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Abstract. This paper mainly studies two topics: linear complementarity problems for
modeling electricity market equilibria and optimization under uncertainty. We consider
both perfectly competitive and Nash–Cournot models of electricity markets and study
their robustifications using strict robustness and the Γ-approach. For three out of the
four combinations of economic competition and robustification, we derive algorithmically
tractable convex optimization counterparts that have a clear-cut economic interpretation. In
the case of perfect competition, this result corresponds to the two classic welfare theorems,
which also apply in both considered robust cases that again yield convex robustified
problems. Using the mentioned counterparts, we can also prove the existence and, in
some cases, uniqueness of robust equilibria. Surprisingly, it turns out that there is no such
economic sensible counterpart for the case of Γ-robustifications of Nash–Cournot models.
Thus, an analogue of the welfare theorems does not hold in this case. Finally, we provide a
computational case study that illustrates the different effects of the combination of economic
competition and uncertainty modeling.

1. Introduction

Modeling of equilibria of liberalized electricity markets and solving these models is of great
practical relevance. One of the most important mathematical tools for formulating these
equilibrium models are linear complementarity problems (LCPs). These problems are typically
obtained by (i) modeling the optimization problem of every player in the market, by (ii)
characterizing the optimal actions of these players using their optimality conditions, and
by (iii) equilibrating these actions using tailored market-clearing conditions. For a general
survey of the theory, applications, and algorithms for LCPs see the book [20]. For a very
recent discussion on the importance of complementarity problems in the electricity sector,
we refer to [19]. Moreover, the very many examples in [28] also highlight the importance of
complementarity modeling in this field of application. One important property of LCPs for
modeling electricity market equilibria is that they allow to capture the underlying transmission
network if the physics are modeled in a suitable way. Hence, there is a large branch of literature
that studies different topics of electricity markets in combination with the transmission system
infrastructure; see, e.g., [37, 54, 57], to name only a few. Another seminal paper in this
field is [33], where a very comprehensive literature survey is given as well. A general tutorial
for modeling (electricity) market equilibria using complementarity problems can be found
in [34] and in the book [28]. Based on these LCP papers many authors developed and
discussed more complicated techniques for modeling electricity market equilibria using, e.g.,
mathematical programs with equilibrium constraints (MPECs), generalized Nash equilibria,
or (quasi-)variational inequalities. As a primer see, e.g., [22, 35, 36, 39, 43] as well as the
references therein.

Using LCPs for modeling market equilibria has another important feature that is especially
appealing for practice. In many situations, by means of the integrability or symmetry principle
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of variational inequalities (see, e.g., [25]) a solution of an LCP can be obtained by solving a
convex quadratic optimization problem; see, e.g., [20, 28, 34]. Thus, the approach scales well
for large markets and large transmission systems. Moreover, this equivalent optimization model
often has a clear-cut economic interpretation, e.g., it corresponds to welfare maximization in
the case of suitable LCP models for perfectly competitive markets.

In order to state the above discussed LCPs for modeling electricity markets one has to
consider many parameters like consumer’s demand in dependence of prices, production and
investment costs of suppliers, or technical parameters of the transmission network. Certainly,
many of these parameters are uncertain. For example, the willingness to pay of consumers
in the future is not known today and many of the technical parameters of the network are
more based on educated guesses than on certain knowledge. We refer to [71], where uncertain
LCPs for electricity markets are modeled as well. In the latter article, the consumers’ demand
functions are considered to be uncertain, which is the same setting as discussed in this paper.

Mathematical optimization provides many techniques for tackling optimization problems
under uncertainty out of which two are very prominent: stochastic and robust optimization.
In stochastic optimization, the strategy is to resort to assumptions about the distribution of
uncertain model parameters and one then solves for, e.g., minimal expected costs or maximal
expected profits. Stochastic optimization has a long tradition due to the practical relevance
of the solutions that it provides and because this approach of modeling is quite natural for
many practitioners. The literature is by far too broad to be reviewed here. Readers interested
in the general topic of stochastic optimization are referred to the textbook [14]. Compared
to stochastic optimization, robust optimization is a much younger field. The first robust
optimization approach goes back to [64]. One of the most comprehensive treatments is given
in the book [6], which mainly considers continuous robust optimization as we do in this paper.
A survey about tractability of robust counterparts for linear programming (LP), quadratic
programming (QP), and even more general but still convex problems is given in [9], which also
provides many more references to the literature. Robust discrete optimization dates back to
[44] and has been further investigated in, e.g., [11] and the PhD thesis [63]. The main criticism
on robust optimization is that it leads to highly conservative solutions. There have been made
many attempts to resolve this criticism. One of the earliest is the so-called flexible Γ-approach
in [12], where the authors presented a first approach to decrease what they call the “price of
robustness”. There have also been other attempts for mitigating the conservatism of robust
solutions; e.g., recoverable robustness [49], light robustness [26], or adjustable robustness [7].
Finally, a recent survey on robust optimization with additional references is given in [29].

Due to the strong connection between LCPs and optimization it seems natural that there
are also many papers that consider LCPs under uncertainty. As it was the case in optimization,
the first LCPs under uncertainty have been studied using stochastic optimization, i.e., the
LCP data are considered to be random vectors and matrices; see, e.g., [16]. Since the existence
of solutions can typically not be guaranteed in these settings, many authors resort to the
residual or gap function formulation of an LCP and then consider what is called “expected
residual minimization” in the literature. This or other alternative formulations are studied in,
e.g., [17, 18, 50].

Although addressing the worst-case is often important in applications, much less literature
focuses on robust equilibrium problems or robust LCPs. For instance, to the best of the
authors’ knowledge, the earliest paper on robust LCPs is [67], where the authors point out
that equilibria in the classic robust sense do not need to exist (even if the nominal problem
has an equilibrium). Hence, they propose the notion of ρ-robust counterparts and ρ-robust
solutions of uncertain LCPs, which is a relaxation of complementarity. Moreover, the authors
discuss different types of uncertainty sets like intervals, ellipsoids, or intersections of ellipsoids.
Besides the introduction of robust LCPs, the main contribution of [67] is that the authors
prove necessary and sufficient conditions for ρ-robust solutions for bounded uncertainty sets,
that they characterize ρ-robust solutions for ellipsoidal uncertainty sets, and that they give
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sufficient conditions for ρ-robust solutions in the case of uncertainty sets represented by
intersections of ellipsoids. Very recent papers on robust LCPs are [13, 45, 47] and [68, 69]. In
the latter two papers, the authors also consider the gap function formulation of LCPs and
study robust solutions of LCPs as the ones that minimize the worst-case of the gap function.
The authors also note an example of Nash–Cournot games in networked power markets and
briefly consider the related robustified setting by discussing an uncertain Nash–Cournot LCP.
For this case, we show the existence of robust equilibria, discuss uniqueness properties, and
provide tractable counterparts from convex quadratic programming that possess a clear-cut
economic interpretation in this paper.

The field of robust equilibrium models and LCPs is also related to the young field of
robust game theory, which has been introduced in [1]. In this paper, the authors present
distribution-free models of incomplete-information games, where the players’ payoff uncertainty
is modeled by robust optimization. Other papers dealing with robust games or robust Nash
equilibria include [21, 32, 38, 55, 58]. The concept of robustness has also been applied to
Wardrop equilibria; see [56] for a primer.

In contrast to the many papers on stochastic electricity market equilibrium models (see, e.g.,
[24, 27, 59–61, 65]), only a few publications deal with robust optimization in the electricity
sector. Moreover, all existing literature is very recent. For example, [62] considers a two-stage
adaptive robust optimization approach for electricity transmission network expansion. A
related study of robust transmission network expansion planning with uncertain renewable
generation and loads is given in [40]. The most prominent application of robust optimization
in the power sector seems to be the unit commitment problem; cf., e.g., [10, 41, 42, 70].
Many of these studies consider the net load to be uncertain, which is comparable to what we
do in this paper. Adjustable robust optimization for capacity planning is discussed in [53].
Finally, [4] considers robust optimal offering strategies for a price-taking power producer, where
uncertainty is taken into account using the flexible Γ-approach for MIPs that has been proposed
in [11, 12] and that we also consider in this paper. In contrast to what we aim for in this
paper, the mentioned papers all consider “standard” robust optimization (albeit with different
uncertainty sets and different types of robustifications such as strict or adjustable robustness)
but do not consider robust equilibria in the sense of complementarity solutions. In the context
of robust equilibrium modeling for electricity market models we are only aware of [71] and the
paper [52]. In the latter paper, the authors consider a networked electricity market model of
Cournot–Bertrand type and robustify the inverse demand functions of consumers as we do in
this paper. They exploit the general insights developed in [68] and solve a convex optimization
problem to obtain robustified equilibria. Finally, let us also mention the paper [15], in which
possibility theory is used to account for demand function uncertainty in the context of Cournot
equilibrium models for electricity markets. In summary, the discussion of the literature both
on complementarity problems as well as on robustness shows that these aspects are of great
importance for the electricity sector and the combination of these aspects thus leads to relevant
models.

In this paper, we combine and extend many of the contributions of the literature discussed
so far. Our contribution is the following:

(1) We state robust counterparts of electricity market equilibrium models on a transport
network that is modeled using the classic DC power flow approximation; cf., e.g., [8,
66].

(2) We consider two different types of economic competition models. First, we study
perfectly competitive markets and afterward discuss Nash–Cournot equilibria. Thus,
our framework also allows to address issues of market power under uncertainty.

(3) We study two different types of robustness: strict robustness and the more flexible
Γ-approach. The strictly robust framework serves as a primer and can also be found, in
a related setting, in [52]. In contrast, the case of flexible Γ-robust equilibrium models
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is more involved and has—to the best of our knowledge—not yet been studied in the
literature.

For all four considered combinations of economic competition and uncertainty modeling the
following question arises. In the nominal, i.e., deterministic, setting it is folklore knowledge
that both the perfectly competitive as well as the Nash–Cournot competition model can be
solved by solving a properly chosen convex optimization problem. Consider now the market
equilibrium problem consisting of all the optimization problems of the players of the market.
Our main research question is now as follows:

Does the robustification of these player’s models allow for an LCP formulation
that is equivalent to the robustified convex optimization counterpart of the
nominal case?

Note that this does not only correspond to the question whether an equilibrium problem
possesses an equivalent optimization problem but that the order of robustification and the
transition from the equilibrium to the optimization problem has no effect. For the case of
perfect competition, the question above is the same as whether the two classic welfare theorems
also hold in robustified settings. We prove that this is the case for three out of the four
combinations of considered robustifications and economic competition models. By doing
so, we also show the tractability of these robust equilibrium models. More specifically, we
prove that the tractable counterparts of the strictly robust equilibrium models are convex
quadratic problems, whereas those of the Γ-robust equilibrium models are convex quadratically
constrained quadratic problems (QCQPs). This is of special importance for practice because it
allows to solve large-scale robust equilibrium models by exploiting the equivalent robust convex
optimization counterparts. Interestingly, all these results cannot be obtained for the case of Γ-
robustification of Nash–Cournot models. In this setting, the complementarity system modeling
the robust equilibrium problem is not the same as the robustified optimization counterpart.
Moreover, it is not possible to derive an optimization counterpart that is equivalent to the
robustified equilibrium model, i.e., the above mentioned principle of symmetric Jacobians is
not applicable. Finally, we also provide a computational case study on an academic test case
that illustrates the effects of the combination of different robustifications with different types
of market models.

The remainder of the paper is structured as follows. In Sect. 2 we present the networked
market equilibrium model under perfect competition and review the well-known relation to
welfare maximization problems. In Sect. 3 we then develop both strict and Γ-robust counterparts
of the perfectly competitive setting, derive the LCPs modeling the robust equilibrium problem,
and prove the equivalence of robustified equilibria and robustified welfare maximal solutions.
Afterward, in Sect. 4 we study the same topics for the case of Nash–Cournot competition
among the producers of the market. Surprisingly, the above mentioned equivalence only holds
in the strictly robust case but fails to hold for the Γ-approach. Section 5 then discusses the
effects of the combination of different robustness concepts and different competition models
applied to an academic network before we close the paper with some concluding remarks and
some ideas for future research in Sect. 6.

2. Equilibrium Modeling of Perfectly Competitive Markets

We consider electricity networks that we model by using a connected digraph G := (N,A)
with node set N and arc set A. Subsequently, all player problems of our market model are
stated. Since we first consider perfectly competitive markets, all players are price takers and
their optimization problems are formulated using exogenously given market prices πu,t at every
node u ∈ N in each time period t ∈ [T ] := {1, . . . , T}, T ∈ N. The model is based on standard
electricity market models as discussed in, e.g., [28, 34].

The first type of players are electricity producers. Without loss of generality, we assume
that there exists exactly one producer at each node u ∈ N, which we model by fixed variable
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production costs wvar
u > 0 and investment costs winv

u > 0. The assumption of a single producer
per node is only used to simplify the presentation. In practice, multiple producers at one node
can simply be split by introducing artificial nodes that are connected to the original node by
lines with “infinite” capacity. Moreover, we restrict ourselves here to the case in which each
firm is only acting at a single node. In practice, firms can produce at different locations in the
network (e.g., in different countries). Studying such settings would complicate the analysis
(see, e.g., [5]) and is, thus, out of scope of this paper. Production at node u in each time period
t ∈ [T ] is denoted by yu,t ≥ 0 and is bounded from above by the time-independent generation
capacity variable ȳu. The objective of the producer at node u is to maximize its profit and,
thus, its linear optimization problem reads

max
yu,ȳu

∑
t∈[T ]

πu,tyu,t −
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu s.t. 0 ≤ yu,t ≤ ȳu, t ∈ [T ]. (1)

Note that we consider purely continuous problems here that, in particular, do not contain any
integrality restrictions regarding production and investment decisions. Thus, the solutions
of (1) are characterized by the corresponding Karush–Kuhn–Tucker (KKT) conditions

−winv
u +

∑
t∈[T ]

β+
u,t = 0, πu,t − wvar

u + β−u,t − β+
u,t = 0, t ∈ [T ], (2a)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, t ∈ [T ], (2b)

where β±u,t are the dual variables of the production constraints. Here and in what follows,
we use the standard ⊥-notation, where 0 ≤ a ⊥ b ≥ 0 abbreviates 0 ≤ a, b ≥ 0, a>b = 0
for a, b ∈ Rn. Moreover, a variable without time index denotes the vector containing all
corresponding node or arc variables, e.g., yu := (yu,t)t∈[T ].

Consumers, as our second players, are also located at the nodes u ∈ N and decide on
their demand du,t ≥ 0. Their demand elasticity is modeled by inverse demand functions
pu,t : R≥0 → R, for which we make the following assumption.

Assumption 1. All inverse demand functions pu,t, u ∈ N , t ∈ [T ], are strictly decreasing and
continuous.

Under Assumption 1, the continuous and concave problem of a surplus maximizing consumer
at node u is given by

max
du

∑
t∈[T ]

∫ du,t

0

pu,t(x) dx−
∑
t∈[T ]

πu,tdu,t s.t. 0 ≤ du,t, t ∈ [T ], (3)

and its again necessary and sufficient first-order optimality conditions comprise

pu,t(du,t)− πu,t + αu,t = 0, 0 ≤ du,t ⊥ αu,t ≥ 0, t ∈ [T ], (4)

where αu,t is the dual variable of the lower demand bound.
The third player in our market model is the transmission system operator (TSO). He

operates the transmission network, in which every arc a ∈ A is described by its susceptance Ba
and its transmission capacity f+

a > 0. The latter bounds the flows fa,t, t ∈ [T ], by |fa,t| ≤ f+
a .

The goal of the TSO is to transport electricity from low- to high-price regions and the earnings
to be maximized result from the corresponding price differences; cf., e.g., [34]. Power flow
in the network is modeled using the standard linear lossless DC approximation—cf., e.g., [8,
66]—which is often used for economic analysis, e.g., in [23, 43]. Thus, we obtain additional
phase angle variables Θu,t for all nodes u ∈ N and time periods t ∈ [T ]. With this notation
the continuous and linear problem of the TSO reads

max
f,Θ

∑
t∈[T ]

∑
a=(u,v)∈A

(πv,t − πu,t)fa,t (5a)

s.t. − f+
a ≤ fa,t ≤ f+

a , fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ]. (5b)
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The last constraints in (5b) model the linear lossless DC flow approximation and εa,t are the
corresponding dual variables. The first constraints in (5b) reflect the network’s transmission
capacities and have the dual variables δ±a,t. The optimality conditions of (5) are given by

fa,t = Ba(Θu,t −Θv,t), πv,t − πu,t + δ−a,t − δ+
a,t + εa,t = 0, a = (u, v) ∈ A, t ∈ [T ],∑

a∈δout(u)

Baεa,t −
∑

a∈δin(u)

Baεa,t = 0, u ∈ N, t ∈ [T ],

0 ≤ fa,t + f+
a ⊥ δ−a,t ≥ 0, 0 ≤ f+

a − fa,t ⊥ δ+
a,t ≥ 0, a ∈ A, t ∈ [T ].

(6)

Here we use the standard δ-notation for the in- and outgoing arcs of a node u ∈ N , i.e.,
δin(u) := {(v, u) ∈ A} and δout(u) := {(u, v) ∈ A} . Putting all first-order optimality conditions
as well as the flow balance conditions

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ], (7)

together, we obtain the mixed complementarity problem

Producers: (2), Consumers: (4), TSO: (6), Market Clearing: (7), (8)

which models the wholesale electricity market under consideration for the case of perfect
competition. Hence, solutions of (8) are market equilibria. It can be easily seen that this
complementarity system is equivalent to the welfare maximization problem

max
d,y,ȳ,f,Θ

∑
t∈[T ]

∑
u∈N

∫ du,t

0

pu,t(x) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu (9a)

s.t. 0 ≤ yu,t ≤ ȳu, 0 ≤ du,t, u ∈ N, t ∈ [T ], (9b)

− f+
a ≤ fa,t ≤ f+

a , a ∈ A, t ∈ [T ], (9c)

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ], (9d)

fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ]. (9e)

The equivalence can be shown by comparing the first-order optimality conditions of Problem (9)
with the mixed complementarity system (8) and by identifying the dual variables of the flow
balance constraints (9d) with the equilibrium prices πu,t of the complementarity problem.
Further, we need that the KKT conditions are again necessary and sufficient optimality
conditions of Problem (9) under Assumption 1.

Let us briefly comment on why we choose this model setup. First, we consider a long-
run model, i.e., we take capacity expansion for producers explicitly into account, because
uncertainty is much more important when it comes to long-run investment decisions compared
to short-run production decisions. Second, we study a networked setup for being as close as
possible to the related literature [52, 68]. Third, and finally, we consider static investment
problems. This means that the investment decisions are taken once at the very beginning of
the time horizon. We are aware of that in the current context of the rapid development of
renewable energy technologies, investment costs may change on a yearly basis, which is not
covered by our model. We make this assumption here, however, to keep both the robustification
of the models as well as their analysis tractable and postpone the study of more dynamic
investment aspects to our future work.

3. Robust Counterparts under Perfect Competition

In this section, we study robustified equilibrium models under perfect competition. As it is
shown in the last section, the solutions of the corresponding LCP can be computed by solving
the welfare maximization problem (9). In other words: Solving the LCP can be replaced by
solving a convex optimization problem, which is mainly based on the symmetry principle for
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Optimization problems
of all players

Mixed LCP

Robust optimization
problems of all players

Welfare maximization
problem

Mixed LCP

Robust welfare
maximization problem

KKTs &
market clearing

robustification

equivalence

(Robust) KKTs &
market clearing

equivalence?

robustification

Figure 1. Overview of the considered models

variational inequalities; cf. [25]. The main question that we will answer is whether this is also
possible in the case of robust equilibrium models, in which the uncertain consumers’ demand is
robustified using the concepts of strict and Γ-robustness. Second, we also answer the question
on how to obtain the robust optimization problem that can be solved as a surrogate for the
robust equilibrium model. The overall situation is depicted in Figure 1. There are two different
possibilities on how to obtain the mentioned surrogate model:

(1) One first replaces the nominal LCP (8) by the corresponding welfare maximization
problem (9) and then robustifies this problem.

(2) One first robustifies the separate optimal optimization problems of the players with
uncertain data and then derives an LCP and an equivalent surrogate model, if possible
at all.

For the case of perfect competition, we prove in this section that both approaches yield the
same robustified welfare maximization problem, i.e., the diagram in Figure 1 “commutes”.

3.1. Strict Robustness. Before we study the robustification of the models discussed in
Sect. 2, let us briefly introduce the basic notions of robust optimization. To this end, we
consider a convex quadratic program (QP) of the form

max
x∈Rn

1

2
x>Qx+ c>x s.t. Ax ≤ b, Cx = d, (10)

where Q ∈ Rn×n is a symmetric and positive semi-definite matrix and A ∈ Rm×n, C ∈ Rk×n
as well as b ∈ Rm, d ∈ Rk, c ∈ Rn are matrices and vectors of suitable dimension. In robust
optimization, one takes into account that the QP data (Q,A,C, c, b, d) is uncertain, i.e., the
matrices and vectors are not known exactly. In particular, one assumes that they are contained
in a given uncertainty set U . This yields the so-called uncertain convex QP{

max
x∈Rn

{
1

2
x>Qx+ c>x : Ax ≤ b, Cx = d

}}
(Q,A,C,c,b,d)∈U

, (11)

which is a family of optimization problems of type (10). Using the abbreviation u :=
(Q,A,C, c, b, d), the problem

max
x∈Rn

{
inf
u∈U

{
1

2
x>Qx+ c>x : Ax ≤ b, Cx = d ∀u ∈ U

}}
is called the robust counterpart of (10).

Our goal in the following is to apply this concept to the models given in Sect. 2, where we
introduced the models of all players that act in the market. In particular, we want to study
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the case in which the demand functions pu,t of the consumers are uncertain. This corresponds
to the special case of (11), in which only objective function data is subject to uncertainty.
Thus, we study the case in which Q and c are uncertain and obtain

max
x∈Rn

{
inf

(Q,c)∈U

{
1

2
x>Qx+ c>x : Ax ≤ b, Cx = d ∀(Q, c) ∈ U

}}
.

From now on we assume that the inverse demand functions are linear, i.e., pu,t(x) :=
āu,t + b̄u,tx holds for all consumers u in every time period t. Thus, āu,t ≥ 0 is the price-
intercept and b̄u,t < 0 is the slope of the function. Here we already used the notation ā, b̄
for so-called nominal values. Since we consider uncertain demands, the true values a, b for
price-intercepts and slopes are not known explicitly but contained in a given uncertainty
set. We consider the case of box-uncertainties, i.e., for all consumers u ∈ N and every time
period t ∈ [T ], we have

(au,t, bu,t) ∈ Uu,t :=
[
a−u,t, a

+
u,t

]
×
[
b−u,t, b

+
u,t

]
. (12)

In order to obtain a well-defined economic setting, we make the following assumption.

Assumption 2. For all consumers u ∈ N and every time period t ∈ [T ] it holds
(au,t, bu,t) ∈ Uu,t and both a−u,t ≥ 0 and b+u,t < 0 is satisfied.

With these notations and definitions, we can state the robust counterpart of the consumer’s
model (3):

max
du

{
inf

(au,t,bu,t)∈Uu,t

{ ∑
t∈[T ]

∫ du,t

0

(au,t + bu,tx) dx

−
∑
t∈[T ]

πu,tdu,t : du,t ≥ 0 ∀t ∈ [T ], ∀(au,t, bu,t) ∈ Uu,t
}}

.

(13)

This robust counterpart is an optimization problem that is not tractable as it is stated in (13).
Fortunately, there is an equivalent and tractable robust counterpart.

Theorem 3.1. Let u ∈ N be a consumer with uncertainty set (12) for all t ∈ [T ] and suppose
Assumption 2 holds. Then, the robust counterpart (13) is equivalent to the convex optimization
problem

max
du

∑
t∈[T ]

∫ du,t

0

(a−u,t + b−u,tx) dx−
∑
t∈[T ]

πu,tdu,t s.t. 0 ≤ du,t, t ∈ [T ]. (14)

The proof is given in Appendix A. The theorem reveals that we obtain the tractable
robust counterpart by simply using the lower bounds of the uncertain sets. Since the robust
counterpart of a consumer u ∈ N is convex, its necessary first-order optimality conditions

a−u,t + b−u,tdu,t − πu,t + αu,t = 0, 0 ≤ du,t ⊥ αu,t ≥ 0, t ∈ [T ], (15)

are sufficient. In (15), αu,t denotes the dual variable of the consumer’s lower demand bound.
Note that the optimization problems of all other market participants are subject to certain

data. Putting all first-order optimality conditions as well as the flow balance conditions (7)
together, we obtain the robustified market equilibrium problem (RMEP)

Producers: (2), Robustified consumers: (15), TSO: (6), Market clearing: (7), (16)

which models the wholesale electricity market for the case of perfect competition and consumers
that face demand uncertainties. In general, the techniques discussed in this paper can be used
to study uncertainties of other data such as, e.g., future production or investment costs as
well. We focus on uncertain demand functions for two reasons. First, this parameter is very
important in equilibrium models (with elastic demand) since demand influences prices, which
themselves influence generation and thus investment. Second, considering future demand
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parameters as uncertain is also of great importance for practice; see, e.g., Bertsimas et al. [10],
Jiang et al. [42], and Mather and Munsing [52].

In the nominal case discussed in Sect. 2, it holds that the nominal mixed LCP is equivalent
to the nominal welfare maximization problem (9). We now answer the question whether this
is also true in the robustified setting. To this end, we robustify the welfare maximization
problem (9) and afterward show that it is equivalent to the RMEP (16). The robust counterpart
of the welfare maximization problem (9) reads

max
d,y,ȳ,f,Θ,λ

λ (17a)

s.t. λ ≤
∑
t∈[T ]

∑
u∈N

∫ du,t

0

(au,t + bu,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t (17b)

−
∑
u∈N

winv
u ȳu, for all (au,t, bu,t) ∈ Uu,t, u ∈ N, t ∈ [T ],

0 ≤ yu,t ≤ ȳu, 0 ≤ du,t, u ∈ N, t ∈ [T ], (17c)

− f+
a ≤ fa,t ≤ f+

a , fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ], (17d)

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ]. (17e)

As it is the case for the consumers, this robust counterpart can be reformulated in a tractable
way.

Theorem 3.2. Let an uncertainty set (12) be given for every consumer u ∈ N and every time
period t ∈ [T ]. Suppose further Assumption 2 holds. Then, the robust counterpart (17) of the
welfare maximization problem is equivalent to

max
d,y,ȳ,f,Θ

∑
t∈[T ]

∑
u∈N

∫ du,t

0

(a−u,t + b−u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu (18a)

s.t. (17c)–(17e). (18b)

The proof is given in Appendix B. The final question now is whether the robustified welfare
maximization problem of Theorem 3.2 is equivalent to the RMEP (16). The answer is positive
and can be easily obtained by comparing the KKT conditions of (18) with the RMEP.

Corollary 3.3. The robust market equilibrium problem (16) and the robust welfare maximiza-
tion problem (18) are equivalent.

Note that the latter corollary is in line with the two welfare theorems, which hold for convex
player problems (if robustified or not) under perfect competition. We close this section with a
final remark on the uniqueness of robust market equilibria.

Remark 3.4. A typical question in the context of market equilibrium models is whether the
resulting equilibrium is unique or not. For the nominal case of a market model upon an
underlying network structure—as discussed in Sect. 2—this question has been studied in [30,
46, 48]. In these papers that do not consider uncertainties, the uniqueness of the market
equilibrium depends on the used model of the transport network. In [30] it is shown that the
long-run equilibrium is unique on a capacitated network with a standard linear flow model.
For short-run models, i.e., for producer models without endogenous capacity investments, this
also holds if the transport model additionally captures some special type of transport costs;
see [48]. In contrast, in [46] it is shown that short-run models incorporating a DC network
flow model (like we do in this paper) possess multiple solutions.

Since the structure of the robust counterparts do not differ from the structure of the nominal
models, the uniqueness and multiplicity results from the nominal settings directly carry over
to the strictly robust case discussed in this section.
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(1) The RMEP (16) has a unique solution if we neglect the DC constraint in (5b). In this
case, both the short- and long-run equilibria are unique under suitable assumptions.

(2) The DC-constrained RMEP (16) has a unique solution on electricity networks that
are trees and in the short-run. On general graphs, it has multiple equilibria. Whether
the long-run equilibrium is unique on networks that are tree-shaped is, to the best of
our knowledge, not known. However, our hypothesis is that uniqueness can be shown
by using the techniques from [30].

Finally, in [2, 3] uniqueness is shown for electricity spot markets with transmission losses. The
results can be directly applied to the robust setting of this section.

3.2. The Γ-Approach. The main criticism of the concept of strict robustness is that it leads,
due to its worst-case character, to very conservative solutions. One remedy is the so-called
Γ-approach, which has been proposed in [11, 12, 63]. This approach does not assume that
all parameters are subject to uncertainty but that only a subset of these parameters are to
be considered using a worst-case approach. The cardinality of this subset is typically called
Γ ∈ N, which gives the approach its name.

Let us briefly discuss this notion of robustness for a general convex QP, as we did in
Sect. 3.1. To this end, we consider an arbitrary convex QP as given in (10) and assume that
only objective function data (Q, c) is not exactly known. In this setting, the Γ-approach hedges
against ΓQ many uncertain entries in Q and against Γc many uncertain entries in c. The main
point now is that we only know these maximum numbers of uncertain parameters but do not
know which parameters are subject to change. Thus, using the notation N := {1, . . . , n}, the
Γ-robust counterpart is given by

max
x∈Rn

1

2
x>Qx+ c>x− max

{Sc⊆N : |Sc|≤Γc}

∑
j∈Sc

∆cjxj − max
{SQ⊆N×N : |SQ|≤ΓQ}

∑
(i,j)∈SQ

1

2
∆qijxixj

s.t. Ax ≤ b, Cx = d,

where ∆cj is the deviation of the nominal parameter cj—and analogous for ∆qij .
As in Sect. 3.1 we consider consumers that face uncertain demand, which is assumed to lie

in a two-dimensional box-uncertainty set as given in (12). Here, we additionally assume that
this box is centered around the nominal values, i.e.,

a−u,t = āu,t −∆au,t, a+
u,t = āu,t + ∆au,t, ∆au,t ≥ 0, (19a)

b−u,t = b̄u,t −∆bu,t, b+u,t = b̄u,t + ∆bu,t, ∆bu,t ≥ 0, (19b)

and that Assumption 2 still holds. In order to state the Γ-robust counterpart of the consumer
model (3), we need some more notation. For every consumer u ∈ N let Λu ∈ N with Λu ≤ T
be the number of scenarios in which the actual price-intercepts of the inverse demand functions
may deviate from their nominal value. In analogy, Γu ∈ N with Γu ≤ T denotes the number
of time periods in which the actual slopes of the inverse demand functions may deviate from
their nominal value. With these notations at hand, we can state the Γ-robust counterpart of
the model of a consumer located at node u ∈ N :

max
du≥0

∑
t∈[T ]

āu,tdu,t − max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tdu,t

}

+
∑
t∈[T ]

1

2
b̄u,td

2
u,t − max

{S⊆[T ] : |S|≤Γu}

{∑
t∈S

1

2
∆bu,td

2
u,t

}
−
∑
t∈[T ]

πu,tdu,t

 .

(20)

This robust counterpart can be reformulated in a tractable way.
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Theorem 3.5. For the consumer at node u ∈ N let an uncertainty set be given as in (12)
and (19). Then, the robust counterpart (20) is equivalent to

max
du,µu,ηu,νu,τu

∑
t∈[T ]

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

πu,tdu,t −
∑
t∈[T ]

(µu,t + νu,t)− ηuΛu − τuΓu,

0 ≤ µu,t + ηu −∆au,tdu,t, t ∈ [T ], (21a)
0 ≤ du,t, 0 ≤ ηu, 0 ≤ τu, 0 ≤ µu,t, 0 ≤ νu,t, t ∈ [T ] (21b)

0 ≤ νu,t + τu −
1

2
∆bu,td

2
u,t, t ∈ [T ]. (21c)

Proof. The proof mainly follows the technique developed in [63]. First, we rewrite the robust
counterpart (20) as

max
du≥0,λ

λ (22a)

s.t. λ ≤
∑
t∈[T ]

āu,tdu,t − max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tdu,t

}
(22b)

+
∑
t∈[T ]

1

2
b̄u,td

2
u,t − max

{S⊆[T ] : |S|≤Γu}

{∑
t∈S

1

2
∆bu,td

2
u,t

}
−
∑
t∈[T ]

πu,tdu,t.

Next, we reformulate the inner maximization problems that are part of Constraint (22b), state
their dual problems, and use strong duality to replace the inner maximization problems with
the dual minimization problems. An equivalent formulation of

max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tdu,t

}
is given by

max
zu

∑
t∈[T ]

∆au,tdu,tzu,t s.t.
∑
t∈[T ]

zu,t ≤ Λu, 0 ≤ zu,t ≤ 1, t ∈ [T ]. (23)

This is a linear optimization problem in zu and its dual problem reads

min
µu,ηu

∑
t∈[T ]

µu,t + ηuΛu s.t. µu,t + ηu ≥ ∆au,tdu,t, µu,t ≥ 0 t ∈ [T ], ηu ≥ 0,

where ηu is the dual variable of the first constraint in (23) and µu,t are the dual variables of
the second group of constraints. Using the equivalent formulation

max
zu

∑
t∈[T ]

1

2
∆bu,td

2
u,tzu,t s.t.

∑
t∈[T ]

zu,t ≤ Γu, 0 ≤ zu,t ≤ 1, t ∈ [T ], (24)

of

max
{S⊆[T ] : |S|≤Γu}

{∑
t∈S

1

2
∆bu,td

2
u,t

}
−
∑
t∈[T ]

πu,tdu,t,

we obtain the second dual optimization problem

min
νu,τu

∑
t∈[T ]

νu,t + τuΓu s.t. νu,t + τu ≥
1

2
∆bu,td

2
u,t, νu,t ≥ 0, t ∈ [T ], τu ≥ 0. (25)

Here, τu and νu,t are the dual variables of the constraints of Problem (24). We can now apply
the strong duality theorem and replace the inner maximization problems in (22b) by the
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corresponding dual minimization problems. Furthermore, it is easy to see that we can replace
these minimization problems by simply stating feasibility, which is given by

λ ≤
∑
t∈[T ]

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

πu,tdu,t −
∑
t∈[T ]

µu,t − ηuΛu −
∑
t∈[T ]

νu,t − τuΓu,

0 ≤ du,t, 0 ≤ µu,t, 0 ≤ νu,t, t ∈ [T ], 0 ≤ ηu, 0 ≤ τu,

0 ≤ µu,t + ηu −∆au,tdu,t, 0 ≤ νu,t + τu −
1

2
∆bu,td

2
u,t, t ∈ [T ],

instead of Constraint (22b) and the claim follows. �

If we take a closer look at the robust counterpart (21) we see that the structure, compared
with the nominal problem, has changed. We obtain new variables, constraints, and objective
function terms. This is always the case when the Γ-approach is used; cf. [63]. However, (21) is
not a QP anymore but a quadratically constraint quadratic program (QCQP). The nonlinear
constraint is (21c). Fortunately, the right-hand side of this constraint is a concave function,
yielding the following corollary.

Corollary 3.6. Suppose that Assumption 1 holds. Then, the Γ-robust counterpart (21) is a
convex optimization problem for every consumer u ∈ N .

Due to this corollary, the KKT conditions of (21) are necessary and sufficient first-order
optimality conditions. They are given by

āu,t + b̄u,tdu,t − πu,t + αu,t −∆au,tσu,t −∆bu,tdu,tζu,t = 0, t ∈ [T ],

−1 + σu,t + ξu,t = 0, −1 + ζu,t + ρu,t = 0, t ∈ [T ],

−Λu +
∑
t∈[T ]

σu,t + χu = 0, −Γu + ψu +
∑
t∈[T ]

ζu,t = 0,

0 ≤ du,t ⊥ αu,t ≥ 0, 0 ≤ µu,t + ηu −∆au,tdu,t ⊥ σu,t ≥ 0, t ∈ [T ],

0 ≤ ηu ⊥ χu ≥ 0, 0 ≤ τu ⊥ ψu ≥ 0,

0 ≤ νu,t + τu −
1

2
∆bu,td

2
u,t ⊥ ζu,t ≥ 0, t ∈ [T ],

0 ≤ µu,t ⊥ ξu,t ≥ 0, 0 ≤ νu,t ⊥ ρu,t ≥ 0, t ∈ [T ],

(26)

where ζu, αu, σu, ξu, ρu, χu, and ψu are the dual variables of constraints in Problem (21). We
thus obtain the Γ-robustified market equilibrium problem (Γ-RMEP)

Producers: (2), Robustified consumers: (26), TSO: (6), Market clearing: (7), (27)

which models the wholesale electricity market for the case of perfect competition and consumers
that hedge themselves against demand uncertainty using the Γ-approach. Note that this
complementarity problem is not linear due to the quadratic complementarity constraints.

The main question again is whether this Γ-RMEP is equivalent to a Γ-robustified welfare
maximization problem. To answer this question, we now consider the Γ-robustification of
the welfare maximization problem (9) and prove that the answer is positive. The Γ-robust
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counterpart of Problem (9) reads

max
d,y,ȳ,f,Θ,λ

λ (28a)

s.t. λ ≤
∑
t∈[T ]

∑
u∈N

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t

−
∑
u∈N

winv
u ȳu −

∑
u∈N

max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tdu,t

}

−
∑
u∈N

max
{S⊆[T ] : |S|≤Γu}

{∑
t∈S

1

2
∆bu,td

2
u,t

}
,

(28b)

(9b)–(9e). (28c)

Again, we state a reformulation of this robust counterpart.

Theorem 3.7. For all consumers at the nodes u ∈ N let an uncertainty set be given as in (12)
and (19). Then, the Γ-robust counterpart (28) of the welfare maximization problem (9) is
equivalent to

max
∑
t∈[T ]

∑
u∈N

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu

−
∑
t∈[T ]

∑
u∈N

µu,t −
∑
u∈N

ηuΛu −
∑
t∈[T ]

∑
u∈N

νu,t −
∑
u∈N

τuΓu,

(29a)

s.t. (9b)–(9e), (29b)
0 ≤ µu,t + ηu −∆au,tdu,t, 0 ≤ µu,t, 0 ≤ νu,t, u ∈ N, t ∈ [T ], (29c)

0 ≤ ηu, 0 ≤ τu, u ∈ N, 0 ≤ νu,t + τu −
1

2
∆bu,td

2
u,t, u ∈ N, t ∈ [T ]. (29d)

Suppose further that Assumption 1 holds. Then, (29) is a convex optimization problem.

Proof. We use the reformulations and dual problems (23)–(25) for every consumer with the
same variable names as in the proof of Theorem 3.5. Replacing the corresponding maximization
problems in Constraint (28b) of the robust counterpart yields the claim. Finally, we observe
that the quadratic constraint again yields a convex feasible set and that we thus obtain a
convex problem. �

As a consequence, necessary and sufficient first-order optimality conditions of the robust
welfare maximization problem with robust consumers in the flexible Γ-setting (29) are given
by the KKT conditions (6) as well as (2), (7), (26) for all u ∈ N , if we use the same names for
the dual variables as for the single player problems and if we identify the nodal prices πu,t
with the dual variable of the corresponding nodal market-clearing conditions. As a result, we
obtain the positive answer for our main question.

Corollary 3.8. The Γ-RMEP (27) and the Γ-robust welfare maximization problem (29) are
equivalent.

We close this section with a brief discussion about the uniqueness of Γ-robust equilibria.
Unfortunately, no results from the literature that we are aware of can be used to prove
uniqueness. The problem is that the papers [30, 46, 48] discussed in Remark 3.4 cannot be
used in this setting because the quadratic constraints 0 ≤ νu,t+τu−1/2∆bu,td

2
u,t for all u ∈ N ,

t ∈ [T ], yield a completely different problem structure, which prevents the application of the
results in the cited papers. Nevertheless, existence of robust market equilibria is guaranteed
by the existence of solutions of (29).
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4. Robust Counterparts under Nash–Cournot Competition

In this section, we study the same questions as in Sect. 3 but replace the assumption of a
perfectly competitive market by a Nash–Cournot assumption. The nominal Nash–Cournot
model is derived in Sect. 4.1. The case of strictly robust Nash–Cournot equilibria is afterward
discussed in Sect. 4.2, whereas the Γ-approach is topic of Sect. 4.3.

4.1. The Nominal Model with Nash–Cournot Competition. In this section we derive a
model in which we drop the economic assumption of perfect competition but assume Nash–
Cournot competition for the producers in our model. Thus, we assume that a producer (i)
anticipates the reactions of the consumers to changes in the price but that the producer (ii)
naively assumes that the other producers and the TSO do not modify their actions depending
on the producer’s decision. For a tutorial of modeling Nash–Cournot competition for electricity
markets see [28, 34] and the references therein. The TSO, however, is still assumed to be a
price taker; cf., e.g., [34].

As it is typically the case for Nash–Cournot models we assume that all consumers have a
strictly positive demand and refrain from explicitly stating this demand constraint; cf., e.g.,
Section 3.4.2.5 in [28]. Hence, the consumer model (3) becomes the unconstrained optimization
model

max
du

∑
t∈[T ]

∫ du,t

0

pu,t(x) dx−
∑
t∈[T ]

πu,tdu,t.

Its optimal solution is characterized by the first-order conditions pu,t(du,t) = πu,t for all t ∈ [T ].
Hence, the consumer’s demand is unique in dependence of the given prices πu,t. As usual,
we will later substitute these first-order conditions into the optimization problems of the
producers.

Next, we state the Nash–Cournot model of a producer. To this end, we need to modify the
usage of exogenously given prices πu,t in (1) and replace these prices by the inverse demand
function of the consumer at that node. This yields the problem

max
yu,ȳu

∑
t∈[T ]

pu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t −
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu (30a)

s.t. 0 ≤ yu,t ≤ ȳu, t ∈ [T ], (30b)

in which we explicitly used the market-clearing condition (7) to substitute the nodal demand du,t
into the inverse demand function of the objective. By doing so, the producer anticipates that
the price depends on his own supply level and on the supply levels of the other producers. The
latter are implicitly given by the in- and outflows at the node at which the producer is located.

We still use the assumption that the inverse demand functions are given as linear functions
pu,t(x) = au,t + bu,tx and thus obtain the producer’s KKT conditions

pu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

+ bu,tyu,t − wvar
u + β−u,t − β+

u,t = 0, t ∈ [T ], (31a)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, 0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+

u,t ≥ 0, t ∈ [T ]. (31b)

Finally, the TSO’s model, who still acts as a price taker, is given by (5) and the necessary and
sufficient conditions are given by System (6).

Since both the optimal reactions of the consumers and the market clearing are already
substituted into the two discussed models, we obtain the LCP

Nash–Cournot Producers: (31), Price-taking TSO: (6) (32)

for modeling Nash–Cournot equilibria.
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Note again that we assumed that all demands du,t are positive. In this situation, it is
well-known that the Nash–Cournot equilibrium model (32) can be equivalently replaced by a
single optimization problem—see [31] as well as [34]—which is given by

max
d,y,ȳ,f,Θ

∑
t∈[T ]

∑
u∈N

∫ du,t

0

pu,t(x) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu (33a)

+
∑
t∈[T ]

∑
u∈N

1

2
bu,ty

2
u,t

s.t. 0 ≤ yu,t ≤ ȳu, u ∈ N, t ∈ [T ], (33b)

− f+
a ≤ fa,t ≤ f+

a , fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ], (33c)

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ]. (33d)

There are two differences w.r.t. the welfare maximization problem (9). By assumption, the
demand constraints in (9b) are neglected and we obtain the additional production-depending
quadratic objective terms 1/2bu,ty

2
u,t for every producer and every time period. We finally again

remark that the equivalence between (32) and (33) only holds under the positivity assumption
for the demands. The reason is that, otherwise, the inverse demand functions pu,t(·) do not
necessarily equal nodal prices; cf. (4).

Before we start the discussion of robust Nash–Cournot equilibria, we state and prove
uniqueness of nominal Nash–Cournot equilibria.

Theorem 4.1. Suppose that Assumption 1 holds and that the phase angles Θr,t are fixed for
all t ∈ [T ] at an arbitrary reference node r ∈ N . Then, the Nash–Cournot equilibrium of (32)
is unique.

Proof. Since the LCP (32) and the QP (33) are equivalent, we can consider the latter to prove
uniqueness of the equilibrium of (32). The objective function of (33) is strictly concave in the
demands du,t and the productions yu,t for all u ∈ N and t ∈ [T ]. In this case, the uniqueness of
these quantities follows from [51]. Thus, it remains to show the uniqueness of the capacities ȳu.
For every node u ∈ N , it holds ȳu = max{yu,t : t ∈ [T ]} by optimality. This also proves the
uniqueness of ȳu. The uniqueness of the flows and phase angles follows from Theorem 3.1
in [46]. �

4.2. Strict Robustness. In this section, we again use the concept of strictly robust op-
timization for studying the case in which the demand functions pu,t of the consumers are
uncertain. Thus, we follow the same road as in Sect. 3.1 but replace the economic assumption
of perfect competition by Nash–Cournot competition. That is, we robustify the nominal
models developed in the last section. We use the same notation as in Sect. 3.1.

In contrast to Sect. 3.1, the Nash–Cournot models (30) of the producers now depend on the
uncertain inverse demand functions. This is why we now have to consider the corresponding
robust counterparts, which are given by

max
yu,ȳu,λ

λ (34a)

s.t. λ ≤ −
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu + min
(au,t,bu,t)∈Uu,t

∑
t∈[T ]

au,tyu,t (34b)

+
∑
t∈[T ]

bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t


0 ≤ yu,t ≤ ȳu, t ∈ [T ]. (34c)

As before, we can rewrite this problem in a tractable way.
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Theorem 4.2. Let (12) be the uncertainty set for consumer u ∈ N for all t ∈ [T ] and suppose
Assumption 2 holds. Then, the robust counterpart (34) is equivalent to the convex problem

max
yu,ȳu

∑
t∈[T ]

a−u,tyu,t +
∑
t∈[T ]

b−u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t (35a)

−
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu

s.t. 0 ≤ yu,t ≤ ȳu, t ∈ [T ]. (35b)

The proof is given in Appendix C. As a consequence, necessary and sufficient first-order
optimality conditions of a robust Nash–Cournot producer are given by the KKT conditions

a−u,t + b−u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

+ b−u,tyu,t

−wvar
u + β−u,t − β+

u,t = 0, t ∈ [T ], (36a)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, (36b)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, t ∈ [T ]. (36c)

As the optimization problem (5) of the TSO does not depend on the uncertain inverse
demand functions of the consumers, no robustification needs to be done for the TSO model.
In total, we obtain the robust Nash–Cournot-LCP

Robustified Cournot producers: (36), Price-taking TSO: (6), (37)

which models the wholesale electricity market for the case of Nash–Cournot competition as
well as consumers that face demand uncertainties. As before, we now answer the question
whether the strictly robust counterpart of the Nash-Cournot QP (33) is equivalent to the
RMEP (37) or not.

The robust counterpart of the Nash-Cournot QP (33) reads

max
d,y,ȳ,f,Θ,λ

λ (38a)

s.t. λ ≤ min
(au,t,bu,t)∈Uu,t

∑
t∈[T ]

∑
u∈N

(
au,tdu,t +

1

2
bu,td

2
u,t

)
(38b)

+
∑
t∈[T ]

∑
u∈N

1

2
bu,ty

2
u,t

− ∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu,

(33b)–(33d). (38c)

Theorem 4.3. Let (12) be the uncertainty set for every consumer u ∈ N for all t ∈ [T ] and
suppose Assumption 2 holds. Then, the robust counterpart (38) is equivalent to the convex
problem

max
d,y,ȳ,f,Θ

∑
t∈[T ]

∑
u∈N

(
a−u,tdu,t +

1

2
b−u,td

2
u,t

)
+
∑
t∈[T ]

∑
u∈N

1

2
b−u,ty

2
u,t

−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu

s.t. (33b)–(33d).

(39)
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The proof can be found in Appendix D. Thus, the first-order conditions are necessary and
sufficient for the robust counterpart (39) of the Nash-Cournot QP and are given by

a−u,t + b−u,tdu,t − λu,t = 0, u ∈ N, t ∈ [T ], (40a)

b−u,tyu,t − wvar
u + β−u,t − β+

u,t + λu,t = 0, u ∈ N, t ∈ [T ], (40b)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, u ∈ N, (40c)

δ−a,t − δ+
a,t − λu,t + λv,t + εa,t = 0, a = (u, v) ∈ A, t ∈ [T ], (40d)∑

a∈δout(u)

Baεa,t −
∑

a∈δin(u)

Baεa,t = 0, u ∈ N, t ∈ [T ], (40e)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, u ∈ N, t ∈ [T ], (40f)

0 ≤ fa,t + f+
a ⊥ δ−a,t ≥ 0, 0 ≤ f+

a − fa,t ⊥ δ+
a,t ≥ 0, a ∈ A, t ∈ [T ], (40g)

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ], (40h)

fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ]. (40i)

Comparing these KKT conditions with the RMEP (37), we see that these problems are
equivalent as well.

Theorem 4.4. The RMEP (37) and the strictly robust Nash-Cournot QP (39) are equivalent.

Proof. We identify all dual variables with the same names in both systems (37) and (40) and
further identify the dual variables λu,t in (40) with πu,t in System (37). Finally, using the
market-clearing condition yields the claim. �

Since the structure of the robustified Nash–Cournot QP is the same as for the nominal QP,
Theorem 4.1 also holds for (39) and we obtain the uniqueness of the robust Nash–Cournot
equilibria. Note that this is a stronger statement compared to what we can say about the
uniqueness of robust equilibria in the perfectly competitive case since the uniqueness does not
depend on the network model for Nash–Cournot models.

4.3. The Γ-Approach. In this section, we again consider the Γ-approach as in Sect. 3.2
to robustify the Nash–Cournot setting introduced in Sect. 4.1. Both for the modeling of
uncertainty and Nash–Cournot competition we use the same notation as before.

The robust counterpart of the Nash–Cournot producer (30) reads

max
yu,ȳu,λ

λ (41a)

s.t. λ ≤
∑
t∈[T ]

āu,tyu,t + b̄u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t

 (41b)

−
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu − max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tyu,t

}

− max
{S⊆[T ] : |S|≤Γu}

∑
t∈S

∆bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t

 ,

0 ≤ yu,t ≤ ȳu, t ∈ [T ]. (41c)

As usual, we rewrite this problem to obtain a tractable counterpart.

Theorem 4.5. For the consumer at node u ∈ N let an uncertainty set be given as in (12)
and (19). Then, the Γ-robust counterpart (41) of the Nash–Cournot producer (30) is equivalent
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to

max
z

∑
t∈[T ]

āu,tyu,t +
∑
t∈[T ]

b̄u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t (42a)

−
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu −
∑
t∈[T ]

µu,t − ηuΛu −
∑
t∈[T ]

νu,t − τuΓu

s.t. 0 ≤ yu,t ≤ ȳu, 0 ≤ µu,t + ηu −∆au,tyu,t, 0 ≤ µu,t, 0 ≤ νu,t, t ∈ [T ], (42b)
0 ≤ ηu, 0 ≤ τu, (42c)

0 ≤ νu,t + τu −∆bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t, t ∈ [T ], (42d)

where the variable vector is abbreviated as z := (yu, ȳu, µu, ηu, νu, τu). Suppose further that
Assumption 1 holds for consumer u ∈ N . Then, (42) is a convex QCQP.

Proof. As in Sect. 3.2 we reformulate the inner maximization problems that are part of
Constraint (41b), state their dual problems, and use strong duality to replace the inner
maximization problems with the dual minimization problems. The dual problem of

max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tyu,t

}
can be written as

min
µu,ηu

∑
t∈[T ]

µu,t + ηuΛu s.t. µu,t + ηu ≥ ∆au,tyu,t, µu,t ≥ 0, t ∈ [T ], ηu ≥ 0,

cf., e.g., the proof of Theorem 3.5. To obtain the dual of the second inner maximization
problem

max
{S⊆[T ] : |S|≤Γu}

∑
t∈S

∆bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t


we rewrite it as an equivalent linear program

max
zu

∑
t∈[T ]

∆bu,tyu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 zu,t

s.t.
∑
t∈[T ]

zu,t ≤ Γu, 0 ≤ zu,t ≤ 1, t ∈ [T ],

for which the dual reads

min
τu,νu

Γuτu +
∑
t∈[T ]

νu,t

s.t. 0 ≤ τu + νu,t −∆bu,tyu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 , t ∈ [T ],

0 ≤ τu, 0 ≤ νu,t, t ∈ [T ].

We can now apply the strong duality theorem and replace the inner maximization problems
in (41) by the corresponding dual maximization problems and the claim of the theorem
follows. �
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Due to this result, the KKT conditions of (42) are necessary and sufficient first-order
optimality conditions. They are given by

āu,t + b̄u,tyu,t + b̄u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

−∆au,tσu,t

−∆bu,t

2yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 ζu,t

−wvar
u + β−u,t − β+

u,t = 0, t ∈ [T ], (43a)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, −1 + σu,t + ξu,t = 0, −1 + ζu,t + ρu,t = 0, t ∈ [T ], (43b)

−Λu +
∑
t∈[T ]

σu,t + χu = 0, −Γu + ψu +
∑
t∈[T ]

ζu,t = 0, (43c)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, t ∈ [T ], (43d)

0 ≤ µu,t + ηu −∆au,tyu,t ⊥ σu,t ≥ 0, t ∈ [T ], (43e)
0 ≤ ηu ⊥ χu ≥ 0, 0 ≤ τu ⊥ ψu ≥ 0, (43f)

0 ≤ νu,t + τu −∆bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t ⊥ ζu,t ≥ 0, t ∈ [T ], (43g)

0 ≤ µu,t ⊥ ξu,t ≥ 0, 0 ≤ νu,t ⊥ ρu,t ≥ 0, t ∈ [T ]. (43h)

As in Sect. 3.2 we now obtain the Γ-RMEP

Robustified Nash–Cournot Producers: (43), Price-taking TSO: (6), (44)

which models the wholesale electricity market for the case of Nash–Cournot competition
and the Γ-approach. Again, our main goal is to answer the question whether the Γ-robust
counterpart of the Nash–Cournot QP (33) is equivalent to the Γ-RMEP (44) or not. Thus, we
consider the Γ-robustification of the Nash–Cournot QP (33), which reads

max
d,y,ȳ,f,Θ,λ

λ (45a)

s.t. λ ≤
∑
t∈[T ]

∑
u∈N

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t (45b)

−
∑
u∈N

winv
u ȳu +

∑
t∈[T ]

∑
u∈N

1

2
b̄u,ty

2
u,t −

∑
u∈N

max
{I⊆[T ] : |I|≤Λu}

{∑
t∈I

∆au,tdu,t

}

−
∑
u∈N

max
{S⊆[T ] : |S|≤Γu}

{∑
t∈S

1

2
∆bu,t

(
d2
u,t + y2

u,t

)}
,

(33b)–(33d). (45c)

First of all, we write the latter robust counterpart in a tractable way.



20 A. KRAMER, V. KREBS, M. SCHMIDT

Theorem 4.6. For all consumers u ∈ N let an uncertainty set be given as in (12) and (19).
Then, the Γ-robust counterpart (45) is equivalent to

max
d,y,ȳ,f,Θ,µ,η,ν,τ

∑
t∈[T ]

∑
u∈N

∫ du,t

0

(āu,t + b̄u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t

−
∑
u∈N

winv
u ȳu +

∑
t∈[T ]

∑
u∈N

1

2
b̄u,ty

2
u,t

−
∑
t∈[T ]

∑
u∈N

µu,t −
∑
u∈N

ηuΛu −
∑
t∈[T ]

∑
u∈N

νu,t −
∑
u∈N

τuΓu

(46a)

s.t. (33b)–(33d), (46b)
0 ≤ µu,t, νu,t, u ∈ N, t ∈ [T ], (46c)
0 ≤ ηu, τu, u ∈ N, (46d)
0 ≤ µu,t + ηu −∆au,tdu,t, u ∈ N, t ∈ [T ], (46e)

0 ≤ νu,t + τu −
1

2
∆bu,t

(
d2
u,t + y2

u,t

)
, u ∈ N, t ∈ [T ]. (46f)

Suppose further that Assumption 2 holds. Then, (46) is a convex optimization problem.

Proof. The proof can be carried out in analogy to the one of Theorem 4.5. �

Hence, the KKT conditions of (46) are necessary and sufficient conditions and read

āu,t + b̄u,tdu,t − γu,t −∆au,tσu,t −∆bu,tdu,tζu,t = 0, u ∈ N, t ∈ [T ], (47a)

−wvar
u + β−u,t − β+

u,t + γu,t + b̄u,tyu,t −∆bu,tyu,tζu,t = 0, u ∈ N, t ∈ [T ], (47b)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, u ∈ N, (47c)

−1 + σu,t + ξu,t = 0, −1 + ζu,t + ρu,t = 0, u ∈ N, t ∈ [T ], (47d)

−Λu +
∑
t∈[T ]

σu,t + χu = 0, −Γu + ψu +
∑
t∈[T ]

ζu,t = 0, u ∈ N, (47e)

δ−a,t − δ+
a,t + εa,t − γu,t + γv,t = 0, a = (u, v) ∈ A, t ∈ [T ], (47f)∑

a∈δout(u)

Baεa,t −
∑

a∈δin(u)

Baεa,t = 0, u ∈ N, t ∈ [T ], (47g)

fa,t = Ba(Θu,t −Θv,t), a = (u, v) ∈ A, t ∈ [T ], (47h)

0 = du,t − yu,t +
∑

a∈δout(u)

fa,t −
∑

a∈δin(u)

fa,t, u ∈ N, t ∈ [T ], (47i)

0 ≤ fa,t + f+
a ⊥ δ−a,t ≥ 0, 0 ≤ f+

a − fa,t ⊥ δ+
a,t ≥ 0, a ∈ A, t ∈ [T ], (47j)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, u ∈ N, t ∈ [T ], (47k)

0 ≤ µu,t + ηu −∆au,tdu,t ⊥ σu,t ≥ 0, u ∈ N, t ∈ [T ], (47l)
0 ≤ ηu ⊥ χu ≥ 0, 0 ≤ τu ⊥ ψu ≥ 0, u ∈ N, (47m)

0 ≤ νu,t + τu −
1

2
∆bu,t

(
y2
u,t + d2

u,t

)
⊥ ζu,t ≥ 0, u ∈ N, t ∈ [T ], (47n)

0 ≤ µu,t ⊥ ξu,t ≥ 0, 0 ≤ νu,t ⊥ ρu,t ≥ 0, u ∈ N, t ∈ [T ]. (47o)

In order to prove or disprove the equivalence between the Γ-robust LCP (44) and the KKT
conditions (47) of the Γ-robustified Nash–Cournot QP, we again compare these systems. First,
the KKT conditions (47a) and (47b) of the Nash–Cournot QP together are equivalent to the
KKT condition (43a) of the Nash–Cournot producer. To this end, one needs to eliminate the
demands again by using the market-clearing condition (47i). Furthermore, we again have to
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1 2

3

f+ = 5, B = −1

f+ = 5
B = −1

f+ = 5
B = −1

wvar = 20, winv = 50
p(d) = 40 − d

∆a = 4, ∆b = 0.1

wvar = 25, winv = 45
p(d) = 50 − 2d
∆a = 5, ∆b = 0.2

wvar = 15, winv = 65
p(d) = 60 − 1.5d, ∆a = 6, ∆b = 0.15

Figure 2. 3-node network with the technical, economic, and uncertainty
data used in the computational study

identify the dual variables γu,t of this market-clearing condition with the exogenously given
prices that the TSO sees in his optimization problem; cf. Problem (5). Note that for obtaining
a 1:1 correspondence between the Γ-RMEP equilibria and the robust QCQP solutions, the
above discussed identifications are necessary.

We are then left with the pairs of conditions (47l) and (43e) as well as (47n) and (43g). We
start with the first pair of conditions, which are equivalent if and only if ∆au,t(yu,t − du,t) = 0
holds. This is either the case if ∆au,t = 0 or yu,t = du,t holds. The former corresponds to
certain price-intercepts whereas the latter contradicts the presence of the transport network.
The second pair of conditions are equivalent if and only if − 1

2∆bu,t(y
2
u,t+d

2
u,t) = −∆bu,tdu,tyu,t

holds. This is the case if either ∆bu,t = 0 or yu,t = du,t holds. Again, both is false and so the
systems are not equivalent due to the same reasons as above.

Summarizing, we observe a very interesting phenomenon. Both robustifications in the
case of perfect competition are well-posed in the sense that the RMEPs are equivalent to
the robustified welfare optimization counterparts. This is also the case for Nash–Cournot
competition and a strictly robust approach for handling data uncertainties. However, and
somehow surprisingly, this does not hold anymore for the case of Γ-robustified Nash–Cournot
equilibrium models. To be more specific, this shows that solving the Γ-robustification of
the nominal optimization counterpart does not give a solution of the Γ-robustified market
equilibrium problem. Moreover, it is not possible to state an optimization model that possesses
KKT conditions that are equivalent to the Γ-RMEP (44). Mathematically speaking, this means
that the symmetry principle (cf. Theorem 1.3.1 in [25]) cannot be applied. This implies, that
there is no tractable optimization counterpart of the entire Γ-RMEP that also has clear-cut
economic interpretation. Let us finally note that the observed failure does not depend on
the presence of the transport network but that it is inherent to Γ-robustifications of general
Nash–Cournot models; cf. Appendix E where the same failure is observed for a network-free
model of Nash–Cournot competition.

5. Computational Case Study

In this section we study the effects of different robustification techniques and economic
competition models using a stylized example on a 3-node network, which is given—together
with all relevant nominal data—in Figure 2. We consider four time periods that can be
roughly interpreted as the four seasons. The demand data given in Figure 2 corresponds to the
consumers’ willingness to pay in spring and autumn. Demand data for winter and summer are
obtained by multiplying the price-intercept values with 1.5 and 0.5, respectively. Production
and line data stays the same over all time periods. The uncertainty sets are modeled such
that both price- and quantity-intercepts may vary between ±10 % of the nominal values.
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Table 1. Welfare values

Competition model Uncertainty model Welfare

Perfect competition nominal 3137.87
Perfect competition strictly robust 1778.68
Perfect competition Γ-robust 2105.71

Nash–Cournot nominal 1722.19
Nash–Cournot strictly robust 1023.35

All models have been implemented in Python 2.7.10 and have been solved using Gurobi 7.0.1
on a MacBook Pro with 3.1 GHz Inter Core i7 processor and 16 GB RAM. The LP files of
all models are publicly available on GitHub at https://github.com/m-schmidt-math-opt/
robust-electricity-market-equilibria.

We start by discussing the results of the three different models for the case of perfect
competition, i.e., the nominal, the strictly robust, and the Γ-robust model. The corresponding
welfare values are given in Table 1. The nominal model obtains the largest welfare of 3137.87,
the strictly robust model yields the smallest value (1778.68), and the Γ-approach with Γ = 2
yields a value in between (2105.71). This result was to be expected. The strictly robust model
captures the worst-case in terms of the consumers’ willingness to pay. Since less willingness
to pay yields less demand, this decreases the overall welfare. For Γ = 2, the Γ-approach
represents a level of uncertainty between the nominal and the worst-case setting and thus
delivers a welfare value in between. Hence, the Γ-approach serves as a suitable equilibrium
model that allows for moderate and Γ-parameterized uncertainty effects as it is the case for
classic optimization models.

We now consider the demand and production values as well as the resulting prices in more
detail. Figure 3 (top left) displays the demands over all four time periods at all three nodes
for all uncertainty models. Roughly speaking, demand is highest where the willingness to pay
is highest and the demand pattern over the four seasons is reasonable. Demand in spring and
autumn are equal. In summer, demand is lowest and highest in the winter period. Moreover
and as expected, nominal demand is higher than Γ-robust demand, which is higher than the
strictly robust demand. Interestingly, demand in winter at node 1 is less than in spring and
autumn. We think that the reason is that, for the given capacity and production levels, demand
is shifted from node 1 to node 3 since the willingness to pay is much higher at this node and
thus allows for a larger welfare gain. Production levels mainly follows the ordering of variable
production costs; cf. Figure 2. Most interestingly, all uncertainty models deliver almost the
same prices at the nodes. This is a result of the uncertainty level of 10 %. The nodal price
differences between the different uncertainty models increase for increasing uncertainty sets.
However, the prices are almost the same across the nodes of the network for fixed a uncertainty
model. This is surprising since we use a capacitated DC power flow model that might yield
different nodal prices. Thus, it seems to be the case that uncertainty reduces nodal price
differences that occur due to the network.

The corresponding results for the Nash–Cournot models are given in Table 1 and Figure 3
(bottom). Note that we only compare the nominal and strictly robust model since we do not
have a tractable counterpart for the Γ-robust case; see Section 4.3. We do not discuss the
results in the same detail as for the perfectly competitive cases because the results are rather
comparable. Moreover, the classic effects of Cournot competition can be seen. First, welfare
values decrease because Nash–Cournot producers do not act in a socially optimal way. Second,
Cournot producers tend to produce less in order to obtain higher market prices, which finally
yields less demand as compared to the perfectly competitive setting. All these effects can be
seen in Figure 3 (bottom). Finally, one sees that uncertain Nash–Cournot models tend to
yield larger price differences than uncertain and perfectly competitive equilibrium models.

https://github.com/m-schmidt-math-opt/robust-electricity-market-equilibria
https://github.com/m-schmidt-math-opt/robust-electricity-market-equilibria
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6. Conclusion

Although uncertainty plays an increasingly important role in electricity markets, the concept
of robust optimization has only been applied to equilibrium models—at least to the best of our
knowledge—in the two papers [52, 71]. Thus, we investigated basic properties of robustified
equilibrium models of electricity markets. To this end, we studied strictly as well as Γ-robust
counterparts in the contexts of perfectly competitive as well as Nash–Cournot models of
the market. For all but the combination of Nash–Cournot competition and Γ-robustness we
derived tractable counterparts that also have a clear-cut economic interpretation. In particular,
this corresponds to both classic welfare theorems applied to the robustified but still convex
problems in the perfectly competitive setting and an analogous result is established for strictly
robust Nash–Cournot equilibria. Finally, we also obtained several existence and uniqueness
results by applying already existing results from the literature. Interestingly, the only case
in which a tractable counterpart cannot be derived is the one of Γ-robustified Nash–Cournot
models. In this case, the questions of existence and uniqueness of equilibria is open.

The field of robust equilibria is very young and, thus, many interesting questions still need
to be answered. Examples include the consideration of other robustification techniques to
equilibrium models as well as the application of robust concepts to large-scale real-world
equilibrium models of electricity markets. Moreover, the extension of our results to uncertain
nonlinear inverse demand functions as well as to other uncertain data of the model such as
investment or production costs are interesting topics of future research. Finally, in this paper
we considered the case of a static investment problem, i.e., a problem in which the investment
decisions are taken once at the very beginning of the time horizon. However, in the current
context of the rapid development of renewable energy technologies, investment costs may
change on a yearly basis, which is not covered by our model. Thus, the study of an extension
of the model where more dynamic investment aspects are reflected is an important topic for
future research as well.
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The uncertainty only appears in Constraint (48b), which is equivalent to

λ ≤ min
(au,t,bu,t)∈Uu,t,t∈[T ]

∑
t∈[T ]

∫ du,t

0

(au,t + bu,tx) dx−
∑
t∈[T ]

πu,tdu,t

 ,

which, again, is the same as

λ ≤
∑
t∈[T ]

min
(au,t,bu,t)∈Uu,t

{∫ du,t

0

(au,t + bu,tx) dx

}
−
∑
t∈[T ]

πu,tdu,t.

Using the structure of the uncertainty set (12), we obtain

min
(au,t,bu,t)∈Uu,t

{∫ du,t

0

(au,t + bu,tx) dx

}
= min
au,t∈[a−u,t,a

+
u,t],

bu,t∈[b−u,t,b
+
u,t]

{
au,tdu,t +

1

2
bu,td

2
u,t

}

and, as we only consider feasible demands du,t ≥ 0, this yields

min
au,t∈[a−u,t,a

+
u,t],

bu,t∈[b−u,t,b
+
u,t]

{
au,tdu,t +

1

2
bu,td

2
u,t

}
= a−u,tdu,t +

1

2
b−u,td

2
u,t =

∫ du,t

0

(a−u,t + b−u,tx) dx

for all time periods t ∈ [T ]. Thus, the robust counterpart (48) is equivalent to

max
du≥0,λ

λ s.t. λ ≤
∑
t∈[T ]

∫ du,t

0

(a−u,t + b−u,tx) dx−
∑
t∈[T ]

πu,tdu,t,

which is the same as

max
du

∑
t∈[T ]

∫ du,t

0

(a−u,t + b−u,tx) dx−
∑
t∈[T ]

πu,tdu,t s.t. 0 ≤ du,t, t ∈ [T ].

Appendix B. Proof of Theorem 3.2

As the uncertainty only appears in (17b) we only consider these constraints and rewrite
them as

λ ≤ min
(au,t,bu,t)∈Uu,t,
u∈N, t∈[T ]

{ ∑
t∈[T ]

∑
u∈N

∫ du,t

0

(au,t + bu,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu

}
.

This can be simplified, yielding

λ ≤
∑
t∈[T ]

∑
u∈N

min
(au,t,bu,t)∈Uu,t

{∫ du,t

0

(au,t + bu,tx) dx

}
−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu.

Using the structure of the uncertainty set Uu,t for all u ∈ N and t ∈ [T ] as well as the fact
that du,t ≥ 0, u ∈ N , t ∈ [T ], we obtain

min
(au,t,bu,t)∈Uu,t

{∫ du,t

0

(au,t + bu,tx) dx

}
=

∫ du,t

0

(a−u,t + b−u,tx) dx.

Thus, the robust counterpart of the welfare model reads

max
d,y,ȳ,f,Θ,λ

λ

s.t. λ ≤
∑
t∈[T ]

∑
u∈N

∫ du,t

0

(a−u,t + b−u,tx) dx−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu,

(17c)–(17e),

which is equivalent to (18).
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Appendix C. Proof of Theorem 4.2

We only have to consider Constraint (34b). Using the definition of the uncertainty set (12),
its right-hand side reads

−
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu + min
au,t∈[a−u,t,a

+
u,t]

∑
t∈[T ]

au,tyu,t


+ min

bu,t∈[b−u,t,b
+
u,t]

∑
t∈[T ]

bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t

 .

(49)

Exploiting Assumption 2, the market-clearing condition (7), the assumption du,t > 0 for all
t ∈ [T ], and the constraint yu,t ≥ 0, we can explicitly state the minima in (49) and obtain

min
au,t∈[a−u,t,a

+
u,t]

∑
t∈[T ]

au,tyu,t

 =
∑
t∈[T ]

a−u,tyu,t

as well as

min
bu,t∈[b−u,t,b

+
u,t]

∑
t∈[T ]

bu,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t


=
∑
t∈[T ]

b−u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t.

Thus, we can write

λ ≤
∑
t∈[T ]

a−u,tyu,t +
∑
t∈[T ]

b−u,t

yu,t +
∑

a∈δin(u)

fa,t −
∑

a∈δout(u)

fa,t

 yu,t −
∑
t∈[T ]

wvar
u yu,t − winv

u ȳu

instead of (34b) and the claim follows.

Appendix D. Proof of Theorem 4.3

As in the other proofs, we only have to consider and reformulate the minimum in Con-
straint (38b). By the definition of the uncertainty set (12) of every consumer, we have

min
(au,t,bu,t)∈Uu,t

∑
t∈[T ]

∑
u∈N

(
au,tdu,t +

1

2
bu,td

2
u,t

)
+
∑
t∈[T ]

∑
u∈N

1

2
bu,ty

2
u,t


=
∑
t∈[T ]

∑
u∈N

(
min

au,t∈[a−u,t,a
+
u,t]
{au,tdu,t}+

1

2
min

bu,t∈[b−u,t,b
+
u,t]

{
bu,t(d

2
u,t + y2

u,t)
})

.

Then, using Assumption 2 and du,t > 0 for all t ∈ [T ], we obtain∑
t∈[T ]

∑
u∈N

(
min

au,t∈[a−u,t,a
+
u,t]
{au,tdu,t}+

1

2
min

bu,t∈[b−u,t,b
+
u,t]

{
bu,t(d

2
u,t + y2

u,t)
})

=
∑
t∈[T ]

∑
u∈N

(
a−u,tdu,t +

1

2
b−u,t(d

2
u,t + y2

u,t)

)
.

This yields the first claim. Because all slopes of the inverse demand functions are negative,
the robustified Nash-Cournot QP (39) is a convex optimization problem.
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Appendix E. The Γ-Approach for Nash–Cournot Competition without a
Network

In Sect. 4.3 we observed that the equivalence between the robustified equilibrium model
(stated as a robust LCP) and the robustified Nash–Cournot QP does not hold in the case of
the Γ-approach. In this section, we briefly show that the reason for this failure is not the
transport network by discussing the network-free case of Nash–Cournot competition and the
Γ-approach. We omit all proofs in this appendix. All results can be obtained using the same
techniques as in the other parts of this paper.

For the network-free case, we consider an aggregated consumer with an aggregated inverse
market demand function Pt(Dt) = At +BtDt with At ≥ 0 and Bt < 0 for all t ∈ [T ] and still
assume that the aggregated demand Dt is positive for all time periods t ∈ [T ]. Following the
same principles as in Sect. 4.1 we then obtain the optimization problem

max
yu,ȳu

∑
t∈[T ]

Pt

(∑
v∈N

yv,t

)
yu,t −

∑
t∈[T ]

wvar
u yu,t − winv

u ȳu s.t. 0 ≤ yu,t ≤ ȳu, t ∈ [T ], (50)

of the producer located at node u ∈ N . Note that the price function can be stated explicitly
via

Pt

(∑
v∈N

yv,t

)
= At +Bt

(∑
v∈N

yv,t

)
.

As usual, the Nash–Cournot-LCP is made up of the necessary and sufficient KKT conditions

At +Btyu,t +Bt

(∑
v∈N

yv,t

)
− wvar

u + β−u,t − β+
u,t = 0, u ∈ N, t ∈ [T ],

−winv
u +

∑
t∈[T ]

β+
u,t = 0, u ∈ N,

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, u ∈ N, t ∈ [T ]

of Problem (50) for every producer, i.e., for every u ∈ N . As before, we also obtain an
equivalent Nash–Cournot QP that now reads

max
y,ȳ

∑
t∈[T ]

∫ Yt

0

Pt(x) dx+
∑
t∈[T ]

∑
u∈N

1

2
Bty

2
u,t −

∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu (51a)

s.t. 0 ≤ yu,t ≤ ȳu, u ∈ N, t ∈ [T ], (51b)

where Yt :=
∑
u∈N yu,t abbreviates total production (and thus total demand) in time period t ∈

[T ]. Next, we consider the robustification of the producer model (50),

max
yu,ȳu,λ

λ (52a)

s.t. λ ≤
∑
t∈[T ]

Ātyu,t + B̄t

(∑
v∈N

yv,t

)
yu,t −

∑
t∈[T ]

wvar
u yu,t − winv

u ȳu (52b)

− max
{I⊆[T ] : |I|≤Λ}

{∑
t∈I

∆Atyu,t

}
− max
{S⊆[T ] : |S|≤Γ}

{∑
t∈S

∆Bt

(∑
v∈N

yv,t

)
yu,t

}
,

0 ≤ yu,t ≤ ȳu, t ∈ [T ], (52c)

for which we can also state a tractable version.
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Theorem E.1. For the aggregated consumer let an uncertainty set be given as in (12) and
(19). Then, the Γ-robust counterpart (52) of the Nash–Cournot producer (50) is equivalent to

max
yu,ȳu,τu,ηu,νu,µu

∑
t∈[T ]

Ātyu,t + B̄t

(∑
v∈N

yv,t

)
yu,t −

∑
t∈[T ]

wvar
u yu,t − winv

u ȳu

− τuΓ−
∑
t∈[T ]

νu,t − ηuΛ−
∑
t∈[T ]

µu,t (53a)

s.t. 0 ≤ yu,t ≤ ȳu, t ∈ [T ], (53b)
0 ≤ τu, ηu, (53c)
0 ≤ νu,t, µu,t, t ∈ [T ], (53d)
0 ≤ ηu + µu,t −∆Atyu,t, t ∈ [T ], (53e)

0 ≤ τu + νu,t −∆Bt

(∑
v∈N

yv,t

)
yu,t, t ∈ [T ]. (53f)

Furthermore, (53) is a convex optimization problem if Assumption 2 holds.

Hence, the KKT conditions

Āt + B̄t

(∑
v∈N

yv,t

)
+ B̄tyu,t − wvar

u + β−u,t − β+
u,t −∆Atσu,t

−∆Bt

(∑
v∈N

yv,t

)
ζu,t −∆Btyu,tζu,t = 0, t ∈ [T ], (54a)

−winv
u +

∑
t∈[T ]

β+
u,t = 0, (54b)

−1 + σu,t + ξu,t = 0, −1 + ζu,t + ρu,t = 0, t ∈ [T ], (54c)

−Λ +
∑
t∈[T ]

σu,t + χu = 0, −Γ + ψu +
∑
t∈[T ]

ζu,t = 0, (54d)

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, t ∈ [T ], (54e)

0 ≤ µu,t + ηu −∆Atyu,t ⊥ σu,t ≥ 0, t ∈ [T ], (54f)
0 ≤ ηu ⊥ χu ≥ 0, 0 ≤ τu ⊥ ψu ≥ 0, (54g)

0 ≤ νu,t + τu −∆Bt

(∑
v∈N

yv,t

)
yu,t ⊥ ζu,t ≥ 0, t ∈ [T ], (54h)

0 ≤ µu,t ⊥ ξu,t ≥ 0, 0 ≤ νu,t ⊥ ρu,t ≥ 0, t ∈ [T ], (54i)

of (53) are necessary and sufficient conditions. Thus, the robust Nash–Cournot-LCP is obtained
by collecting the Conditions (54) for every producer, i.e., for every u ∈ N . As before, we now
also derive the Γ-robust counterpart of the Nash–Cournot QP (51) and then analyze whether
there is a 1:1 correspondence between the latter model and the corresponding robust LCP.
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The Γ-robust counterpart of the Nash–Cournot QP (51) reads

max
y,ȳ,λ

λ (55a)

s.t. λ ≤
∑
t∈[T ]

Āt

(∑
u∈N

yu,t

)
+

1

2

∑
t∈[T ]

B̄t

(∑
u∈N

yu,t

)2

+
∑
t∈[T ]

∑
u∈N

1

2
B̄ty

2
u,t (55b)

−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu

− max
{I⊆[T ] : |I|≤Λ}

{∑
t∈I

∆At

(∑
u∈N

yu,t

)}

− max
{S⊆[T ] : |S|≤Γ}

∑
t∈S

1

2
∆Bt

(∑
u∈N

yu,t

)2

+
∑
u∈N

y2
u,t

 ,

0 ≤ yu,t ≤ ȳu, t ∈ [T ]. (55c)

A tractable version of this robustified model can be derived as before.

Theorem E.2. For the aggregated consumer let an uncertainty set be given as in (12) and
(19). Then, the Γ-robust counterpart (55) is equivalent to

max
y,ȳ,τ,η,ν,µ

∑
t∈[T ]

Āt

(∑
u∈N

yu,t

)
+

1

2

∑
t∈[T ]

B̄t

(∑
u∈N

yu,t

)2

+
∑
t∈[T ]

∑
u∈N

1

2
B̄ty

2
u,t

−
∑
t∈[T ]

∑
u∈N

wvar
u yu,t −

∑
u∈N

winv
u ȳu

− τΓ−
∑
t∈[T ]

νt − ηΛ−
∑
t∈[T ]

µt (56a)

s.t. 0 ≤ yu,t ≤ ȳu, u ∈ N, t ∈ [T ], (56b)
0 ≤ τ, η, (56c)
0 ≤ νt, µt, t ∈ [T ], (56d)

0 ≤ η + µt −∆At
∑
u∈N

yu,t, t ∈ [T ], (56e)

0 ≤ τ + νt −
1

2
∆Bt

(∑
u∈N

yu,t

)2

+
∑
u∈N

y2
u,t

 , t ∈ [T ]. (56f)

Furthermore, (56) is a convex optimization problem if Assumption 2 holds.

Thus, the KKT conditions of (56) are necessary and sufficient first-order optimality condi-
tions. They are given by

Āt + B̄t

(∑
v∈N

yv,t

)
+ B̄tyu,t − wvar

u + β−u,t − β+
u,t −∆Atσt

−∆Bt

(∑
v∈N

yv,t

)
ζt −∆Btyu,tζt = 0, u ∈ N, t ∈ [T ],

−winv
u +

∑
t∈[T ]

β+
u,t = 0, u ∈ N,

−1 + σt + ξt = 0, −1 + ζt + ρt = 0, t ∈ [T ],
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−Λ +
∑
t∈[T ]

σt + χ = 0, −Γ + ψ +
∑
t∈[T ]

ζt = 0,

0 ≤ yu,t ⊥ β−u,t ≥ 0, 0 ≤ ȳu − yu,t ⊥ β+
u,t ≥ 0, u ∈ N, t ∈ [T ],

0 ≤ µt + η −∆At
∑
v∈N

yv,t ⊥ σt ≥ 0, t ∈ [T ],

0 ≤ η ⊥ χ ≥ 0, 0 ≤ τ ⊥ ψ ≥ 0,

0 ≤ νt + τ − 1

2
∆Bt

(∑
v∈N

yv,t

)2

+
∑
v∈N

y2
v,t

 ⊥ ζu,t ≥ 0, t ∈ [T ],

0 ≤ µt ⊥ ξt ≥ 0, 0 ≤ νt ⊥ ρt ≥ 0, t ∈ [T ].

It is again easy to see that these KKT conditions are not the same as those in (54) for every
producer. The main reason is the Nash–Cournot markup terms 1

2Bty
2
u,t in the objective of the

Nash–Cournot QP (51). These are not present in the single producer problems (50) and are thus
not robustified in the robust LCP. This is, however, the case in the robustified Nash–Cournot
QP, which clearly leads to different solutions. Thus, the failure of the desired equivalence is not
due to network effects but is inherent to Γ-robustifications of general Nash–Cournot models.
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