CONVERGENCE OF FINITE-DIMENSIONAL APPROXIMATIONS FOR
MIXED-INTEGER OPTIMIZATION WITH DIFFERENTIAL EQUATIONS

FALk M. HANTE, MARTIN SCHMIDT

ABsTrACT. We consider a direct approach to solve mixed-integer nonlinear
optimization problems with constraints depending on initial and terminal condi-
tions of an ordinary differential equation. In order to obtain a finite-dimensional
problem, the dynamics are approximated using discretization methods. In the
framework of general one-step methods, we provide sufficient conditions for
the convergence of this approach in the sense of the corresponding optimal
values. The results are obtained by considering the discretized problem as a
parametric mixed-integer nonlinear optimization problem in finite dimensions,
where the step size for discretization of the dynamics is the parameter. In
this setting, we prove the continuity of the optimal value function under a
stability assumption for the integer feasible set and second-order conditions
from nonlinear optimization. We address the necessity of the conditions on the
example of pipe sizing problems for gas networks.

Dedicated to Giinter Leugering on the occasion of his 65th birthday.

1. INTRODUCTION

Optimization with integer and dynamic constraints needs to deal with the com-
plexity of combinatorics and infinite-dimensional variables simultaneously. Such
problems appear naturally, for example, in gas network optimization problems,
where the infinite-dimensional variables are subject to partial differential equations
and mixed-integer aspects model the choice of opening or closing a valve or the
decision of turning on or off a compressor [9]. Similar problems also appear in
other critical infrastructure systems such as the control of water flow in networks of
canals [19, 25|, in resource- and energy-efficient building [1, 23], and in many control
problems in chemical engineering such as the optimization of column switching in
simulated moving bed chromatography [22, 29].

In order to tackle this particular class of problems, we consider in this paper a
direct approach, where a discretization of the dynamic constraints—for example
by using a Runge-Kutta scheme—yields a finite-dimensional approximation. More
precisely, we consider nonlinear optimization problems in which mixed-integer
nonlinear constraints are imposed on the initial and terminal state of the solution of
an ordinary differential equation (ODE) and approximate the ODE using a one-step
method. This yields a mixed-integer nonlinear program (MINLP) parameterized
by the step size used for the discretization. A natural question is the convergence
of these approximations for a sequence of step sizes tending to zero. We consider
problems where the terminal states enter linearly into the otherwise nonlinear
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problem. This particular structure is naturally given for stationary considerations
of the network problems mentioned above. We will explicitly discuss the example of
gas networks.

A canonical concept of convergence for the approximations is given by the topology
of the underlying spaces. However, for integer constraints, the discrete topology is
too fine as to provide a useful notion of limits. We therefore focus on establishing
convergence of the corresponding optimal values as the essential measure for the
quality of a solution. This approach is in line with the early investigations concerning
the convergence of Euler discretizations of optimal control problems without integer
constraints [27].

For the particular problem class under consideration here, this path leads to the
study of parametric MINLPs. Necessary and sufficient conditions for the continuity
of the optimal value function for parametric linear problems are given in [36]. The
optimal value function of parametric convex problems is studied in [10, 12]. In
these cases, a constraint qualification of Slater type is sufficient to establish both
the stability of the integer feasible set and the regularity of the constraints for
a sufficiently small perturbation of the parameter. For parametric mixed-integer
quadratic optimization problems, the continuity of the optimal value function is
guaranteed by assuming stability of the integer feasible set and additional regularity
conditions on the constraints [6, 17]. We later discuss these conditions and highlight
the relation to the conditions that we use for general nonlinear problems (instead of
quadratic) problems. Conditions imposing the stability of the integer feasible set
are investigated in [2].

Our contribution here is to provide sufficient conditions for the continuity of
the optimal value function for parametric mixed-integer nonlinear optimization
problems with perturbations of the right-hand sides of the equality and inequality
constraints. We show that stability of the integer feasible set combined with standard
second-order sufficient conditions known from nonlinear optimization ensure the
continuous dependence of the optimal value on parameters entering the nonlinear
constraints linearly. This result combined with convergence results for general
one-step methods yields sufficient conditions for the convergence of the optimal
value of the approximations to the limit problem for the general problem class
described above. We show by an example that the stability assumption on the
integer feasible set is a necessary condition.

The impetus for this research came from a conversation with Giinter Leugering
during a seminar in Hirschegg in the Kleinwalsertal (Austria), in 2017. Motivated
by gas network optimization problems, Giinter posed the question of whether one
can say something about the convergence of solutions of a sequence of parametric
MINLPs as for example obtained from direct discretizations of differential equations.
Here, we answer the question for a special type of MINLPs with ODEs. The case
of PDEs is still open and a topic of future research. In addition, the questions
considered in this paper are also highly related to a lot of work that both authors
carried out together with Giinter and in which both dynamic and integer aspects
have been combined [8, 13, 14, 18-21, 24].

The remainder of the paper is organized as follows. In Section 2 we present
the problem formulation and details concerning the direct approach as a finite-
dimensional approximation to the considered problems. In Section 3 we provide
auxiliary results concerning the regularity of the optimal value function for gen-
eral parametric MINLPs. In Section 4 we apply these results to obtain sufficient
conditions for the convergence of the direct approach. In Section 5 we illustrate
our results on the example of optimal sizing of gas pipeline networks. Finally, in
Section 6 we present conclusions and discuss future working directions.
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2. PROBLEM STATEMENT

We consider problems of the type

min f(z,y,2(0), 2(1) (12
st. g(x,y,2(0),2(1)) <0, h(x,y,2(0),2(1)) =0, (1b)
az(t) =(t, 2(t), z,y), te(0,1), (1c)
2(0) = vo(z,y), (1d)
reR", yezZCzZF z2ecC(0,1;RY. (1e)

Here, 2 € R™ is the vector of continuous variables and y € ZF is the vector of discrete
variables, which is part of the finite (and thus bounded) set Z C ZF. Moreover, z is
the trajectory of the Cauchy problem (1c) and (1d) with states z(t) € R’ for t € (0,1)
and given maps ¢g: R"xZF — R’ as well as ¢ : [0, 1] x R x R* xZ* — R*. The initial
and terminal values of the trajectory z are coupled with the other variables x, y by the
algebraic constraints (1b). We consider constraint functions g: R™ x Z¥ x R x R* —
R’ and h: R" x ZF x R’ x R* — R’ which may be both nonlinear with respect
to the first three components (x, y and z(0)) and linear with respect to the fourth
component for the final state z(1). The latter assumption is required in the proof of
our main theorem. Furthermore, the objective function f: R™ x Z¥ x Rf x R* = R
can also be nonlinear.

Note that problems with any finite number of intermediate states of the trajec-
tory z in the constraints g and h can be equivalently written in this form. Moreover,
the formulation of Problem (1) also contains algebraic constraints that do not act
on the initial and terminal values of the Cauchy problem if the respective rows of
the constraint vectors g and h do not depend on the entries of z(0) or z(1).

In order to solve problems of the form (1) numerically, we consider a direct
approach by approximating the solution of the Cauchy problem (1c) and (1d) using
a discretization method. For a sequence of discretization grids, this yields a sequence
of corresponding mixed-integer nonlinear optimization problems (MINLPs). More
specifically, we consider an equidistant grid {t,,})_, with tg = 0, t,,4+1 > t, for
n=0,...,N—1,and ty = 1, on which we approximate (1) using a general one-step
method. This yields the finite-dimensional MINLP

min f($7y7ZO,ZN> (28‘>
TyY,205--32N
s.t. g(‘T,y,ZQ,ZN) < 07 h(xaywz()aZN) = 0’ (2b)
Zn+1:fzn+7—@(tnaznvx7ya7_)v ﬂZO,...,N—l, (2C)
20 = wO(‘ray)a (2d>
reR" yeZCZF, z,eR’ n=0,...,N, (2e)
with 7 = t,11 —t, for n =0,..., N — 1 and some increment function ©: [0,1] x

Rf x R™ x Z* x [0,1] — R’. For a detailed discussion of general one-step methods
we refer to [16, Chap. IIL.8] and [28, Chap. 11.2].

Let (1) be the optimal value of (2) as a function of the step size 7. In the
following, we develop theory to obtain conditions that ensure the convergence of
©(7) to the optimal value of Problem (1) for 7 — 0. The practical relevance can be
seen from the following examples.

Example 1. In the context of resource- and energy-efficient building the decisions
on the inner warmth isolation for external walls is an important step in planning
processes for constructions of facades; see also [23]. Based on [1], we consider here
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as a prototypical problem the heat distribution on a sectional area of a single room
modeled in a simplified manner as

gt - FLA& =X _50§s|s:0 =Y, Rl&s's:l =u
on Q = (0,1) with & being the room temperature, k, kg, k1 > 0 are given diffusion
coefficients, x is a known distributed heat source, u is a continuous parameter
for a wall heater at s = 1 within bounds u~ < u < ut and y € {1,...,M} is a
discrete parameter corresponding to available isolation material products to be used
at s = 0. The goal is to choose u and y as to bring £ as close as possible to a desired
temperature distribution ;5 on (0,1) subject to costs au® for heating and By for
material with suitable coefficients o, 3 > 0. With z = (21, 22,23) | and x = (x1,22) ",
setting z1 =&, z2 = &, and x1 = u and auziliary variables z3 and x2, the stationary
case for the above scenario then yields a problem of the form (1) with
min  f(x,y, 2(0), 2(1)) := 23(1) + az? + By

T,Y,z
s.t. g(x,y,2(0),2(1) == (xy —ut,u” — xl)T <0,
Wz, y,2(0),2(1)) := k122 — 21 = 0,

d 22(8)
&Z(s) = w(tv Z(S)’xa y) = _"{71X(8) , SE (07 1)a
(21(s) — €a(s))?

Z(O) = ,(/JO(xvy) = (:CQa _KalyaO)T7
r=(z1,20)" €R? yeZ:={1,..., M} CZ,
z= (2’1,22,2:3)T € C([0,1];R?).

Later, in Section 5 we consider another example that is defined on a graph that
models a transport network. Our framework as given in Problem (1) is perfectly
suited for the special case in which a differential equation is defined on every arc
of a graph but in which only the initial and terminal values of the solution of this
differential equation is of interest (and no intermediate solution values). This is, e.g.,
the case in gas transport network optimization, where the initial and terminal values
correspond to gas pressures on nodes and no intermediate nodes (in the pipe) are
used in other constraints or the objective function. The details are given in Section 5
and we refer to [15], where this mathematical structure is used to design a global
optimization algorithm for mixed-integer gas transport problems with differential
equations on the arcs.

3. CONTINUITY OF OPTIMAL VALUE FUNCTIONS OF PARAMETRIC MINLPs

In this section we study the finite-dimensional MINLP

plee,en) :=min  f(z,y) (3a
st. G(z,y) < egq, (3b

H(z,y) =emn, (3¢
reR", yeZCZk, (3d

that we consider as a parameterized optimization problem with parameters e € R
and ey € R, Here, f : R"xZF - R, G : R"xZ* — R and H : R" xZ*F — R
As before, we assume that Z is finite and thus bounded.

Our goal is to derive a continuity result for the optimal value function ¢(e),

e = (el,ef;)". To this end, we first consider the case in which we fix the discrete
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variables y to some feasible values y € Z C 7k, Thus, we consider the continuous
problem

ple;y) := min  f(z,9) (4a)
st. G(x,9) < eq, (4b)
H(x,y) =eq. (4c)

In what follows, we make use of the Lagrangian function of Problem (4), which is
defined as

L(z, A\ g) = f(2,9) + A (G(2,9) — eq) +p" (H(z,9) — en),
where 0 < X\ € R% and p € R% are the Lagrange multipliers of the constraints
in (4). Moreover, we need to introduce some notation. For any fixed parameter e,
let F(eq, err) denote the feasible set of Problem (3), i.e.,

Flea.en) ={(z,y) e R" x Z: G(z,y) < eq, H(x,y)=en}
and let Fy(eq, em) be the projection onto the space of the feasible discrete variables,
ie.,
Fylec.en) = {y € Z": 3z with (z,y) € Flec,en)} .
With that we can state a sensitivity result for the mixed-integer nonlinear
optimization problem (3) w.r.t. e in a neighborhood of the origin.

Theorem 1. Suppose that the following conditions hold for all fized §j € F,,(0):
(a) The functions f(-,y), G(-,y), and H(-,y) are twice continuously differen-
tiable and
(b) for any global minimum x* = x*(g) of Problem (4) with e = 0 and \* =
M (g), u* = p*(g) being the corresponding Lagrange multipliers, it holds

that
Vo L(z", N, 1" 9) =0,
G(z*,5) <0,
H(z",y) =0,
A" >0,
Af =0 forall i with G(z*,y) <0,
and

w' V2 L(x*, N, u*; 5)w > 0
for all w # 0 with
V.Gi(z*,9)Tw=0 foral ic{l,... lg} with G;(z*,7) =0,
V.Hi(z*,9)"w=0 foral ic{l,....ly}.
Moreover, suppose that the linear independence constraint qualification
(LICQ) is fulfilled in x* and that the strict complementarity slackness
condition, i.e.,
Af >0 forall ie€{l,...,0c} with Gi(z*,5) =0
holds.
Further, assume that
Fyle) = Fy(0) for e sufficiently small. (5)

Then, the optimal value function p(e) of the parametric mized-integer nonlinear
optimization problem (3) is Lipschitz continuous in a neighborhood of e = 0.
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Proof. Let ¢(e; §) be the optimal value function of the parametric problem (4) for
fixed §. Under the assumption (5) we have

e) = min e;y) = min ey 6
o(e) ggfy(e)w( ) yefy(o)cp( v) (6)

if e is sufficiently small. Moreover, under Assumptions (a) and (b), it follows that
(e; ) is continuously differentiable with respect to e in an open sphere centered
at e = 0; see, e.g., [3, Proposition 3.2.2|. In particular, p(e; ) is locally Lipschitz
continuous for all § € F,(e). Using that the pointwise minimum of finitely many
locally Lipschitz continuous functions is locally Lipschitz, the result then follows
from the boundedness of F,(0) C Z and (6). O

One of the main assumptions of Theorem 1 is the stability condition (5) for the
integer components of the feasible sets. In order to discuss its necessity, we consider
the case of Problem (3) without inequality constraints. The problem then reads

plem) :=min  f(z,y) (72)
st. H(x,y)=emy, (7b)
reR, yezczk (7c)

and Theorem 1 also holds with a smaller set of assumptions:

Corollary 1. Suppose that the following conditions hold for all fized § € F,(0):
(a) The functions f(-,y) and H(-,g) are twice continuously differentiable and
(b) for any global minimum x* = x*(§) of Problem (7) with ey = 0 and
p* = p*(g) being the corresponding Lagrange multiplier, it holds that
Vo L(z", p*;9) = 0,
H(x",y) =0,
and
w' Ve, L(z*, p* 5 g)w > 0
for all w # 0 with
VeH;(z*,9)"w=0 forall ic{l,... Ly}
Moreover, suppose the LICQ is fulfilled in x*.
Further, assume that
Fyle) = F,(0) for e sufficiently small. (8)
Then, the optimal value function p(e) of the parametric mized-integer nonlinear
optimization problem (7) is Lipschitz continuous in a neighborhood of e = 0.
The following example now shows that the stability condition (8) is necessary.
Example 2. Consider the parametric MINLP
min - f(z,y) = —y(exp(z) +1)

s.t. H(z,y) = (1 —y)r +yexp(z) =¢,

zeR, ye{0,1}.
For the unperturbed problem (£ = 0), there are no feasible points other than x* = y* =
0 with the optimal value f* = f(a*,y*) = 0. However, for small perturbations & > 0,
the feasible set consists of the points z™) = ¢, y() =0 and ) =1n(¢), y@ =1
with f(xM,yM) = 0 and f(2?,y?) = —(¢ +1) < 0. Hence the optimal value
function ¢(€) satisfies

(&) = —L# f* for £\0,
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showing that it is not continuous in & = 0. The reason is that

Fy(§) ={0,1} # {0} = 7,(0)
holds for sufficiently small £ > 0, i.e., the stability condition (8) is violated. At the
same time, for all §j € F,(0) = {0}, we have f(z,y) =0 and H(z,y) = x, so that
the conditions (a) and (b) of Corollary 1 are satisfied.
Of course, the above example can be easily extended to include inequality
constraints in order illustrate the necessity of the stability condition for the integer
components of the respective feasible set for the general case in Theorem 1.

The next example shows that there are also problems for which all conditions are
satisfied. For simplicity, we again consider the conditions of Corollary 1.

Example 3. Consider the parametric MINLP

n fley) = L 1 2+ 1 2+ 1\*
AL 275 175

s.t. H(x,y)=x1+x2 —y1 = e,
r1,3 ER, 1y € {0,1,2}.

For the unperturbed problem, i.e., e =0, one can easily verify that

x (1/2)5 ylfla f 7§

is the global optimal solution and the global optimal objective function value, respec-
tively. Moreover, it is easy to see that F,(0) = {0,1,2} = F,(e) for alle, i.e., the
stability condition (8) is fulfilled. Obviously, also condition (a) of Corollary 1 is
satisfied. For the conditions in (b) we first consider the case § = yi = 1 and the

resulting continuous problem
1\ . 1\ L1
1T 275) Ty

. 1
min —
s.t. T 4+x2o—1=0.

Z1,T2

The KKT conditions are given by
1
xry — 5 + )\ = 0,

1
$2*§+>\:0,
xl—l—xg—l:O,

and we thus obtain the unique primal-dual solution x = (1/2,1/2)7, A\ = 0. The
constraint’s gradient is (1,1)7 and LICQ is thus obviously satisfied. The Hessian of
the Lagrangian is the 2 x 2 identity matriz and the second-order condition needs to
checked for all vectors w = (a, —a), 0 # « € R.

Since the first- and second-order conditions are the same fory =0 and g = 2, they
are also satisfied in these cases. Hence, all conditions of the theorem are satisfied
and the optimal value function of the parametric MINLP is Lipschitz continuous in
a neighborhood of e = 0.

Remark 1. We note that the stability condition (5) for general mized-integer
nonlinear problems coincides with the one used in [6, 17] for the special case
of mized-integer quadratic problems. For convex problems, constraint regularity
conditions and stability of the integer component can be combined in a Slater-type
condition [11, 12, 36]. In the linear case, these conditions are also necessary [36]. In
the latter work, the author uses the classical complementarity slackness theorem of
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linear optimization [7] to obtain the required sensitivity result for linear optimization;
see also [26, 35] for the original publications. Necessity in Theorem 1 is not given,
because these conditions are not necessary even with a fixed integer component, i.e.,
in the purely continuous case.

Remark 2. Theorem 1 also extends to problems of the form

vler,eq,eq) = Iguyn F(z,y,er) (9a)
s.t. G(x,y) < eg, (9b)

H(z,y) =eqy, (9¢)

reR", yeZCZF (9d)

for parametric cost functions F: R* x ZF x R — R if the assumptions on f are
replaced with the assumption that for ally € F,, F is twice continuously differentiable
in the first component and continuous in the third component. For fixed ep, the
continuity of ¢ with respect to e and ey then follows from Theorem 1 as before. The
continuity with respect to er, hence joint continuity of ¢ with respect to (ep,eq,en),
18 then implied by continuity of F with respect to er. Analogously, the remark
applies to Corollary 1.

4. CoNTINUITY OF MINLPs wiTH DISCRETIZED ODES

In this section we apply the results on parametric MINLPs obtained in the
previous section to obtain sufficient conditions for the continuity of the optimal
value when we pass to the limit in finite-dimensional approximations obtained
from one-step methods for ODEs. To this end, we make the following assumptions
concerning the regularity of the nonlinearities in the limit problem (1) and of the
increment function used in the discretization scheme to obtain the approximation (2).

Assumption 1. We assume that the Cauchy problem (1c) and (1d) has a unique
solution z(-;x,y) € C([0,1];RY) in the sense that

t
S(ty) = vole.y) + /0 W(s, (s y)any) ds, ¢ e [0,1],

for all feasible x € R™ and y € Z. We further assume that, for all fired y € Z,
the functions f(- v, ), g(-sv, ), h(-,y,+, ), and z(1;-,y) in Problem (1) are twice
continuously differentiable.

A sufficient condition for the properties of the solution z required by Assumption 1
is that ¢ is continuous in s, globally Lipschitz continuous with respect to z and
twice continuously differentiable with respect to z and z, see e.g., [34].

Assumption 2. We assume that the increment function © is consistent, i.e.,
O(t, z,z,y,0) = (t, z,z,y) forall tel0,1], zeR", 2R yezk
and stable, i.e.,
10(t, 2, 2,y,7) = O, 2, 2,y,7)|| < Lel|z — 2]

forall te[0,1], z,2€e R, zeR™, yeZt rec[0,7]

and some Lg > 0 as well as T > 0. Moreover, we assume that
lig%) O, z,x,y,7) = Y(t, z,2,y)

holds for all t € [0, 1].
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For the statement of our main result, let 7 and F(7) denote the feasible sets of
Problem (1) and Problem (2), respectively, and let F,, and F,(7) be the correspond-
ing projections onto the discrete variables, i.e.,

Fy = {y e 7F: 3z with (z,9) € f},
Fy(r) = {y € Z*: 3z with (z,y) € F(1)}.
Moreover, we use the shorthand notation

2(w,y) = (2(0;2, ), 2(1;2,9)).

Theorem 2. Suppose that Assumption 1 and Assumption 2 hold. Suppose further
that the following conditions hold for all y € F,. For the global optimal solution x* =
x*(g) of Problem (1) with y = § let Lagrange multipliers \* = X\*(), p* = u*(g)
exist such that

207

<
8
—
=
<
~
+
>~
*
—
2
8
*
&
IS8
—~
8
*
<
~
~
+
=
*
~
—
>
—~
&
<
~—
=

X =0 forall ie{l,...,0;} with g(z*,y,2(z", 7)) <0
and
w' Vi, (f@*,5) + (W) Tg(a, 5, 22", 9) + (1) Th(a", 5, 2(2", ) w > 0
for all w # 0 with
Velgi(z*, g, 2(x*,9)]Tw =0, i€ {l,...,0,} with g;(z*, g, 2(z*, 7)) = 0,
Valhi(x*, 9, 2(2%, )] Tw =0, i€{l,...,4,}
holds. Furthermore, assume that the LICQ is satisfied in x* and that
AP >0 forall ied{l,..., 44} with g;(z",7,2(z",7)) =0
holds. Finally, suppose that
Fy(r)=F,  for T sufficiently small.
Then
lim (1) = ¢, (10)
where @ is the optimal value of Problem (1).
Proof. Let S: R" x Z — R’ denote the associated shooting operator
S:(x,y) = 2(1;2,y).
With
e(r) :=S(x,y) -
eq(7) == g(@,y,vo(z,y), (7)), eh(T) = h(fv Y, vo(z,y), e(7)),
Gz, y) = g(z,y,%0(z,y), S(2,9)),  H(z,y) = h(z,y,¢o(2,y),S(2,y)),
F(z,y,e(7)) = f(z,y,vo(@,y), S(z,y) — e(1)),
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and using the linearity of g and h with respect to the fourth component, Problem (2)
admits the following reduced form

rﬁiyn F(x,y,e(T)) (11a)
st. G(z,y) < eg(T), (11b)
H(z,y) = en(r), (110)
reR" yeZCZF, (11d)

i.e., we obtain a parametric mixed-integer nonlinear problem of the form of (9).
Consistency and stability of © from Assumption 2 implies that lim,_qe(7) = 0; see,
e.g., [28, Chap. 11.2]. Using the continuity of the constraint functions g and h this
yields

li = d 1 =0.

lim eg(7) =0 an lim en(rt) =0

Moreover, e(7) = 0 yields the reduced form of the original problem (1). Further,
under the stated assumptions, Problem (11) satisfies the conditions imposed in
Remark 2 and Theorem 1. Using the continuity of ¢ in 7 = 0 hence yields (10). O

The assumptions of Theorem 2 of course simplify if the problem does not have
inequality constraints. We can then use the conditions given in Corollary 1 on the
reduced problem (11).

Finally, we note that Assumption 2 on the one-step method is satisfied for many
numerical discretization schemes.

Remark 3. For Lipschitz continuous vector fields ¥ (t, z,y), in the sense that
Hz,b(t,z,:z:,y) - w(t72axay)|| S LW||Z - 2”7 te [05 l]a Zvé € RZ7 S Rna Y € Zka
s-stage Runge—Kutta methods of the form

Znal = 2Zn + T Z bitp(tn, + ¢, szil)7

i=1

S
zT(LZJ)rl =zp + TZaijw(tn + ¢, zr(ﬂl), i=1,...,s,
j=1
with coefficients ¢ = (c1,...,¢s), A= (ai;)i =1, and b= (b1,...,bs) are stable and
consistent if and only if y.;_, b; = 1. In particular, this condition is satisfied for
the explicit and the implicit Euler method. For details see, e.g., [33].

5. CASE STUDY: OPTIMAL SIZING OF GAS PIPELINE NETWORKS

In order to illustrate the theoretical results of the previous sections we now
present a case study. To this end, we consider the problem of optimal sizing of
gas pipeline networks. This problem can be described as follows. We are given a
finite and directed graph G = (V, A) with node set V' and arc set A, which models
a gas transport network topology. The nodes v € V are split into the set V. of
entry nodes, where gas is supplied, the set V_ of exit nodes, where gas is withdrawn,
and the set Vj of remaining nodes. A related problem is also considered in [4, 5],
where the authors consider the optimal sizing of water transport networks. In the
cited papers, however, the authors do not consider discretized ordinary differential
equations for the change of hydraulic heads in water pipes in their MINLP but
consider an algebraic approximation.

At all nodes v € V, minimum and maximum gas pressure levels 0 < p, < p, are
specified. Additionally, the amount of gas ¢, is prescribed for every entry and exit
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node such that all entry flows and exit flows are balanced, i.e.,

qu+ ZQv:(l

veVy veV_

Here, we fix the notational convention that entry flows are non-negative and exit
flows are non-positive.

The arcs a = (u,v) € A of the graph represent gas pipes for which we need
to choose cost-optimal diameters that influence the pressure loss that appears if
gas flows through the pipes. Since we only consider the stationary situation, gas
flow through a cylindrically shaped and horizontal pipe is described by the Euler
momentum equation

0 22 Ac?
87139 (1 - jgpQ) = —m\qma s €10, L]. (12)
Here, A, D, and L are the cross-sectional area, the diameter, and the length of the
pipe, p is again the gas pressure, and ¢ represents mass flow. Moreover, g describes
the gravitational acceleration, ¢ is the speed of sound, and A models friction at
the rough inner pipe walls. Note that, in practice, many formulas for A\ exist. For
simplicity, we here choose a flow-independent model like the formula of Nikuradse;
cf., e.g., [9, 30].

Finally, s denotes the spatial coordinate. Note that we omitted the index a here
for better reading. We refer to, e.g., [9, 19, 30-32] for more details.

In addition, we are given lower and upper bounds ¢, < ¢ for the mass flow ¢,
through a pipe a € A and we couple the flows on the arcs via Kirchhoft’s first law

Z qa—an:qv for allv e V.

acdgut aesin

Here, we use the standard d-notation,
6= {a € A: Ju € V with a = (u,v)},
80" = {a € A: Ju € V with a = (v,u)},

and assume that g, = 0 holds for all inner nodes Vj.

The problem now is to choose for every pipe a € A a diameter D, out of a
discrete and finite set D = {Dy, ..., Dy} of commercially available diameters with
Dy < Dy < -+ < Dg. In what follows we denote with C; the costs per meter of
diameter D;. Typically, the costs are increasing w.r.t. the diameter’s size, i.e.,
C; < (Cy < +-- < (. Thus, we want to determine a cost-optimal diameter per pipe
such that

(i) the given supplied and withdrawn flows can be transported,

(ii) all pressure and flow bounds are satisfied, and

(iii) the gas flow is feasible w.r.t. the Euler equation (12).
We model the discrete diameter choice by a set b, ; € {0,1}, i =1,...,k, of binary
variables such that diameter D; is chosen for arc a if and only if b, ; = 1. Hence, we
impose the constraints

k k

D, = wap,;, 1= Zb for all a € A.
i=1

i=1
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More formally, the problem under consideration reads

k
min = Lo Y Ciba; (13a)

a€A  i=1
s.t. Z Qo — Z o = q, forallvelV, (13b)
agdgut a€din
da € gy ,q7] forallac A, (13c)
pv € [py,pf] forallveV, (13d)
k k
Do = beiDi, 1= bs; forallac A, (13e)
i=1 i=1
be; €{0,1} forallac A, i=1,...,k, (13f)
2 2 2
a(i)p: (1 - Z%%) = _Mé\lc)apaqdqa forall se(0,L,), ae A, (13g)
Py =pa(0) forallae§o™, veV, (13h)
po=pa(Ls) forallacd® veV. (13i)

Note that we can also replace the area A, with the diameter D, using the for-
mula A, = 7D2/4. Tt can be verified that Problem (13) is of the form (1). As
continuous variables we have

-
T = ((Qa)aTeAv (pv);rEV’ (Da)aTeA)
and the discrete variables of the problem are
Y= (bai)genicr.. p € Z=1{0,13P{0A,
Furthermore, the states are given by
z = (pa)aeA with  p, : [0, L,] — R,

i.e., we have

2(0) = (Pu(0)pen € B and 2(La) = (palLa))pes € R,

This, in particular, means that we scaled the interval [0, 1] to [0, L,] for every pipe
a € A. The objective function, which only depends on discrete variables in this case,
is given by

k
F)=> La)_ Cibay

a€A i=1
and the algebraic constraints read

(Zae&gut Ga — Zaeé‘iun qa — qv)

Do — Zf: ba,iDi
hz,y, 2(0),2(1)) = ( (1 s ! )aeA

i=1 ba,i

veV

acA
(pu — Pa (O))uev,aeég““
(o — Pa(La)) vev,aesin

EQa - q(—z‘r;aeA
_ qa_ —a)qe
g(x) = Ep” _pj)veé

pv - pU)UEV
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Finally, the ODE’s right-hand side is given by

2
~ 542Dy |9alda

P = (¢a)aeA with ¢, = 1//a(5apa(3)a (QayDa)) = 2 2

AZ P
In addition to these identifications, a family of finite-dimensional MINLPs like
in (2) can be obtained by, e.g., discretizing the ODE in Constraint (13g) with an
implicit Euler scheme, which yields

2 2 2
Pa,n+1 — Pa,n q C pYe
— |1~z =—cmorn1%l¢%, n=0,...,N-1,
Ta,n Aa DPan+1 2AaDapa,n+1
on the grid 0 = Ta0 < Ta1 < -++ < Ta,N = Lq with Ta,n = ZTan+1l — Tan for

n=0,...,N—1.

We now also discuss the crucial stability condition (5) for this real-world problem.
To this end, we show that there might be situations in which this assumption does
not hold. Consider, for example, an instance of Problem (13) on a network with
two nodes u,v € V and a single pipe a = (u,v) € A connecting these two nodes.
Assume further a fixed inflow pressure p, and a fixed inflow ¢, = ¢, that leads—for
a given diameter D;, i € {1,..., k}—to the uniquely determined outflow pressure p,,.
If p, = p, for D, = D;, i > 1, (with costs C;) it also holds p, < p, for D, = D;
with 1 < j < 4. The binary variables would thus take the values b, ; = 0 for all
j #tand b, ; = 1. Thus, the exact solution has the objective function value L,C;.
We now compare this solution with a solution p,(7) for all 7 > 0. It is shown in
[15] that an Euler discretization leads to a lower bound p,(7) < p, for all 7. As a
consequence, for a series of discretized and finite-dimensional MINLPs we always
obtain objective function values L,C;+1 # Lo,C; for all sufficiently small 7 > 0.

Thus, we have shown that the stability condition (5) is also a necessary condition
for Theorem 1 in this real-world setting. We note that the violation of this condition
is, at least in the above situation, rather pathological and could be recovered by
arbitrary small perturbations of the sizes of the pipe diameters or of the outflow
pressure bound. It might therefore appear of low practical relevance. However, there
are many situations in which one needs to be very careful regarding this viewpoint.
One example is robust optimization: If we there, e.g., assume that the supplied flow
and the inflow pressure are allowed to vary in given uncertainty sets, these sets may
contain values such that the “pathological” situation arises quite naturally.

The bottom line of this discussion is that one should not carelessly expect
convergence of a direct approach for problems of this kind. If convergence is needed,
one should then check the provided or similar conditions. To this end, further
research may for example aim to exploit the network structure for conditions in a
decoupled fashion in order to avoid the requirement of knowing the exact solution
of the fully coupled problem. Alternatively, one may investigate regularization
techniques that foster stability of the integer feasible set.

6. CONCLUSION

We showed that the convergence of direct approximations for mixed-integer
nonlinear optimization problems with constraints depending on initial and terminal
conditions of an ordinary differential equation can be guaranteed under certain
regularity assumptions for the limit problem. Such problems appear naturally in
many applications—we specifically considered the example of gas networks.

The conditions provided in this paper ensure convergence of the optimal value.
While this is an important achievement, we note that, in general, the convergence
of the variables and states is not guaranteed under the conditions found here.
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The results are obtained by considering the discretized problem as a parametric
mixed-integer nonlinear optimization problem with parameters in the right-hand
sides of the equality and inequality constraints. For this class of problems, we
could find sufficient conditions for the continuity of the optimal value function
by combining stability assumptions for the integer feasible set and second-order
sufficient conditions from nonlinear optimization.

The theory can be extended to problems involving partial differential equations.
For linear-quadratic problems, one may consider a combination of error estimates
for finite-element approximations with Slater-type constraint qualifications. For
mixed-integer nonlinear problems with constraints involving a coupling, for example,
through boundary values, similar results as those found here may be obtained by
combining stability assumptions for the integer feasible set and results on parametric
infinite-dimensional optimization problems. This is left for future work.
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