
ON THE IDENTIFICATION OF THE FRICTION COEFFICIENT IN A
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Abstract. An identification problem for the friction parameter in a semilinear system of balance laws, describ-
ing the transport of gas through a passive network of pipelines, is considered. The existence of broad solutions to the
state system is proven and sensitivity results for the corresponding solution operator are obtained. The existence of
solutions to the output least squares formulation of the identification problem, based on noisy measurements over
time at fixed spatial positions is established. Finally, numerical experiments validate the theoretical findings.

1. Introduction. The transport of natural gas through a single pipe can be modeled by a
simplification of the full Euler equations, describing the conservation of mass as well as balance of
momentum and energy in fluid dynamics. Assuming a heat flux through the pipe walls compen-
sating discontinuities of temperature in case of shock- and rarefaction waves, energy is no longer
a balanced quantity (see [16, Section 14.6]). Working under such a regime, an associated system
approximately describing the underlying physics is given by

ρt + qx = 0,

qt + (p(ρ) + q2

ρ )x = λ q|q|ρ − gρh
′,

(1)

which is a well known model for gas transport, see, e.g., [3, 8, 12]. Here, ρ, q, g, h′ denote density,
volume flow, gravitational constant and slope of the pipe, respectively. Further, p(ρ) represents
the pressure depending on the density of the natural gas, and λ is the friction coefficient, also
known as Darcy friction factor, quantifying the influence of friction at the pipe wall on the flow
behavior. Assuming additional simplifications in (1), like considering only planar networks with

h′ ≡ 0, neglecting the influence of q2

ρ in the flux term and utilizing the simplified pressure law

p(ρ) = a2ρ, where a > 0 denotes the constant speed of sound, we obtain a semilinear system of
first-order partial differential equations. Defined on a pipe which is represented by the interval
(xL, xR) with xL < xR, it is given by

ρt + qx = 0,

qt + a2ρx = −λq|q|
ρ
,

on (0, T )× (xL, xR),(2)

where T > 0 represents the time horizon. A brief discussion of the above mentioned simplifications
can be found in [8, 21]. To obtain a well posed forward problem, we in addition consider the initial
conditions

ρ(0, ·) = ρ0(·), q(0, ·) = q0(·) for x ∈ (xL, xR),(IC)

and boundary conditions. System (2) is strictly hyperbolic with one strictly negative and one
strictly positive eigenvalue. Consequently, conditions on linear combinations of the state variables
ρ and q are required at both ends of the pipe. In other words, there have to exist certain vectors
cL, cR ∈ R2 and functions dL, dR ∈ L∞(0, T ) such that

c>L (ρ(t, xL), q(t, xL)) = dL(t), c>R(ρ(t, xR), q(t, xR)) = dR(t).(BC)

In this work we are interested in identifying λ from time-continuous measurements of ρ at pre-
specified locations x. In this context, it is worth mentioning that identifying parameters in partial
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differential equations describing transport trough pipes naturally face a problem with respect
to observability of data. In fact, associated optimal control problems involving one-dimensional
conservation laws are usually formulated such that the objective is evaluated on subsets of the
spatial domain with positive Lebesgue measure (see, e.g., [9, 13, 18, 23]) which is mostly due to the
regularity of entropy solutions of conservation laws. In case of a pipeline, however, such data are
most likely not available since usual measuring devices are installed at fixed positions and measure
over time. Consequently, the identification problem has to be solved based on measurements taken
at fixed positions in the spatial domain over time, only. A further consequence of this lack of
observability is the limited knowledge on initial data since they can not be observed either.

Qualitatively, λ generates a pressure drop of the natural gas during the transportation through
the pipeline, introducing the necessity of compressor stations when the species is transported over
large distances. Knowledge on λ allows for a detailed quantification of the pressure drop that
has to be compensated at each of these stations allowing for a more precise cost management
by the operating company. In addition, the value of the friction coefficient plays an important
role in simulating networks. In [21], besides other model parameters like pipe diameter or cross
section, the influence of the friction coefficient on simulation procedures for gas transport has been
investigated. In that work, the sensitivity of results to a single time step in several discretization
schemes with respect to variations of λ was quantified with error control in mind. The quantifica-
tion of the friction coefficient in terms of an inverse problem based on real measurement data is
important since in practice it is only approximated, while the other parameters can be measured
directly. Approximation formulas for λ like the Colebrook-White equation, Panhandle-A or -B
and Chens equation are only valid in certain (p, q)-regimes and thus still introduce an error in to
the simulation problem. A comprehensive discussion of approximating formulas for the friction
coefficient along with the associated operating regimes can be found in [4]. Finally, traditionally
the friction coefficient is assumed to be constant along the entire pipeline elements of a network.
However, any single pipe in such a system may allow small variations of the friction coefficient due
to production imperfections (in case of the underlying material being plastics, pipes are produced
in a wending process such that small variations in the material cause continuous variations of λ
along the pipe). Moreover, they have to be connected either by a screw system or welding and the
connections itself may introduce jump discontinuities to a spatially varying friction coefficient. As
a consequence, a pipe-wise constant friction coefficient can merely be seen as approximation to a
pipe-wise distributed one.

To the best of our knowledge, the identification of the friction coefficient as a function de-
pending on the spatial dimension is still an open problem. We mention, however, that in [5], a
model somewhat related to (2) was investigated where the nonlinear source term was replaced by
a function depending on velocity only. The function was identified for a single pipe in the context
of semigroup solutions to the system. Problems related to limited knowledge on the initial data
were avoided by choosing a specific steady state of the system with zero mass flow and constant
pressure.

The rest of this paper is organized as follows. In Section 2 the notion of broad solutions
to semilinear systems of conservation laws in case of networks of pipelines for the transport of
natural gas is introduced. In Section 3, the existence of broad solutions for the problem under
investigation is established in the stationary and time-dependent setting. Moreover, sensitivity
properties of the solutions to (2) with respect to variations of λ are obtained. Section 4 introduces
the identification problem in an output-least-squares formulation and establishes the existence
of solutions under suitable assumptions. Finally, Section 5 validates the theoretical findings by
numerical experiments.

Notation: In this paper Ω ⊂ R1 denotes the spatial domain for the partial differential system.
In case of a network, Ω consists of disjoint intervals each of which representing a specific pipe.
The time-space cylinder is denoted by Q = (0, T )× Ω. By Lp(·), with 1 ≤ p ≤ ∞, we denote the
usual Lebesgue spaces and L∞(Q) := (L∞(Q))2. To shorten notation, expressions of the form
(F )[x] correspond to the evaluation of the functions appearing in F at the argument x. A typical

example would be F = q|q|
ρ . An index appearing in parenthesis, (i), i ∈ N, relates the variable to
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pipeline i. Finally, we utilize the abbreviation ca := (1 + a2)−
1
2 .

2. Preliminaries. The state system (2) can be written as

yt +Ayx = g(y),(3)

with y := (ρ, q)> denoting the state vector. Here g(y) and the A are defined by

g(y) = (0,−λ q|q|ρ )> and A =

(
0 1
a2 0

)
.

The eigenvalues of A, given by σ1 = −a < a = σ2, define characteristic lines. Indeed, given a
position x ∈ (xL, xR) and a point in time τ ∈ (0, T ), the characteristics passing through (τ, x) are
defined as solutions to the ordinary differential equations

ṡi(t; τ, t) = σi

with si(·; τ, x) : R → R satisfying si(τ ; τ, x) = (τ, x). The index i relates characteristic and
eigenvalue. Since the domainQ is bounded, we define the times ti(τ, x) ∈ [0, τ ] and ti(τ, x) ∈ [τ, T ],
specifying the time, the i-th characteristic passing through (τ, x) satisfies (t, si(t; τ, x)) ∈ Q, i.e., we
either have si(ti(τ, x); τ, x) = x, x ∈ [xL, xR] in case the characteristic intersects with {0}×[xL, xR]
or s1(t1(τ, x); τ, x) = xR or s2(t2(τ, x); τ, x) = xL if the characteristic intersects with the boundary
(0, T )× {xR} or (0, T )× {xL}, respectively. The time ti(τ, x) is defined correspondingly.

Based on a transformation of the representation (3), we consider broad solutions for (2) as
follows. Due to strict hyperbolicity of (2), there exist a matrix L ∈ Rn×n such that A = LDL−1

where D = diag(σi) ∈ R2×2. Multiplying (3) from the left by L−1, using the linearity of differen-
tiation and setting T (y) := L−1y and f(y) := L−1g(y), we obtain

(T (y))t +D(T (y))x = f(y),

a system of scalar, linear transport equations, merely coupled by the source term on the right
hand side. Given (2), the transformation matrices are

L = ca

(
1 1
−a a

)
, L−1 = (2ca)−1

(
1 −a−1

1 a−1

)
.

Note also, that the linear transport equations even have constant coefficients. In case of a single
equation of this type, it is well known that solutions are described by ordinary differential equations
along the characteristic line, defined by the constant coefficient. The concept of broad solutions
extends this property to systems in that the transformed components of T (y) are absolutely
continuous functions along the corresponding characteristic lines. Broad solutions to semilinear
systems of balance laws for unbounded domains have been studied for example in [1, 20], while in
[10, 11] bounded domains have been considered.

The lateral boundaries of Q are approached by exactly one of the characteristics for every
t ∈ (0, T ). To be able to reconstruct the original variables at the boundary, the matrices

CL =

(
c1
cL

)>
, CR =

(
c2
cR

)>
have to be invertible, restricting the possible linear combinations of y that can be prescribed.
Here, c1, c2 ∈ R2 denote the rows of L−1.

So for we have described the modeling of gas transport through a single pipe. In order to
extend this to a network of pipes with NP ∈ N pipes and NJ ∈ N junctions, we utilize the

representation of the network as a directed graph with edges modeling the pipelines (x
(i)
L , x

(i)
R )

for i ∈ {1, ..., NP } on each of which the transport equation (2) has to hold. For every node
j ∈ {1, ..., NJ}, there exist index sets njL, n

j
R denoting its ingoing and outgoing edges, respectively.
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Besides entry- and exit nodes with only one adjacent pipeline, the internal nodes correspond to
points of pipe interaction, i.e. nodes where at least two pipes connect. We only consider passive
networks, limiting the pipe interactions to junctions with coupling conditions as follows. On the
one hand, the volume flow has to be balanced such that Kirchhoff’s circuit law∑

i∈nj
L

q(i)(x
(i)
R ) + dqj =

∑
i∈nj

R

q(i)(x
(i)
L )(4)

holds true. Here, dqj denotes possible injection or extraction of gas at the corresponding node.
On the other hand, the pressure has to be conserved, i.e., we require

p(l)(x
(l)
R ) = pj = p(k)(x

(k)
L ) for all l ∈ njL and k ∈ njR.(5)

These coupling conditions allow for reconstructing the original state variable as the following
example demonstrates.

In

l(1) = 10.000

qI(t) = 300 + 20 sin ( π
25
t)

l(3) = 30.000

Exit 2
qE2(t) ≡ 120

l(2) = 20.000

Exit 1
qE1(t) ≡ 180

Fig. 1: Sketch of a basic passive Network

Example 1. Consider the internal node of the Y-shaped network consiedred in Example 5 of
Section 5 and depicted in Figure 1. Here, nL = {1}, nR = {2, 3} and consequently, the second

component of T from pipe 1, T (1)
2 and the first component of T from pipe 2 and 3, T (2)

1 and T (3)
1 ,

respectively, approach the junction. As a consequence, the original state variables {(ρ(i), q(i))}3i=1

have to satisfy the linear system
(2ca)−1 (2caa)−1 0 0 0 0

0 0 (2ca)−1 (2caa)−1 0 0
0 0 0 0 (2ca)−1 (2caa)−1

1 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 −1 0 −1





ρ(1)

q(1)

ρ(2)

q(2)

ρ(3)

q(3)

 =



T (1)
2

T (2)
1

T (2)
1

0
0
0


(6)

at the junction and T (1)
1 , T (2)

2 , T (3)
2 are obtained as linear combinations of the solution according

to the transformation matrix L.

Next, we formally define broad solutions.

Definition 1. A broad solution of (2) is a function y = LT (y) : Q → R2 such that for almost
every (τ, x) ∈ Q, the map t 7→ Ti(y)[t, si(t; τ, x)] is an absolutely continuous function satisfying
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(i) at almost every (τ, x) ∈ Q the ordinary differential equations

d

dt
Ti(y)[t, si(t; τ, x)] = fi(t, si(t; τ, x), y(t, si(t; τ, x)))(7)

almost everywhere on (ti(τ, x), ti(τ, x)) for i = 1, 2,
(ii) the initial condition at x ∈ (xL, xR)

Ti(y)[0, x] = ciy0(x),

(iii) the boundary condition at xL in the sense that for almost every t ∈ (0, T ) we have

T2(y)[t, xL] = c2C
−1
L

(
T1(y)[t, xL]
dL(t)

)
,

(iv) the boundary condition at xR in the sense that for almost every t ∈ (0, T ) we have

T1(y)[t, xR] = c1C
−1
R

(
T2(y)[t, xR]
dR(t)

)
,

(v) in case of a network, (i) and (ii) hold on the pipes k ∈ {1, . . . , NP }, (iii) and (iv) are
satisfied at entry- and exit nodes (see page 4) and the coupling conditions (4) and (5) are
satisfied at the interior nodes j ∈ {1, ..., NJ} of the network.

We aim for identifying the friction coefficient λ based on measurements of the pressure, and
due to the choice p(ρ) = a2ρ also of the density. Thus, we impose boundary conditions for the
volume flow at the entry- and exit nodes of the network and set

cL := (0, 1)>, cR := (0, 1)>.

Besides characteristics we further consider integral curves γi. The latter objects are an essen-
tial tool for analyzing the behavior of solutions of the underlying transportation process. Each
γi basically is an extension of si to the entire time interval [0, τ ] consisting of all paths along
characteristic lines that affect the value of y(τ, x). In case of (2), formulated on a single pipe,
they are formed by the original characteristics si on the interval (ti(τ, x)), τ). On the interval
(t̂i(ti(τ, x), xL/R), ti(τ, x)), they are formed by the other characteristic sî (̂i ∈ {1, 2}\{i}) and this
alternation repeats until t = 0. The index of the integral curves corresponds to the characteristics
that actually pass through (τ, x). In case of systems larger than 2 × 2 or networks with certain
coupling conditions, these objects become more complex as they might be multivalued due to
interaction with internal nodes.

3. Existence of solutions to the state system (2). After introducing the concept of broad
solutions we now establish the existence of such solutions in case of (2). Note that the system
has to be closed by boundary conditions, involving data that are observable at the corresponding
nodes, and initial conditions. As discussed in Section 1, distributed information on density and
volume flow within the closed pipes at fixed times are hardly available, rendering the question for
initial data nontrivial. This can be overcome by either additionally identifying the initial data,
increasing the complexity of the identification problem significantly, or using initial states that
can be described by data that are readily available. In this paper we employ the latter strategy,
utilizing steady states of the underlying physical system as initial data. As a consequence, we first
study steady states and their dependency on the friction coefficient λ.

The basic regularity assumption for the friction coefficient is λ ∈ L1(Ω). Moreover, we assume
the existence of a suitable upper bound

‖λ‖L1(Ω) ≤ λ.(8)

to be specified later.
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3.1. Characterization of Steady States. On a single pipe, steady states are formally
defined by assuming the derivative of ρ, q with respect to time to be zero, providing the system of
ordinary differential equations

dq0
dx = 0, dρ0

dx = −λq0|q0|
a2ρ

,

with associated solutions

q0 = c, ρ0(x) =

√
ρ(xL)2 − 2(Λ(x)− Λ(xL))

c|c|
a2

,(9)

i.e. they are determined by Λ(x) =
∫ x
xL
λ(τ)dτ and the values for the constant volume flow, c ∈ R,

and the value of the density at the node xL, ρ(xL). Both quantities are observable at node xL.
The function Λ(x) denotes the absolutely continuous function whose derivative is given by the
friction coefficient λ. In case of a passive network, the steady states on each pipeline have to
satisfy in addition the coupling conditions (6). In general, this requires knowledge on the steady
volume flow q on each pipeline as well as the value of the density ρ at a single point within the
network in the context of nomination validation. Determining a feasible steady state in form of
(9) for networks has been the subject of active research in the last decades [14, 7] and, by now,
efficient algorithms are available (see e.g. [7]).

The following result demonstrates that the (9) indeed represent a steady state for passive
networks in the sense of broad solutions.

Proposition 2. The functions ρ(t, x) = ρ0(x), q(t, x) = q0(x) with ρ0, q0 given in (9) satis-
fying, in case of passive networks, the coupling conditions (4) and (5), define a steady state broad
solutions, with the latter according to Definition 1.

Proof. We first prove, that for a given spatial position x in the network, the transformed
variables are constant with respect to time. For this purpose, we utilize the identity

− 1
a

∫ t2

t1

λ(xL + aτ) c|c|√
ρ(xL)2−2Λ(xL+aτ)

c|c|
a2

dx

=

√
ρ(xL)2 − 2Λ(xL + at2)

c|c|
a2
−
√
ρ(xL)2 − 2Λ(xL + at1)

c|c|
a2

and the characteristics s1, s2. Given an initial condition with volume flows q(i) ≡ c(i), friction

coefficients λ(i)(x) and corresponding densities ρ
(i)
0 (x) satisfying the coupling conditions (4) and

(5), we first consider boundary nodes of a fixed pipe i in the network. Let 0 < ∆t ≤ T =

mini∈1,...,NP

|x(i)
R −x

(i)
L |

a be a time increment ensuring, that s1/2(0; ∆t, x
(i)
L/R) is contained in pipe i.

Recall that x
(i)
L is approached by the first characteristic while x

(i)
R is approached by the second.

The chosen notation allows for the simultaneous treatment of both cases. We find

T (i)
1/2(∆t, x

(i)
L/R) =(2ca)−1

(
ρ

(i)
0 (x

(i)
L/R ± a∆t)∓ a−1c(i)

)
± (2aca)−1

∫ ∆t

0

λ(i)(x
(i)
L/R ± a(∆t− τ)) c(i)|c(i)|

ρ
(i)
0 (x

(i)

L/R
±a(∆t−τ))

dτ

=(2ca)−1
(
ρ

(i)
0 (x

(i)
L/R ± a∆t)∓ a−1c(i) + ρ

(i)
0 (x

(i)
L/R)− ρ(i)

0 (x
(i)
L/R ± a∆t)

)
=T (i)

1/2(0, x
(i)
L/R).

Recovering the original states at interior, entry- and exit nodes of the network is based on solving
linear systems where the right hand side is given by the transformed variables that approach the
corresponding nodes and possible boundary conditions (see (iii)-(v) in Definition 1). In particu-
lar,the boundary conditions are constant over time as we consider a steady state and consequently,
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the right hand sides of the linear systems and thus their solutions, are constant over time. Based
on this observation, we establish

T (i)
1/2(∆t, x) = T (i)

1/2(0, x)

for an arbitrary position x by following the integral curves γ1/2(·; ∆t, x) and using the transfor-

mation in (ii) of Definition 1 and (7). Finally, this implies ρ(i)(t, x) = ρ
(i)
0 (x) and q(i)(t, x) = c for

all x ∈ (x
(i)
L , x

(i)
R ) and i = 1, ..., NP . Consequently, the steady state forms a broad solution of (2)

in the sense of Definition 1.

Considering steady states in the network and measurements of the corresponding pressure
at nodes only, the identification of a distributed friction coefficient λ = λ(x) in the pipes is not

possible. Indeed, the difference of the squared densities at x
(i)
L , x

(i)
R is given by

ρ(x
(i)
R )2 − ρ(x

(i)
L )2 = −2(Λ(x

(i)
R )− Λ(x

(i)
L ))

c|c|
a2

.(10)

Note that this difference is realized by all λ̃ with
∫ xR

xL
λ̃(x)dx = (Λ(x

(i)
R )−Λ(x

(i)
L )). Moreover, such

problems arise for pipewise constant friction coefficients in the case of networks as well. Here, the
identification is possible, if at least as many steady states of the network are evaluated as pipes are
in the longest path from one measurement device to the next. However, numerical experiments
suggest, that this identification process is well-defined in the time dependent setting.

Since the steady states directly depend on the friction coefficient, we will next analyze this
relationship on a single pipe.

Proposition 3. Consider a fixed value c for the steady volume flow q and let the friction
coefficient satisfy

‖λ‖L1(xL,xR) ≤ 1
2

(
ρ(xL)a
c

)2

− ε(11)

for 0 < ε << 1. Then the steady state of the density depends locally Lipschitz continuous on λ

such that for all λ̃ with ‖λ̃‖ ≤ 1
2

(
ρ(xL)a
c

)2

− ε̃ with 0 < ε̃ ≤ ε we have

‖ρ0(λ)− ρ0(λ̃)‖L∞(xL,xR) ≤ K(ε′)‖λ− λ̃‖L1(xL,xR).

Moreover, it is twice Fréchet differentiable with respect to the friction coefficient. Let h, n denote
perturbations with ‖h‖L1(xL,xR), ‖n‖L1(xL,xR) sufficiently small. Then the first and second order
derivatives are given by

ρ′0(λ)[h][x] = − c|c|
a2ρ0(x)

(H(x)−H(xL)),(12)

ρ′′0(λ)[h, µ][x] = − c4

a4ρ0
(H(x)−H(xL))(N(x)−N(xL)),(13)

respectively, with H(x) =
∫ x
xL
h(τ)dτ and N(x) =

∫ x
xL
n(τ)dτ .

Proof. Consider some λ satisfying (11), i.e. the density satisfies ρ0(λ) ≥
√
ε and is well defined

along the pipe. Then there exists a L1(xL, xR)-neighborhood U such that ρ0(λ̃) ≥
√
ε̃ > 0 for all

λ̃ ∈ U . By the particular expression for the steady density given in (9), for any x ∈ [xL, xR] we
find

|ρ0(λ̃)[x]− ρ0(λ)[x]| =
∣∣∣∣∫ x

xL

∫ 1

0

d
dlρ0(λ− l(λ̃− λ))[ξ]dldξ

∣∣∣∣
=

∣∣∣∣∫ x

xL

(ρ0(λ− l(λ̃− λ))[ξ])−1 c|c|
a2 (Λ̃(ξ)− Λ(ξ))dξ

∣∣∣∣
≤ xR−xL√

ε̃

|c|2
a2 ‖λ̃− λ‖L1(Ω)
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and thus obtain local Lipschitz continuity. Here we employed the notation outlined in Section 1,
i.e., the density that depends on the friction coefficient, ρ(λ) is evaluated at position x. Similar
estimates for ρ0(λ + h) − ρ0(λ) − ρ′0(λ)[h] and ρ′0(λ + n)[h] − ρ′0(λ)[h] − ρ′′0(λ)[h, n] prove the
differentiability results.

By linearity of the coupling conditions, the latter result can readily be extended to passive net-
works. However, to define a steady state on the network, we need a set of constant volume flow
rates, each defined on one pipe and satisfying the nodal balancing conditions (4). In addition,
the pressure/density has to be defined at one point. Then by (5) and the explicit formula (9),
the corresponding pressure/density distribution can be computed. In this case, the derivative of
the initial condition on any fixed pipe i not only depends on the variation of λ(i), but also on the
variations of λ(j) on all pipes j that are ’upstream’ with respect to the point, where the pressure

is fixed, since they have impact on p(x
(i)
L ).

The following example demonstrates this fact.

Example 2. Consider the small passive network depicted in Figure 1 with counter-clock wise
numbered pipelines beginning with the one, connected to the entry-node. Let the friction coefficient
be pipewise constant with values λ = (0.02, 0.02, 0.02). The steady state is defined by the pipewise
constant volume flows q = (300, 120, 180), clearly satisfying (4), and a fixed density ρ(xIn) = 50.
As a consequence, the steady densities are given by

ρ(1)(x) =

√
502 − 2 · λ(1) · 3002

a2 x,

ρ(2)(x) =

√
ρ(1)(l(1))2 − 2 · λ(2) · 1202

a2 x,

ρ(3)(x) =

√
ρ(1)(l(1))2 − 2 · λ(3) · 1802

a2 x.

For h = (1, 0, 0), the derivative is given by

ρ
′(1)
0 [h][x] = − 3002x

a2ρ(1)(x)
, ρ
′(2)
0 [h][x] = − 3002

a2ρ(2)(x)
l(1), ρ

′(3)
0 [h][x] = − 3002

a2ρ(3)(x)
l(1).

Here, although the second and third component of λ are not considered, the derivatives of the steady
state on the corresponding pipes are non-zero because the friction coefficient on the first pipeline,
that is ’upstream’, is perturbed.

Proposition 3 also fixes the upper bound λ in (8). Here, the value has to be chosen such that
the steady state is uniformly strictly positive.

3.2. Transient Solutions. In general, the existence of broad solutions to semilinear systems
of balance laws with globally Lipschitz continuous source terms on unbounded domains is based
on Banach’s Fixed Point Theorem related to the transformed state variables. To enable the fixed
point argument, the norm of this Banach space is carefully chosen and depends strongly on the
global Lipschitz constant of the source term with respect to the original state variables. Since
the source term in (2) is locally Lipschitz continuous only, results from [1, 10] cannot be applied
directly and solutions can only be shown to exist for a finite, possibly small, terminal time T (see
[1]). Before providing the existence result for solutions to (2), we introduce and justify certain
bounds on the state y, that are assumed to hold in the initial condition and for which a global
Lipschitz constant of the source term is available. For this purpose, the density ρ is assumed to
be uniformly positive, i.e. there has to exist some ρ with

ρ ≥ ρ > 0 on Ω.(14)

This assumption is aimed to avoid vacuum states in the solution of (2), appearing to impose a
minor constraint in real world gas transport only. Moreover, we assume the pressure in the pipes
to be bounded as otherwise one may assume damage of a pipe. Let p denote an upper bound.
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According to the chosen pressure law, this directly translates into an upper bound for the density
of the form

ρ ≤ ρ := a−2p on Ω.(15)

The volume flow is assumed to be bounded as well, i.e. there exists q > 0 such that

|q| ≤ q on Ω.(16)

This is justified by properties of the nonlinear system (1). In this case, the eigenvalues of the
Jacobian of the flux function are given by σ1 = ρ−1q − a and σ2 = ρ−1q + a, i.e., they have
different signs in case of ρ−1q = v < a only. In other words, in subsonic regimes, where transport
speed v is lower than the speed of sound a. Since the sign structure of the eigenvalues is essential
for the imposition of boundary conditions to the system, we restrict ourselves to the setting
σ1 < 0 < σ2, i.e., we assume the velocity v = ρ−1q to be bounded by a. Using (14) and (15) we
obtain

|q| = |vρ| ≤ aρ = q.

Under these conditions we can establish the existence of broad solutions of the underlying system.
The following result establishes the existence of broad solutions for the very general case of

initial and boundary data that are merely essentially bounded. For this purpose, the initial and
boundary data have to satisfy conditions that not only guarantee pointwise feasibility with respect
to (14)-(16) for themselves, but also for weighted averages in certain neighborhoods, with averages
depending on the transformed variables.

Proposition 4. Let a passive network of pipelines be given. Let initial and boundary data be
given such that there exists a radius r > 0 and

(i) every pipeline i is covered with open balls

Br(xk) with xk := min{x(i)
L + kr, x

(i)
R }, k = 0, ...,

⌈
x
(i)
R −x

(i)
L

r

⌉
=: K,

(ii) for all k ∈ {0, ...,K} and x, x̂ ∈ Br(xk) ∩ [x
(i)
L , x

(i)
R ], (ρ, q) reconstructed from T (y)[0, x]

and T (y)[0, x̂] are strictly feasible with respect to (14)-(16), i.e., for x ≤ x̂ we have

ρ < ca(T1(y)[0, x̂] + T2(y)[0, x]) < ρ,

|caa(T2(y)[0, x]− T1(y)[0, x̂])| < q,

(iii) for all entry- and exit nodes j we have for pipeline i ∈ njR and x, x̂ ∈ Br(x(i)
L ), x− x(i)

L ≤
r
2 , x < x̂,

ρ < ca(T1(y)[0, x̂] + T1(y)[0, x] + 1
caa

dj(a
−1(x− x(i)

L ))) < ρ,

|caa(T1(y)[0, x̂] + T1(y)[0, x] + 1
caa

dj(a
−1(x− x(i)

L )))| < q,

and for pipeline i ∈ njL, x, x̂ ∈ Br(x(i)
R ), x < x̂, x

(i)
R − x̂ ≤

r
2 , that

ρ < ca(T2(y)[0, x] + T2(y)[0, x̂] + ca
a dj(a

−1(x
(i)
R − x̂))) < ρ,

|caa(T2(y)[0, x] + T2(y)[0, x̂] + ca
a dj(a

−1(x
(i)
R − x̂)))| < q,

respectively,

(iv) for all junctions j, we have for all pipelines i ∈ njR, x ∈ Br(x(i)
L ) and x − x(i)

L < r
2 , that

T (i)
2 (a−1(x− x(i)

L ), x
(i)
L ) reconstructed from T l1 (0, xlL + (x− x(i)

L )), l ∈ njR, and T l2 (0, x
(l)
R −

(x− x(i)
L )), l ∈ njL, satisfy, with x̂ ∈ Br(x(i)

L ), x < x̂,

ρ < ca(T1(y)[0, x̂] + T2(y)[0, a−1(x− x(i)
L )]) < ρ,

|caa(T2(y)[0, a−1(x− x(i)
L )]− T1(y)[0, x̂])| < q,
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and all pipelines i ∈ njL, x ∈ Br(x
(i)
R ) and x

(i)
R − x < r

2 , that T (i)
1 (a−1(x

(i)
R − x), x

(i)
R )

reconstructed from T (l)
1 (0, x

(l)
L + (x− x(i)

L )), l ∈ njR, and T (l)
2 (0, x

(l)
R − (x− x(i)

L )), l ∈ njL,

satisfy, with x̂ ∈ Br(x(i)
R ), x̂ < x,

ρ < ca(T (i)
1 (y)[a−1(x

(i)
R − x), x

(i)
R ] + T (i)

2 (y)[0, x̂]) < ρ,

|caa(T (i)
2 (y)[0, x̂]− T (i)

1 (y)[a−1(x
(i)
R − x), x

(i)
R ])| < q,

respectively.
Then, there exists a time T such that the initial-boundary value problem (2), (IC), (BC) admits a
unique broad solution y ∈ L∞(Q) satisfying (14)-(16) for λ according to (8).

Proof. The proof is based on a fixed point argument (as in [1] for unbounded domains) but
accounts for bounded domains with corresponding boundary conditions (as in [10]). Without loss
of generality, it considers T ≤ T/2 with T as defined in the proof of Proposition 2. Then the
results can be extended to larger times by a bootstrapping argument. Since the source term is
merely locally Lipschitz continuous with respect to the state variables (ρ, q), it is first shown that,
if initial and boundary data satisfy assumptions (i)-(iv) and λ satisfies (8), then there exists a
time T > 0, such that a broad solution, if it exists, satisfies the bounds (14)-(16). Here, the time
T only depends on the bounds ρ, ρ, q, λ and the radius r.

To establish this result, we fix a pipeline i and provide estimates for the state variables (ρ(i), q(i))[τ, x]

for almost every (τ, x) with x ∈ [x
(i)
L , x

(i)
R ] and 0 < τ ≤ a−1 r

2 , based on the integral curves.
Recall that the original state variables are recovered from the transformed variables by LT

and thus they are given by

ρ(i)(τ, x) = ca(T (i)
1 (y)[τ, x] + T (i)

2 (y)[τ, x]),

q(i)(τ, x) = caa(T (i)
2 (y)[τ, x]− T (i)

1 (y)[τ, x]).
(17)

Moreover, the values of T (i)
1 (τ, x), T (i)

2 (τ, x) are given by

T (i)
1 (y)[τ, x] = T (i)

1 (y)[t1(τ, x), x+ a(τ − t1(τ, x))]

+
c−1
a

2a

τ∫
t1(τ,x)

λ(x+ a(τ − t)) q|q|ρ [t, x+ a(τ − t)]dt,

T (i)
2 (y)[τ, x] = T (i)

2 (y)[t2(τ, x), x− a(τ − t2(τ, x))]

− c−1
a

2a

τ∫
t2(τ,x)

λ(x− a(τ − t)) q|q|ρ [t, x− a(τ − t)]dt.

Consequently, we obtain

ρ(i)(τ, x) = ca(T (i)
1 (y)[τ, x] + T (i)

2 (y)[τ, x])

= ca(T (i)
1 (y)[t1(τ, x), x+ a(τ − t1(τ, x))] + T (i)

2 (y)[t2(τ, x), x− a(τ − t2(τ, x))])

+ 1
2a

τ∫
t1(τ,x)

λ(x+ a(τ − t)) q
(i)|q(i)|
ρ(i)

[t, x+ a(τ − t)]dt

− 1
2a

τ∫
t2(τ,x)

λ(x− a(τ − t)) q
(i)|q(i)|
ρ(i)

[t, x− a(τ − t)]dt,

and analogously an expression for q(i)(τ, x). The time-space cylinder of the pipeline is depicted

in Figure 2 and separated in areas I-III by the characteristics emanating from {0} × x(i)
L and

{0} × x(i)
R .
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x

x
(i)
L

t

x
(i)
R

s 2
(t
;x
L
, 0
) s

1 (t;x
R , 0)

T/2

I

II III

Fig. 2: Phase space.

For (τ, x) ∈ I we have t1(τ, x) = t2(τ, x) = 0 and, by assumption (i), there exists some xk such
that x+ aτ, x− aτ ∈ Br(xk). The integrals in the representation of ρ(i)(τ, x) can be estimated by

− 1
aτλ

q2

ρ ≤
1
2a

τ∫
0

λ(x+ a(τ − t)) q
(i)|q(i)|
ρ(i)

[t, x+ a(τ − t)]dt

− 1
2a

τ∫
0

λ(x− a(τ − t)) q
(i)|q(i)|
ρ(i)

[t, x− a(τ − t)]dt ≤ + 1
aτλ

q2

ρ .

Similar estimates can be established for |q(i)(τ, x)| and as a consequence of assumption (ii), ρ <

ca(T (i)
1 (y)[0, x+ aτ ] + T (i)

2 (y)[0, x− aτ ]) < ρ and |caa(T (i)
2 (y)[0, x− aτ ]− T (i)

1 (y)[0, x+ aτ ])| < q
for τ sufficiently small. This provides

ρ ≤ ρ(τ, x) ≤ ρ, |q(τ, x)| ≤ q for all (τ, x) ∈ I ∩ ((0, T )× (x
(i)
L , x

(i)
R ))

for T sufficiently small. Assumptions (iii) and (iv) allow for similar estimates in case of (τ, x) ∈ II
or (τ, x) ∈ III and x

(i)
L or x

(i)
R being an entry- or exit-node with corresponding boundary data,

or a junction, respectively. This shows that there exists a T > 0 such that y(τ, x) satisfies the
bounds for τ ∈ (0, T ), x ∈ Ω and all λ satisfying (8).

Secondly, we establish the existence of broad solutions employing Banach’s Fixed-Point The-
orem. For this purpose let

2
caa

max{ q2ρ , (
q
ρ )2} =: Lf(18)

denote the Lipschitz constant of 1
caa

q|q|
ρ with respect to |y|l∞ , fix a pipeline i and consider (τ, x) ∈

(0, T )× Ω. In case of (τ, x) ∈ I, the mapping T (y) is defined as

Tj(y)[τ, x] := cj(ρ
(i)
0 , q

(i)
0 )[sj(0; τ, x)] +

∫ τ

0

fj(t, sj(t; τ, x), y(t, sj(t; τ, x)))dt for j = 1, 2,

while, in case of (τ, x) ∈ II, we have

T1(y)[τ, x] := T1(y)[t1(τ, x), x
(i)
L )] +

∫ τ

t1(τ,x)

f1(t, s1(t; τ, x), y(t, s1(t; τ, x)))dt,

and for (τ, x) ∈ III

T2(y)[τ, x] := T2(y)[t2(τ, x), x
(i)
R ] +

∫ τ

t2(τ,x)

f2(t, s2(t; τ, x), y(t, s2(t; τ, x)))dt,
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respectively. Obviously, T (·) : X → X where X denotes the space of essentially bounded functions,
equipped with an exponentially weighted sup-norm which is defined as

‖ϕ‖∗ := ess-sup
(t,x)∈Q,i=1,2

e−2Ct|Ti(ϕ)[t, x]|

with a constant C > 0 to be determined. By 1 ≥ e−2Ct ≥ e−2CT∀t ∈ [0, T ], this norm is equivalent
to ‖ · ‖L∞(Q), rendering (X, ‖ · ‖∗) a Banach space. In the one-pipeline scenario, for any y, v ∈ X
with ‖y − v‖∗ = δ, we find for (τ, x) ∈ I that

|Ti(y)[τ, x]− Ti(v)[τ, x]| ≤
∫ τ

0

|fi(t, si(t; τ, x), y(t, si(t; τ, x))− fi(t, si(t; τ, x), v(t, si(t; τ, x))|dt

≤
∫ τ

0

λLf |y(t, si(t; τ, x))− v(t, si(t; τ, x))|l∞

≤
∫ τ

0

λLf |L|l∞ |Ti(y)[t, si(t; τ, x)]− Ti(v)[t, si(t; τ, x)]|l∞

≤
∫ τ

0

L̃fδe
2Ctdt.

Here, L̃f := λLf |L|∞ combines the bound on λ, (18) and the matrix norm of the transformation

matrix L induced by | · |l∞ , taking into account y = LT (y). Choosing C = L̃f , integration provides

e−2L̃fτ |Ti(y)[τ, x]− Ti(v)[τ, x]| ≤ 1

2
δ =

1

2
‖y − v‖∗

almost everywhere in Q. Thus, T is a contraction on (X, ‖ · ‖∗) with rate 1
2 . To incorporate

interactions with boundaries, i.e., considering (τ, x) ∈ II or (τ, x) ∈ III, the contraction property
follows analogously, utilizing f1(·) = −f2(·) and the fact, that the boundary conditions are inde-
pendent of the state and cancel out.
In case of passive networks, the constant C has to be increased sufficiently to take into account, that

T2(y)[t2(τ, x), x
(i)
L )] for i ∈ njR at node j is given as linear combination of |njL|+ |n

j
R| transformed

variables. In other words,, for every junction j there exists a matrix cj ∈ R(|nj
L|+|n

j
R|)×(|nj

L|+|n
j
R|)

with T→(t) = cjT←(t). Here, T→(t) represents the vector of transformed variables that are ema-

nating from junction j, i.e., T2(t, x
(i)
L ) for i ∈ njR and T1(t, x

(i)
R ) for i ∈ njL, and T← represents the

vector of transformed variables entering junction j. Thus, choosing C = max
1≤j≤NJ

|cj |l∞L̃f allows

for establishing the same contraction rate as in the one-pipeline scenario in case of a passive net-
work. In part one of the proof we showed that a broad solution has to satisfy the original bounds
(14)-(16) if (8) holds true. As a consequence, for T sufficiently small, the fixed point of T has to
be strictly feasible with respect to the bounds, on which the choice of Lf is based on. By

‖ · ‖X ≥ c‖ · ‖L∞(Q)

with c = c(Lf , T ), also the pointwise distance to the fixed point is decreasing almost everywhere
in Q in each iteration. Consequently, choosing a feasible initialization of the fixed point iteration
ensures that every iterate is feasible with respect to the bounds (14)-(16).

Remark 1. Assumptions (ii)-(iv) represent restrictions on possible jumps in initial and bound-
ary condition compared to the distance of the data to the bounds in (14), (15) and (16). If the
initial data for density and volume flow are steady states of the underlying system, the assumptions
of Proposition 4 become more specific.

In fact, fixing a pipeline i and given x ∈ [x
(i)
L , x

(i)
R ] and 0 < τ such that (τ, x) ∈ I from Figure 2,

the inequalities in Assumption (ii) become

ρ < 1
2 (ρ

(i)
0 (x− a−1τ) + ρ

(i)
0 (x+ a−1τ)) < ρ,

|q(i) + a
2 (ρ(i)(x− a−1τ)− ρ(i)(x+ a−1τ))| < q.
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In other words, assumption (i) is satisfied concerning density if the initial data obey the upper and
lower bound (14), (15) pointwise while the inequality concerning q holds for τ sufficiently small,
if the constant volume flow q(i) strictly satisfies the bound from (16). For Assumption (iii), the
inequalities read as

ρ < 1
2 (ρ

(i)
0 (2x

(i)
L − x+ a−1τ) + ρ

(i)
0 (x+ a−1τ) + 1

a (dj(τ − a(x− x(i)
L ))− q(i)) < ρ,

|dj(τ − a(x− x(i)
L )) + a

2 (ρ(i)(2x
(i)
L − x+ a−1τ)− ρ(i)(x+ a−1τ))| < q,

and

ρ < 1
2 (ρ

(i)
0 (x− a−1τ) + ρ

(i)
0 (2x

(i)
R − x− a

−1τ) + 1
a (dj(τ − a(x

(i)
R − x))− q(i)) < ρ,

|dj(τ − a(x
(i)
R − x)) + a

2 (ρ(i)(x− a−1τ)− ρ(i)(2x
(i)
R − x− a

−1τ))| < q,

respectively.
Finally, if the steady densities in every pipeline is strictly larger than the lower bound ρ, the initial
conditions are Lipschitz continuous. Thus, the values of the transformed variables considered in
Assumption (iv) vary continuously. Since the values of the transformed variables emanated from
junction j depend continuously on the latter ones, a small neighborhood where Assumption (iv)
holds exists by continuity arguments.

We note that, as it is obtained by a worst case scenario, the terminal time T is only a lower
bound for the time, up to which solutions of (2) are guaranteed to exist. In all considered examples,
the state of the system at time T still satisfies the assumptions of Proposition 4 and can be used
as new initial conditions, providing a larger terminal time for all λ satisfying (8). However, this
bootstrapping can not be always be applied.

Remark 2. Minor modifications of the results in [10] allow to establish BV-regularity of solu-
tions to (2) provided the initial and boundary data as well as the friction coefficient are functions
of bounded variation.

In case of a single pipe we can establish higher regularity of the broad solutions. Provided, the
friction coefficient λ is continuously differentiable with bounded derivative, the initial and boundary
conditions are differentiable and suitably connected, methods from [1] can be applied to bounded
domains and yield classical solutions of the problem.

For the subsequent development, let S = S(λ) denote the solution operator of the underlying
system (2), (IC) along with the boundary conditions (BC) for a given friction coefficient λ ∈ L1(Ω),
where (IC) might depend on λ.

3.3. Sensitivity Results for the Solution Operator. The results in this section are
obtained for single pipes defined on Ω = (xL, xR). By linearity of the coupling condition, they can
be directly extended to passive networks.

Proposition 5. Let λ ∈ Lp(Ω) with p ∈ [1,∞] satisfy (8). Moreover, let the initial conditions
(IC) depend Lipschitz continuously on λ with respect to the ‖ · ‖L1(Ω) norm. Then the solution
operator

S : Lp(Ω)→ L∞(Q)

is Lipschitz continuous for any p ∈ [1,∞].

Proof. Without loss of generality we assume T ≤ T/2. As already shown, T , mapping (X, ‖ ·
‖∗) onto itself, defines a contraction on a subset of X defined by the pointwise bounds (14) - (16).
According to (18), the contraction rate is 1/2 for any λ satisfying (8). Parametrizing T by λ, for
yλ denoting the unique fixed point we obtain

‖yλ1 − yλ2‖∗ = ‖Tλ1(yλ1)− Tλ2(yλ2)‖∗ ≤ ‖Tλ1(yλ1)− Tλ2(yλ1)‖∗ + ‖Tλ2(yλ1)− Tλ2(yλ2)‖∗

and the upper bound on the contraction rate of Tλ2 provides

‖yλ1 − yλ2‖∗ ≤ 2‖Tλ1
(yλ1)− Tλ2

(yλ1)‖∗.
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By the definition of Tλi
we further obtain

(|(Tλ1
)i(y

λ1)− (Tλ2
)i(y

λ1)|)[τ, x]

≤ |ci(y0(λ1)− y0(λ2))[γi(0; τ, x)]|+ (2aca)−1

∫ τ

0

∣∣∣∣(λ1−λ2)[γi(t; τ, x)]

(
qλ1 |qλ1 |
ρλ1

)
[t, γi(t; τ, x)]

∣∣∣∣ dt
≤ Lλ‖λ1−λ2‖L1(Ω) ≤ Lλ‖λ1 − λ2‖Lp(Ω)

where Lλ > 0 depends on (14) - (16) and the Lipschitz constant for the initial data. Since this
estimate is independent of the position (τ, x), it holds for the essential supremum. Finally we use
e−2CT ≤ e−2Ct ≤ e0 = 1, valid for all t ≥ 0, and the matrix norm of L, induced by the | · |∞-norm
to find

‖yλ1 − yλ2‖L∞(Q) ≤ 2Lλ|L|∞e2CT ‖λ1 − λ2‖Lp(Ω),

ending the proof.

Next we demonstrate that the trace evaluation of broad solutions at entry- or exit nodes of
the network is Lipschitz continuous as well.

Proposition 6. Let {xE} denote an entry- or exit node of the network. Under the assump-
tions of Proposition 5, the trace evaluation of the density is Lipschitz continuous with respect to
the friction parameter, i.e.,

‖ρλ1(t, xE)− ρλ2(t, xE)‖Lp(0,T ) ≤ L‖λ1 − λ2‖Lq(Ω)

for p, q ∈ [1,∞] and some L¿0.

Proof. Without loss of generality we assume T ≤ T/2. By the structure of the differential
operator, exactly one characteristic i approaches the corresponding lateral boundary. For a fixed
τ ∈ (0, T ) we obtain

|(Ti(yλ1)− Ti(yλ2))[τ, xE ]| ≤ |(Ti(yλ1)− Ti(yλ2))[0, si(0; τ, xE)]|+

L̂

τ∫
0

|(λ1 − λ2)[si(t; τ, xE)]|dt+ λL̃

τ∫
0

|(yλ1 − yλ2)[t, si(t; τ, xE)]|l∞dt

with constants L̃, L̂ depending on (14) to (16). By assumption, |(Ti(yλ1)−Ti(yλ1))[0, si(0; τ, xE)]|
depends Lipschitz continuously on λ and, applying Proposition 5, we find some Lρ > 0 such that

|(Ti(yλ1)− Ti(yλ2))[τ, xE ]| ≤ Lρ‖λ1 − λ2‖L1(Ω)

is satisfied for almost every τ ∈ (0, T ) and thus for ‖T1(yλ1) − T1(yλ2)[t, xE ]‖L∞(0,T ). Since
T < ∞, the claimed estimate follows from the continuous embedding Lq(0, T ) ↪→ Lp(0, T ) for
p, q ∈ [1,∞], p ≤ q.

Let the initial conditions be differentiable with respect to λ. For establishing differentiability
of S, we consider the following linear system, which is based on (ρ, q) = S(λ) with λ satisfying
(8):

µt + νx = 0,

νt + a2µx = −2λ
|q|
ρ
ν + λ

q|q|
ρ2

µ− hq|q|
ρ
.

(19)

Moreover, along with a perturbation direction h for λ, we consider the initial conditions

µ(0, ·) = ρ′0(λ)[h], ν(0, ·) = q′0(λ)[h] for x ∈ Ω,(20)



IDENTIFICATION OF THE FRICTION COEFFICIENT IN GAS TRANSPORT 15

the coupling conditions (4) and (5) for ν and µ, respectively, in case of a network and the boundary
condition

ν(t, xE) = 0 for t ∈ (t, T )(21)

for all entry- or exit nodes xE . Since the problem is linear and (ρ, q) satisfies (14)-(16), the
existence of a broad solution follows directly from the arguments given in [10] or, in case of a
network, as discussed above. Concerning differential sensitivity of (ρ, q) we have the following
assertion.

Proposition 7. The solution operator S is directional differentiable and the derivative at λ
in direction h, i.e. v = S ′(λ)[h], is characterized as the broad solution of (19) with initial and
boundary conditions (20)-(21).

Proof. Without loss of generality we assume T ≤ T and consider ỹ = S(λ+ h) and y = S(λ)
as well as (µ, ν) = v, the solution to (19)-(21). Studying S(λ+h)−S(λ)−v, the associated system
satisfied by (r, k) = (ρ̃− ρ− µ, q̃ − q − ν) yields

rt + kx = 0,

kt + a2rx = −(λ+ h)
q̃|q̃|
ρ̃

+ λ
q|q|
ρ

+ 2λ
|q|
ρ
ν − λq|q|

ρ2
µ+ h

q|q|
ρ

= λ

(
− q̃|q̃|

ρ̃
+
q|q|
ρ

+ 2
|q|
ρ
ν − q|q|

ρ2
µ

)
+ h

(
q|q|
ρ
− q̃|q̃|

ρ̃

)

= λ

1∫
0

2

(
|q̃ + l(q − q̃)|
ρ̃+ l(ρ− ρ̃)

− |q|
ρ

)
(q − q̃)dl

+ λ

1∫
0

(
q|q|
ρ2
− q̃ + l(q − q̃)|q̃ + l(q − q̃)|

(ρ̃+ l(ρ− ρ̃))2

)
(ρ− ρ̃)dl

− 2λ
|q|
ρ
k + λ

q|q|
ρ2

r +

(
q|q|
ρ
− q̃|q̃|

ρ̃

)
h

=: f ′(ỹ, y, h; r, k)

(22)

with homogeneous boundary conditions for k at xE , r0 = ρ0(λ + h) − ρ0(λ) − ρ′0(λ)[h] and
k0 = q0(λ+h)−q0(λ)−q′0(λ)[h] and coupling conditions (4)-(5) for k and r, respectively. Further,
as (r, k) can be expressed as the difference of broad solutions, it is a broad solution as well. In order
to establish ‖(r, k)‖L∞(Q) = o(‖h‖L1(Ω)) with o(t)/t→ 0 as t→ 0, we consider the representation
of broad solutions along integral curves. According to the structure of the source term of (22)
and considering the structure of L−1 on page 3, we find c1 · (0, f ′(y))> = −c2 · (0, f ′(y))>. By
homogeneous boundary conditions for ν and q̃(τ, xE) = q(τ, xE), we find k(τ, xE) = 0, implying

T1(r, k)[τ, xE ] = c−1
a

(
1

2
r − 1

2a
k

)
[τ, xE ] = c−1

a

(
1

2
r +

1

2a
k

)
[τ, xE ] = T2(r, k)[τ, xE ].

As a consequence, the following estimate holds for all points (τ, x) ∈ Q and i = 1, 2 including
those, where the curves γi(·; τ, x) (c.f., page 5) are mirrored at the boundaries xE but not interact
with internal nodes:

|Ti(r, k)[τ, x]|

≤ci(y0(λ+ h)−y0(λ)−y′0(λ)[h])+(2aca)−1

∫ τ

0

|f ′(ρ̃, q̃, ρ, q, h; r, k)[t, γi(t; τ, x)]|dt.(23)

Next we analyze |f ′(ρ̃, q̃, ρ, q, h; r, k)[t, γ2(t; τ, x)]| term-wise. By (14)-(16), the original source term
is Lipschitz continuous with respect to the state y. Moreover, the solution operator S is Lipschitz
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continuous with respect to the friction coefficient λ providing

|h(γ1(t; τ, x))

(
q|q|
ρ
− q̃|q̃|

ρ̃

)
[t, γ1(t; τ, x)]| ≤ C‖h‖2L1(Ω) for all (τ, x) ∈ Q

and some C¿0. For the terms with 0 ≤ l ≤ 1, we find∣∣∣∣( |q̃ + l(q − q̃)|
ρ̃+ l(ρ− ρ̃)

− |q|
ρ

)∣∣∣∣ ≤ C‖ỹ − y‖L∞(Q),∣∣∣∣(q|q|ρ2
− (q̃ + l(q − q̃))|q̃ + l(q − q̃)|

(ρ̃+ l(ρ− ρ̃))2

)∣∣∣∣ ≤ C‖ỹ − y‖L∞(Q).

for some C > 0. Thus, the corresponding terms in f ′ can be estimated pointwise at (τ, x) by
C‖h‖2L1(Ω) with some suitably large C > 0, again employing the Lipschitz continuity of S. In

case of γi(t; τ, x) interacting with an internal node xI and x ∈ (x
(j)
L , x

(j)
R ), T (j)

i (ti, xI) is given
as a linear combination of the transformed variables approaching xI from all adjacent pipelines
since the linear systems defining the original states have regular system matrices. Thus, we have
weights ĉI and

|T (j)
i (ti(τ, x), xI)| ≤

∑
l∈nI

L∪nI
R

|ĉIl ||T
(l)

ĩ
(ti(τ, x), xI)|.

As before, the arguments for estimating (23) can be applied to the right-hand side. Further, since
the initial condition is assumed to be sufficiently smooth we find

|Ti(r, k)[τ, x]| ≤ C‖h‖2Lp(Ω) + C̃

∫ τ

0

|T (r, k)|∞[t, γi(t; τ, x)]dt

for i = 1, 2, C̃ > 0 sufficiently large and all x ∈ Ω and thus for |T (r, k)|∞[τ, x]. Here, C̃ de-
pends on (14)-(16), and on the constants C above. Applying Gronwall’s inequality to u(t) =
ess-sup
x∈Ω

|T (r, k)[t, ·]|l∞ , we establish u(τ) ≤ c(T )‖h‖2L1(Ω) for all τ ∈ [0, T ]. A suitable matrix norm

of L finally provides ‖(r, k)‖L∞(Q) = o(‖h‖L1(Ω)) as ‖h‖L1(Ω) → 0.

Similar to Proposition 5, one can establish uniform Lipschitz continuity of the directional
derivatives S ′(λ)[h] with respect to λ. In addition, S ′(λ)[h] is linear in h and consequently, S is
Frechét differentiable. As in Proposition 6, this result can be extended to trace evaluations of ρ
at the lateral boundary.

The section closes with a discussion of second-order differentiability. We point out that this
result can be established only under a very restrictive condition.

Proposition 8. Let the volume flow have a constant direction along the entire network for
all times t ∈ (0, T ). Moreover, let the initial conditions depend smoothly on λ. Then the solution
operator is twice differentiable and S′′(λ)[h, δ], for perturbation directions h, δ ∈ L1(Ω), is given
as broad solution (s, p) of the system

st + px = 0,

pt + a2sx = −2λ
|q|
ρ
p+ λ

q|q|
ρ2

s− δ
(

2
|q|
ρ
νh −

q|q|
ρ2

µh

)
− h

(
2
|q|
ρ
νδ −

q|q|
ρ2

µδ

)
− 2λ

1

ρ
νδµh − 2λ

q|q|
ρ3

µδµh + 2λ
|q|
ρ2
µδνh + 2λ

|q|
ρ2
µhνδ,

with homogeneous boundary conditions at entry- and exit nodes for p, coupling conditions (4)-(5)
for p and s and initial conditions

s(0, ·) = ρ′′0(λ)[h, δ], p(0, ·) = q′′0 (λ)[h, δ].
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Proof. The proof is analogous to the one for establishing differentiability. A careful analysis
of the remainder term of the associated expansion of S and properties of the involved states and
their first-order derivatives in certain directions as well as the application of Gronwall’s inequality
provide an estimate for the remainder term at the order of o(‖δ‖L1) as ‖δ‖L1(Ω) → 0. Here, δ
denotes the corresponding perturbation.

To obtain the estimates as in the proof of lower order regularity, it is important, that the
volume flow does not change its sign along the pipes since otherwise, the absolute value, present
in the sensitivity equations, can not be handled as before.

Note that the required constant direction of the volume flow translates into further conditions on
initial and boundary conditions as well as on T . We emphasize that the assumptions of Proposition
8 were met in all numerical examples of Section 5.

4. The Identification Problem for the Friction Coefficient. After analyzing the un-
derlying state system, we now focus on the identification problem for the friction coefficient as a
distributed quantity within a single pipe defined on Ω = (xL, xR), based on measurements of the
pressure at at the boundaries of the pipe. The corresponding output-least-squares formulation
reads

minimize
1

2
‖ρ(·, xL)− ρdL(·)‖2L2(0,T ) +

1

2
‖ρ(·, xR)− ρdR(·)‖2L2(0,T ) + αR(λ) =: J (λ)

over y ∈ L∞(Q), λ ∈ L1(Ω), λ ∈ D(R)

subject to ‖λ‖L1(Ω) ≤ λ,
y = S(λ).

(P )

The functions ρdL(·), ρdR(·) ∈ L2(0, T ) represent the, possibly perturbed, measured data at the
left and right end of the pipe over time. Moreover, the solution operator might include initial
conditions that depend smoothly on λ. Finally, R denotes a suitable regularization term based
on a priori assumptions on the structure of the friction parameter. Let D(R) ⊂ L1(Ω) denote the
domain space of R.

Proposition 9. Let the domain space of the regularization term D(R) embed compactly into
Lp(Ω) for some p ∈ [1,∞]. Then (P ) admits a solution.

Proof. By assumption, the domain of the regularizer embeds compactly into Lp(Ω) and Propo-
sition 5 guarantees continuity of S with respect to this space. Then the result follows from an
application of the direct method from the calculus of variations.

The assumption of D(R) compactly embedding into L1(Ω), is met, e.g., by choosing R = |·|TV
with | · |TV the total variation seminorm.

5. Numerical Experiment.

Identification of pipelinewise constant friction coefficients in a network. The net-
work under consideration is depicted in Figure 1 and can be seen as supply network for, e.g.,
gas power plants located at the exit nodes ’Exit 1’ and ’Exit 2’ that require constant supply
while the inflow in the network at the entry node ’In’ varies over time. At the respective nodes,
boundary conditions for q are fixed as the functions provided in Figure 1. The initial conditions
are considered to be steady states according to (9) with q0 = [300, 180, 120] with pipes being
numbered counter-clockwise, beginning with the one at the in-node and for ρ0(xIn) = 52.3. The

values l(i) = x
(i)
R − x

(i)
L denote the length of the pipes 1 ≤ i ≤ 3. The underlying partial differen-

tial equation fails to admit a classical solution and, as outlined above, the gradient is generated
according to the sensitivity system (19) along with the corresponding initial and boundary con-
ditions as discussed in Example 2. If time-discrete measurements of density at ’Exit 1’ and ’Exit
2’ are considered, the identification problem of pipeline wise constant friction coefficients becomes
a finite dimensional problem. In this case, the identification problem in its output-least-squares
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formulation is given as

minimize 1
2 (

20∑
i=0

(ρ(10 · i, xE1
)− ρdE1

(10 · i))2 + (ρ(10 · i, xE2
)− ρdE2

(10 · i))2) + α
2 ‖λ− λM‖

2
l2

=: J (λ)

subject to (ρ(i), q(i)) = S(λ(i)) on (0, T )× (x
(i)
L , x

(i)
R ),

(ρ(i)(0, x), q(i)(0, x)) solves (9) with given q
(i)
0 for λ(i),

ρ(t, x
(1)
R ) = ρ(t, x

(2)
L ) = ρ

(3)
L , q(1)(t, x

(1)
R ) = q(2)(t, x

(2)
L ) + q(3)(t, x

(3)
L ),

q(1)(t, x
(1)
L ) = qdIn(t), q(2)(t, x

(2)
R ) = qdExit1(t), q(3)(t, x

(3)
R ) = qdExit2(t),

ρ(1)(t, x
(1)
L ) = 52.3,

10−9 ≤ λ(i) ≤ λ,

and admits a solution by standard arguments of variational analysis as utilized in Proposition 9.
In the finite dimensional case, the integral bound on λ translates into a pipeline wise upper

bound and we used λ
(i)

= 2. In addition, we assume strict positivity of λ, realized by a component-
wise lower bound of 10−9 providing, together with the upper bound, box constraints. the terminal
time is given by T = 200 and the regularization weight in the objective is chosen as α = 10 with
R(·) = 1

2 | · |
2
l2 . The value λM = 0.018172 represents a-priori knowledge on the friction coefficient

obtained from practitioners.

5.1. Algorithm. In order to solve the identification problem we employ a Trust-region
method (see [2]) where the model of the function is based on a quasi-Newton approximation
of the Hessian (see [17]), utilizing the BFGS-update and including a reset of the approximating
matrix in case of the update direction failing the test for the curvature condition. The procedure
is described in Algorithm 1.

Using second order derivatives is motivated by the considered initial conditions and Proposi-
tion 3 and Proposition 8 implying, that the solution operator is twice Fréchet differentiable. The
constants for incrementing the Trust-region radius are chosen according to the suggestions in [2,
Page 117]. The algorithm terminates, if norm of the gradient in iteration k satisfies

‖∇J (λ(k))‖`2 ≤ νrel‖∇J (λ(0))‖`2 + νabs

with νabs = νrel = 10−7.
Next we discuss the Trust-region sub-problem (24). Again, the existence of solutions follows

from standard arguments of variational analysis. The update strategy for the approximation of
the Hessian ensures positive definiteness of Hk and thus, the solution of the now convex problem
(24) is unique.

One easily checks, that the linear independent constraint qualification is satisfied if 10−9 < λ
holds. As a consequence, Lagrange multipliers ψ0 ∈ R, ψ1 ∈ R3, ψ2 ∈ R3, associated with the
radius constraint, the component-wise lower and upper bound, respectively, exist. The optimality
system that characterizes the solution x of (24) and the corresponding Lagrange multipliers,
(x, ψ0, ψ1, ψ2), reads

∇J (λk) + (Hkx)> − 2ψ0x+ ψ1 − ψ2 = 0,

∆2
k − ‖x‖2l2 ≥ 0, ψ0 ≥ 0, ψ0(∆2

k − ‖x‖2l2) = 0,

x+ λk − 10−9 ≥ 0, ψ1 ≥ 0, ψ1(x+ λk − 10−9) = 0,

λ− λk − x ≥ 0, ψ2 ≥ 0, ψ2(λ− λk − x) = 0,

(25)

where the last two lines are considered component-wise. Utilizing the nonlinear complementarity
function

0 ≤ a, 0 ≤ b, ab = 0⇔ 0 = a−max{0, a− νSSNb},
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Algorithm 1 Trust Region

1: Choose λ0, compute J (λ0),∇J (λ0).
2: Set k = 0, η1 = 0.01, η2 = 0.9, κ1 = 2, κ2 = 0.75, κ3 = 0.5, Hk = I,∆k = 10−4.
3: while stopping criterion not satisfied do
4: Define quadratic model mk(λk + s) = J (λk)+ < ∇J (λk), s > + < s,Hks >
5: Solve trust-region sub-problem

minimize mk(λk + x)

over x ∈ R3

subject to ‖x‖2l2 ≤ ∆2
k,

10−9 − λk ≤ x ≤ λ− λk

(24)

6: Compute J (λk + x) and define

rk := J (λk)−J (λk+x)
mk(λk)−mk(λk+x) .

7: Update the iterate according to

λk+1 =

{
λk + x if rk ≥ η1

λk else
.

8: Update the Trust-region radius according to

∆k+1 =

 κ1∆k if rk ≥ η2

κ2∆k if rk ∈ [η1, η2)
κ3∆k if rk < η1

.

9: Compute yk = ∇J(λk+1)−∇J(λk), update the approximation of the Hessian according to

Hk+1 =


I if < x, yk >≤ 0

Hk + <yk,yk>
<x,yk>

− <Hkx,Hkx>
x,Hkx

if < x, yk >> 0 and rk ≥ η1

Hk if rk < η1

.

10: Set k := k + 1
11: end while

(for information on NCP-functions, we refer to [22]), (25) can be rewritten as the nonsmooth
system

∇J (λk) + (Hkx)> − 2ψ0x+ ψ1 − ψ2 = 0,

ψ0 − (ψ0 − νSSN (∆2
k − ‖x‖2l2))+ = 0,

ψ1 − (ψ1 − νSSN (x+ λk − 10−9))+ = 0,

ψ2 − (ψ2 − νSSN (λ− λk − x))+ = 0,

(26)

with (·)+ = max{0, ·}. System (26) is solved by applying the semismooth Newton method as
discussed in [19], initialized with 0 and utilizing an Armijo line search for globalization. The
semismooth Newton method terminates if the Euclidean norm of the residual drops below 10−9.

5.2. Discretization of the underlying PDE and sensitivity equation. For the numer-
ical realization of a gradient based descent algorithm for solving the inverse problem we apply an
explicit discretization scheme utilizing piecewise constant cell averages of the state functions in the
forward and sensitivity problem, (2) and (19), respectively, on a uniform grid dividing pipes into
N cells of width ∆x, which are referred to as internal cells. Of course, alternative discretization
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schemes for semilinear systems of hyperbolic balance laws in the context of gas transport like the
ones in, e.g., [21, 24] are possible as well. The boundary and coupling conditions at entry- and
exit nodes and junctions are realized by ghost cells, i.e. each pipe has a ghost cell on both ends as
depicted in Figure 3. While, within the pipe, the successive sequence of iterates with respect to

left ghost cell

0

right ghost cell

N + 1
+ +

1
+

2
+ + +

N − 1
+

2
+

internal cells

Fig. 3: Spatial discretization of a pipe whit ghost cells

time will be obtained by applying a total variation diminishing (TVD) discretization scheme com-
bined with a Runge Kutta (RK) higher order time stepping (see [13]), the coupling and boundary
conditions on the ghost cells have to be incorporated carefully. Before discussing the latter point,
we provide a brief description of the numerical scheme utilized on the internal cells. Ignoring for a
moment the source term we apply the modified Lax-Friedrichs scheme as used in [9, 23] and given
in vector notation by

yn+1
i = 1

2 (γyni−1 − (2γ − 2)yni + γyni+1)− cCFL

2 A(yni+1 − yni−1),(27)

with cCFL = a−1, providing NT time steps. Here, yni = (ρni , q
n
i ) ∈ R2 for 1 ≤ n ≤ NT and

1 ≤ i ≤ N denote the integral averages of density and volume flow in internal cell i and for time
step n. For γ = 1, we obtain the original Lax-Friedrichs scheme that coincides, by linearity of the
differential operator, also with the Engquist-Osher scheme as well.

Incorporation of the source term can be realized in several ways. On the one hand, one
can apply splitting techniques like the first-order Godunov- or the second order Strang splitting
or plain inclusion as in [23] for scalar balance laws. Note that, by the given source term, both
approaches act merely on the second component of the state vector in each iteration of the time
stepping. On the other hand, one can take into account the semilinear nature of the underlying
system of partial differential equations and the definition of broad solutions. Consequently, one
defines a numerical scheme similar to the particle method of [6] that is consistent with entropy
solutions of scalar conservation laws and was used for semilinear systems of conservation laws in
[10, 11]. Here, at time step n an explicit Euler method is utilized to approximate the solutions to
(7) for each component of the transformed variables , i.e., for the first characteristic,

T1(yn+1
i−1 ) = T1(yni ) + ∆t

caa
λi
qni |q

n
i |

ρni
,

and for T2, respectively. For equidistantly distributed particles with distance ∆x, a time step
∆t = a−1∆x and integral averages yni and λi, the original state variables can be reconstructed
according to (17), yielding the discretization scheme

ρn+1
i = 1

2 (ρni+1 + ρni−1)− cCFL

2 (qni+1 − qni−1)− ∆t
2a

(
λi−1

qni−1|q
n
i−1|

ρni−1
− λi+1

qni+1|q
n
i+1|

ρni+1

)
,

qn+1
i = 1

2 (qni+1 + qni−1)− a2cCFL

2 (ρni+1 − ρni−1)− ∆t
2

(
λi−1

qni−1|q
n
i−1|

ρni−1
+ λi+1

qni+1|q
n
i+1|

ρni+1

)
,

(28)

for i = 1, ..., N , corresponding to the Lax-Friedrichs scheme.
The similarity of the particle method, mirroring the nature of broad solutions by integrat-

ing along characteristic lines, to a classical TVD discretization scheme suggests a procedure for
obtaining the values of the state at the ghost cells by employing the concept of broad solutions
in the following way. At entry- or exit-nodes of the network, the updated value for the state is
obtained by evaluating the ingoing transformed variable and solving the linear systems defined by
the matrices CL or CR respectively, i.e, to solve

C−1
L

(
T1(yn+1

0 )
d0(tn+1)

)
and C−1

R

(
T2(yn+1

N+1)
dN+1(tn+1)

)
,
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for boundary data d0, dN+1 on the left and right ghost cell, respectively. Explicitly, this provides

ρn+1
0/N+1 = ρn1/N ∓ 1

aq
n
1/N ± 1

ad0/N+1(tn+1)± ∆t
a λ1/N

qn1/N |q
n
1/N |

ρn
1/N

,

qn+1
0/N+1 = d0/N+1(tn+1).

(29)

At junctions, all ingoing transformed variables and the coupling conditions form linear systems
that have to be solved for the values of the state variables on the corresponding ghost cells. For
the example under consideration, the lienar system at the junction is given as (6).

Summarizing, we have established an algebraic expression that provides the updated state at
all ghost cells g of the network, based on the current iterate and the boundary conditions at the
next time step d(tn+1), i.e., (ρn+1

g , qn+1
g ) = fg(ρ

n, qn, λ, d(tn+1)).
Note that in case of implicit time stepping schemes as the IBox method ([3, 15]) this discussion

is not necessary since coupling and boundary condition are considered directly in the nonlinear
system that characterizes the next time step.

For the sake of comparison, Figure 4 depicts the trace evaluation of the pressure at Exit
1 in the setting of Example 5 below for different methods for handling the source term and
several mesh widths. The results suggest that all methods converge but, by merely acting on the
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Fig. 4: trace evaluations of ρ for different discretization methods

second component of the state vector, the discretization method employing the Strang splitting
is not satisfying as it gives qualitatively wrong solutions even on fine meshes. Note that the
discontinuities exhibited in the first two columns of Figure 4 at the initial time and near t ≈ 70
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are based on the fact that integral averages of the stationary initial state and the values at the
ghost cells do not provide a stationary state for the discrete problem. However, by refining the
discretization, these effects vanish. The Lax-Friedrichs scheme with the source term handling
inspired by the particle method behaves more stable. Hence, we utilize this procedure in what
follows, i.e., we employ (28) under a further slight modification which, in componentwise form,
reads

ρn+1
i = 1

2 (γρni+1 − (2γ − 2)ρni + γρni−1)− cCFL

2 (qni+1 − qni−1)− ∆t
2a λi

(
qni−1|q

n
i−1|

ρni−1
− qni+1|q

n
i+1|

ρni+1

)
,

qn+1
i = 1

2 (γqni+1 − (2γ − 2)qni + γqni−1)− a2cCFL

2 (ρni+1 − ρni−1)− ∆t
2 λi

(
qni−1|q

n
i−1|

ρni−1
+

qni+1|q
n
i+1|

ρni+1

)
.

(30)

Note that (30) correspinds to an explicit Euler discretization of the ODE system

ρ̇i = γ
2∆t (ρi+1 − 2ρi + ρi−1)− cCFL

2∆t (qi+1 − qi−1)− 1
2aλi

(
qi−1|qi−1|
ρi−1

− qi+1|qi+1|
ρi+1

)
= fρi ,

q̇i = γ
2∆t (qi+1 − 2qi + qi−1)− a2cCFL

2∆t (ρi+1 − ρi−1)− 1
2λi

(
qi−1|qi−1|
ρi−1

+ qi+1|qi+1|
ρi+1

)
= fqi ,

(31)

with associated initial conditions. in order to obtain a higher-order approximation of these ODE’s
with respect to time, we apply, similar to [9, 13] a Runge-Kutta time stepping method to (31),
namely the second-order method of Heun and obtain the full discretization scheme

ρ̄ni = fρi(ρ
n, qn, λ),

q̄ni = fqi(ρ
n, qn, λ),

ρn+1
i = ρni + ∆t

2 (fρi(ρ
n, qn, λ) + fρi(ρ

n + ∆tρ̄n, qn + ∆tq̄n, λ)),

qn+1
i = qni + ∆t

2 (fqi(ρ
n, qn, λ) + fqi(ρ

n + ∆tρ̄n, qn + ∆tq̄n, λ)),

(32)

on the interior cells while the ghost cells are updated according to

(ρ̄ng , q̄
n
g ) = ∆t−1(fg(ρ

n, qn, λ, dn+1)− (ρng , q
n
g )),

(ρn+1
g , qn+1

g ) = (ρng , q
n
g ) + ∆t

2 ((ρ̄ng , q̄
n
g ) + ∆t−1(fg(ρ̄

n, q̄n, λ, dn+1)− (ρng , q
n
g ))).

The latter has been chosen to obtain the correct boundary value for qn+1
g while having the form

of the Heun scheme.
Similar to [9, 13, 23], the sensitivity scheme for interior cells is obtained by linearizing (32).

Let µni and νni denote the derivatives of pni and qni with respect to pn−1
j , qn−1

j and λj respectively
and vni = (µni , ν

n
i ) the state , providing

µ̄ni = γ
2∆t (µ

n
i+1 − 2µni + µni−1)− cCFL

2∆t (νni+1 − νni−1)− 1
2a li

(
qni−1|q

n
i−1|

ρni−1
− qni+1|q

n
i+1|

ρni+1

)
.+ 1

2aλi

(
qni−1|q

n
i−1|

(ρni−1)2 µni−1 −
qni+1|q

n
i+1|

(ρni+1)2 µni+1

)
− 1

aλi

(
|qni−1|
ρni−1

νni−1 −
|qni+1|
ρni+1

νni+1

)
= fµi

,

ν̄ni = γ
2∆t (ν

n
i+1 − 2νni + νni−1)− a2 cCFL

2∆t (µni+1 − µni−1)− 1
2 li

(
qni−1|q

n
i−1|

ρni−1
+

qni+1|q
n
i+1|

ρni+1

)
+ 1

2λi

(
qni−1|q

n
i−1|

(ρni−1)2 µni−1 +
qni+1|q

n
i+1|

(ρni+1)2 µni+1

)
− λi

(
|qni−1|
ρni−1

νni−1 +
|qni+1|
ρni+1

νni+1

)
= fνi ,

µn+1
i =µni + ∆t

2 (µ̄ni + fµi(y
n + ∆tȳn, vn + ∆tv̄, λ)) ,

νn+1
i =νni + ∆t

2 (ν̄ni + fνi(y
n + ∆tȳn, vn + ∆tv̄, λ)) ,

(33)

with initial conditions

µ0
i =

dρ0i
dλi

, ν0
i =

dq0i
dλi

,(34)

and variations of the friction coefficient in the internal cell i, li. Updating the values on ghost
cells is based on a linearization of the ordinary differential equations describing the flow into these
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nodes and solving the resulting linear systems. For the example (29) of entry- and exit nodes we
obtain

µn+1
0/N+1 =µn1/N ∓ 1

aν
n
1/N ± ∆t

a l1/N
qn1/N |q

n
1/N |

ρn
1/N

± 2∆t
a λ1/N

|qn1/N |
ρn
1/N

νn1/N ∓ ∆t
a λ1/N

qn1/N |q
n
1/N |

(ρn
1/N

)2 µn1/N ,

νn+1
0/N+1 =0.

(35)

Combining these linearized boundary conditions in the function f ′g(y, v, λ), the update for the
ghost cells g is given by

(µ̄ng , ν̄
n
g ) = ∆t−1(f ′g(y

n, vn, λ)− (µng , ν
n
g )),

(µn+1
g , νn+1

g ) = (µng , ν
n
g ) + ∆t

2 ((µ̄ng , ν̄
n
g ) + ∆t−1(f ′g(y

n + ∆tȳn, vn + ∆tv̄n, λ)− (µng , ν
n
g ))).

5.3. Example. In all computations presented next, the speed of sound is a = 300ms−1 and
the density ρ is in the range of 50kgm−3 corresponding to a pressure p = a2ρ around 45 bar.

Algorithm 1 is initialized by λ0 = (0.03, 0.03, 0.03)>, again for pipes being numbered counter-
clockwise, and the initial TR-radius is ∆0 = 5 · 10−4 and the mesh width for the numerical
approximation of solutions to the state and sensitivity system is ∆x = 1.25.

For testing purposes, we generated artificial data for the density at the exit nodes, assuming
a friction coefficient of λO = (0.018172, 0.018195, 0018145)> which reflects possible values for the
friction of natural gas at a Reynolds number of 105. The data were generated by the particle
method on a fine mesh and can be found in Figure 5 and 6. To we added Gaussian random noise
with mean zero and a variance of 10−3 at measurement times. The variance has been chosen that
small as the fluctuation of the density at the exit-nodes are already in the order of 10−3. Thus,
for larger variance the random perturbations dominate the desired state.
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Fig. 5: Density for the original λ at Exit 1
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Fig. 6: Density for the original λ at Exit 2

Our reconstruction is

λ∗ = (0.018346, 0.017952, 0.017785)>.

In Figure 7 we provide the difference of the iterates λi to the values λO over the iterations.
Finally, the norm the gradient is shown in Figure 8. Note that the iterations 32 - 64 are null-
steps in the sense that no update is performed but the radius of the trusted region is decreased.
Fast convergence in the last iterations of the algorithm could be observed in any test run with
different realizations of the random noise. Note that while the first component of λ∗ exceeds the
original value, the other components undershoot their respective values. This is a consequence of
the coupling conditions since, given a larger friction coefficient in the first pipeline, the density
decreases not enough which has to be compensated in the following pipelines by a larger friction
coefficient to still approximate the measurements, and vice versa.
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Fig. 7: Eucledian Norm |λi − λO|
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Fig. 8: Norm of the gradient

We also provide some statistical information on our results for a discretization with ∆x = 10:
We considered 100 realizations of noise to perturb the given data and solved the corresponding
identification problem. The mean value of the respective results is given by

(0.018105, 0.018288, 0.018284)>,

and the covariance matrix of the results reads 0.030719 −0.042635 −0.063932
−0.042635 0.059173 0.088732
−0.063932 0.088732 0.133057

 · 10−5.

The first component of the recovered friction coefficient systematically undershoots the original
value while, for the reasons discussed above, the other components were larger than the original
values. Moreover, the covariance matrix presents a dependence pattern that corresponds to the
effects cause by the coupling in that large values for the first component induce smaller values on
the other components and vice versa.

REFERENCES



IDENTIFICATION OF THE FRICTION COEFFICIENT IN GAS TRANSPORT 25

[1] A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem.

[2] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region methods. MPS/SIAM Series on Optimization.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming
Society (MPS), Philadelphia, PA, 2000.

[3] P. Domschke. Adjoint-Based Control of Model and Discretization Errors for Gas Transport in Networked
Pipelines. PhD thesis, TU Darmstadt, 2011.

[4] P. Domschke, B. Hiller, J. Lang, and C. Tischendorf. Modellierung von gasnetzwerken: Eine übersicht.
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