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Abstract. We consider the problem of discrete arc sizing for tree-shaped
potential networks with respect to infinitely many demand scenarios. This
means that the arc sizes need to be feasible for an infinite set of scenarios.
The problem can be seen as a strictly robust counterpart of a single-scenario
network design problem, which is shown to be NP-complete even on trees. In
order to obtain a tractable problem, we introduce a method for generating a
finite scenario set such that optimality of a sizing for this finite set implies the
sizing’s optimality for the originally given infinite set of scenarios. We further
prove that the size of the finite scenario set is quadratically bounded above
in the number of nodes of the underlying tree and that it can be computed
in polynomial time. The resulting problem can then be solved as a standard
mixed-integer linear optimization problem. Finally, we show the applicability
of our theoretical results by computing globally optimal arc sizes for a realistic
hydrogen transport network of Eastern Germany.

1. Introduction

Potential-based flows are an extension of classical network flows because these
flows depend on the potential gradients at the incident nodes of the underlying
graph. They play an important role in the field of energy transport networks such as
hydrogen, gas, water, or power networks. In such networks, the interaction between
flows and potentials is determined by physical laws. On the one hand, these physical
laws typically make the potential-based flows unique—but on the other hand, they
often lead to nonlinear optimization problems. In the literature, potential networks
have mainly been studied regarding the uniqueness of solutions and in the light of
classical algorithmic flow problems; see the recent paper Groß et al. (2017) and the
references therein for an overview.

In classical problems for potential networks, flows and potentials are to be
optimized. Here, we consider an extension of this classical potential-based flow
setting in which we also optimize over a finite set of possible capacities, i.e., the arc
sizes of the network, that influence the physics models that describe the relation
between arc flows and potentials on incident nodes. Thus, we consider a special
discrete network design problem for potential networks and call it the problem
of discrete arc sizing in potential networks. This problem is, in general, a very
challenging mixed-integer nonlinear optimization problem (MINLP). In order to
arrive at a more accessible problem, both in theory and in practice, we restrict
ourselves to the case of tree-shaped potential networks.

The topic of optimally choosing arc capacities plays an important role in many
real-world applications such as in hydrogen, gas, water, or power networks. For
example, in Hansen et al. (1991), discrete pipe-sizing of pipeline networks with
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respect to (w.r.t.) a single scenario is discussed and linear programming techniques
are applied. To this end, linear subproblems are set up and solved to adjust the
discrete selection of diameters. In Shiono and Suzuki (2016), continuous and discrete
pipe-sizing of a tree-shaped gas distribution network with a single source and a single
scenario is studied. For the case of continuous pipe-sizing, an analytic approach
is presented, which is then used to approximate the discrete case. Furthermore,
the problem of discrete arc sizing is considered as a part of capacity expansion
planning for gas transportation networks in Andre et al. (2009). There, the authors
first identify a set of pipelines by using mixed-integer nonlinear models in order
to afterward solve the discrete arc sizing problem for this selection of pipes. The
latter is done using a branch-and-bound approach. Again, only the single-scenario
case is considered. A more general nonlinear nonconvex network design problem
is considered in Humpola and Fügenschuh (2015). It is solved w.r.t. one scenario
with the help of branch-and-bound, spatial branching, and special relaxations of the
occurring subproblems. In Vuffray et al. (2015) the robust minimum loss problem in
a dissipative flow network w.r.t. infinitely many scenarios is studied. This problem
consists of minimizing costs w.r.t. uncertain demand at pre-specified exits, whereas
there is no limitation for the supply of entry nodes. Mainly due to the latter,
the authors can reduce the considered infinite set of scenarios to two scenarios.
In Bragalli et al. (2008), Bragalli, D’Ambrosio, et al. (2006), and Bragalli et al.
(2012), the problem of choosing optimal diameters for water distribution networks
is studied. The problem is solved using mixed-integer nonlinear programming
techniques. Multiple-scenario cases are not considered. In Afshar and Mariño
(2007), a self-adapting genetic algorithm for pipe network optimization is presented
and the rehabilitation of a water supply network w.r.t. one scenario is considered. A
more general approach to the problem is given in Raghunathan (2013), where global
optimization of nonlinear network design problems is addressed. In this paper, an
MINLP model is studied and a linearization-based approach is used to solve the
problem for the single-scenario case.

The papers cited so far all have the following in common: They consider a
physical model that relates arc flows to node potentials (like gas pressure or water
heights) at nodes. Moreover, this relation is typically nonlinear. All these models
are captured in the general framework of potential-based flows considered in this
paper. An additional similarity is that all discussed publications, except of Vuffray
et al. (2015), consider the single-scenario case.

We study the optimal choice of discrete arc sizes for the multi-scenario case,
where the uncertainty of our scenarios possibly affects every entry and exit node.
Consequently, none of the results in Vuffray et al. (2015) is applicable to our case.
Moreover, the considered scenario set is of infinite size. This is also the reason that
our model and the presented solution strategy can be seen in a completely different
light—namely in the light of optimization under uncertainty. In fact, the model
that we consider is a robust counterpart of a single-scenario network design MINLP,
where the uncertain aspect is robustified in the way of strict robust optimization; cf.,
e.g., Ben-Tal et al. (2009). To the best of our knowledge, no theoretical results or
solution methods for the problem of discrete arc sizing exists in the case of infinitely
many scenarios, affecting entries and exits, if the underlying nonlinear physical
constraints are present. Neglecting the latter, however, there are some related
approaches from the field of robust network design. In this field, the computation
of minimum-cost edge capacities that yield the feasibility of routed flows through a
network for different scenarios is considered. A popular approach that is discussed
in Ben-Ameur and Kerivin (2005) describes the set of infinitely many scenarios as
a polyhedron. Many other approaches use the so-called hose model, introduced
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in Duffield et al. (1999) and Fingerhut et al. (1997), to cope with infinitely many
scenarios; cf., e.g., Cacchiani et al. (2016). Both the polyhedral and the hose model
consider the demand between to given nodes that determines how much flow must
be routed between these two nodes. Our approach only considers the demand at the
single nodes separately without imposing dependencies of demands between different
nodes. The methods presented in the cited papers on robust network design usually
rely on constraint generation and mixed-integer linear programming techniques;
cf., e.g., Altın et al. (2007), Ben-Ameur and Kerivin (2005), and Erlebach and
Ruegg (2004). All the discussed approaches of robust network design exploit the
property that the “capacity” of an edge does not depend on its incident edges and
their capacities. In contrast to this, arc sizing needs to take these dependencies
into account in the context of potential-based flows. Thus, the methods from the
literature cannot be used for the problem of discrete arc sizing for potential networks
as it is discussed in this paper.

We consider tree-shaped potential networks in which node demands are bounded
by lower and upper node capacities. A balanced set of nodal supplies and demands
that satisfies these capacities is called a scenario. The problem that we solve
is the computation of a minimum-cost arc sizing that is feasible for all possible
scenarios. At a first glance, this can be seen as the strictly robust counterpart of a
single-scenario mixed-integer nonlinear and nonconvex problem, which is—without
applying any further techniques—not tractable. Our contribution is the following:
We present a method for generating a finite set of scenarios (the so-called finite
feasible design set) such that optimality of a sizing w.r.t. this finite set is shown to
imply the optimality w.r.t. the originally given infinite set of scenarios. Moreover,
the number of scenarios in this finite set is shown to be bounded above by |V |2,
i.e., by the square of the number of nodes of the considered tree. Thus, we prove
that it is possible to construct an equivalent and finite-dimensional counterpart of
the underlying robust optimization problem. Moreover, we show that this finite
counterpart can be generated in polynomial time. The assumptions that we need
for proving these results are mild and are satisfied in typical applications like in
hydrogen networks. The latter will serve as a running example throughout this paper.
Lastly, we show that the resulting problem can be solved as a standard mixed-integer
linear optimization problem and we apply our techniques for computing optimal pipe
diameters for a realistic hydrogen network of Eastern Germany. For more details
about this application we refer to Reuss et al. (2017), Robinius (2015), Robinius
et al. (2017), Syranidis et al. (2018), and Welder et al. (2017).

The remainder of the paper is structured as follows: We formally define potential
networks, collect preliminary results, and introduce the considered problem of
discrete arc sizing for tree-shaped potential networks in Section 2. In Section 3 we
prove the existence of a finite scenario set with the property that optimality of arc
sizes w.r.t. this finite set implies optimality for the originally given infinite set of
scenarios. The proof of this property mainly relies on solving properly chosen linear
programs. In contrast to that, a purely combinatorial algorithm for computing these
finite sets, including a complexity analysis, is presented in Section 4. In particular,
we prove that the problem of discrete arc sizing is NP-complete even for tree-shaped
potential networks. In Section 5 we illustrate the applicability of our approach by
computing optimal pipe diameters for a realistic hydrogen transport network of
Eastern Germany. The paper ends with some concluding remarks in Section 6.

2. Modeling and Basic Results

In this section, we introduce potential networks and present first results. Further-
more, we illustrate these results by an application in hydrogen pipeline networks.
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At the end of this section, we give the specific definition and a mixed-integer model
of the problem of discrete arc sizing in potential networks.

2.1. Potential Networks. First, we formally introduce potential networks.

Definition 2.1. A potential network consists of a connected digraph G = (V,A)
with node set V and arc set A. To each node v ∈ V , a potential πv is assigned with
lower and upper bounds 0 ≤

¯
πv ≤ π̄v ∈ R. Moreover, to every arc a ∈ A, a flow qa

is assigned.

Note that the flow qa on an arc a = (u, v) can be negative with the interpretation
of flow against the direction of the arc, whereas flow from u to v is positive. For an
arc a = (u, v) ∈ A, the potential difference at its incident nodes u and v depends on
the flow qa and the arc size da. We model this relation as

πu − πv = ψa (da, qa) .

Here, ψa(da, ·) : R→ R is a potential function that satisfies the following properties:
(1) ψa(da, ·) is continuous,
(2) ψa(da, ·) is strictly increasing, and
(3) ψa(da, ·) is odd w.r.t. the second argument qa, i.e., ψa (da,−qa) =
−ψa (da, qa).

The potential function ψa varies for different applications. In the following example
we describe a typical choice for ψa in hydrogen networks. The assumptions that
ψa(da, ·) is continuous and strictly increasing are natural in the physical contexts
of utility networks like gas, power, water, or hydrogen networks. Moreover, the
condition that ψa(da, ·) is odd makes the situation symmetric w.r.t. the direction of
flow.

Example 2.2 (Hydrogen Transport Networks). Stationary and isothermal models
of hydrogen transport networks often use the Weymouth equation; see Mischner
et al. (2011), Ríos-Mercado and Borraz-Sánchez (2015), and Weymouth (1912), and
the chapter Fügenschuh et al. (2015) in the the recent book Koch et al. (2015).
The latter describes a detailed modeling of stationary and isothermal gas flow in
pipeline networks. In this application, lines correspond to pipes, potentials to
squared pressure levels at nodes, and flows are physical mass flows. Furthermore,
discrete arc sizing translates to the discrete selection of pipe diameters. For a pipe
a = (u, v) ∈ A, the relation between mass flow, diameter, and potentials can be
approximated by the Weymouth-type pressure loss equation

πu − πv = ψa (da, qa) , ψa (da, qa) = βa
λ(da, qa)

d5a
qa|qa|. (1)

The arc-specific constant βa ≥ 0 depends on technical parameters of the pipe such as
length, temperature, and specific properties of hydrogen. Additionally, the so-called
friction factor λ depends on the chosen diameter of the pipe and the mass flow
through the pipe. We refer to the above mentioned papers and books for a more
detailed description of the pressure loss function (1). For a fixed mass flow, fixed
pipe diameters, and a fixed initial pressure at the beginning of a pipe, we illustrate
the pressure loss in Figure 1. As we can see, the size of the diameter strongly
influences the pressure drop in the hydrogen pipe. Hence, the selection of diameters
plays an important role for constructing new pipeline networks.

Further applications of potential networks in natural gas, water, and lossless DC
power flow networks are described in Groß et al. (2017).
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Figure 1. Pressure levels in bar (y-axis) for a mass flow of 5 kg/s
and an initial pressure of 90 bar

2.2. Potential-Based b-Flows. Now, we consider node balances b ∈ R|V | with∑
v∈V bv = 0, which we also call scenarios. They describe a specific supply and

demand situation at the nodes. In a potential network G = (V,A) with arc sizes
d ∈ R|A|, a (feasible) potential-based b-flow (q, π) related to a given scenario b ∈ R|V |
consists of flows q ∈ R|A| and potentials π ∈ R|V | that satisfy the conditions∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = bv, v ∈ V, (2a)

πu − πv = ψa (da, qa) , a = (u, v) ∈ A, (2b)

¯
πv ≤ πv ≤ π̄v, v ∈ V, (2c)

where we used the standard δ-notation for the sets of in- and outgoing arcs, i.e.,

δin(v) = {a ∈ A : a = (u, v)}, δout(v) = {a ∈ A : a = (v, u)}.
Furthermore, we say that a (feasible) potential-based b-flow (q, π) is in standard
form if it satisfies the condition

∃v ∈ V : πv = π̄v. (3)

A known property of potential networks is that, neglecting the potential bounds (2c),
every balanced set of supplies and demands can be transported.

Now, we present some results about the relation between scenarios and potential-
based b-flows. These results allow us to focus on potential-based b-flows in standard
form. Using the next three lemmas, we can show that for given arc sizes and a
given scenario, a corresponding feasible potential-based b-flow exists if and only if
a corresponding potential-based b-flow in standard form exists. The first lemma
shows that in tree-shaped networks there is a 1-1 correspondence between scenarios
b and flows q that satisfy Condition (2a). Furthermore, we can compute the flows
for a given scenario in linear time.

Lemma 2.3. Let G = (V,A) be a tree-shaped potential network. Then, for a given
scenario b ∈ R|V | we can compute unique flows q ∈ R|A| that satisfy Condition (2a)
in O(|V |). Additionally, for given flows q ∈ R|A| satisfying Condition (2a) we can
compute the unique corresponding scenario b in O(|V |).

Proof. Let V (u) := {v ∈ V : (u, v) ∈ A∨ (v, u) ∈ A} contain the neighbors of a node
u ∈ V and let L := {u ∈ V : |V (u)| = 1} be the set of leaf nodes. Additionally, we
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assume w.l.o.g. that G is an out-tree. For a given scenario b ∈ R|V |, we compute
the corresponding unique flows as follows. As long as the arc set A is nonempty
we do the following: For each leaf node u ∈ L and unique arc a ∈ δin(u) we set
qa = −bu and then update bv = bv − qa for the unique neighbor v ∈ V (u). Then, we
set V = V \ L, A = A \

⋃
u∈L δ

in(u), and iterate. This procedure computes unique
flows for a given scenario and terminates after |A| = |V | − 1 iterations. For given
flows satisfying Condition (2a), the computation of the scenario is trivial. �

Given a scenario, a potential-based b-flow is uniquely determined if one of its
potentials is fixed. This is formally stated in the next lemma, which is a slightly
adapted version of the results in Collins et al. (1978) and Ríos-Mercado, Wu, et al.
(2002).

Lemma 2.4. Let G = (V,A) be a potential network with fixed arc sizes d ∈ R|A|
and let b ∈ R|V | be a scenario. Furthermore, assume that no potential bounds are
given and that for a given node v ∈ V , the potential πv is fixed. Then, there exists a
unique feasible potential-based b-flow (q, π).

With the help of the next lemma, which is an adaption of Szabó (2012), we see
that shifting the potentials of a potential-based b-flow again leads to a potential-
based b-flow.

Lemma 2.5. Let G = (V,A) be a potential network with fixed arc sizes d ∈ R|A|
and let b ∈ R|V | be a scenario. Furthermore, assume that no potential bounds are
given. If (q, π) is a potential-based b-flow, then (q, π+c1) is a potential-based b-flow
for every c ∈ R, where 1 is the vector of ones in appropriate dimension.

In contrast to the last lemma, we cannot shift the potentials of a potential-based b-
flow in standard form upwards without violating an upper potential bound π̄v. Hence,
we can prove the next lemma, which allows us to focus on potential-based b-flow in
standard form in the following.

Lemma 2.6. Let G = (V,A) be a potential network with arc sizes d ∈ R|A| and let
b ∈ R|V | be a scenario. Then, a feasible potential-based b-flow exists if and only if a
corresponding potential-based b-flow in standard form exists.

Proof. The lemma follows directly by applying Lemma 2.4 and 2.5. �

Furthermore, it is easy to see that if a potential-based b-flow in standard form
exists, then it is unique.

Now, we introduce a scenario space for which we subsequently define the problem
of discrete arc sizing. In what follows, we assume lower and upper node capacities

¯
bv ≤ 0 ≤ b̄v that restrict the supply or demand bv of a node v ∈ V in all considered
scenarios. With this, we obtain the scenario space

B :=

{
b ∈ R|V | :

∑
v∈V

bv = 0 and
¯
bv ≤ bv ≤ b̄v, v ∈ V

}
. (4)

For each arc a ∈ A, we consider a finite set of arc sizes Da with |Da| < ∞.
Additionally, ca,d ∈ R describes the cost for arc size da ∈ Da. Obviously, computing
optimal arc sizes for a potential network leads to a discrete optimization problem
that we derive in the following. In words, the problem of discrete arc sizing for a
tree-shaped potential network G = (V,A) consists of selecting the cheapest arc sizes
da ∈ Da for all a ∈ A so that for each scenario b ∈ B, its potential-based b-flow in
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standard form exists. This problem can be modeled as

min
x,q,π

∑
a∈A

∑
d∈Da

ca,d xa,d (5a)

s.t. πbu − πbv = ψa

(∑
d∈Da

d xa,d, qba

)
, a = (u, v) ∈ A, b ∈ B, (5b)

∑
a∈δout(v)

qba −
∑

a∈δin(v)

qba = bv, v ∈ V, b ∈ B, (5c)

¯
πv ≤ πbv ≤ π̄v, v ∈ V, b ∈ B, (5d)∑
d∈Da

xa,d = 1, a ∈ A, (5e)

xa,d ∈ {0, 1}, a ∈ A, d ∈ Da. (5f)

Problem (5) is an infinite-dimensional mixed-integer nonlinear program. The nonlin-
earity appears in the potential function ψa in Constraint (5b). The problem consists
of infinitely many flow (qb)b∈B and potential (πb)b∈B variable vectors and infinitely
many constraints (5b)–(5d) because B contains infinitely many scenarios. Thus,
Problem (5) is not tractable in its current form.

A 1-1 correspondence between a scenario b ∈ B and flows q ∈ R|A| satisfying
Constraint (2a) is guaranteed by Lemma 2.3. This makes it possible to compute
the unique values of the flow variables (for a given scenario) before optimizing (5).
Hence, we collect the unique flows corresponding to a subset of scenarios K ⊆ B in
the set

F (K) :=

q ∈ R|A| : ∃b ∈ K with
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa = bv, v ∈ V

 . (6)

With this notation at hand, we can give an infinite-dimensional mixed-integer
nonlinear program that is equivalent to (5) and that only includes known flow
parameters instead of flow variables. The equivalent formulation is very similar to
the one in (5) except of replacing Constraint (5b) with

πbu − πbv = ψa

(∑
d∈Da

d xa,d, qba

)
, a = (u, v) ∈ A, qb ∈ F (B). (7)

Moreover, we now may neglect Constraint (5c) because it is implicitly satisfied due
to (6) and (7).

Finally, we can also get rid of the nonlinearity by reformulating the nonlinear
Constraint (7) to a linear constraint via

πbu − πbv =
∑
d∈Da

xa,dψa (d, qba) , a = (u, v) ∈ A, qb ∈ F (B). (8)

This reformulation is linear because the potential function ψa depends only on
known parameters and not on variables as before. Hence, it is a constant value in
each constraint.

Putting all together, we can model the problem of discrete arc sizing with the
help of the infinite-dimensional linear mixed-integer problem (MIP)

min
π,x

∑
a∈A

∑
d∈Da

ca,d xa,d s.t. (8), (5d)–(5f). (9)

Of course, (9) is still an infinite-dimensional problem because we still consider
infinitely many potential-based b-flows. Thus, a reduction of the considered scenario
set is necessary to solve the problem.
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3. Existence of a Finite Feasible Design Set

In this section, we prove that we can reduce the infinite-dimensional model (9)
to a MIP of polynomial size without changing the optimal solution. To this end,
we prove that a finite subset B∗ ⊂ B of scenarios exists so that an optimal discrete
arc sizing w.r.t. B∗ is also optimal to all infinitely many scenarios of B. We call a
scenario set with this property a finite feasible design set. At the end of this section,
we prove that a finite feasible design set B∗ exists for which |B∗| is quadratically
bounded above in terms of the tree’s nodes.

First, we introduce some terms and results that we need for proving the existence
of a finite feasible design set. Due to the fact that flow is not influenced by the
direction of the arcs, we define for two nodes u, v ∈ V the so-called flow-path
P (u, v) = (VP (u,v), AP (u,v)) in which VP (u,v) ⊂ V contains the nodes of the path
from u to v in the undirected version of the tree G and AP (u,v) ⊂ A contains the
corresponding arcs of the path. This flow-path is unique in trees and it is symmetric,
i.e., P (u, v) = P (v, u) holds. For flows q ∈ F (B), we say that node u ∈ V supplies
node v ∈ V \ {u} if for each arc a = (i, j) ∈ AP (u,v), the conditions

VP (i,v) ⊂ VP (j,v) =⇒ qa < 0, VP (j,v) ⊂ VP (i,v) =⇒ qa > 0

hold. For a scenario b ∈ B, we call a node u ∈ V active if bu 6= 0 is satisfied. The set
of nodes V is partitioned into entry nodes Ventries := {v ∈ V : b̄v > 0,

¯
bv = 0}, exits

nodes Vexits := {v ∈ V : b̄v = 0,
¯
bv < 0}, storage nodes Vstorages := {v ∈ V : b̄v >

0,
¯
bv < 0}, and inner nodes Vinner := {v ∈ V : b̄v =

¯
bv = 0}. Additionally, we

define the subset of nodes that can supply flow as V+ := Ventries ∪ Vstorages and the
subset of nodes at which flow can be withdrawn as V− := Vexits ∪ Vstorages. For
simplification we call a node in the set V+ an entry and a node in the set V− an
exit in the remainder of the paper.

Example 3.1 (Hydrogen Transportation Network). In hydrogen networks, elements
of V+ are hydrogen suppliers, elements of V− are hydrogen consumers, and elements
of the intersection V+ ∩ V− are hydrogen storages. A scenario b ∈ R|V | represents
the supply and demand of suppliers, consumers, and storages. Considering sizing
as the choice of diameters for pipes, the mixed-integer problem (9) corresponds
to selecting the cheapest diameter for each pipe so that all possible scenarios are
feasible w.r.t. given pressure conditions. Note that, in general, examples can be
easily constructed in which more than one scenario has to be considered in order to
guarantee the feasibility of a sizing for all scenarios in B. Thus, the reduction to a
single-scenario case is not possible in general.

Next, we define a special type of scenarios, which constitutes the basis for
proving the existence of a finite feasible design set. For a given entry and exit, the
corresponding scenarios of this type have the property that the pressure drop on
the flow-path between these two nodes is maximal. For a formal definition of these
scenarios, we need a special node set depending on two different nodes u and v. This
node set corresponds to the nodes of the connected component that includes the
flow-path P (u, v) after deleting all arcs that include u and are not part of P (u, v).
We define this node set with the help of the following equivalence relation: For a
given node u ∈ V , we define the relation ∼u on two nodes v, w ∈ V \ {u} by v ∼u w
if and only if the flow-paths P (u, v) and P (u,w) share more than one node, i.e.,
(VP (u,v) ∩ VP (u,w)) ⊃ {u} holds. Then, for two different nodes u, v ∈ V , the above
mentioned node set is described by V ∼u(v) := {w ∈ V : v ∼u w} ∪ {u}. If all nodes
have the same upper pressure bounds and if the potential of an entry u in a given
scenario is equal to this pressure bound, then only nodes of set V ∼u(v) can supply
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v in this scenario. This is the reason why this node set plays an important role for
our special type of scenarios.

Definition 3.2. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an
entry, and v ∈ V− \ {u} an exit. The set Bu,v contains all scenarios b ∈ B for which
the corresponding unique flows q ∈ R|A| satisfy the following conditions:

(a) No node in V \ V ∼u(v) supplies u.
(b) Node u supplies node v.
(c) The absolute flow |qa| on each arc a ∈ AP (u,v) is maximal w.r.t. all flows

q̃ ∈ F (B) satisfying (a) and (b).

Next, we show the existence of at least one of the previously defined scenarios
for each entry and exit node with the help of a linear program. At a first glance,
one would expect that we have to solve |A| many different problems to compute
a scenario satisfying Definition 3.2 because of Property (c). We prove that it is
sufficient to solve a single linear program to obtain one of these scenarios. To this
end, we partition the set of arcs of an flow-path AP (u,v) into two sets: The arc set
A+
u,v contains all arcs a of flow-path P (u, v) for which qa is positive if u supplies v

and the set A−u,v contains the remaining arcs:

A+
u,v := {a = (i, j) ∈ AP (u,v) : VP (j,v) ⊂ VP (i,v)},

A−u,v := AP (u,v) \A+
u,v.

The above mentioned linear program is defined as follows

max
b,q

∑
a∈A+

u,v

qa −
∑

a∈A−u,v

qa (10a)

s.t.
∑

a∈δout(w)

qa −
∑

a∈δin(w)

qa = bw, w ∈ V, (10b)

bw = 0, w ∈ V \ V ∼u(v), (10c)

¯
bw ≤ bw ≤ b̄w, w ∈ V. (10d)

The linear program (10) has an optimal solution because the zero scenario together
with its corresponding flows are feasible and because each feasible solution is bounded
and an element of set B due to Constraints (10b) and (10d). Additionally, q are the
corresponding flows to scenario b in every feasible solution (b, q).

The next theorem proves that an optimal solution of the linear program (10)
provides a scenario of set Bu,v. To this end, we first show the following technical
lemma.

Lemma 3.3. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
and v ∈ V− \ {u} an exit. Additionally, let the orientation of G satisfy that the
flow-path P (u, v) is a directed path from u to v. If (b, q) is an optimal solution
of (10), then qa ≥ 0 holds for all arcs a ∈ AP (u,v).

Proof. Let (b, q) be an optimal solution of the linear program (10) and let Pb :=
{P (w1, w2) : bw1 > 0, bw2 < 0} be the set of flow-paths in G that have an active
entry node of b as start node and an active exit node of b as end node. We consider
a decomposition of the given arc flows q into the following path flows

q(v1,v2) =
∑

P (w1,w2)∈Pb

χ(v1,v2)(P (w1, w2)) f(P (w1, w2)), (v1, v2) ∈ A,

in which f(P (w1, w2)) is the non-negative flow on flow-path P (w1, w2). The function
χ(v1,v2)(P (w1, w2)) evaluates to zero if (v1, v2) is not part of P (w1, w2), to −1 if
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(v1, v2) is part of P (w1, w2) and if P (v1, w2) ⊂ P (v2, w2) is satisfied, and otherwise
to 1. Additionally, for each active entry w1 the condition∑

w2∈V : bw2
<0

f(P (w1, w2)) = bw1

and for each active exit w2 the condition∑
w1∈V : bw1

>0

f(P (w1, w2)) = |bw2
|

is satisfied. For more detailed information about flow decompositions see Chapter 3.5
of the book by Ahuja et al. (1993).

Now, we assume that ã ∈ AP (u,v) with qã < 0 exists. For all flow-
paths P (w1, w2) ∈ Pb that satisfy f(P (w1, w2)) > 0 and contain arc ã with
χã(P (w1, w2)) = −1, we set f(P (w1, w2)) = 0. At least one of these flow-paths exists
by assumption. Let b′ and q′ be the corresponding scenario and flow after these mod-
ifications. Due to the tree structure of G and by construction, q′a ≥ qa, a ∈ AP (u,v),
and q′ã > qã hold. Furthermore, (b′, q′) is a feasible solution for the linear pro-
gram (10). Note that A−u,v is empty because the flow-path P (u, v) is a directed path
from u to v. Hence, the inequality∑

a∈A+
u,v

qa −
∑

a∈A−u,v

qa <
∑

a∈A+
u,v

q′
a
−

∑
a∈A−u,v

q′
a

is satisfied, which is a contradiction to the optimality of solution (b, q). �

Theorem 3.4. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
and v ∈ V− \ {u} an exit. If (b, q) is an optimal solution of the linear program (10),
then b ∈ Bu,v holds.

Proof. We choose the orientation of G such that the flow-path P (u, v) is a directed
path from u to v and, thus, the set A−u,v is empty. Let (b, q) be an optimal solution
of the linear program (10). We now show that (b, q) satisfies the Properties (a)–(c)
of Definition 3.2. The first property follows from Condition (10c). Next, we prove
that Condition (c) of Definition 3.2 is satisfied for (b, q). We assume that a scenario
b′ ∈ B with corresponding flows q′ exists that satisfies Properties (a) and (b).
Additionally, we assume that an arc ã = (h1, h2) ∈ AP (u,v) exists with q′ã > qã. The
flow qã is non-negative due to Lemma 3.3. Consequently, the flow q′ã is positive.
Because of Property (a) of Definition 3.2 and the tree structure of G, the flows on
the arcs of the flow-path P (u, v) are not influenced by the nodes in V \ V ∼u(v).
Hence, we can assume that scenario b′ satisfies Condition (10c). Thus, scenario b′
and its flows q′ are feasible for the linear program (10). In analogy to the proof of
Lemma 3.3, we consider the following flow decompositions for arc flows q and q′:

q(v1,v2) =
∑

P (w1,w2)∈Pb

χ(v1,v2)(P (w1, w2)) f(P (w1, w2)), (v1, v2) ∈ A,

q′(v1,v2) =
∑

P (w1,w2)∈Pb′

χ(v1,v2)(P (w1, w2)) f ′(P (w1, w2)), (v1, v2) ∈ A.

Furthermore, we know that for all flow-paths P (w1, w2) ∈ Pb that contain arc ã
with χã(P (w1, w2)) = −1, the condition f(P (w1, w2)) = 0 holds. Due to this,
the assumption q′ã > qã, the tree structure of G, and Condition (10c), an entry
w1 ∈ V ∼u(v) with P (w1, h1) ⊂ P (w1, h2) and an exit w2 ∈ V ∼u(v) with P (w2, h2) ⊂
P (w2, h1) exist so that∑

P (w1,w)∈Pb

ã∈AP (w1,w)

f(P (w1, w)) < b̄w1 ,
∑

P (w,w2)∈Pb

ã∈AP (w,w2)

f(P (w,w2)) < |̄bw2 | (11)
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hold. Additionally, the flow-path P (w1, w2) includes arc ã. We now increase the
flow on P (w1, w2) and maintain the feasibility of (10). To this end, we define the
following parameters:

ε1 :=

{
β1 = f(P (w1, w3)), if b̄w1

= bw1
,

b̄w1
− bw1

, if b̄w1
> bw1

,

ε2 :=

{
β2 = f(P (w4, w2)), if |̄bw2

| = |bw2
|,

|̄bw2
| − |bw2

|, if |̄bw2
| > |bw2

|,
ε := min{ε1, ε2},

with

β1 := min
P (w1,w)∈Pb

ã/∈AP (w1,w)

{f(P (w1, w)) : f(P (w1, w)) > 0},

β2 := min
P (w,w2)∈Pb

ã/∈AP (w,w2)

{f(P (w,w2)) : f(P (w,w2)) > 0}.

Note that ε is positive due to the construction as well as (11). If b̄w1
= bw1

, we
decrease P (w1, w3) by ε because w1 is not able to supply more flow. If |̄bw2

| = |bw2
|,

we decrease P (w4, w2) by ε because w2 is not able to discharge more flow. Now,
we increase f(P (w1, w2)) by ε. Due to the tree structure of G, these modifications
do not decrease the flow on arcs of the flow-path P (u, v). We call the obtained
scenario b̃ and the corresponding flow is denoted by q̃. By construction (b̃, q̃) is a
feasible solution for (10) and satisfies∑

a∈A+
u,v

qa −
∑

a∈A−u,v

qa <
∑

a∈A+
u,v

q̃a −
∑

a∈A−u,v

q̃a.

This is a contradiction to the optimality of (b, q). Hence, Property (c) is satisfied by
(b, q).

Finally, we show that Property (b) is satisfied by (b, q). For an entry u and an
exit v there exists a scenario in which u supplies v. This together with Lemma 3.3
and Property (c) leads to the result that (b, q) satisfies Property (b). In total, (b, q)
satisfies Definition 3.2 and hence, b is an element of Bu,v. �

The next lemma directly follows from the previously shown Theorem 3.4 and the
existence of solutions for (10).

Lemma 3.5. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
and v ∈ V− \ {u} an exit. Then, the set Bu,v is non-empty.

Before we finally prove the existence of a finite feasible design set, we show two
important properties of the scenarios of Definition 3.2. To this end, we define a
special type of entry nodes and show their existence. We also note that all results
that we discussed so far in this section do not depend on the node potentials in the
networks and that they also hold for general flow networks. However, from now on
we also make use of the presence of node potentials.

Definition 3.6. Let G = (V,A) be a potential network with fixed arc sizes da ∈ Da

for all arcs a ∈ A. Let b ∈ B be a scenario and (q, π) the corresponding potential-
based b-flow in standard form. An active entry u ∈ V+ satisfying πu = π̄u is called
potential indicating entry for b. We denote the set of potential indicating entries for
scenario b and arc sizes d by Ib,d.

The following lemma shows that for each non-zero scenario, a potential indicating
entry exists if we consider the same upper pressure bound for every node.
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Lemma 3.7. Let G = (V,A) be a potential network with fixed arc sizes da ∈ Da

for all arcs a ∈ A and b ∈ B a non-zero scenario. Additionally, all nodes have the
same upper pressure bound, i.e., π̄v = π̄ for all v ∈ V . Then, a potential indicating
entry u ∈ Ib,d exists.

Proof. Let (q, π) be the unique potential-based b-flow in standard form corresponding
to b. At least one active entry exists in b because b is non-zero and (2a). Furthermore,
an active entry u ∈ V+ with

πu = max
v∈V

πv

exists due to Condition (2b) and due to the properties of potential functions. The
latter mainly consists of the fact that if one node supplies another node, this always
causes a potential drop between these nodes. Hence, the maximal potential level
is obtained at an active entry. This together with Condition (3) of a potential-
based b-flow in standard form shows that the entry u is a potential indicating entry
if π̄v = π̄ holds for all v ∈ V . �

For the remainder of this section we make the additional assumption of Lemma 3.7
that the upper pressure bounds are equal for all nodes, i.e., π̄v = π̄ for all v ∈ V .

Now, we prove that the flows corresponding to scenarios in Bu,v “dominate” the
flows of other scenarios on all arcs of the flow-path from u to v. Note that we can
choose any orientation of the arcs of the considered tree-shaped graph because the
orientation does not restrict the flow on the arcs.

Lemma 3.8. Let G = (V,A) be a tree-shaped potential network with fixed arc sizes
da ∈ Da for all arcs a ∈ A, b ∈ B a scenario with corresponding unique flows
q ∈ R|A|, u ∈ Ib,d a potential indicating entry, v ∈ V− \ {u} an exit, and b̃ ∈ Bu,v
another scenario with corresponding unique flows q̃ ∈ R|A|. Additionally, let the
orientation of G satisfy that the flow-path P (u, v) is a directed path from u to v.
Then, for every arc a ∈ P (u, v), the relation qa ≤ q̃a holds.

Proof. Due to Property (b) of Definition 3.2 and the orientation of the flow-path
P (u, v) we know that q̃a is positive for each arc a ∈ AP (u,v). Hence, the claim is
obviously true if qa ≤ 0 holds. Thus, assume that qa is positive. We know that
scenario b satisfies Property (a) of Definition 3.2 because node u is a potential
indicating entry and all nodes have the same upper pressure bound. Now, we
distinguish two different cases.

If u supplies v in scenario b, then scenario b also satisfies Property (b) of Defi-
nition 3.2. Hence, the claim follows from Property (c) of Definition 3.2, which is
satisfied by b̃.

Now, we assume that u does not supply v in b. We modify the scenario b and the
corresponding flows q such that it satisfies Property (b) of Definition 3.2 and such
that the modified flow on every arc a ∈ AP (u,v) is at least as large as the original
value qa. In analogy to the proof of Lemma 3.3, we consider a decomposition of the
given arc flows q into the following path flows

q(v1,v2) =
∑

P (w1,w2)∈Pb

χ(v1,v2)(P (w1, w2)) f(P (w1, w2)), (v1, v2) ∈ A. (12)

Now, we start modifying scenario b and its corresponding flows q. For each
flow-path P (w1, w2) ∈ Pb with AP (w1,w2) ∩ AP (u,v) = ∅, we set f(P (w1, w2)) = 0.
This does not affect the flow qa due to the chosen flow decomposition. For all
flow-paths P (w1, w2) ∈ Pb that satisfy f(P (w1, w2)) > 0 and contain an arc ã ∈
AP (w1,w2) ∩AP (u,v) with χã(P (w1, w2)) = −1, we set f(P (w1, w2)) = 0. This does
not decrease the flow value qa because flow-path P (u, v) is a directed path from
u to v. Due to the flow decomposition and these modifications, we know that the
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modified flows q satisfy that the flow on each arc of flow-path P (u, v) is non-negative
and that the value qa is at least as large as before the modification. If u still does
not supply v, we modify the scenario further such that u supplies v. To this end,
we define the following parameters

ε1 =

{
β1 = f(P (u,w2)), if b̄u = bu,

b̄u − bu, if b̄u > bu,

ε2 =

{
β2 = f(P (w1, v)), if |̄bv| = |bv|,
|̄bv| − |bv|, if |̄bv| > |bv|,

ε = min{ε1, ε2},
with

β1 := min
P (u,w)∈Pb

{f(P (u,w)) : f(P (u,w)) > 0},

β2 := min
P (w,v)∈Pb

{f(P (w, v)) : f(P (w, v)) > 0}.

If b̄u = bu, we decrease P (u,w2) by ε > 0 because u is not able supply more flow. If
|̄bv| = |bv|, we decrease P (w1, v) by ε because v is not able to discharge more flow.
Note that flow-paths P (u,w2) and P (w1, v) are disjoint because otherwise, u would
already supply v because of the flow decomposition and the applied modifications.
We now set f(P (u, v)) = min{ε1, ε2} = ε. By construction,

¯
bw ≤ bw ≤ b̄w, w ∈ V, bu > 0, bv < 0.

holds and u supplies v.
We call the modified scenario b′ and its corresponding flows q′. These modifications

do not decrease the flow on an arc a ∈ P (u, v), i.e., q′a ≥ qa holds. Additionally,
scenario b′ and its flow q′ satisfy Property (a) and (b) of Definition 3.2. The claim
then follows from Property (c) of Definition 3.2, which is satisfied by scenario b̃. �

Now, we show that by considering all potential-based b-flows in standard form
w.r.t. scenarios in B, the lowest potential value at all exit nodes corresponds to a
scenario that satisfies Definition 3.2.

Lemma 3.9. Let G = (V,A) be a tree-shaped potential network with arc sizes
da ∈ Da for all arcs a ∈ A, b ∈ B a scenario, u ∈ Ib,d a potential indicating
entry, v ∈ V− \ {u} an exit, b̃ ∈ Bu,v a scenario and let (q, π) and (q̃, π̃) be the
potential-based b-flows in standard form corresponding to b and b̃. Then,

πj ≥ π̃j , j ∈ VP (u,v)

holds.

Proof. We choose the orientation of G such that flow-path P (u, v) is a directed path
from u to v. Node u is a potential indicating entry in b and this, in combination
with Condition (3), leads to π̃u ≤ πu = π̄. Additionally, we know that the pressure
drop relation

ψa (da, qa) ≤ ψa (da, q̃a) , a ∈ P (u, v), da ∈ Da, (14)

follows from Lemma 3.8 and the property that potential functions are strictly
increasing w.r.t. their second argument. Thus, the claim follows with the help
of Equation (2b) by induction over the number of nodes of the flow-path from u
to v. �

For the remainder of this section we additionally assume that the lower pressure
bounds of exit nodes are larger than or equal to the lower pressure bounds of
the remaining nodes, i.e. maxu∈V \V− ¯

πu ≤ minv∈V− ¯
πv. Next, we show that a set
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of scenarios that includes for each entry and exit node at least one scenario of
Definition 3.2 is a feasible design set.

Theorem 3.10. Let G = (V,A) be a tree-shaped potential network. If a set of
scenarios B∗ ⊂ B 6= {0} satisfies the property

|B∗ ∩Bu,v| ≥ 1, u ∈ V+, v ∈ V− \ {u},
then B∗ is a feasible design set.

Proof. Let B∗ ⊂ B be a set of scenarios that satisfies the assumptions. If no feasible
arc sizes da ∈ Da for all arcs a ∈ A for potential network G w.r.t. B∗ exists, then
obviously the same holds for B.

Let da ∈ Da, a ∈ A, be feasible arc sizes for G w.r.t. B∗. This means that for each
scenario b ∈ B∗ a feasible potential-based b-flow in standard form exists. We assume
the contrary, i.e., a scenario b̃ ∈ B exists so that the corresponding potential-based b̃-
flow in standard form (q̃, π̃) is infeasible, i.e., (2c) is violated. Furthermore, we can
assume that this scenario is non-zero because the potential function ψa (da, ·) is
strictly increasing for each arc a ∈ A. Due to the Lemmas 2.3 and 2.4, we can always
find a potential-based b-flow that satisfies Conditions (2a), (2b). Furthermore, we
can shift the potentials such that inequality π̃w ≤ π̄, w ∈ V is satisfied because
of Lemma 2.5 and the equal upper pressure bound for each node. Due to the
infeasibility of (q̃, π̃), a node v ∈ V which violates its lower pressure bound, i.e.
π̃v <

¯
πv, exists. First, we assume that v ∈ V \ V− and π̃w ≥

¯
πw, w ∈ V− hold. The

smallest potential of π̃ is attained by an exit node , i.e. ∃w ∈ V− : π̃w = minu∈V π̃u,
because ψa (da, ·) is strictly increasing and Condition (2b) holds. Consequently,
π̃w ≤ π̃v <

¯
πv ≤

¯
πw is satisfied due to maxu∈V \V− ¯

πu ≤ minv∈V− ¯
πv and this is

a contradiction to the assumption. We now assume that an exit v ∈ V− with
π̃v <

¯
πv exists. Applying Lemma 3.7 leads to the result that a potential indicating

entry u ∈ V+ in b̃ exists. For each scenario b ∈ B∗ ∩ Bu,v and its potential-based
b-flow (q, π) in standard form, the inequality πv ≤ π̃v is valid by Lemma 3.9. The
intersection B∗ ∩ Bu,v is non-empty by assumption. As a consequence, relation
πv ≤ π̃v <

¯
πv is satisfied. This is a contradiction to the feasibility of each potential-

based b-flow in standard form corresponding to a scenario of set B∗ in potential
network G with arc sizes da, a ∈ A. �

Now, we are able to prove that we can reduce the set of scenarios B to a finite
feasible design set. Additionally, we prove that the size of our finite feasible design
set is maximally quadratic in the number of nodes of the given network.

Theorem 3.11. Let G = (V,A) be a tree-shaped potential network and B the set of
scenarios. Then, a finite feasible design set for B with at most |V+| · |V−| elements
exists.

Proof. If set B only contains the scenario corresponding to the zero node balance,
it is obviously a finite feasible design set itself. Otherwise, a scenario set B∗ ⊂ B
that satisfies

B∗ ∩Bu,v 6= ∅, u ∈ V+, v ∈ V− \ {u} (15)
exists by Lemma 3.5. Furthermore, Condition (15) is satisfied if B∗ contains at
least one scenario of Bu,v for every entry u ∈ V+ and exit v ∈ V− \ {u}. Hence, we
can find a set B∗ with at most |V+| · |V−| scenarios that satisfies (15). Finally, it is
a finite feasible design set because of Theorem 3.10. �

Theorem 3.11 shows that we can optimize the problem of discrete arc sizing
in a tree-shaped potential network w.r.t. a finite feasible design set instead of
scenario set B with infinite size. Applying this result reduces the size of the infinite
mixed-integer program (9) to polynomial size.
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4. A Combinatorial Polynomial Time Algorithm

In the last section, we presented an algorithm that is mainly based on solving
tailored linear programs. In this section, we additionally provide a combinatorial
algorithm for computing finite feasible design sets. For this algorithm, we can
explicitly state its polynomial run time. Afterward, we prove that discrete arc sizing
is still NP-complete.

Throughout this section, we choose the orientation of the arcs of G such that
P (u, v) is a directed path from u to v. For constructing the combinatorial algorithm
we need the following definitions and notational conventions: Let G = (V,A) be
a tree-shaped potential network, u ∈ V+ an entry, and v ∈ V− \ {u} an exit. We
represent the nodes of VP (u,v) as {u = h0, . . . , hn = v} with the property

VP (hj ,v) ⊂ VP (hi,v), 0 ≤ i < j ≤ n.
Moreover, we define a special aggregation of the upper capacities of certain entries
by

Y hi
u,v := {ũ ∈ V+ : VP (ũ,hi) ∩ VP (u,v) = {hi}}, 1 ≤ i ≤ n− 1, (16a)

Qhi
u,v := b̄u +

i∑
j=1

∑
ṽ∈Y

hj
u,v

b̄ṽ, 0 ≤ i ≤ n− 1. (16b)

Finally, we define a special aggregation of the lower capacities of certain exits via

Ỹ hi
u,v := {ũ ∈ V− : VP (ũ,hi) ∩ VP (u,v) = {hi}}, 1 ≤ i ≤ n, (17a)

Q̃hi
u,v :=

n∑
j=i

∑
ṽ∈Ỹ

hj
u,v

|̄bṽ|, 1 ≤ i ≤ n. (17b)

For 1 ≤ i ≤ n− 1 the set Y hi
u,v contains all entries ũ that can supply node v while

the corresponding unique flow-path P (ũ, v) contains all nodes hj , i ≤ j ≤ n, and
these are the only nodes of the flow-path P (u, v) in P (ũ, v). For 1 ≤ i ≤ n the set
Ỹ hi
u,v contains all exits ṽ that can be supplied by u while the corresponding unique

flow-path P (u, ṽ) contains all nodes hj , 0 ≤ j ≤ i, and these are the only nodes of
the flow-path P (u, v) in P (u, ṽ).

We first present some subroutines that are later used to construct the final
algorithm. The first subroutine, Algorithm 1, returns a tuple (hm, flag) that is
used to decide which entries and exits must be active or inactive in the optimal
solution of the linear program (10). By construction of Algorithm 1, we know that
the maximum supply of all entry nodes in {u} ∪

⋃m
j=1 Y

hj
u,v is sufficient to supply

all exit nodes in
⋃n
j=m+1 Ỹ

hj
u,v at maximum demand. Moreover, m is the minimal

index with this property. If we need entries of Y hm
u,v for satisfying this property, it is

determined by flag = entries. Otherwise, we set flag = exits.
The second subroutine, see Algorithm 2, distributes a total load of M into a

given set K of exits in dependence of their lower capacity
¯
b. We note that it is not

important in which order we consider the exits in K.
The subroutine DistributeEntryLoads works analogously and we thus refrain from

formally stating it. It distributes a total load of M onto a given set K of entries.
Algorithm 3 uses the discussed subroutines and computes a scenario b ∈ Bu,v.

We only consider entries and exits of set V ∼u(v) explicitly and leave the remaining
entries and exits inactive; see Property (a) of Definition 3.2. Only entries in the set⋃n−1
j=1 Y

hj
u,v∪{u} can be activated in Algorithm 3 because activating other entries only

has a negative or no effect on the corresponding solution of the linear program (10).
To this end, Algorithm 3 distinguishes between four different cases depending on the
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Algorithm 1: ComputePosition
Input: G = (V,A), u ∈ V+, v ∈ V− \ {u}.
Output: (hm, flag)

1 for i = 0, . . . , n− 1 do
2 if Qhi

u,v ≥ Q̃
hi+1
u,v then

3 if hi = u then return (hi, entries)
4 else if Qhi−1

u,v ≥ Q̃hi+1
u,v then return (hi, exits)

5 else return (hi, entries)

6 return (hn, exits)

Algorithm 2: DistributeExitLoads
Input: b ∈ R|V |, M ∈ R, K ⊂ V− :

∑
v∈K |̄bv| ≥M

Output: b
1 while M > 0 do
2 Select v ∈ K.
3 Set bv ← −min{|̄bv|,M}, M ←M − |bv|, and K ← K \ {v}.
4 return b

output of Algorithm 1. These cases are analyzed in the proof of the next theorem,
which states that Algorithm 3 returns a solution of (10).

Algorithm 3: ComputeSolution
Input: (hm, flag) = ComputePosition(G, u, v) for a network G, u ∈ V+,

v ∈ V− \ {u}
Output: b ∈ Bu,v.

1 Set b← 0 ∈ R|V |.
2 if hm = u then
3 Set bu ← Q̃h1

u,v and bi ←
¯
bi for i ∈

⋃n
j=1 Ỹ

hj
u,v.

4 else if hm = v then
5 Set bi ← b̄i for i ∈ {u} ∪

⋃n−1
j=1 Y

hj
u,v and bv ← −min{Qhn−1

u,v , |̄bv|}.
6 Call DistributeExitLoads(b,Qhn−1

u,v − |̄bv|, Ỹ hn
u,v \ {v}).

7 else
8 Set bi ← b̄i for i ∈ {u} ∪

⋃m−1
j=1 Y

hj
u,v and bi ←

¯
bi for i ∈

⋃n
j=m+1 Ỹ

hj
u,v.

9 if flag = exits then call DistributeExitLoads(b,Qhm−1
u,v − Q̃hm+1

u,v , Ỹ hm
u,v )

10 else call DistributeEntryLoads(b, Q̃hm+1
u,v −Qhm−1

u,v , Y hm
u,v ).

11 return b

Theorem 4.1. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
and v ∈ V− \ {u} an exit. Then, Algorithm 3 returns a vector b such that b and its
corresponding flow q are an optimal solution of the linear program (10).

Proof. The vector b returned in Line 11 of Algorithm 3 is a scenario of set B due
to the construction of Algorithm 1 and 3. Additionally, all entries and exits of
V \ V ∼u(v) are inactive in b. Thus, Algorithm 3 returns a scenario that, together
with its corresponding flows q, is a feasible solution (b, q) of (10). Furthermore,
no node of V \ V ∼u(v) supplies u in q. A case analysis yields that u supplies v
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in q as well. As a consequence, the tuple (b, q) satisfies Properties (a) and (b) of
Definition 3.2.

We now prove that it also fulfills Property (c) of Definition 3.2. Let (b̃, q̃) be an
optimal solution of the linear program (10) and choose the orientation of G such
that flow-path P (u, v) is a directed path from u to v. Node u supplies v in q̃ due to
Theorem 3.4 and Definition 3.2. Thus, qa and q̃a are non-negative for a ∈ AP (u,v).
Now suppose that

∃a = (hi, hi+1) ∈ AP (u,v) : q̃a > qa ≥ 0

holds. Choose a ∈ AP (u,v) such that no arc in AP (u,hi) satisfies the assumption but
a does. Due to the tree structure of G and Condition (10c), the relation

0 ≤ q̃a ≤ min{Qhi
u,v, Q̃

hi+1
u,v } (18)

is valid. Now, we analyze all possible cases in Algorithm 3.
Case 1: The statement in Line 2 of Algorithm 3 is true. The relation Qhi

u,v ≥ Q̃
hi+1
u,v

holds because of the construction of Algorithm 1. As a consequence of
Algorithm 3, only entry nodes in {u} ∪

⋃
hj∈VP (u,hi)

\{u} Y
hj
u,v supply exit

nodes in
⋃
hj∈P (hi+1,v)

Ỹ
hj
u,v. Moreover, each of these exits demands at its

lower capacity
¯
b. Thus,

qa = Q̃hi+1
u,v = min{Qhi

u,v, Q̃
hi+1
u,v } (19)

is satisfied.
Case 2: The statement in Line 4 is true. The relation Qhi

u,v ≤ Q̃
hi+1
u,v is satisfied

because of the construction of Algorithm 1. Additionally, all entries in⋃
hj∈P (u,hi)\{u} Y

hj
u,v ∪{u} are active and supply at their upper capacity in b.

Furthermore, only exit nodes in
⋃
hj∈VP (hm,v)

Ỹ
hj
u,v can be active. This and

the tree structure of G yields

qa = Qhi
u,v = min{Qhi

u,v, Q̃
hi+1
u,v }. (20)

Case 3: Algorithm 3 reaches Line 7. If a ∈ AP (u,hm) holds, Condition (20) is
satisfied as well. This can be shown in analogy to Case 2. If a ∈ AP (hm,v)

holds, then Condition (19) is satisfied. This can be shown in analogy to
Case 1.

From this case analysis, qa = min{Qhi
u,v, Q̃

hi+1
u,v } follows and, in combination with

(18), this yields a contradiction to the assumption. As a consequence, the tuple
(b, q) is an optimal solution of (10). �

With the help of this theorem, it immediately follows that Algorithm 3 is correct,
i.e., it returns a scenario b ∈ Bu,v.

Theorem 4.2. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
v ∈ V− \ {u} an exit, and b the output of Algorithm 3. Then, b ∈ Bu,v holds.

Proof. Applying Theorem 4.1 and 3.4 shows the claim. �

We now analyze the output of Algorithm 3 w.r.t. different inputs. Using the next
lemma, we can show that Algorithm 3 returns the same output for different input
parameters under certain conditions.

Lemma 4.3. Let G = (V,A) be a tree-shaped potential network, u ∈ V+ an entry,
v ∈ V−\{u} an exit, and (hm, flag) the output of Algorithm 1. If hm 6= v, Algorithm 3
returns the same output for each exit in the set

⋃n
j=m+1 Ỹ

hj
u,v.
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Proof. Let w be an exit node in
⋃n
j=m+1 Ỹ

hj
u,v. Since the network is a tree, the

flow-path P (u, hm) is part of the flow-path P (u, v) and of the flow-path P (u,w).
Hence, Qhj

u,v = Q
hj
u,w for all nodes hj ∈ VP (u,hm). The same holds for Q̃hj

u,v and Q̃hj
u,w

for all nodes hj ∈ P (u, hm+1) \ {u}. Thus, Algorithm 1 returns the same output for
the different considered inputs. Then, by construction of Algorithm 3, the claim
follows. �

This result enables us to formally state Algorithm 4, which computes a finite
feasible design set with at most |V+| · |V−| elements. Before we prove the correctness
of Algorithm 4, we first analyze the run time of the presented algorithms.

Algorithm 4: ComputeFiniteDesignSet
Input: A potential network G = (V,A).
Output: A finite feasible design set B∗.

1 Set B∗ ← ∅.
2 while V+ 6= ∅ do
3 Select u ∈ V+ and set K ← V− \ {u}.
4 while K 6= ∅ do
5 Select v ∈ K.
6 Compute (hm, flag)← ComputePosition(G, u, v).
7 Compute b← ComputeSolution((hm, flag), G, u, v).
8 Set B∗ ← B∗ ∪ {b}.
9 if hm 6= v then set K ← K \

⋃n
i=m+1 Ỹ

hi
u,v.

10 else set K = K \ {v}.
11 Set V+ ← V+ \ {u}.
12 return B∗

Lemma 4.4. Let G = (V,A) be a tree-shaped potential network. Then, Algorithm 1
and 3 both have a run time in O(|V |2).

Proof. We consider that G is given by its adjacency matrix. Additionally, we know
that |V | − 1 = |A| holds. We can compute all parameters defined in (16) and (17)
in O(|V |2) using a modified modified depth-first search. Thus, the run time of
Algorithm 1 is in O(|V |2).

The subroutines DistributeExitLoads and DistributeEntryLoads obviously have a
run time in O(|V |). Thus, the run time of Algorithm 3 is in O(|V |2) because all
parameters can be pre-computed in O(|V |2) and a maximum of O(|V |) additional
operations are performed. �

As a consequence of Lemma 4.4 and 2.3, we can solve the linear program (10) in
O(|V |2). Finally, we prove that we can compute a finite feasible design set with at
most O(|V |2) elements in polynomial time.

Lemma 4.5. Let G = (V,A) be a tree-shaped potential network. Then, Algorithm 4
returns a finite feasible design set with at most |V+| · |V−| elements and its run time
is in O(|V |4).

Proof. The claim directly follows by applying Theorem 4.2, Lemma 4.3 and 4.4,
and Theorem 3.11. �

Putting everything together we obtain the following theorem.
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Theorem 4.6. Let G = (V,A) be a tree-shaped potential network and B a set of
scenarios. Then, a finite mixed-integer linear model for solving the discrete arc
sizing problem w.r.t. B can be setup in polynomial time.

Theorem 4.6 leads to the question about the hardness of the discrete arc sizing
problem for tree-shaped potential networks.

Theorem 4.7. Let G = (V,A) be a tree-shaped potential network and B a set of
scenarios. Additionally, let D be a finite set of arc sizes. Then, the problem discrete
arc sizing for G w.r.t. B is NP-complete.

Proof. We first show that we can verify a given solution in polynomial time. We
can compute a finite feasible design set w.r.t. set B in polynomial time due to
Lemma 4.5. Furthermore, we can verify if the solution is feasible for all scenarios of
the computed feasible design set in polynomial time because the size of the computed
feasible design set is at most |V |2. Note that the feasibility of one scenario for given
arc sizes can be verified in polynomial time due to the Lemmas 2.3–2.6.

The NP-hardness of the problem is shown in Yates et al. (1984). �

As a consequence of Theorem 4.7, there is no hope for a qualitatively better way
of solving the problem than by solving a mixed-integer linear program like (9).

5. Computational Results

The algorithms presented in Section 4 have been implemented in Python 3.4.5
and the MIP (9) has been implemented using the Python based open-source software
package Pyomo 4.4.1; see Hart, Watson, et al. (2011) and Hart, Laird, et al. (2012).
Furthermore, we used Gurobi 7.0.1 to solve the MIPs; see Gurobi Optimization,
Inc. (2017). All computations have been performed on a quad-core IntelR CoreTM

i7-7600U with 16 GBRAM.
In this section, we illustrate the effective generation of a finite feasible design set

for a realistic hydrogen network with different nodal capacities by using Algorithm 4.
With the resulting finite feasible design sets, we solve the finite counterpart of the
MIP (9) for selecting discrete pipe diameters. The main goal of this section is to
show the applicability of our approach for real-world instances. A more detailed
application specific discussion of the results will be given in a companion paper that
is currently in preparation.

The data is taken from Robinius (2015) and Robinius et al. (2017). The considered
network models a potential hydrogen pipeline network of Eastern Germany. It
contains the geographical position of entries and exits. This node set consists of
1420 nodes including 745 exits, one entry, and one storage, which can act as an
entry or exit. Figure 2 and 3 illustrate the network including entries and exits.

The use of the network is to supply the future road traffic of Eastern Germany
with hydrogen. Entries represent hydrogen suppliers, exits represent hydrogen
refueling stations, and storages stand for hydrogen storages. The network has a
tree structure with 1419 pipes. The total length of the network is 3135.59 km. As
mentioned before, we compute the cheapest selection of diameters for this hydrogen
network that are feasible for all given scenarios. The physical equations and more
information about this specific application are given in Example 2.2 and 3.1.

We do not consider regulations of the filling level of hydrogen storages. Instead,
we only take their lower and upper capacity into consideration. This procedure is
appropriate because we want to compute diameters that are feasible for all considered
scenarios. Thus, we can assume that the filling level of the storages matches the
required level of the considered scenario.
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Figure 2. Hydrogen pipeline network of Eastern Germany

Figure 3. Location of entries and exits in the hydrogen pipeline
network of Eastern Germany

We consider 28 different diameters in the range of 0.1063 to 1.536 m. The pipe
costs are increasing in the size of the diameters. In contrast to this, the pressure
drop within the pipes decreases for an increasing size of the pipe and constant flow.

For the capacities of the entry, the storage, and the exits, we distinguish between
two cases yielding two different instances; see Table 1. Within both of the two
instances, all exits have the same lower and upper capacities because we do not
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Table 1. Capacities in instance 1 (local on-site storages; top) and
instance 2 (without local on-site storages; bottom)

Type Lower capacity (kg/s) Upper capacity (kg/s)

Entry 0.00 7.33
Exits −0.01 0.00
Storage 0.00 0.00

Entry 0.00 7.74
Exits −0.02 0.00
Storage −7.04 9.79

distinguish between different types of exits in an instance. In instance 1, we consider
local on-site storages at the exits. This means that each hydrogen refueling station
has an integrated local storage that is only used to store and supply hydrogen for
this local exit. In this instance, the main grid storage is switched off. Furthermore,
the entry is able to supply all exits at maximum demand at once. For this instance,
the finite feasible design set computed by Algorithm 4 is reduced to 1 scenario
instead of 745 scenarios due to Lemma 4.3.

In instance 2, no local on-site storages exist. Thus, the storage of the grid comes
into play. Furthermore, the absolute lower capacities are larger than in instance 1
because no local on-site storage can balance the demand fluctuations. Neither
the entry nor the storage is able to supply all exits at maximum demand at once.
However, they are able to supply many exits at maximum demand at the same time.
As a consequence, the finite feasible design set is reduced to 25 different scenarios
instead of 1491 scenarios due to Lemma 4.3 and Theorem 3.11. The run time for
the computation of both finite feasible design sets is very low (0.22 s for instance 1
and 0.52 s for instance 2) due to the small number of scenarios.

Next, we solve (9) w.r.t. the finite feasible design sets in order to compute optimal
diameters. We consider the potential bounds

¯
πv =

¯
π−, v ∈ V, 0 ≤

¯
π− ≤ π̄ = 95 bar

and different lower potential bounds
¯
π− in our computational study. This means

that all nodes have the same lower and upper potential bounds.
The MIP corresponding to instance 1 consists of 2840 constraints and 41 153 vari-

ables (thereof 39 732 binaries). The MIP of instance 2 has 36 922 constraints and
75 233 variables (thereof again 39 732 binaries). The number of binary variables is
equal in both instances because we consider the same set of possible diameters. In
contrast, we have more constraints and continuous variables in instance 2 due to the
larger size of its finite feasible design set. The computational results of instance 1
and 2 are given in Table 2. All instances are solved to global optimality. The
run times are always below 32 s and show that we can effectively solve real-world
instances. As expected, we can see that the run times increase with the size of our
finite feasible design set.

Figure 4 illustrates the distribution of the different diameters for instance 1 with
pressure bounds π̄ = 95 bar and

¯
π− = 70 bar. Furthermore, Figure 5 visualizes

a feasible pressure assignment of the corresponding single scenario of the feasible
design set.

6. Conclusion

In this paper, we studied the problem of discrete arc sizing for tree-shaped
potential networks, where the sizing has to be feasible w.r.t. infinitely many
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Figure 4. Diameter selection for the hydrogen pipeline network of
Eastern Germany for instance 1 with pressure bounds π̄ = 95 bar
and

¯
π− = 70 bar

Figure 5. Pressure solution in instance 1 with pressure bounds
π̄ = 95 bar and

¯
π− = 70 bar
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Table 2. Results for instance 1 and 2 with pressure bound π̄ = 95 bar

¯
π− (bar) Total time instance 1 (s) Total time instance 2 (s)

90 6.32 31.11
80 6.53 31.67
70 5.63 31.31
60 6.73 30.74
50 5.64 29.83
40 6.83 31.85
30 6.37 30.84

scenarios. This problem can be seen as a strictly robust counterpart of a single-
scenario network design problem and is shown to be NP-complete. In order to obtain
a tractable, i.e., finite-dimensional problem, we proposed a method for generating a
so-called finite feasible design set such that optimality w.r.t. this finite scenario set
implies optimality for the originally given infinite scenario set. For the finite set,
we also proved that the number of contained scenarios is bounded above by |V |2
and that this set can be generated in polynomial time. The resulting problem can
then be solved as a finite mixed-integer linear problem. Finally, we illustrated the
applicability of our approach by solving the real-world problem of sizing a hydrogen
transport network of Eastern Germany.

Different extensions of the considered problem may be studied in the future.
First, it is interesting to see how the presented approach performs on larger tree-
shaped networks and on differently chosen scenario sets. These application-driven
questions will be addressed in a companion paper. Moreover, extending the method
of generating feasible design sets to potential networks with controllable elements
like, e.g., valves, is an interesting topic of future research.
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