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Abstract

In this paper we extend the implicit-explicit (IMEX) methods of Peer type
recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203–215, 2017]
to a broader class of two-step methods that allow the construction of super-
convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes
combine the necessary stability of implicit and low computational costs of ex-
plicit methods to efficiently solve systems of ordinary differential equations with
both stiff and non-stiff parts included in the source term. To construct super-
convergent IMEX-Peer methods with favourable stability properties, we derive
necessary and sufficient conditions on the coefficient matrices and apply an
extrapolation approach based on already computed stage values. Optimised
super-convergent IMEX-Peer methods of order s + 1 for s = 2, 3, 4 stages are
given as result of a search algorithm carefully designed to balance the size of
the stability regions and the extrapolation errors. Numerical experiments and
a comparison to other IMEX-Peer methods are included.
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1 Introduction

Differential equations of the form u′ = F0(u)+F1(u), where F0 is a non-stiff or mildly
stiff part and F1 is a stiff contribution, arise in many initial value problems. Such
problems often result from semi-discretized sytems of partial differential equations
with diffusion, advection and reaction terms. Implicit-explicit (IMEX) methods use
this decomposition by treating only the F1 contribution in an implicit fashion. The
advantage of lower costs for explicit schemes is combined with the favourable stability
properties of implicit schemes to enhance the overall computational efficiency.

In this paper we extend the IMEX methods of Peer type recently developed
by Lang and Hundsdorfer [9] to a broader class of two-step methods that include
function values from the previous step and thereby allow the construction of super-
convergent IMEX-Peer methods with A-stable implicit part. Implicit Peer methods
have been introduced by Schmitt, Weiner and co-workers [1, 10, 12] as a very com-
prehensive class of general linear methods in which the approximations in all stages
have the same order. They inherit good stability properties and an easy step size
change in every time step from one-step methods without suffering from order reduc-
tion for stiff problems. The property that the peer stage values have the same order
of accuracy can be conveniently exploited to construct related explicit methods by
using extrapolation. The combination of these implicit and explicit methods leads
in a natural way to IMEX methods with the same order as the original implicit
method. This idea was first used by Crouzeix [3] with linear multi-step methods of
BDF type. Recently, Cardone, Jackiewicz, Sandu and Zhang [2] applied the extra-
polation approach to diagonally implicit multistage integration methods and Lang
and Hundsdorfer [9] to implicit Peer methods constructed by Beck, Weiner, Pod-
haisky and Schmitt [1]. IMEX-Peer methods are competitive alternatives to classic
IMEX methods for large stiff problems. Higher-order IMEX Runge-Kutta methods
are known to suffer from possible order reduction and serious efficiency loss for stiff
problems. Moreover, the increasing number of necessary coupling conditions makes
their construction difficult.

For a method with stage order q, it is possible to have convergence with order
equal to q+1. This concept of super-convergence is discussed for Peer methods
applied to non-stiff problems by Weiner, Schmitt, Podhaisky and Jebens in [16]
and in the book of Strehmel, Weiner and Podhaisky [15, Sect. 5.3]. It also holds
for stiff problems as shown by Hundsdorfer [6]. Recently, Soleimani and Weiner
[14] applied the concept of super-convergence to an optimally zero-stable subclass
of implicit Peer methods, including also variable time step sizes. The definition of
the order (or order of consistency) of a method commonly used in the Peer liter-
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ature differs from the more comprehensive definition given in the book of Hairer,
Nørsett and Wanner [5, Sect. III.8] for general linear methods, which also covers the
super-convergence phenomenon. It uses the concept of quasi-consistency of Skeel.
Following this approach, we will slightly modify the usual criterion for having an ex-
tra order of convergence for Peer methods to construct super-convergent IMEX-Peer
methods based on extrapolation.

The paper is organised as follows. In Section 2 we present the framework to
obtain super-convergent IMEX-Peer methods, combining super-convergent implicit
Peer methods with their corresponding explicit methods derived by extrapolation.
We state necessary and sufficient conditions to ensure the super-convergence prop-
erty for this combination. The construction of specific classes of methods is per-
formed in Section 3. We first summarize all conditions and then design three new
super-convergent IMEX-Peer methods for s = 2, 3, 4 with favourable stability and
accuracy properties. Stability regions are given and compared to those of IMEX-Peer
methods from [9, 13]. Numerical results are presented in Section 4 for a Prothero-
Robinson problem, a one-dimensional advection-reaction problem with stiff reac-
tions, and a two-dimensional gravity wave problem, where selected advection and
reaction terms lead to stiffness.

2 Implicit-Explicit Peer Methods Based on Extrapolation

2.1 Super-convergent implicit Peer methods

We apply the so-called Peer methods introduced by Schmitt, Weiner and co-workers
[10, 11, 14] to solve initial value problems in the vector space V = Rm,m ≥ 1,

u′(t) = F (u(t)), u(0) = u0 ∈ V . (1)

The general form of an s-stage implicit Peer method is

wn = (P ⊗ I)wn−1 +4t(Q⊗ I)F (wn−1) +4t(R⊗ I)F (wn) (2)

with s × s coefficient matrices P = (pij), Q = (qij), R = (rij), the m ×m identity
matrix I, and approximations

wn = [wn,1, . . . , wn,s]
T ∈ Vs, wn,i ≈ u(tn + ci4t) , (3)

where tn = n4t, n ≥ 0, and the nodes ci ∈ R are such that ci 6= cj if i 6= j, and
cs = 1. Further, F (w) = [F (wi)] ∈ Vs is the application of F to all components of
w ∈ Vs. The starting vector w0 = [w0,i] ∈ Vs is supposed to be given, or computed
from a Runge-Kutta method, for example.

Peer methods belong to the class of general linear methods. All approximations
have the same order, which gives the name of the methods. Here, we are interested
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in A-stable and super-convergent Peer methods with order of convergence p=s+ 1,
recently constructed by Soleimani and Weiner in [14]. In the following, for an s× s-
matrix we will use the same symbol for its Kronecker product with the identity
matrix as mapping from the space Vs to itself. Then, (2) simply reads

wn = Pwn−1 +4tQF (wn−1) +4tRF (wn) . (4)

The matrix R is taken to be lower triangular with constant diagonal rii = γ > 0,
i = 1, . . . , s, giving singly diagonally implicit methods. In what follows, we discuss
requirements and desirable properties for the implicit method (4).

Accuracy. Let e = (1, . . . , 1)T ∈ Rs. We assume pre-consistency, i.e., Pe=e, which
means that for the trivial equation u′(t) = 0, we get solutions wn,i = 1 provided
that w0,j = 1, j = 1, . . . , s. The residual-type local errors result from inserting exact
solution values w(tn) = [u(tn + ci4t)] ∈ Vs in the implicit scheme (4):

rn = w(tn)− Pw(tn−1)−4tQw′(tn−1)−4tRw′(tn) . (5)

Let c = (c1, . . . , cs)
T with point-wise powers cj = (cj1, . . . , c

j
s)T . Then Taylor expan-

sion gives

w(tn) = e⊗ u(tn) +4tc⊗ u′(tn) +
1

2
4t2c2 ⊗ u′′(tn) + . . . (6)

w(tn−1) = e⊗ u(tn) +4t(c− e)⊗ u′(tn) +
1

2
4t2(c− e)2 ⊗ u′′(tn) + . . . , (7)

from which we obtain
rn =

∑
j≥1
4tjdj ⊗ u(j)(tn) (8)

with

dj =
1

j!

(
cj − P (c− e)j − jQ(c− e)j−1 − jRcj−1

)
. (9)

A pre-consistent method is said to have stage order q if dj = 0 for j = 1, 2, . . . , q.
With the Vandermonde matrices

V0 =
(
cj−1i

)
, V1 =

(
(ci − 1)j−1

)
, i, j = 1, . . . , s, (10)

and the diagonal matrices C = diag(c1, c2, . . . , cs), D = diag(1, 2, . . . , s), the condi-
tions for having stage order s with the implicit method (4) are

CV0 − P (C − I)V1 −QV1D −RV0D = 0 . (11)

Since V1 and D are regular, we have the relation

Q = (CV0 − P (C − I)V1 −RV0D)(V1D)−1 , (12)
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showing that Q is uniquely defined by the choice of P , R, and the node vector c.

Stability. Applying the implicit method (4) to Dahlquist’s test equation y′ = λy
with λ ∈ C, gives the following recursion for the approximations wn:

wn = (I − zR)−1(P + zQ)wn−1 =: Mim(z)wn−1 (13)

with z :=λ4t. Hence, wn = Mim(z)nw0. The matrix P =Mim(0) should be power
bounded to have stability for the trivial equation u′(t) = 0. This requirement of
zero-stability is enforced by Schmitt, Weiner et. al by taking P such that one eigen-
value equals 1 (due to pre-consistency) and the others are 0. Such methods are
called optimally zero-stable. We will also look at methods that are A-stable, i.e.,
the spectral radius of Mim(z) satisfies ρ(Mim(z)) ≤ 1 for all z ∈ C with Re(z) ≤ 0.
Since Mim(∞)=R−1Q with Q 6= 0, A-stability does not imply L-stability. To guar-
antee good damping properties for very stiff problems, we will aim at having a small
spectral radius of R−1Q.

Super-convergence. We are interested in using the degrees of freedom provided
by the free parameters in P , R, and c to have convergence with order p = s + 1
without raising the stage order further. This is discussed under the heading super-
convergence in the book of Strehmel, Weiner and Podhaisky [15, Sect. 5.3] for non-
stiff problems. It is related to the definition of order of consistency for general linear
methods as given in [5, Sect. III.8]. Similar results for stiff systems can be found in
[6]. According to the last paper, we will slightly modify the usual criterion for having
an extra order of convergence for Peer methods to later construct super-convergent
IMEX-Peer methods based on extrapolation.

Let εn=w(tn)−wn be the global error. Under the standard stability assumption,
where products of the transfer matrices are bounded in norm by a fixed constant K
(see, e.g., Theorem 2 in [14]), we get the estimate ‖εn‖ ≤ K(‖ε0‖+‖r1‖+. . .+‖rn‖).
Together with stage order s, this gives the standard convergence result

‖εn‖ ≤ K‖ε0‖+4tstnK‖ds+1‖∞ max
0≤t≤tn

‖u(s+1)(t)‖+O(4ts+1) . (14)

Then we have the following

Theorem 2.1. Assume the implicit Peer method (4) has stage order s and estimate
(14) holds true for the global error. Then the method is convergent of order p= s.
Furthermore, if ds+1 ∈ range (I − P ) and the initial values are of order s+ 1, then
the order of convergence is p=s+ 1.

Proof: The first statement follows directly from (14). Suppose that ds+1 = (I −P )v
with v ∈ Rs, and let

w̄(tn) := w(tn)−4ts+1v ⊗ u(s+1)(tn) . (15)
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Insertion of these modified solution values in the scheme (4) will give modified local
errors

r̄n = w̄(tn)− Pw̄(tn−1)−4tQF (w̄(tn−1))−4tRF (w̄(tn))

= rn −4ts+1ds+1 ⊗ u(s+1)(tn) +O(4ts+2) ,
(16)

which, due to (8), reveals r̄n=O(4ts+2). For ε̄n = w̄(tn)−wn this yields, in the same
way as above, ‖ε̄n‖ ≤ K‖ε0‖+O(4ts+1). Since ‖ε̄n−εn‖ ≤ 4ts+1‖v‖∞‖u(s+1)(tn)‖
and ‖ε0‖ = O(4ts+1), this shows order s+1 convergence for the global errors εn. �

Recall that the range of I − P consists of the vectors that are orthogonal to the
null space of I−P T . If the method is zero-stable, then this null space has dimension
one. So up to a constant there is a unique vector v ∈ Rs such that (I − P T )v = 0.
Then we have

ds+1 ∈ range (I − P ) iff vTds+1=0 . (17)

We fix v by vT e= 1 and set P = evT to ensure pre-consistency (Pe = e), optimal
zero-stability and (I − P T )v = 0. In this way, P is determined by the vector v,
which has to satisfy the conditions

vT e = 1 and vTds+1 = 0 (18)

to achieve super-convergence of order s+1.
A closer inspection of the global error εn reveals that the condition P jds+1 = 0 for

all j ≥ s−1 is also an appropriate way to construct super-convergent Peer methods.
This approach has been used by Schmitt, Weiner et al. [11, 16] for explicit and
implicit schemes. There is a strong relation to (17), which can be stated in the
following

Theorem 2.2. (1) Let P jds+1 = 0 for all j ≥ s − 1 and eig(P ) = {1, λ2, . . . , λs}
with |λi| < 1, i = 2, . . . , s, i.e., the Peer method is zero-stable. Then, ds+1 lies in the
range of I−P . (2) Suppose ds+1 lies in the range of I−P and eig(P ) = {1, 0, . . . , 0},
i.e., the Peer method is optimally zero-stable. Then P jds+1 = 0 for all j ≥ s− 1.

Proof: Due to the spectra of P in both cases, there is a regular matrix S such that

P = S−1
(

1 0
0 J

)
S =: S−1P̂S , (19)

where J ∈ R(s−1)×(s−1) consists of certain Jordan blocks. (1) Using this form, the
assumption on powers of P reads S−1P̂ jSds+1 = 0 for j ≥ s− 1, from which follows
that the first component of the vector Sds+1 vanishes. Then, the solvability of the
equation (I−P )x = S−1(I− P̂ )Sx = ds+1 reduces to the question whether Is−1−J
with Is−1 being the unit matrix in R(s−1)×(s−1) is invertible. This is indeed the case,
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since it is an upper triangular matrix with values 1 − λi 6= 0, i = 2, . . . , s on the
diagonal. (2) In this case, the assumption gives the existence of an x ∈ Rs such that
(I−P )x = ds+1. Using (19), we have (I− P̂ )Sx = Sds+1, which shows that the first
component of the vector Sds+1 vanishes. Since I − P̂ is a strictly upper diagonal
matrix, we deduce P jds+1 = S−1diag(1, 0, . . . , 0)Sds+1 = 0 for j ≥ s− 1. �

Remark 2.1. The second statement in Theorem 2.2 does not hold, if the Peer
method is zero-stable, but not optimally zero-stable. In this case, there exist super-
convergent Peer methods which do not satisfy the conditions P jds+1 = 0 for all
j ≥ s− 1. An example is the new IMEX-Peer4s method constructed in Section 3.

2.2 Extrapolation

In [9], Lang and Hundsdorfer have applied extrapolation to an implicit method of
the form (4) with Q=0 and order s to find a related explicit method and eventually
construct IMEX-Peer methods of order s with good stability properties. This pro-
cedure is well-known from linear multistep methods, see for instance Crouzeix [3]
or the review in the book of Hundsdorfer and Verwer [8, Sect. IV.4.2]. It was also
used by Cardone, Jackiewicz, Sandu, and Zhang [2] to construct implicit-explicit
diagonally implicit multistage integration methods. Here, we will extend this extra-
polation idea to obtain super-convergent IMEX-Peer methods of order s+1, where
the implicit method is A-stable and the stability region of the overall method is
optimised.

Starting with an implicit method (4), where all approximations wn,j have order
s, we can obtain a corresponding explicit method by extrapolation of F (wn) with
order s. Using wn−1 and most recent values wn,j , j = 1, . . . , i − 1, available in the
ith-stage with 1 < i < s, gives

F (wn) = S1F (wn−1) + S2F (wn) +O(4ts) , (20)

where the extrapolation coefficients are collected in the s×s-matrices S1 and S2.
Note that S2 is strictly lower triangular. Applied in (4), this leads to an explicit
method of the form

wn = Pwn−1 +4tQ̂F (wn−1) +4tR̂F (wn) , (21)

with Q̂ = Q+RS1 and the strictly lower triangular matrix R̂ = RS2, since R is lower
triangular. In what follows, we discuss properties and the issue of super-convergence
for this explicit method.

Accuracy. With exact values F (w(tn)) ∈ Vs, the residual-type error vector for the
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extrapolation can be expanded by Taylor series at tn:

δn = F (w(tn))− S1F (w(tn−1))− S2F (w(tn))

=
∑
j≥0

1

j!

(
(I − S2)cj − S1(c− e)j

)
⊗ dj

dtj
F (u(tn))4tj . (22)

The conditions for order s read

(I − S2)cj − S1(c− e)j = 0, 0 ≤ j ≤ s− 1 , (23)

which can be reformulated to S1 = (I − S2)V0V −11 . Thus, the choice of a strictly
lower triangular S2 determines S1.

Using the expression for δn, the conditions for stage order s of the implicit
method, and (23), we derive for the residual-type local error of the explicit method
(21) the form

rn = 4ts+1 (ds+1 +R ls)⊗ u(s+1)(tn) +O(4ts+2) (24)

with

ls =
1

s!
((I − S2)cs − S1(c− e)s) . (25)

Thus, by construction, all the stages have again order s, at least, so (21) is an ex-
plicit Peer method.

Super-convergence. First, we proceed as for the implicit method under the stan-
dard stability assumption. With stage order s of the implicit method (4) and order s
of the extrapolation in (20), we analogously get the convergence result for the global
error of the explicit method defined in (21),

‖εn‖ ≤ K‖ε0‖+4tstnK‖ds+1 +R ls‖∞ max
0≤t≤tn

‖u(s+1)(t)‖+O(4ts+1) . (26)

Then we have the following

Theorem 2.3. Assume the implicit Peer method (4) has stage order s, conditions
(23) for the extrapolation are satisfied, and estimate (26) holds true for the global
error. Then the explicit Peer method (21) is convergent of order p=s. Furthermore,
if (ds+1 + R ls) ∈ range (I − P ) and the initial values are of order s + 1, then the
order of convergence is p=s+ 1.

Proof: The first statement follows directly from (26). Replacing ds+1 by ds+1 +R ls
in the proof of Theorem 2.1 gives the desired result. �

With this result, we can conclude, in the same way as above for the implicit
method, that super-convergence is achieved if

vT (ds+1 +R ls) = 0 with v ∈ Rs such that (I − P T )v = 0 . (27)

If the implicit Peer method is already super-convergent, this simplifies to vTR ls=0.
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2.3 Super-convergent IMEX-Peer methods

Combining the related implicit and explicit methods (4) and (21) yields an IMEX
method for systems of the form

u′(t) = F0(u(t)) + F1(u(t)) , (28)

where F0 will represent the non-stiff or mildly stiff part, and F1 gives the stiff part
of the equation. The resulting IMEX scheme is

wn = Pwn−1 +4tQ̂F0(wn−1) +4tR̂F0(wn) +4tQF1(wn−1) +4tRF1(wn), (29)

where the extrapolation is used only on F0. Here, Q̂ = Q + RS1 and R̂ = RS2.
For non-stiff problems, this IMEX method will have order s for any decomposition
F = F0 + F1. However, for stiff problems it should be required that the derivatives
of ϕk(t) = Fk(u(t)), k = 0, 1, are bounded by a moderate constant which is not
affected by the stiffness parameters, such as the spatial mesh width h for semi-
discrete systems obtained from PDEs.

With exact solution values u(tn,i), standard local consistency analysis for the
IMEX-Peer method (29) gives for the residual-type local errors

rn = Eim +4tREex +O
(
4ts+2

)
, (30)

with

Eim = 4ts+1ds+1 ⊗ u(s+1)(tn) and Eex = 4tsls ⊗
ds

dts
F0(u(tn)) . (31)

Therefore, by standard convergence arguments, we have the following

Theorem 2.4. Let the s-stage implicit Peer method (4) with coefficients (c, P,Q,R),
Q defined in (12), be zero-stable and suppose its stage order is equal to s. Let the
initial values satisfy w0,i−u(t0+ci4t) = O(4ts), i = 1, . . . , s. Then the IMEX-Peer
method (29) with R̂ = RS2 and Q̂ = Q + R(I − S2)V0V −11 is convergent of order s
for constant step size and arbitrary strictly lower triangular matrix S2.

Combining the requirements for super-convergence of order s + 1 stated above
for the explicit and implicit Peer methods we have

Theorem 2.5. Let the assumptions of Theorem 2.4 be fulfilled and the IMEX-
Peer method (29) be convergent of order s. If the initial values are of order s + 1,
ds+1 ∈ range (I−P ) and R ls ∈ range (I−P ), then the order of convergence is s+1.

Proof: Suppose ds+1 = (I − P )vd and R ls = (I − P )vl with vd, vl ∈ Rs, and let

w̄(tn) = w(tn)−4ts+1vd ⊗ u(s+1)(tn)−4ts+1vl ⊗
ds

dts
F0(u(tn)) . (32)
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Inserting these values in (29) gives the modified residual-type local errors

r̄n = w̄(tn)− Pw̄(tn−1)−4tQ̂F0(w̄(tn−1))−4tR̂F0(w̄(tn))

−4tQF1(w̄(tn−1))−4tRF1(w̄(tn)) ,
(33)

which can be rearranged to

r̄n = w̄(tn)− Pw̄(tn−1)−4tQF (w̄(tn−1))−4tRF (w̄(tn))

+4tR (F0(w̄(tn))− S1F0(w̄(tn−1))− S2F0(w̄(tn))) .
(34)

Taylor expansions gives

r̄n = rn −4ts+1ds+1 ⊗ u(s+1)(tn)−4ts+1R ls ⊗
ds

dts
F0(u(tn)) +O(4ts+2) (35)

with rn as defined in (30). This shows r̄n = O(4ts+2). Then, the same arguments
as in the proof of Theorem 2.1 give convergence of order s+ 1 for the global errors
εn = w(tn)− wn. �

Let ds+1 ∈ range (I −P ) and R ls ∈ range (I −P ). Then, with the unique vector
v ∈ Rs such that (I − P T )v = 0 and vT e = 1 it holds

y ∈ range (I − P ) iff vT y = 0 (36)

with y = ds+1, R ls. Setting P = evT , we enforce pre-consistency, optimal zero-
stability and (I − P T )v = 0. Furthermore, P is fully determined by the vector v.
We will use this simplifying construction to find suitable super-convergent IMEX-
Peer methods for s = 2, 3. To enrich the space of suitable matrices P for s = 4, we
only request zero-stability and follow the approach discussed in Theorem 2.5 with
ds+1, R ls ∈ range(I − P ) to achieve super-convergence.

2.4 Stability of IMEX-Peer methods

In order to discuss stability properties of the IMEX-Peer method (29), we consider
the split scalar test equation

y′(t) = λ0y(t) + λ1y(t), t ≥ 0, (37)

with complex parameters λ0 and λ1. Applying an IMEX-Peer method to (37) gives
the recursion

wn+1 = (I − z0RS2 − z1R)−1(P + z0Q+ z0RS1 + z1Q)wn =: M(z0, z1)wn (38)

with zi = hλi, i = 0, 1. Therefore, stability is ensured if

ρ(M(z0, z1)) < 1. (39)
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The stability regions of the IMEX-Peer method for α ∈ [0, 12π] are defined by the
sets

Sα = {z0 ∈ C : (39) holds for any z1 ∈ C with |Im(z1)| ≤ − tan(α) · Re(z1)} (40)

in the left-half complex plane. Further, we define the stability region of the corre-
sponding explicit method as

SE = {z0 ∈ C : ρ(M(z0, 0)) < 1} (41)

with the stability matrix M(z0, 0) = (I − z0RS2)−1(P + z0Q + z0RS1). Efficient
numerical algorithms to compute Sα and SE are extensively described in [2, 9].

Since Sα ⊂ SE , the goal is to construct IMEX-Peer methods for which SE is
large and SE\Sα is as small as possible for angles α that are close to π/2. In what
follows, we will use the additional degrees of freedom provided by introducing the
terms 4tQF (wn−1) in the implicit method to construct super-convergent IMEX-
Peer methods with a non-empty stability region Sπ/2, i.e., the underlying implicit
Peer method is A-stable.

3 Construction of Super-Convergent IMEX-Peer Meth-
ods Based on Extrapolation

We will first summarize the conditions on the methods’ coefficients derived in the pre-
vious sections and give a procedure for the construction of super-convergent IMEX-
Peer methods with favourable stability properties for s = 2, 3, 4.

Implicit method. An s-stage implicit Peer method is determined by the coefficient
matrices P,Q,R ∈ Rs×s, and the node vector c ∈ Rs. We look for singly diagonally
implicit methods, i.e., R is taken to be lower triangular with a constant γ > 0 on
the diagonal. Stage order s is imposed through, see (12),

Q = (CV0 − P (C − I)V1 −RV0D)(V1D)−1 . (42)

The matrix P is chosen such that the method is pre-consistent, (optimally) zero-
stable, and super-convergent. More precisely, we set

(1) P = evT with v ∈ Rs and vT e = 1 for s = 2, 3,

(2) P such the method is zero-stable for s = 4.

In both cases, super-convergence is obtained by satisfying vTds+1 = 0 with ds+1

defined in (9) and v such that (I − P T )v = 0. Note that the special choice of P
in (1) yields an optimally zero-stable method, whereas for case (2) the property of
zero-stability has to be incorporated in the search algorithm. We were not able to
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IMEX-Peer2s, s = 2, optimally zero-stable

c1 0.591977499693304 p11 −1.082167419515352
c2 1.000000000000000 p12 2.082167419515352
γ 0.969486340522434 p21 −1.082167419515352
r21 −1.007885680522306 p22 2.082167419515352
s21 0.819167640511257

IMEX-Peer3s, s = 3, optimally zero-stable

c1 0.173922498101250 p11 −0.516269158723393
c2 0.584759944717930 p12 2.301256858880021
c3 1.000000000000000 p13 −0.784987700156628
γ 0.456150901216430 p21 −0.516269158723393
r21 0.271188675194957 p22 2.301256858880021
r31 0.099808771568803 p23 −0.784987700156628
r32 0.395734854902157 p31 −0.516269158723393
s21 1.500000000000000 p32 2.301256858880021
s31 0.204731875658678 p33 −0.784987700156628
s32 1.320000000000000

IMEX-Peer4s, s = 4, zero-stable

c1 −0.926697334544583 p11 0.164346920652337
c2 0.180751924024702 p12 1.941408294648193
c3 0.850343633101352 p13 −2.764059964877189
c4 1.000000000000000 p14 1.658304749576660
γ 0.413154106969917 p21 0.424734281438207
r21 1.186201415903827 p22 1.133423589655944
r31 1.327861645060559 p23 −0.792340606563880
r32 0.525143168803633 p24 0.234182735469729
r41 1.324984727912657 p31 0.562642125818718
r42 0.576558985833141 p32 0.131525283967289
r43 0.071014878172581 p33 2.162128869126546
s21 3.884803988586850 p34 −1.856296278912553
s31 −3.053336552626494 p41 0.589388877693458
s32 2.821635541838257 p42 −0.169092459871472
s41 −3.555025951383727 p43 3.071031564759426
s42 2.895140468767150 p44 −2.491327982581412
s43 0.162040780709875

Table 1: Coefficients of the super-convergent s-stage IMEX-Peer methods
IMEX-Peer2s, IMEX-Peer3s, and IMEX-Peer4s for s = 2, 3, 4 with S2 = (sij).

find suitable methods within the setting (1) for s = 4. Further, for the nodes ci ∈ R,
we use ci ∈ (0, 1] for s = 2, 3 and ci ∈ (−1, 1] for s = 4.
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Explicit method. The extrapolation is uniquely defined by the choice of the
matrices S1 and S2 in (20). Order s is guaranteed by setting, see (23),

S1 = (I − S2)V0V −11 . (43)

So the entries of S2 ∈ Rs×s are free parameters. Super-convergence is obtained by
satisfying vTR ls = 0 with ls defined in (25) and v such that (I − P T )v=0.

IMEX- α |Sα| xmax ρ(R−1Q) |SE | ymax cim cex

Peer2s 90.0◦ 2.15 −1.41 1.28 10−1 4.47 1.21 2.37 10−1 3.23 10−1

Peer3s 90.0◦ 2.67 −1.58 5.52 10−1 6.11 1.69 1.24 10−1 1.68 10−1

Peer4s 90.0◦ 1.07 −1.45 5.42 10−1 4.39 1.00 6.42 10−2 1.17 10−1

Peer2 90.0◦ 7.44 −4.86 0.00 8.53 0.40 7.05 10−2 2.78 10−1

Peer3 86.1◦ 8.28 −3.07 0.00 10.68 1.78 8.20 10−3 3.58 10−2

Peer4 83.2◦ 4.64 −3.57 0.00 9.36 1.90 3.43 10−4 4.27 10−3

Peer3a 90.0◦ 2.87 −1.69 1.60 10−3 5.19 1.75 1.46 10−1 1.90 10−1

Peer4a 90.0◦ 2.65 −1.73 1.24 10−1 3.53 1.15 8.97 10−2 1.41 10−1

Table 2: Size of stability regions Sα and SE , xmax at the negative real axis, ymax at
the positive imaginary axis, spectral radius of R−1Q, and error constants cim = |ds+1|
and cex = |R ls| for IMEX-Peer methods with s = 2, 3, 4, including those from [9, 13].

Construction principles. We start with the search for a super-convergent implicit
Peer method along the following design criteria:

A-stability, ρ(R−1Q) is close to zero, ‖P‖F , ‖Q‖F , ‖R‖F , |ds+1| are small.

This is done using the Matlab-routine fminsearch, where we include the desired
properties in the objective function and use random start values for the remaining
degrees of freedom. Different combinations of weights in the objective function
are employed to select promising candidates which are then used for a subsequent
extrapolation. The latter aims at finding parameters in S2 such that we have the
following properties:

large stability regions SE and Sπ/2, ‖S1‖F , ‖S2‖F , |R ls| are small.

Again fminsearch is used with different combinations of weights in the objective
function. Following this approach, we have found new super-convergent IMEX-Peer
methods for s = 2, 3, 4. The methods’ coefficients for c, P,R and S2 = (sij) are given
in Table 1.
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Figure 1: Stability regions Sα (black line), Sβ for β = 75◦, 60◦, 45◦, 30◦, 15◦

(blue lines), and S0 (red line) for IMEX-PEER-methods with s = 2, 3, 4 (left
to right).

The resulting values for the stability regions Sα and SE as well as other constants
are collected in Table 2. For comparison, we also show the values for the IMEX-
Peer methods tested in [9] (IMEX-Peer2, IMEX-Peer3, IMEX-Peer4) and in [13]
(IMEX-Peer3a, IMEX-Peer4a), where IMEX-Peer-3a is nearly super-convergent in
the implicit part. It can be observed that super-convergence comes with (i) smaller
stability regions and (ii) significantly larger error constants for higher order. How-
ever, the convergence is one order higher and A-stability of the implicit method
pays off for problems with eigenvalues on the imaginary axis as can be seen from our
numerical experiments. More details on the stability regions are shown in Figure 1.
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Figure 2: Prothero-Robinson Problem: Scaled maximum errors at T = 5 vs. time
step sizes. Comparison of IMEX-Peer methods. The convergence orders derived from
a least squares fit are: 1.95, 2.94, 2.99, 3.14, 4.00, 3.94, 3.68, 5.21 (top to bottom).

4 Numerical Experiments

4.1 Prothero-Robinson Problem

In order to study the rate of convergence under stiffness, we consider the Prothero-
Robinson type equation used in [13],

y′ =

(
0

y1 + y2 − sin(t)

)
+

(
−106(y1 − cos(t)) + 103(y2 − sin(t))− sin(t)

0

)
, (44)

where t ∈ [0, 5]. The first term is treated explicitly and the second implicitly. Initial
values are taken from the analytic solution y(t) = (cos(t), sin(t)). The error of the
approximate solution Y is calculated at the final time T =5 in the scaled maximum
norm, i.e., err = maxi=1,2 |Yi− yi|/(1 + |yi|). The values for 4t = 5/(100 + 60i), i =
0, . . . , 8 are shown in Figure 2.

All methods show their theoretical order of convergence quite nicely. The smaller
error constants of the IMEX-Peer(s) methods for s = 3, 4 compared to the super-
convergent IMEX-Peer methods with the same order are also visible.
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4.2 Linear Advection-Reaction Problem

A second PDE problem for accuracy test is a linear advection-reaction system from
[7]. The equations are

∂tu+ α1 ∂xu = −k1u+ k2v + s1 , (45)

∂tv + α2 ∂xv = k1u− k2v + s2 (46)

for 0 < x < 1 and 0 < t ≤ 1, with parameters

α1 = 1, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1,

and with the following initial and boundary conditions:

u(x, 0) = 1 + s2x, v(x, 0) =
k1
k2
u(x, 0) +

1

k2
s2, u(0, t) = 1− sin(12t)4 .

Note that there are no boundary conditions for v since α2 is set to be zero.
Fourth-order finite differences on a uniform mesh consisting of m = 400 nodes

are applied in the interior of the domain. At the boundary we can take third-order
upwind biased finite differences, which here does not affect an overall accuracy of
four [7] and gives rise for a spatial error of 1.5 · 10−5.

In the IMEX setting, the reaction is treated implicitly and all other terms explic-
itly. Accurate initial values are computed by the variable step-size code ode15s with
high tolerances. We have used step sizes 4t = (4.0, 2.0, 1.0, 0.5, 0.25, 0.1, 0.05) · 10−3

and compared the numerical values at the final time T = 1 with an accurate refer-
ence solution in the l2-vector norm (‖v‖2 =

∑
i v

2
i ) as used in [9]. The results are

plotted in Figure 3.
All methods show their theoretical orders, but the larger error constants of the

super-convergent IMEX-Peer schemes compared to the IMEX-PEER(s) family are
again apparent. The 3−stage methods and IMEX-Peer4 still deliver satisfactory
results for the largest time step, 4t = 4 · 10−3, whereas the others fail. The similar
asymptotic behaviour for the higher-order methods show an order reduction for
smaller time steps, which was also observed in [7] as an inherent issue for very high-
accuracy computations. However, this effect appears on a level far below the spatial
discretization error.

4.3 Nonlinear Two-Dimensional Gravity Waves

This problem is taken from [13]. Let u(x, z) be the velocity of the gravity waves
with x and z denoting the horizontal and vertical coordinates in m, respectively.
The gravity waves are generated by a localized region of a non-divergent forcing in
a stratified shear flow. The horizontal background wind (in m/s) is given by

u0(z) = 5 +
z

1000
+ 0.4

(
5− z

1000

)(
5 +

z

1000

)
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Figure 3: Advection-Reaction-Problem: l2-errors at T = 1 of the total concentration
vs. time step sizes, m = 400. Comparison of IMEX-Peer methods. Results that
correspond to failures or unstable numerical solutions are not shown.

and the waves are forced by the curl of a non-divergent stream function (in m2/s)

ψ(x, z, t) = ψ0

(
πx

Lx

)
sin(ωt) exp

[
−
(
πx

Lx

)2

−
(
πz

Lz

)2
]
.

The physical parameters used are ψ0 = 80m2/s, Lx = 10 ·103m and Lz = 2.5 ·103m.
The governing system of equations read

Du

Dt
+
∂P

∂x
= −∂ψ

∂z
+
u0(z)− ū(z, t)

τ
, (47)

Dw

Dt
+
∂P

∂z
= b+

∂ψ

∂x
, (48)

Db

Dt
+N2w = 0, (49)

DP

Dt
+ c2s

(
∂u

∂x
+
∂w

∂z

)
= 0 , (50)

with horizontally averaged mean flow ū, x ∈ [−150·103, 150·103], z ∈ [−5·103, 5·103]
and t ∈ [0, 3000]. The constants are

ω = 0.005 1/s, N = 0.02 and cs = 350 m/s (speed of sound).
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Figure 4: Nonlinear Two-Dimensional Gravity Waves: Scaled maximum errors at
T = 3000 taken over all system components vs. time step sizes. Comparison of
IMEX-Peer methods.

For the spatial discretization, we set

δnxf(x) =
f(x+ n∆x/2)− f(x− n∆x/2)

n∆x
,

〈f(x)〉nx =
f(x+ n∆x/2) + f(x− n∆x/2)

2
,

ψx =
ψ(x+ ∆x, z, t)− ψ(x, z, t)

∆x
,

ψz =
ψ(x, z + ∆z, t)− ψ(x, z, t)

∆z
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and obtain the semi-discretized system of ODEs

∂u

∂t
+

1

2
δ2x(u2) + 〈〈w〉xδzu〉z −

u0(z)− ū(z, t)

τ
+ ψz +K∆hu = −δxP (51)

∂w

∂t
+ 〈〈u〉zδxw〉x +

1

2
δ2z(w

2)− ψx +K∆hw = −δzP + b (52)

∂b

∂t
+ 〈〈u〉zδxb〉x + 〈〈w〉zδzb〉z +K∆hb = −N2w (53)

∂P

∂t
+ 〈uδxP 〉x + 〈wδzP 〉z = −c2s(δxu+ δzw),

(54)

where K = 4.69 · 10−4 1/s. We add a fourth-derivative hyper-diffusion term

∆h :=
(
(∆xδx)2 + (∆zδz)

2
)2

to prevent nonlinear instability and to impose a simple parametrization of turbulent
mixing. In our calculation, we have used mx = 100 and mz = 100 nodes for the
spatial grid. This yields as system of dimension 39800. A reference solution is
computed by Matlab’s ode15s with high precision atol=rtol=5 · 10−12. For more
details, we refer to [13], see also [4].

We identify the right hand side of (51)–(54) as the stiff part of the ODE system,
which is treated implicitly. The eigenvalues of its Jacobian are λ ≈ {0, 0, 35i,−35i}.
This especially shows that A-stability is necessary for a stable computation of the
gravity waves. It also explains why the methods IMEX-Peer3 and IMEX-Peer4 [9]
with α < π/2, i.e., the implicit method is not A-stable, fail for this problem and are
not shown in Figure 4. We have used step sizes4t = 60, 30, 15, 7.5 and compared the
numerical values at the final time T = 3000 with an accurate reference solution yref
in the scaled maximum norm, i.e., we set err = maxi=1,...,n |yi− yref,i|/(1 + |yref,i|),
see Figure 4.

The super-convergent IMEX-Peer2s clearly shows its additional order. IMEX-
Peer3s and (the nearly super-convergent) IMEX-Peer3a deliver almost identical re-
sults due to their similar error constants, whereas super-convergence can be only
observed for larger time steps. Both 4-stage IMEX-Peer methods show an unpre-
dictable behaviour, but give the smallest errors. Similar results are presented in
[13].

5 Conclusion

We have developed a new family of s-stage IMEX-Peer methods, applying the idea
of extrapolation from [2, 9] to a broader class of implicit Peer methods which also
include function values from the previous step. These additional degrees of freedom
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allow the construction of super-convergent IMEX-Peer methods of order s+1 with
A-stable implicit part. A-stability is important to solve problems with function con-
tributions that have large imaginary eigenvalues in the spectrum of their Jacobians.
We analysed the property of super-convergence and gave sufficient conditions for it.
These conditions are motivated by the definition of order of consistency for general
linear methods and are more general as those commonly used in the Peer literature.
Linear stability properties were carefully examined to derive new super-convergent
s-stage IMEX-Peer methods with order p= s+1 for s= 2, 3, 4. We employed the
Matlab-routine fminsearch with varying objective functions and starting values to
find suitable methods with sufficiently large stability regions and small error con-
stants. However, the new properties, super-convergence and A-stability, go along
with significantly smaller stability regions and larger error constants, compared to
the IMEX-Peer methods from [9].

In a detailed comparison with recently proposed IMEX-Peer methods in [9, 13],
the new methods showed their super-convergence property and performed better
in many cases. They gave equally well results for a two-dimensional gravity wave
problem used in [13] to demonstrate the importance of A-stability of the implicit
part, whereas the higher-order methods from [9] failed due to their lack of this
property. In future work, we will extend our construction principles to variable step
size sequences with local error control.
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