact of the degree of uncertainty on the robust outcomes for a market
equilibrium model. This case study again reveals that robust LCP solutions cannot
be expected—even for rather simple models. Instead, the global minimizers of the
LCP’s gap function yield points that are “almost equilibria”. In this context we also
want to mention LCPs with additional integer restrictions where “almost equilibria’
are considered as well; see [15-17, 19].

The remainder of this paper is structured as follows. In Section 2, we discuss
two very classical applications of LCPs, namely market equilibrium modeling and
the bimatrix game, and illustrate the meaning of robustness for these settings.
Uncertainty in the LCP vector ¢ is analyzed in Section 3, whereas uncertainty in
the LCP matrix M is the topic of Section 4. Afterward, we also discuss the case

M
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of uncertain ¢ and M if the uncertainty sets prescribing ¢(u,) and M (uys) are
unrelated; see Section 5. We then return to the example of robust market equilibria
in Section 6 and briefly study the dependence of the global LCP gap function
minimizers on uncertain LCP data. Finally, the paper closes with some concluding
remarks and possible future directions of research in Section 7.

2. MOTIVATING EXAMPLES

In this section, we provide two classical examples of linear complementarity
problems and illustrate the meaning of I'-robustifications. We start with an easy
model of a market equilibrium and afterward discuss the LCP model of a bimatrix
game. The nominal problems are both taken from the seminal textbook [11].

2.1. Market Equilibrium Modeling. We consider a stylized example of an econ-
omy in which production of goods satisfies the respective demands at equilibrium
prices. To this end, we model the production side using the linear optimization
problem

Znel]g}l ¢’z (7a)
s.t. Az >0, (7b)
Bz > r*, (7c)

z2>0 (7d)

with vectors ¢ € R?, b € R™, r* € RF and matrices A € R™*" and B € RF*".
Here, z represents the vector of production activity levels and the optimization
goal is to minimize production costs given by the vector ¢. Constraint (7b) models
technological production constraints and (7c) ensures that production meets the
demand r*. The latter depends on the market prices p* and is given by the market
demand function @ that is chosen to be affine-linear here, i.e.,

™ =Q(p*) = Dp*+d with DeRF* 4eRF

Finally, we need the equilibrating condition p* = 7*, where 7* € R* is the vector
of dual variables of the primal demand constraints in (7c). If we now state the
Karush-Kuhn—Tucker (KKT) conditions of the production problem (7) and use
both the equilibrating condition as well as the market demand function, we obtain
the system

OSZLC—AT)\—BT])EO,

0<AL—-b+A42>0,

0<pl-Dp—d+Bz>0
by simplifying the complementarity conditions and solving for r* and 7*. That is,
with

z 0 —-AT -BT c
x=[|A], M=|A 0 0 |, g=1|-b
P B 0 -D —d

we obtain the LCP
>0, Mzx+q>0, z' (Mzx+q)=0.

What does it now mean to consider a I'-robustification of this LCP? The modeling
reveals that A, B, ¢, b are the problem’s data for the production and D, d are the
problem’s data for the demand. Consider now for the moment certain production
data but uncertain demand (see, e.g., [7, 21, 27], where a similar setting is considered
in electricity market models). We assume that D is also certain. Thus, only the
demand function’s quantity intercept d is uncertain. A I'-robust model now considers
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the situation in which I' many quantity intercepts may vary in given uncertainty
sets, whereas all other demands are certain. In this setting, a robust LCP asks for a
market equilibrium for every possible demand within the uncertainty set.

The same can be done with, e.g., the production matrix A. Thus, a certain
number of technological data, for instance production capacities, may vary in an
uncertainty set and one wants to hedge against the worst-case of I' many of such
uncertainties. In the former case, the uncertainty appears in the LCP vector g,
whereas in the latter case the matrix M is affected. We will later return to this
example in the case study in Section 6, where we numerically analyze the dependence
of robust solutions on the uncertain data.

2.2. Bimatrix Games. Another classical example is the bimatrix game. Consider
two players 1 and 2 with m and n pure strategies, respectively. The cost incurred
for player 1 if she plays strategy i € {1,...,m} and if player 2 plays strategy j €
{1,...,n} is given as the entry a;; of the non-negative matrix A € R™*". The
analogous costs for player 2 are given in the non-negative matrix B € R™*™. A
mixed strategy for player 1 is a non-negative vector z € R™ with ", z; = 1. A
mixed strategy for the other player is defined in the same way. The expected costs
of the players thus are 2" Ay and 2" By, respectively, and a pair (z*,y*) of mixed
strategies is called a Nash equilibrium [28, 29] if

(@) Ay* <aTAy* forallz >0 with Y ;= 1,
i=1

(z*)"By* < (z*) "By for all y > 0 with Zyj =1
j=1
It can be shown that computing a Nash equilibrium of a bimatrix game is equivalent
to solving the LCP(q, M) with data

—€m |0 Al
q(_en)’ M|:BT O:|a

see [22] for an early study of this relation. This LCP is of rather special type since g
does not depend on the problem’s data but only contains —1’s and also M has a
special structure. This example shows that for some LCPs, the consideration of
uncertain ¢ is not reasonable. Here, perturbations in ¢ would yield an LCP that has
no connection anymore to the original bimatrix game. As a consequence, only M
can be reasonably considered uncertain, which corresponds to uncertain payoffs of
the players; cf., e.g., [18].

Of course, there are many other important classical LCP models in which the
robust treatment of the problem’s data is reasonable. Let us finally mention the
modeling of traffic equilibria [12]. Here, e.g., traveling times are usually uncertain.
See also [35] for a brief discussion of robust LCPs in the context of traffic equilibria.

3. '-UNCERTAINTY IN ¢
In this section, we consider uncertainty in the vector g of the ULCP (4). The
entries in M are considered to be certain. That is, the uncertain LCP reads
{0 <2z L Mz+q(u) >0}
for a given uncertainty set &/ C R™. In this setting, the concept of strict robustness

is discussed in detail in [35]. We instead focus on I'-robustifications, i.e., we consider
the uncertainty set

ueU

Up == {ucU: |{i €[n]: u £ 0} <T}.
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Here and in what follows, I € {1,...,n} describes the number of deviations in ¢
we hedge against and we use the abbreviation [n] := {1,...,n}. We now study the
I'-robust counterpart of the LCP gap minimization problem, i.e.,

min  sup ' (Mz+q(u)), X(u):={xcR": x>0, Mz + q(u) > 0},
z€X(u) yelr

which is equivalent to

min sup {wTM:E + 2 q(u): x>0, Mz > —q(u) for all u € Ur}. (8)

T wEUr
Note that the notions of a robust feasible point and a robust solution as stated
in the last section carry over directly to the I'-robust case. To be more specific, a
point 0 < z € R™ is called I'-robust feasible if it satisfies Mx > —q(u) for all u € Up
and it is called a I'-robust solution if it is a global minimizer of (8) with objective

function value 0.
In analogy to Proposition 3.1 in [35], we directly obtain the following proposition.

Proposition 3.1. A vector x € X solves
0<zl Mx+q(u)>0 foralluelr (9)
if and only if x is a solution of (8) with optimal objective function value of zero.

The meaning of this proposition is that a robust feasible point for the LCP is a
robust LCP solution if and only if it satisfies complementarity for every realization
of the uncertainty. In other words, we face the standard 3-V quantifier structure of
robust optimization. Unfortunately, it is unlikely that there exists a point that is a
I-robust LCP solution, i.e., a solution of (9). The same has already been commented
on for the case of strict robustness in [35] as well. Thus, in what follows, we consider
the global optima of the worst-case gap minimization problem (8) instead of the
original problem (9). To this end, we choose different uncertainty sets Ur and
study whether (8) has a tractable convex counterpart. Moreover, we investigate the
feasibility of this counterpart and the existence as well as, if possible, uniqueness of
its solution.

3.1. Box Uncertainty L{b%x. In this section, we consider Ur to be the box uncer-
tainty set

UP%‘::{uER”: —u; <wu; <@t €n], [{i €n]:u; #0} <T}

with @; > 0 for all i € [n]. Hence, we write g(u) := 74 u with u € Up% for the
uncertain LCP vector. Note that 4; > —M;x — g; holds for all ¢ € [n]. The reason
is the following: For all i € [n], we know that M;z + ¢; + u; > 0 holds for all
u; € [—u;,4;]. This is equivalent to u; > —M;z — §; and by choosing u; = 4; we
obtain @; > —M; — g;. Thus, the robust counterpart (8) in this case reads

. T T- _

M i T 10
R A B L 1)
st. Mz >—q+» e forall IC[n], [I|<T, (10b)

icl

where e; is the ith unit vector in R™. Note first that we—in contrast to [32]—do
not need absolute values of x in the last sum of the objective function because we
restrict x to be non-negative. Second, we can write “max” instead of “sup” because
of the boundedness of all u;. The hardness of Problem (10) stems from the min-max
objective function and the fact that it is made up of exponentially many (in n)
constraints in (10b). Fortunately, the robust counterpart (10) can be reformulated
in a tractable way. First, we derive an equivalent problem of polynomial size and
without an inner maximization problem.
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Theorem 3.2. The robust counterpart (10) is equivalent to

. T T
min 2 Mz +x q+aF+;Bi (11a)
st. M;.x>—g+u, 1i€n] (11b)
a+ B >z, i€ [nl, (11c)
a>0, (11d)
x; >0, 5; >0, i€]n], (11e)

i.e., if (z,a, B) solves (11), then x solves (10) and if x solves (10), then there exists
(o, B) so that (z,a, B) solves (11).

Before we prove the theorem, we notice that a variable without index denotes
the vector containing all corresponding variables with indices, e.g., 5 := (8i)ic[n]-

Proof. First, we rewrite the robust counterpart (10) as

i 12
Jin (12a)
st. n>a Mrz+x'g+  max Zﬂixi, (12b)
{ICinki<ry &
Mz > —q+ Zﬂiei for all T C [n], |I| <T. (12¢)
i€l

Thus, all uncertainties are moved to the constraints. The number of constraints
in (12¢) is exponential in n, so we first reformulate these constraints. For each
realization of the uncertainty and each row i € [n] of M, we need to satisfy
M;, .z + qi(u) > 0.

For every row i, the worst case for all realizations I C [n], |I| < T, is given by
M; x+¢q —u;, ifiel,

M; x4 qi(u) = " T,
M; .x + g, ifigl.

As T > 1, for each index ¢ € [n] exists at least one realization I with ¢ € I. This
implies that M; .z + ¢ — 4; > 0 needs to hold for all ¢ in order to ensure robust
feasibility. Thus, we replace (12¢) with
Mi,.x—l—(ji—ﬂizo, 1€ [TL]

Next, we reformulate the term

m(x,T) = max Ui Ty

{IC[n): msr}; o

in Constraint (12b). This maximum can be computed by solving the linear opti-
mization problem

Ui T2 13

max ;uxz (13a)
n

st. >z <T, (13b)
i=1

0<2 <1, i€]n]; (13c¢)
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see Proposition 1 in [5] or [32]. This is a bounded and feasible linear optimization
problem in z and its dual problem reads

min ol + i

st a4+ B > wz;, i€ [nl,
a >0,
ﬁi Z 07 Z € [TL],

where « is the dual variable of Constraint (13b) and the 3; are the dual variables of
the constraints in (13c). We can now apply the strong duality theorem and replace
the inner maximization problem in (12b) with the corresponding dual minimization
problem. We notice that we do not need the minimum here because if

nszMx+qu‘+aI‘+Zﬁi7 a>0, >0, a+p;>uz, i€ nl,

i=1

holds, it also holds for the minimum value of al' + >, 3; over the dual feasible
set. Thus, we obtain

min n
2>0,m,0,8

n
st. n>x Mz+z'q+al + Zﬂi,
i1
M;.x > —q; +u;, i€ [n],
a+ B > ury, i€ [n),
a >0,
67,' > 07 (S [In‘]7

and the claim follows by eliminating 7. O

Remark 3.3. (i) For the nominal model we know that 2 = 0 is a solution of

the LCP(q, M) if ¢ > 0 holds. A generalization for the robust LCP (4) for
the box uncertainty set is the following: If § — u > 0 holds, then x =0 is a
robust solution. The reason is as follows. With the definition of ¢(u) and
Z/IP% one has g; — 4; < @; + u; < §; + u; for all i € [n]. This, together with
the assumption g; — @; > 0 for all ¢ € [n], yields ¢; + u; > 0 for all ¢ € [n].
Hence, x = 0 is a solution of (4) because Mz + q(u) = q(u) > g—a >0
and complementarity directly follows.

As already mentioned, we briefly explain why we consider the Relax-
ation (10), respectively (11), instead of the robust LCP formulation (4). By
Proposition 3.1 we know that the worst-case gap has to be zero to guarantee
that we also have a robust LCP solution. This means that

n
a:TMx—Fa:ch—i—ozF—FZ,@i =0

i=1
holds for a solution (z,a, ) of (11). As «,T', and 8 are all non-negative,
we have that =7 (Mz + ¢) < 0 needs to hold. Since every robust solution
also needs to be a nominal solution, it follows =" (Mz + g) > 0 and we
obtain " (Mxz + q) = 0. Hence, a and 3 have to be zero as well. By
Constraints (11c) we get z = 0 as the only robust solution—which is a
solution of the nominal LCP. Thus, for x being feasible for the nominal LCP
this requires § > 0. To sum up, the only robust solution in the case of box
uncertainties in ¢ is = 0, which is only a solution for § > 0.
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Given the robust counterpart (11) we can now easily characterize the tractable
cases.

Corollary 3.4. Suppose that M € R™*™ is positive semidefinite. Then, Prob-
lem (11) is a convex optimization problem.

In the case of a positive semidefinite LCP matrix M, we can also show that
Problem (11) is again equivalent to a suitably chosen LCP.

Theorem 3.5. Suppose that M € R"*™ is positive semidefinite. Then, the I'-robust
counterpart (11) is equivalent to the LCP(q', M') with

M+M" —MT diag(@) Opxn Op
M O’an Onxn OTLXTL On
M' = |-diag(@) Onxn  Onxn  Inxn  Ln| € RUnTDXUnTD 1y
Onxn 0n><n _Inxn Onxn On
0, 0,  ~1p 0
and
¢=@".(g-w)",00,1].1) eRrH, (15)

where 1,, is the vector of all ones in R™.

Proof. Under the assumption that M is positive semidefinite, we obtain by Corol-
lary 3.4 that Problem (11) is convex. Since all constraints are linear, no further
constraint qualifications are required and the KKT conditions are sufficient and
necessary optimality conditions for Problem (11). They comprise

0<Ma+Gg—al\>0,
0<a+pf—umz; Lp; >0, i€n],
0<az L M'z+Mz—M"X+ (G, ..., Unjtn)" +G>0,

0<alT=> p>0, i€[n],
=1
0<BiL1l1—p; >0, i€[n]

The solutions z' := (x",AT, 17,87, a) T of this system are exactly the solutions of
the LCP(¢', M"). O

As mentioned above, existence of solutions for the original robustified LCP cannot
be expected in general. Thus, we consider the existence and uniqueness of solutions
of the worst-case gap minimization problem (10). Since its tractable version (11) is
equivalent to an LCP again, it is natural to study the existence and uniqueness of
solutions for this LCP. As usual for LCPs, results on feasibility of an LCP as well as
the existence and uniqueness of solutions of LCPs are stated such that they hold for
all LCP vectors q. Moreover, both kinds of results depend on the LCP matrix being
a P or Stiemke matrix (S-matrix), respectively. We refer to the seminal book [11] for
the definitions of these and other matrix classes. Unfortunately, the LCP matrix M’
is neither a P-matrix nor an S-matrix.

Lemma 3.6. The matriz M’ defined in (14) is not an S-matriz and, in particular,
not a P-matriz.

Proof. We show that M’ is not an S-matrix by proving that there exists no vector
o= (T, AT u", 87, a)T > 04y with Mz’ > 04,41. To this end, we use the
same notation as in the proof of Theorem 3.5. From z’ > 0, we especially obtain
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w; > 0 for all ¢ € [n]. However, as
(M + M)z — M)+ diag(a)p
Mz
My = —diag(@)z + LixnfB + Lpa
_Inxn,u
- 22;1 Hi
holds, we need p; < 0 for all ¢ € [n] to obtain M'z’ > 0.
Since every P-matrix is an S-matrix (see Corollary 3.3.5 in [11]), M’ cannot be a
P-matrix. (]

Using Proposition 3.1.5 and Theorem 3.3.7 in [11], the last result shows that the
LCP with matrix M’ is neither uniquely solvable nor feasible for all possible LCP
vectors ¢'. However, taking a closer look on the specific vector in (15), we now ask
whether a feasible point of (11)—and hence of (10)—exists for all such specific ¢'.

First, for positive definite matrices M we are able to prove that Problem (11) is
always feasible.

Theorem 3.7. Suppose that the matriz M in Problem (11) is positive definite.
Then, Problem (11) is feasible.

Proof. From Section 3.1 in [11] it follows that every positive definite matrix is an
S-matrix. Hence, as M is positive definite, there exists a vector x > 0 with Mz > 0.
Thus, we can choose a scalar A > 0 sufficiently large such that AMa > —§ + @ and
we define & := Az. Then, 4,;%; > 0 holds for all ¢ € [n] and the right-hand sides of
the constraints in (11c¢) are non-negative and fixed. Hence, f; := @;&; for all i € [n]
and o = 0 is a feasible solution of Problem (11). O

The next question is whether Problem (11), and hence (10), is solvable if it is
feasible. This is equivalent to the question if M’ is a Qp-matrix. In our setting, this
is guaranteed if the original LCP matrix M is positive semidefinite.

Theorem 3.8. Let M be a positive semidefinite matriz. Then, the matriz M’
defined in (14) is positive semidefinite and, thus, a Qg-matriz. Together with
Theorem 3.7, this guarantees the existence of a solution of Problem (10) if M is
positive definite.

Proof. Let o' := (z",A\T,u7,37,a)", then we have
(M + M)z — M7\ + diag(a)p
Mx
() TM'z =(@" A", u", 87, a) —diag(#)x + LixnfB + Ly
—Inxnpt
- Z?:1 Hi
="' (M+M"z -z "M\ + " diag(@)u + N Mz — " diag(a)x

+ ﬂTIanﬂ + NT]]-na - ﬁTIan,U/ - Z alii
i=1

=2 (M+MT")z>0.
Thus, M’ is positive semidefinite. O
Finally, we can show z-uniqueness of Problem (11) for positive definite matrices M.

Since feasibility and existence is already shown, the next result is a direct consequence
of Theorem 1la in [26].

Proposition 3.9. Suppose that the matriz M in Problem (11) is positive definite.
Then, the solution of Problem (11) is unique in x.
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However, the entire primal solution of Problem (11) is not unique because it is
not unique in « and S in general—even for the case of M being positive definite.
This is shown in the following example.

Example 3.10. Let n =3, =1, M = I3x3, §= (—4,2,0)T, and @ = (3,2,10) "
be the input data of Problem (11). One solution with value 221 is = (7,0,10)"
a =76, and 8 = (0,0,24)T. A second solution reads z = (7,0,10)", a = 80, and
B =(0,0,20)T. These are two solutions with the same values for = but different
values for o and .

Next, we briefly discuss the concept of p-relaxations of robust LCPs, which has
been introduced in [34] and which is strongly related to the classical regularization
technique for mathematical programs with complementarity constraints as proposed
in [31].

Definition 3.11. Let U be the uncertainty set of the ULCP (4) and let p > 0 be
given. Then, the system

x>0, (16a)
M)z +q(u) >0, uwel, (16Db)
e (M(u)z +quw) < p, uweld, (16¢)

is called the p-relazation of the ULCP (4). Solutions of System (16) are called
p-robust solutions.

As before, we only consider uncertainty in the vector q. Thus, System (16) for

the box-uncertainty set Z/{I?fg‘ reads

x>0,
Mz+q+u>0, ueclUR,
o' (Mz+q+u) <p, u€cURy.

As in [34], our goal now is to derive a finite system of equations and inequalities
that characterizes p-robust solutions. This is achieved by the following theorem,
which is closely related to Theorem 3.2.

Theorem 3.12. Let U = L{b‘”” be the given uncertainty set. Then, x is a p-robust
LCP solution if and only if there exist o € R and Bi € R, i € [n], that satisfy

2T (Mz+q)+al +> B <p, (17a)
i=1

Mz+q—ua>0, (17b)

a+ B —ux; >0, i€ [n], (17¢)

a >0, (17d)

i, 0 >0, i€ n]. (17e)

In particular, this implies that x is a p-robust LCP solution if and only if the
quadratic program (11) has an optimal solution with objective function value not
larger than p.

Proof. First, assume that z, «, 3 are given that satisfy System (17). This means that
x,«, (B are feasible for Problem (11) and that the corresponding objective function
value is not larger than p. By Theorem 3.2, this is equivalent to x being a p-robust
solution. On the other hand, let  be a p-robust solution. Again by Theorem 3.2
this means that Problem (11) has a feasible point with objective function value less
than p, which directly implies the existence of o and S so that (17) is satisfied. O
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We close this section with a remark about the connection of the uncertainty set
Z/{Pg-f and the /. -norm uncertainty set
Urss = {u € R": ||Ju|loo <6, |{i € [n]: u; # 0} <T}.

It is easy to see that Z/{I'i’fg‘ = U7 if u; = u = ¢ holds. That is, all results in this
section also hold for Ug%.

3.2. Uncertainty set Z/lll’ s- In this section, we consider the ¢;-norm uncertainty
set

Ur s :={u€R": |lufl; <6, [{i € [n]: u; # 0} <T}
for a given § > 0. The robust counterpart (8) in this case reads

. T T
min r Mx+2x ¢+ max U T 18a
>0 4 uEZ/lllﬁé zEZ[;L] e ( )
st. Myz+q+ min u; >0, i€ [n]. (18b)
ueuﬁvé

This optimization model can be reformulated in a tractable way. To prove this, we
apply the strategy used in [35].

Theorem 3.13. Let § > 0 be given. Then, the robust counterpart (18) is equivalent

to
min  x' Mz +x' g+ dt (19a)
r>0,t>0
st x; <t, i€ ]ln], (19b)
Mix+qG—0>0, i€ [n] (190)

Proof. We can rewrite the inner maximization problem in the objective function
of (18) as ¢||z||eo. Thus, the robust counterpart (18) is equivalent to

min ' Mz +z' G+ 6t

2>0,t>0
st. x; <t, i€ [n],
M;x+ g+ min u; >0, i€ [n].
u€U}

With

min u; = —9,
ueu;’é

the claim follows. O

Remark 3.14. Here, something interesting is happening: The I'-robust counter-
part (19) is independent of T', which is not the case for the uncertainty set Lllh)g-f
discussed in the last section. The reason is that the condition |luf; = Y7 |u;| <&
aggregates all uncertain components.

Moreover, the £1-norm counterpart yields some kind of /.,-norm regularization
of the original LCP since Problem (19) can be rewritten as

m>i{)1 o Mz +2"G+0||z]|e st. Mz +qg> 10.
2z

That is, we have the original gap function extended by an ¢,.-regularizer as well as
a d-tightened constraint set.

Given the robust counterpart (19) we can now easily characterize the tractable
case.

Corollary 3.15. Suppose that M € R™ "™ s positive semidefinite. Then, the
T-robust counterpart (19) is a convex optimization problem.
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Under the assumption of the last corollary, we can also show that Problem (19)
is again equivalent to a suitably chosen LCP.

Theorem 3.16. Suppose that M € R™ ™ is positive semidefinite. Then, the T'-
robust counterpart (19) is equivalent to the LCP(q', M') with

M+MT On><1 [nxn *MT
M = O1xn O1x1 —]l.I O1xn c R(3n+1)><(3n+1) (20)

*Inxn ]]-n Onxn Onxn

M 0n><1 Onxn Onxn

and -
qd=(q",0,0,,(@q—01,)") eR"™.

Proof. Using the assumption that M is positive semidefinite, we obtain by Corol-
lary 3.15 that Problem (19) is convex. Since all constraints are linear, no further
constraint qualifications are required and the KKT conditions are sufficient and
necessary optimality conditions of Problem (19). They comprise

0<z Ll M az+Mer—M'v+B+q>0,
0<6- Y Ailt>0,

1€[n]
0<t—a; L3 >0, i€ln],
0<Mx+q—901, Ly>0.

Here, 5;, i € [n], are the duals of the Constraints (19b) and the vector 7 contains
the dual variables of the constraints in (19¢). The solutions 2’ := (z',¢,37,7")"
of this system are solutions of the LCP(¢’, M"). O

As in Section 3.1 we now investigate existence and uniqueness of solutions of the
robust counterpart (19). To this end, we again try to make use of classical LCP
theory. However, the LCP matrix M’ is neither a P- nor an S-matrix.

Theorem 3.17. The matrix M’ defined in (20) is neither an S-matriz nor a
P-matriz.

Proof. We proceed as in the proof of Theorem 3.6. We show that M’ is not an
S-matrix by proving that there exists no vector 2’ := (z",¢t,87,7")" > 03,41
with M'z" > 035,41. From 2’ > 0 we especially obtain 3; > 0 for all ¢ € [n]. However,
as
(M+M"o—M"y+
M2 = - Zie[n] ﬁz
* —x+ 1,t
Mx
holds, we see that — Zie[n] B; < 0 follows and, thus, — Zie[n] Bi > 0 is impossible
and, thus, M’ is not an S-matrix and, consequently, also not a P-matrix; see also
the proof of Lemma 3.6. (|

As in the last section, we can also derive conditions under which Problem (19) is
feasible.

Theorem 3.18. Suppose that the matriz M in Problem (19) is positive definite.
Then, Problem (19) is feasible.

Proof. As M is positive definite, there exists a vector x > 0 with Ma > 0. Hence,
we can choose A > 0 sufficiently large such that AMxz > §1,, — ¢ and we define
& := Ax. Then, choosing ¢ := max{#;: i € [n]} yields a feasible solution (&,¢). O
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In addition, we also obtain existence and uniqueness if the original LCP matrix M
is positive definite.

Theorem 3.19. Suppose that the matriz M in Problem (19) is positive definite.
Then, a solution of the T'-robust counterpart (19) exists and is unique.

Proof. First, existence of a solution follows from Theorem 3.18 and the theorem of
Frank—Wolfe [14] since the objective function is bounded below on the polyhedral
feasible set. The uniqueness of the solution in x again follows from Theorem la
in [26]. Then, the solution is also unique in ¢ because > 0 holds and we obtain the
unique optimal value ¢ = max{z;: ¢ € [n]} by Conditions (19b). O

Again, we close this section with a brief discussion of p-relaxations of the uncertain
LCPs. Thus, we consider the System (16) for Uf. 5, which reads
x>0,
Mx+qg+u>0, uEUll)(;,
" (Mz +q+u) < p, u € Uy ;.
Theorem 3.20. Let U = Z/IF s be the given uncertainty set. Then, x is a p-robust
LCP solution if and only if there exists a scalar t € R that satisfies
" (Mz + q) + 6t < p,
x>0,
x; <t, i€[n],
Mz +q— 461, >0.

In particular, this implies that x is a p-robust LCP solution if and only if the
quadratic program (19) has an optimal solution with objective function value not
larger than p.

Proof. The proof is completely analogous to the proof of Theorem 3.12. O

4. I'-UNCERTAINTY IN M

In this section, we consider the ULCP (4) with uncertainties in the matrix M.
The entries in ¢ are considered to be certain. That is, the problem now reads

{0<2 L M(u)x+q >0}, -

4.1. Box Uncertainty UR%*. We start with a definition of M (u) in analogy to q(u)
in the last section. That is, let M = [myj;, je[n) be the matrix containing all nominal
values and let M (u) := [mij + Uislijem) With [ugl; jem) € U. In this section, we
consider box uncertainties for the entries in M. To this end, for every row i € [n]
we define

L{P‘ﬁ‘l = {ul c R": — U < U < U, j € [n], |{j € [n] Ui 75 0}| < F,}

as the uncertainty set of row i of M and I'; € {1,...,n}. In this case, the robust
counterpart (8) for uncertainty in M reads
min @' Mo talq+ ez[:] (LSl <r) Z Uij Ti%j (21a)
s.t. Z Mi;Tj — {Iig[nl}r:l%i\gm} Z Ui;x; > —q;, 1€ [nl. (21Db)
JEln] Jjel;

With this counterpart at hand, we say that a point € R™ is a I'-robust feasible
point if it satisfies (21b) and we call it a I-robust solution if it is a global minimizer
of (21) with objective function value 0.
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As it was the case for uncertainty in ¢, our goal is to derive a tractable robust
counterpart. However, the following theorem reveals that this is not possible in
general for the case of uncertain M.

Theorem 4.1. Let Z/lbf’;i be the uncertainty set of row i € [n] in M(u)x + g > 0.
Then, the robust counterpart (21) is equivalent to

x@g}fiyx}éﬁé Mz +az'q+ Z RANES Z 0ij (22a)
i€[n] J€ln]
s.t. Z mijx; — el — Z &j > —qi, 1€ n], (22b)
j€ln] j€ln]
gi +&j > w;xy, j € [n], (22c¢)
g; >0, 1i¢€]ln], (22d)
&; >0, 14,5€[n], (22¢)
Vi +0ij > Uiz, 1,j € [n], (22f)
7 >0, i€|[n], (22g)
0;; >0, 14,5€n]. (22h)

Proof. To prove this theorem, we proceed as in the proof of Theorem 3.2. First, we
rewrite Problem (21) as

B 25
st. n> Mz +z'q+ Z max Z Ui j T4, (23b)
, {I;C[n]: |L|<T:} —
i€[n] JEL
;i — max Ui T; > —q; 1€ [nl. 23c
D Mgy = A D U (. (23¢)
]E[n] JjEl;

Now, we reformulate the inner maximization problem of Constraint (23b). To this
end, we use the equivalent formulation

max E ﬂijximjzij
Zq h
J€ln]

s.t. Z Zij S Fi,
j€[n]
of

max E U5 T T 5.
I,C[n]: |1;]<I;
{hCn]: [Li<r) £

Its dual problem is given by
min I; + 044
= g[;] :
st. v+ 0 > wzixy,  j € [n],
vi > 0,
di; >0, je€ln.
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In a second step, we use the equivalent formulation

max E ﬂijxj Zij
2z
J€Eln]

s.t. Z Zij S Fi,
j€[n]
for each ¢ € [n] of the inner maximization problem in (23c). We can again replace
this maximization problem by its dual, which reads

glllll el + Z &ij
j€[n]
s.t. Eg; + 57] Z ’aijxj7 _] c [ﬂ],
& Z 07
§i; >0, je€n.
Using these dual reformulations and the arguments used in the previous proofs, the
claim follows. O

Unfortunately, Problem (22) is a nonconvex and, thus, intractable optimization
problem due to the bilinear terms on the right-hand side of the constraints in (22f).
To be more specific, Problem (22) is a (nonconvex) quadratically constrained
quadratic program. For such problems, even in the case of a convex objective,
i.e., for positive semidefinite M, the existence of solutions cannot be guaranteed in
general; see, e.g., [25]. To avoid the bilinear terms in (22f), we now consider another
definition of M (u), which is the same as in [35]. Let now

M (u) := M + Z ugM*
Le(L]

with L € N and M* := [mfj}i7je[n] € R™*". This can be interpreted as a linear
combination of a uncertainties with given matrices M*, ¢ € [L]. With this, the
uncertainty set is defined as

Uy ={ueR": 0<uy <y Le[L], |{€€[L]: up # 0} <T}.

In this case, the robust counterpart reads

. T 27 T Tasl
min ' Mz +x' g+ max wgr M x 24a
=0 T ey %21 é o
st. Mz +q+ min ugMz > 0. (24b)
weUr Le[L]

The following theorem states that we can rewrite this robust counterpart as a
tractable one. To prove this theorem, we proceed as in the proof of Theorem 3.4
in [35].

Theorem 4.2. Consider the uncertainty set
Llflf’g:: {fueRL:0<wu, <y Lc[L], |{£ €[L]: ug #0}| <T}

and L > T. Furthermore, suppose that M and M*, ¢ € [L], are positive semidefinite.
Then, Problem (24) is equivalent to the convex, and thus tractable, problem

min 2z ' Mz+z' g+ Ta+ Z Be (25a)
z,0,8,7,6 (ell]

s.t. o+ P> ar Mz, (el (25b)
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a>0, (25¢)
Be>0, relD, (254)
% >0, i€ln], (25¢)
8¢ >0, ié€ln], e[l (25f)
x>0, (25¢g)
Mi,.x +q; — %F — Z Oip > 0, € [n], (25h)
(e[L]
Vi + 60 > —uM! .z, i€[n], £€[L]. (251)
Proof. First, we rewrite Problem (24) as

T 26

2T T st
s.t. Mz +a"q+ max wer Mz <mn, (26b)

uEUR; elL)
Mz +q+ min wueMbz >0 (26¢)
uGL{F T elL]

and reformulate the inner maximization problem in Constraint (26b). Since all M¢,
¢ € [L], are positive semidefinite one has

Tzl
max wxr M x = gl‘
uwEURS gez[g] {1l L] |I|<F} ;
where we can write the right-hand side as
— Tase
max Z(uw M*x)z,
rel
S.t. Z zp < T,
Le[L]
0< 2z <1, EE[L].

Its dual problem reads

in T
wip Ta+ ), b

st. o+ By > Mz, (elL),
a >0,
Be >0, Lel[L],
and again we can replace the inner maximization problem in Constraint (26b) with

this dual. In a second step, we have a closer look at Constraint (26¢). We now
consider this constraint componentwise,

M; .2+ ¢+ min ZugMi{_xzo

uGZ/{bOX

and fix 7 € [n] for what follows. Assume now, w.l.o.g., that we have an ascending
order of the values u,M{ x for all i € [n], i..,

M}z <M x < <uapMla

(2%

Then, we obtain

min z UgMEI—ZHlIH{O ueM x}

box
uEUR ‘e[L]
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So, we can rewrite for each i € [n] the Constraint (26¢) as

M;.. ; i uME x> 0.
BETEE i ery ; e =

Now, we reformulate the inner minimization problem in this constraint as

min Z(ﬂgMﬁ,ac)zig
=Ty

s.t. Z zie < T,
Le[L]

0< 2z <1, ZG[L].
Its dual reads

I}YH%X =7l = Z i
Le[L]

s.t. v >0,
51'( Z 03 14 € [L]v
Yi + Oip > 71_1,ZM£,93, JAS [L]

Using this dual problem and the arguments used in the previous proofs, the claim
follows. O

Remark 4.3. Let us make two remarks regarding the last theorem. First, note that
we only consider the case L > T' because otherwise we are in the strictly robust
case. Second, the latter theorem is qualitatively different to the results that we
obtained for uncertain ¢ in the last section. For uncertain ¢, we are able to state a
finite-dimensional counterpart without inner minimization or maximization problems
independent on whether the original LCP matrix M is positive semidefinite or not.
Only the convexity of the counterpart depends on whether M is positive semidefinite
or not. Here, we are only able to state a finite-dimensional counterpart without
inner minimization or maximization problems in the case of positive semidefinite M.

In Section 3.1 on uncertain g we have been able to reformulate the robust
counterpart as an equivalent LCP again. This is not possible anymore in the case
of uncertain M. The reason is the quadratic term on the right-hand side of the
constraints in (25b).

Next, we derive conditions for the existence and uniqueness of solutions to (25).

Theorem 4.4. Assume that Problem (25) is feasible and that M and M*, ¢ € [L],
are positive semidefinite. Then, there exists a solution of Problem (25).

Proof. From Constraint (25h) it follows that Mz + ¢ > 0 holds, which implies
x" Mz +2"q > 0 due to z > 0. Thus, the objective function of Problem (25) is
bounded below on the feasible set of the problem. We can thus apply Theorem 3
of [25] that ensures the existence of a solution. O

Note that the feasibility of Problem (25) is assumed in the theorem. Unfortunately,
we have not been able to prove the feasibility of the problem in general like we did
in, e.g., Theorem 3.7.

If the matrix M in Problem (25) is positive definite, we obtain x-uniqueness of
the solution as a consequence of [26].

Proposition 4.5. Suppose that the matriz M in (25) is positive definite. Then,
the solution of Problem (25) is unique in x.
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In the light of Example 3.10, we think that uniqueness of the other variables «,
B, v, and § cannot be achieved.

Finally, we again consider p-robust solutions. The result has the same flavor as
the corresponding one in Section 3 and can be proven in the same way.

Theorem 4.6. Let U = Z/{Iliog be the given uncertainty set and let M, My, ¢ € [L],
be positive semidefinite. Then, x is a p-robust LCP solution if and only if there exist

«, B,7,6 such that the system
"Mz +aTqg+Ta+ > B <p,

Le[L]
a+ B> Mz, (e [L)],
a >0,
Be > 0, (e [L)],
¥ 2 0, i€ [n],
die >0, i €[n], L€l
x>0,
Mz +qi—vl =Y i >0, i € [n],
Le[L)
Vi + i > —ugM] x, i€ [n], elL],

is satisfied. Moreover, this is equivalent to the case that Problem (25) has a solution
with objective function value not larger than p.

4.2. Uncertainty set Z/{ll, s+ As for the case of uncertain ¢, we now also consider
£1-norm uncertainty in M and we again define

M(u) =M+ Y uM’
Le[L)
with L € N, M := [mf]; je[n) € R"™", and
wellts={ueRl: > u <6,0<uy,Le[L], |{€[L]:u #0} <T}.
Le[L]

The robust counterpart reads

min z' Mz +z' ¢+ max Z upr ' Mtz (27a)

z>0 uEUL 5 (ell]

st. M;.x+q — max Z UgMﬁ,z >0, i€]n]. (27b)
uEUné ‘el

The definitions of I'-robust feasible points and I'-robust solutions directly carry over
from Section 4.1 to the robust counterpart (27) that we study in this section.

Now, we proceed as in the proof of Theorem 3.4 in [35] to obtain for the latter
optimization problem an equivalent reformulation.

Theorem 4.7. Let L{ﬁg be the uncertainty set. Furthermore, let M*, ¢ € [L], be
positive semidefinite. Then, Problem (27) is equivalent to the problem

min z' Mz +x'q+ 6t (28a)
©>0,t>0,5>0

st x' Moz <t (el (28b)

Mz +q > 6s, (28¢)

s> Mz, (c]L]. (28d)



20 V. KREBS, M. SCHMIDT

Proof. First, we rewrite the inner maximization problem in the objective function
of Problem (27). Since

T st T sl
max upr M°x =06 max{xz M x},
ueuﬁng[;] Le[L] { }

holds, the problem can be reformulated as

min ' Mz +x'q+ 6t (29a)
x>0,t>0
st. o Mz <t, (elL), (29b)
M; .z + q; — max weMf x>0, i€ln]. (29¢)
UEU%,s ‘elL) ’

In a second step, we eliminate the minimization problem in Constraints (29¢). As
all ug, £ € [L], are non-negative, we have

max weM?! x = § max Mve,z,O

weUl fell) %, (e[l { b }
for all ¢ € [n] and, thus, Conditions (29¢) can be replaced by

M; x4q >0 Mf 2,0}, ie[n)
rtg > ?elz[lﬁ{ x,0}, i€ n]

This last reformulation is equivalent to
M; .x+q; > 0s;, i€ [n],
siZMf,_a:, i€[n], £e[L],
si >0, i€[n].
So, the claim of the theorem follows. O

We notice that again the equivalent reformulation (28) of the robust counter-
part (27) is independent of the parameter I', as it is the case for the uncertainty
set L{ll’é for uncertainty in g; cf. Section 3.2.

The tractable case is again easy to determine.

Corollary 4.8. Let M, M*, ( € [L], be positive semidefinite. Then, the T'-robust
counterpart (28) is a convex optimization problem.

Theorem 4.9. Assume that Problem (28) is feasible and that M and M*, ( € [L],
are positive semidefinite. Then, there exists a solution of Problem (28). If M is, in
addition, positive definite, then the solution is unique in x and t.

Proof. From Constraint (28c) follows Mx + ¢ > 0, which implies " Mz +27¢ > 0
due to z > 0. Thus, the objective function is bounded below on the feasible set
of the problem. We can thus apply Theorem 3 of [25] that ensures the existence
of a solution. If M is positive definite, the uniqueness of = again follows from
Theorem 1a in [26]. Using this unique part of the solution, it is easy to see that
t = max{z " M*x: € [L]} is unique as well. O

We close this section with the straightforward result about p-robust solutions.
The proof can be done by following the lines of the corresponding proofs in Section 3.

Theorem 4.10. Let U = L{ll)é be the given uncertainty set and assume that all M,
¢ € [L], are positive semidefinite. Then, x is a p-robust LCP solution if and only if
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there exist s,t such that the system

z Mz +xTq+ 6t <p,

T M <t, ¢ e [L],
Mz +q > 6s,
s> Mz, ¢ e [L],
t,s >0

is satisfied. Moreover, this implies that x is a p-robust solution if and only if the
quadratic program (28) has an optimal solution with objective function value not
larger than p.

5. I'“-UNCERTAINTY IN ¢ AND M

In this section we consider the ULCP (4) with uncertainties in the vector ¢ and
uncertainties in the matrix M. To this end, we assume that the uncertainty sets
prescribing ¢(u) and M (u) are independent, i.e., the problem now reads

{0 <z L M(um)z+ qlug) > 0}(

uM,uq)EZ/IM XUg "

5.1. Box Uncertainty UR%*  x Z/{Rg?gq. Here, we consider the box uncertainty

IS VRISV,
set URDS o, X URYs,  with
UP;;iHM = {uM eRY: 0 < upe < Upgpe, JAS [L], ‘{( S [L]t Up e #* 0}‘ < FM}

and tpre > 0 for all £ € [L], as well as

URPs, = {uqg € R™: —lig; < ugi < gy, i € [0], [{i € [0]: ugi # 0} < Ty}
with @g,; > 0 for all i € [n]. As in Section 3.1 and 4.1, we have g(uq) = ¢ + uq and
M(up) =M+ ZZE[L] uMnge with L € N and M? := [mfj]i,je[n] € Rx™,
As the uncertainties in ¢ and M are independent, the robust counterpart reads
min z' Mz +z'q+ e Z Ug;ri +  max Z upror Mhx

x>0 s eubox

el Pymom ¢e[L)
(30a)
st. Mxz+qg+ mgn Z UM,gMZSC > Zﬂwei for all I C[n], [I| <T,.
um U 5 gl i€l
(30b)

This robust counterpart with exponential (in the LCP’s dimension n) many con-
straints can be reformulated in a tractable way.

Theorem 5.1. Let the uncertainty set Z/{fi]ovfﬂM X L{f’jfﬂq be given and L > I'ps.

Furthermore, suppose that M and M, ¢ € [L], are positive semidefinite. Then, the
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robust counterpart (30) is equivalent to the convex, and thus tractable, problem

mzin ' Mz +2z" g+ anTa + o1, +Zﬂq,i + Z Bute (31a)
1=1 Le[L]
sit. M;.x— Ty — Z 0ip > —Gi +Ugi, 1€ [nl, (31b)
Le[L]
g+ By = Ugawi, i € [, (31c)
ans + Bare > dprexr Mz, €€ (L], (31d)
an,aq >0, (31e)
Ti, iy Bgi >0, i€ [n], (31f)
Buye >0, LelL], (31g)
0i0 >0, i€]n], £e[L], (31h)

where z == (z, anm, &g, Bar, By, 7, 9).

Proof. As the uncertainty sets for ¢ and M are independent, we can combine the
techniques and arguments used in the proofs of Theorem 3.2 and 4.2. O

As in Section 3 and 4 we derive conditions for the existence and uniqueness of
solutions to (31). In analogy to the proof of Theorem 4.4, one can show the following
existence result.

Theorem 5.2. Assume that Problem (31) is feasible and that M and M* ¢ € [L],
are positive semidefinite. Then, there exists a solution of Problem (31).

Using [26], we can again obtain uniqueness of = in the solution of Problem (31)
if M is positive definite. As before, we do not think that we can obtain uniqueness
of the entire solution of Problem (31).

For completeness, we also state the following result on p-robust solutions, which
also carries over directly from Section 3 and 4.

Theorem 5.3. Let UIQ‘;,QM X legf”ﬂq be the given uncertainty set and let M, My,

¢ € [L], be positive semidefinite. Then, x is a p-robust LCP solution if and only if
there exist an, g, Bar, By, 7Y, 0 satisfying (31b)—(31h) and

n
oMz +alqgtaly+ali+) fit ) fe<p.
i=1 te(L)
Moreover, this implies that x is a p-robust LCP solution if and only if the quadratic
program (31) has an objective function value not larger than p.

5.2. {;-Norm Uncertainty Up s =X L{llq’(;q. Next, we consider the ¢;-norm un-

certainty set U X Z/lllqy 5, With

MOM

Uy, sy = {UM eR": Z unre < 0nr, 0 < upge, £ € [L,
Le[L]

{0 € [L]: uare # 0} < rM}.
and

Mllq,éq = {“q e R": HuqH1 < 01, HZ € [n] Ugi # O}l < Fq}-
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If the uncertainties in ¢ and M are independent, the robust counterpart reads

1512161 "Mz +z'g+ max Z UgiTi +  max Z uMyngMex (32a)

1 1
quI/{Fq’éq i) "MEUFM,aM elL]
st. Myxz+q+ miln Ugi —  Max E uM’ng,x >0, i€[n]. (32b)
uqeurq"sq un EUR 5 Le(L]

As in Section 5.1, all results directly carry over to the setting considered since the
uncertainty sets for ¢(u) and M (u) are unrelated. Thus, for reasons of brevity, we
again omit all proofs.

Theorem 5.4. Let Z/{%M’(;M X Z/[%qyéq be the uncertainty set. Furthermore, let MY,
¢ € [L], be positive semidefinite. Then, Problem (32) is equivalent to the problem

wzo,t@%}iﬁ coan0 2" Mz 42" q+ 1ty + Satns (33a)
st x; <tg, 1€][n], (33b)

x Me <ty, (€L, (33c)

Mz +q — 0, —0ps >0, i€ n, (33d)

s> Mz, (€]l (33e)

Furthermore, (33) is a convexr and thus tractable optimization problem if M and
M* ¢ € [L], are positive semidefinite.

Again note that (33) is independent of the parameters I'y; and I', as it is the case
for the uncertainty set Ui 5 for uncertainty in g, cf. Section 3.2, and for uncertainty
in M, cf. Section 4.2. 7

Now, we consider the existence and uniqueness of solutions to Problem (33).

Theorem 5.5. Assume that Problem (33) is feasible and that M and Mé,f e [L],
are positive semidefinite. Then, there exists a solution of Problem (33). If M is, in
addition, positive definite, then the solution is unique in x, tyr, and t,.

We close this section with the straightforward result about p-robust solutions.
The proof can be done by following the lines of the corresponding proofs in Section 3.
Theorem 5.6. Let L{llM7§M

all M, ¢ € [L), are positive semidefinite. Then, x is a p-robust LCP solution if and
only if there exist s,tar,tqy > 0 satisfying (33b)—(33e) and

X UL 5 be the given uncertainty set and assume that
q>vq

T Ma + 2" G+ d4tq + dartar < p.
Moreover, this implies that x is a p-robust LCP solution if and only if the quadratic
program (33) has an objective function value not larger than p.

Let us close this section with some words on the case of uncertainty in ¢ and M,
where these uncertainties are not unrelated but parameterized by the same vector.
For the case of strict robustness, this has been done in [35]. However, also in this
easier case it is already required to parameterize the matrix uncertainty using the
Cholesky factorization of the matrix M and to study semidefinite programming
problems (SDPs). By doing so, tractability of the counterpart can be shown for
fo-norm uncertainties in the strict case, whereas this is not possible for #;- and
{~-norm uncertainty sets. Thus, it cannot be expected that a tractability result for
related uncertainties hold for the cases discussed in this paper.
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certainties in ¢, for T' € {1,2,3}, and for varying uncertainty set
parameter @ € [0, 3]. Right: ¢3-norm of the nominal price vector and
the robust price vector for box uncertainties in ¢, for I" € {1, 2, 3},
and for varying uncertainty set parameter @ € [0, 3].

6. CASE STUDY

In this section, we briefly discuss the dependence of the worst-case gap function
minima on the considered uncertain data. We try to keep things as simple as
possible and, thus, discuss uncertainty in the LCP vector ¢ and matrix M of the
market equilibrium model in Section 2.1 separately. Here, we consider three goods
and production activity levels as well as three technology constraints. The cost
vector is ¢ = (3,2,1)" and A = —I343, b = (—4,—5,—10)" is used. This means
that the three productions have capacities 4, 5, and 10. Moreover, we set B = I3x3,
i.e., every production separately yields a certain good. The demand is calibrated
by D = —I343 and d = (6,9, 3)—'—7 i.e., price sensitivity is the same for all demands
but consumers have a different maximum willingness to pay. The resulting LCP
matrix M is positive semidefinite and considered certain at a first glance. The
uncertain data is the vector d € R? that we parameterize as d; +u; with —a < u; < @
for all ¢ € {1,2,3}. Thus, we consider the same box uncertainty for every entry
of the vector d. In Figure 1 (left) we show the optimal values of the worst-case
gap minimization problem for I' € {1, 2,3} and different values of @ ranging from 0
(which yields a certain LCP) and 3. We choose 3 here to ensure that also the smallest
possible entry in d is still non-negative. First, the dependence of the minimum
worst-case gap, i.e., the objective function value of Problem (11), on the value of
T" is as expected: Larger values of T', i.e., more data that is allowed to realize in a
worst-case way, lead to larger minimum gaps. Interestingly, a change of I" from 1
to 2 uncertain demands leads to significantly larger gaps, whereas changing I' from 2
to 3 does not increase the worst-case gaps that significantly anymore. Moreover, for
fixed I', the gaps seem to quadratically depend on the size of the uncertainty boxes.

As it can be seen in Problem (11), feasibility does not depend on the actual
value of T" since it only appears in the objective function—which is also the case in
classical T-robust optimization; cf., e.g., Theorem 1 in [32]. This can also be seen in
Figure 1 (right), where we plotted the /5-norm difference of the optimal prices p*
for different box uncertainty sizes @ and the optimal (equilibrium) prices for the
nominal case. It can be seen that all curves are the same for all I'. Moreover, the
norm of the price differences is linearly increasing in the box uncertainty sizes. This
is to be expected since the relation between the variables x and the box uncertainty
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FIGURE 2. Left: Optimal value of the tractable robust counterpart
for /1-norm uncertainties in ¢ and varying uncertainty set parameter
0 € [0, 3]. Right: £o-norm of the nominal price vector and the robust
price vector for ¢1-norm uncertainties in ¢ and varying uncertainty
set parameter d € [0, 3].

size @ is linear in the constraints. Consequently, this linear relation translates into a
quadratic behavior in the objective value due to the quadratic term x " Mx.

The same observations can be made for the case of uncertain ¢ and ¢;-norm
uncertainty sets as discussed in Section 3.2. In Figure 2 (left) we again plot the
worst-case gap minima, i.e., the optimal objective function values of Problem (19).
For the /1-norm uncertainty sets we have shown that the robust counterparts are
independent of I'. Thus, we have only one curve that shows the optimal gaps for
varying values of § (from 0 to 3). The quadratic nature is the same as for the other
box uncertainties and also the £o-norm of the difference of the nominal and robust
price vectors is again linear in J; see Figure 2 (right).

Next, we turn to the case in which ¢ is certain but uncertainties arise in the LCP
matrix M. Since we considered uncertain demand in case of uncertain ¢ we now
study the robustification regarding uncertainties in the production matrix A. The
nominal value still is A = A = —I3,3 and the corresponding right-hand side still is
given by b = (=4, —5,—10)". Uncertainty in A is then modeled via

Au) = A+ Z upM*
(e[L]
with
MY = wilsys with w, € {—0.5,—0.15,0,0.15,0.5} for £=1,...,5.

Finally, u, € [0,1] for all ¢, and the other matrices B and D are considered
to be certain. Using this parameterization, all assumptions regarding positive
semidefiniteness of matrices as stated in Section 4 are satisfied.

The results are shown in Figure 3 and 4 as before. Interestingly, the worst-case
gaps (left plot in Figure 3) behave similarly as in the case of uncertain ¢ whereas
price vector differences now depend sub-linearly on the box uncertainty set size of
ug. Both can also be seen for the case of /1-norm uncertainties in Figure 4.

7. CONCLUSION

In this paper, we considered I'-robustifications of uncertain linear complementarity
problems. After defining the problem class we studied the case of uncertainty in the
LCP vector ¢ and in the LCP matrix M separately. Moreover, for both cases we
considered box as well as £1-norm uncertainty sets and discussed that one cannot
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expect the existence of robust equilibria in a pure sense. Thus, we investigated the
global minimizers of the worst-case gap function. For both types of uncertainty
sets, we derived conditions (typically monotonicity of the original LCP) for the
tractability of the robust counterpart. In the case of uncertain ¢, this then allows to
consider the tractable robust counterpart again as an LCP. For this LCP, desired
matrix properties like the membership in the matrix classes S and P are shown
to be violated in every case. Nevertheless, we derived specific conditions for the
feasibility of the robust counterpart as well as for the existence and, if possible,
uniqueness of its solution. In the case of uncertain M, the tractable counterparts are
convex QCQPs, for which we also study the existence and uniqueness of solutions.
Finally, we characterized p-robust solutions, i.e., solutions to certain relaxations of
the uncertain LCP.

Despite the theoretical results obtained in this paper, there still are some open
questions in the context of I'-robust LCPs. Let us briefly discuss four of them. First,
other uncertainty sets instead of box and ¢;-norm uncertainties can be discussed.
In our opinion, the canonical next step is the study of ellipsoidal, i.e., £>-norm
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uncertainty sets. However, also general polyhedral uncertainty sets might be of
interest. Second, the question remains open whether there exist a-priori conditions
on g, M, and the uncertainty set that ensure the existence of p-robust solutions
for a given p > 0. Third, the tractability of I'-robust counterparts is still open for
non-monotone LCPs. Fourth and finally, the deeper study of relevant applications
is of interest. We sketched some possible applications in this paper but many other,
e.g., traffic equilibrium problems, might give interesting application-specific insights
in this rather new field of robust optimization.
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