UNIQUENESS OF MARKET EQUILIBRIA
ON NETWORKS WITH TRANSPORT COSTS

VANESSA KREBS, MARTIN SCHMIDT

ABsTrACT. We study the existence and uniqueness of equilibria for perfectly
competitive markets in capacitated transport networks. The model under
consideration is rather general so that it captures basic aspects of related models
in, e.g., gas or electricity networks. We formulate the market equilibrium model
as a mixed complementarity problem and show the equivalence to a welfare
maximization problem. Using the latter we prove uniqueness of the resulting
equilibrium for piecewise linear and symmetric transport costs under additional
mild assumptions. Moreover, we show the necessity of these assumptions by
illustrating examples that possess multiple solutions if our assumptions are
violated.

1. INTRODUCTION

We consider perfectly competitive markets upon capacitated networks, where
transport costs are modeled using piecewise linear and symmetric cost functions.
In this setting, we prove uniqueness of market equilibria under mild assumptions.
Our motivation is the following. On the one hand, uniqueness of market equilibria
is a classical topic of mathematical economics by itself. On the other hand, our
model including a networked transport infrastructure has important applications
in the areas of, e.g., electricity and gas markets. Furthermore, uniqueness of
equilibria of such models is an important prerequisite for studying more complicated,
e.g., multilevel, market models; see, e.g., Daxhelet and Smeers (2001), Grimm,
Griibel, et al. (2017), Grimm, Kleinert, et al. (2017), Grimm, Martin, et al. (2016),
Hobbs, Metzler, et al. (2000), Hu and Ralph (2007), and Kleinert and Schmidt
(2018) for multilevel models in electricity markets as well Grimm, Griibel, et al.
(2017) and Grimm et al. (2017a) for multilevel models of gas markets. Most of the
above mentioned papers abstract from transport costs. However, there also exist
equilibrium models including transport costs on networks. These are mainly studied
in the context of imperfect competition in gas markets, cf., e.g., Cremer, Gasmi,
et al. (2003) and Cremer and Laffont (2002). For an application in the electricity
sector, see Paz (2015) or Hobbs and Rijkers (2004) for a more general study. In
addition to the fields of gas and electricity, one might also think of other networked
transport structures like they appear in water or traffic networks. However, these
fields are somehow different. In traffic networks the classical concept of equilibria is
the Wardrop equilibrium, cf. Wardrop (1952) and Wardrop and Whitehead (1952),
which differs from the equilibria yielding market clearing prices in our context.
Finally, in the context of water networks, the techno-economic literature focuses on
different issues like market power and institutional constraints due to the complex
nature of water rights; cf., e.g., Chakravorty et al. (2009).
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Our contribution is in line with the papers by Grimm et al. (2017b) and Krebs
et al. (2017). The former proves uniqueness of long-run market equilibria using a
network flow transport model as we do in our paper. The latter considers uniqueness
and multiplicity of solutions in the context of short-run market models using DC
power flows. However, both analyses do not cover transport costs, which are
part of many realistic models for electricity or gas markets that also consider the
corresponding network infrastructure—see the literature cited above. Moreover,
none of these papers considers uniqueness of equilibria. In contrast, we analyze
perfectly competitive markets and prove uniqueness of the resulting equilibria.

2. MARKET EQUILIBRIUM MODELING

We consider transport networks that we model by using connected and finite
digraphs G = (N, A) with node set N and arc set A. Subsequently, all player models
of our overall market model are stated. Since we consider perfectly competitive
markets, all players are price takers and their optimization problems are formulated
using exogenously given market prices m, at every node u € N.

The first type of players are producers. We assume that there exists exactly
one producer at each node v € N, which we model by a fixed generation capacity
Yy > 0 and variable production costs w, > 0. Production at node u is denoted by
Yy > 0 and is bounded from above by the generation capacity. The objective of the
producer is to maximize its profit and, thus, its linear optimization problem reads

n;ax (T — W) Yu St 0 < yy < T
Its solutions are characterized by the corresponding Karush-Kuhn-Tucker (KKT)
conditions

where BT are the dual variables of the production constraints. Here and in what
follows, we use the standard |-notation, which abbreviates

0<alb>0 < a,b>0, ab=0.

Consumers, as our second players, are also located at the nodes v € N and decide
on their demand d, > 0. Their demand elasticity is modeled by inverse demand
functions p,, : R>¢9 — R, for which we make the following assumption.

Assumption 1. All inverse demand functions p,, uw € N, are strictly decreasing
and continuously differentiable.

Under Assumption 1 the concave problem of a surplus maximizing consumer at
node u is given by

dy
max / pu(x)da — mud, st. 0<d,
u 0

and its again necessary and sufficient first-order optimality conditions comprise
pu(dy) — 7y + @, =0, 0<d, L, >0, (2)

where o, is the dual variable of the lower demand bound.

The third player in our market model is the transport system operator (TSO). He
operates the transport network, in which every arc a € A is described by its lower
and upper capacities f; and f;” and by its transport cost function ¢, : R — R>g.
In what follows we assume that all transport cost functions ¢,, a € A, are convex.
The goal of the TSO is to control the arc flows f,, a € A, such that the transport is
realized from low- to high-price regions and the earnings to be maximized result
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from the corresponding price differences; cf., e.g., Hobbs and Helman (2004) for the
case of electricity networks. Thus, the convex problem of the TSO reads

m?X Z (771) - ﬂ'U)fa - Ca(fa) (3&)
’ a=(u,v)EA
st. fo <fa<fH o acA (3b)

Here and in what follows, a variable without index denotes the vector containing
all corresponding node or arc variables, e.g., f := (fa),c 4 - Constraints (3b) reflect
the network’s capacities and have the dual variables 635. The optimality conditions
of (3) are given by

o — Tuw — Co(fa) +0, =05 =0, a=(u,v) € A,
0< fo—f, Lo, >0, a€A, (4)
0< ff—f.L6F>0, acA.
Putting all first-order optimality conditions as well as the flow balance conditions
O=dy=tut+ D, fo— D, fao weN, (5)
a€sout (u) acsin(u)
together, we obtain the mixed complementarity problem (MCP)
Producers: (1), Consumers: (2), TSO: (4), Market Clearing: (5). (6)

This MCP models the considered market for the case of perfect competition. Hence,
solutions of (6) are market equilibria. It can be easily seen that this complementarity
system is equivalent to the welfare maximization problem

dy
D Dl AEVCTEED SEFIED SPATA (7a)

ueEN ueN acA
st. 0<y, <@y, UEN, (7h)
0<d,, u€N, (7c)
fo Sfa<[fd, a€A, (7d)
Ozdu_yu"" Z fa_ Z fa7 UEN~ (76)
a€dout (u) a€din (u)

Here we use the standard dé-notation for the in- and outgoing arcs of a node
u € N, ie., 6(u) := {(v,u) € A} and §°"*(u) := {(u,v) € A}. The mentioned
equivalence can be shown by comparing the first-order optimality conditions of
Problem (7) with the MCP (6) and by identifying the dual variables ~, of the flow
balance constraints (7e) with equilibrium prices 7, of the complementarity problem.
Furthermore, we use the fact that the KKT conditions are again necessary and
sufficient optimality conditions of Problem (7) under Assumption 1. The equivalence
between the optimization problem (7) and the MCP (6) now allows us to consider
Problem (7) in order to obtain results for the MCP (6). This is exactly the road that
we follow in order to prove the uniqueness of the equilibrium of (6). By doing so,
we remark one structural difference between these two versions of the same problem.
In the MCP formulation we consider nodal prices m, to be given exogenously. In
this setting the question then is whether there exists (an unique) equilibrium, i.e., a
solution of (6). On the other hand, solving the welfare maximization problem (7)
does not require these prices to be given. Instead, equilibrium prices are part of the
dual solution of the problem as we noted above.

So far we formulated a short-run market model that does not depend on multiple
scenarios. It is, however, straight forward to extend the setting to multiple scenarios,



4 V. KREBS, M. SCHMIDT

which then yields a time-separable problem for which all of our results carry over
directly.

Since existence of equilibria is trivial because (d,y, f) = (0,0, 0) is feasible and
the problem is bounded from above, we focus on the study of uniqueness of a solution
of Problem (7). We first note that strictly convex cost functions ¢, in (7) yield a
unique solution.

Theorem 2.1. Suppose Assumption 1 holds. Consider Problem (7) with strictly
conver cost functions cq, a € A. Then, the solution of Problem (7) is unique.

Proof. Uniqueness of (d, f) follows directly from Theorem la in Mangasarian
(1988). Uniqueness of the productions then follows from the flow conservation
constraints (7e). O

In the rest of the paper, we consider the case without having the assumption of
strictly convex cost functions. First, we show uniqueness of the demands.

Theorem 2.2. Suppose Assumption 1 holds. Let (d,y, f) and (d',y’, f’) be two
solutions of Problem (7). Then, d = d’' holds.

Proof. The claim follows directly from Theorem la in Mangasarian (1988). (]

3. UNIQUENESS FOR PIECEWISE LINEAR AND SYMMETRIC TRANSPORT COSTS

In what follows, we consider piecewise linear and symmetric transport cost
functions. This is formalized in the following assumption.

Assumption 2. All transport cost functions c,, a € A, have the form c,(f,) ==
Me|fal with my € R>g.

Note that all transport cost functions satisfying this assumption are convex.

In the following we use the concept of flow-induced partitions; cf., e.g., Grimm
et al. (2017b). A flow-induced partition of the network G = (N, A) w.r.t. a solution
(d,y, f) of Problem (7) is the partition {G®};cr, I C N, where each G* := (N%, A%)isa
connected component of the graph (N, A\ A) with A:={a € A: f, = f7Vf. = fi}.
Each G%, i € I, is called a flow-induced component. Additionally, for two arbitrary
nodes u,v € N we denote by P,, an undirected path from u to v and define

1, if a is directed along P,
Tq 1= i
—1, otherwise,

for each arc a € P,,. To show uniqueness of the productions we make the following
assumption.

Assumption 3. For each two nodes u # v € N and all paths Py, we have

Wy — Wy + g Mg <0 or wy, —w, — E meg > 0.
a€Pyy a€Pyy

Since the latter assumption is the key precondition for uniqueness, we discuss it
in more detail. The assumption mainly states that the aggregated transport costs
between two nodes need to be less than the difference of production costs at the
nodes. This needs to hold for all possible transport paths connecting the two nodes
and is a direct generalization of the required assumptions in the cases in which no
network or a network without transport costs are considered. In these cases one
needs to assume that the variable production costs are pairwise different; cf., e.g.,
Grimm et al. (2017b). Thus, not surprisingly, this precondition is exactly covered
by Assumption 2 if transport costs are zero, i.e., if m, = 0 holds for all a € A.
Moreover, we think that Assumption 3 is rather mild in practice. The variable
production costs w,, and w, belong to production facilities of different producers
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located at the nodes u and v and the transport costs depend on the installed network
infrastructure that is operated by the TSO. Usually, this network infrastructure has
high investment costs but comparably small operating costs. This is, for instance,
the case in gas transport networks, where building new infrastructure (like new
pipelines or compressor stations) is costly compared to the operation of the network,
for which the costs are mainly given by the compressor costs; cf., e.g., Fligenschuh
et al. (2014) and Pfetsch et al. (2015) and the references therein. Thus, we think
that the assumption is reasonable in the considered setup.

Theorem 3.1. Suppose Assumptions 1, 2, and 3 hold. Let z = (d,y, f) be a solution
of (7) and let {G* = (N, A }ie1, I CN, be its flow-induced partition. Then, there
exists at most one node k € N* in each flow-induced component G* with 0 < yi, < Tg.

Proof. Let u # v € N’ be two nodes in a flow-induced component satisfying
0 < yy <Yy and 0 < y,, < Y. Furthermore, let P,, be a path from u to v that
is completely contained in G*, i.e., f, € (f., f.F) holds for all arcs a € P,,. We
now construct a feasible point 2’ = (d,y’, f') of Problem (7) with a larger objective
function value than z. This yields a contradiction to the optimality of z. For a
suitable € € R we define for each node &k € N and each arc a € A

+e ifk=u
u I b .
! y . ! fa+ra6a lfaepu'ua
Y = § Yv — &, lfk:U, fa = .
. fa, otherwise.
Yk otherwise,

It is easy to see that these productions and flows satisfy the flow-balance con-
ditions (7e). Now we determine an interval for e such that 2z’ also satisfies the
production and flow bounds (7b), (7d). We have

0<yu+e<u, 0<ys—e<Wy, [fo <fatrae <[5 forallacP,,
which implies

£ Z maX{_yu7yv - gvv max {fa_ - fa}7 Pmax 1{fa - f;_}}a

a€Pyy,ra=1 A€ Py, Tq=—

< . — _ . +_ . _ —
e <min{u — yuge,_win {5 =L}, min_ {fa— S}

wvsTa= uvsTa=
The lower bound is negative and the upper bound is positive. In what follows, we
denote with ®(Z) the objective function value of a feasible point Z of Problem (7).
The objective function difference of z and z’ reads

(b(z) - (I)(Z/) == WylYy — WylYy + Wy (yu + 5) + wy (yv - 5)

— Z Ca(fa)-i- Z ca(fa—i-?“af:‘)

A€ Py, A€ Py,
:(wu_wv)g_ Z ma'fa|+ Z malfa+ra5|~
a€Pyy A€ Pyy

The triangle inequality yields
O(2) — (') < (wy —wu)e+ Y Malrae]
a€Pyy
and together with the definition of r, we obtain

D) > P(z2) — <(wu —wy,) e+ Z ma|€|>

a€Pyy

=®(z) — (wu — w, + sgn(e) Z ma> E.

a€Pyy
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w=1,19y=27 w=2y=4
1 2
c(f) =1/l

F1GURE 1. Two-node network with multiple solutions.

As we can choose € being positive or negative and since Assumption 3 holds, we
can choose an ¢ # 0 such that ®(z’) > ®(z) holds. This is a contradiction to the
optimality of z. O

Next we prove uniqueness of the productions in a solution of Problem (7). To this
end, we obtain from the following lemma—which is mainly taken from Grimm et al.
(2017b)—that it is sufficient to show uniqueness of productions for fixed binding
production and flow bounds (7b), (7d).

Lemma 3.2. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(a) There exist a demand vector d* and a production vector y* such that every
solution of Problem (7) is of the form (d*,y*, f) for some flow f.

(b) There exist two solutions z = (d,y, f) and 2’ = (d,y’, f') of Problem (7)
with y # vy and

{acA: fo=fit={acA: fi=Ff}
facA: fo=flY={acA: fo =[]},
{fueN:y,=0}={ue N:y, =0},
{ueN:iyu=yu} ={ueN:y, =y}

Theorem 3.3. Suppose Assumptions 1, 2, and 3 hold. Then, the productions y,,
u € N, in a solution of Problem (7) are unique.

Proof. Assume that the productions y,, u € N, in a solution of Problem (7) are
not unique. Due to Theorem 2.2 the demands are unique. Let z = (d,y, f) and
z' = (d,y, f') be two solutions satisfying part (b) of Lemma 3.2. This means that
the flow-induced partitions {G* := (N%, A%)};cs of 2z and 2’ are the same. Summing
up the flow-balance conditions for all nodes u € N* yields

S = > (®)

u€EN? u€EN?
for all i € I. By Theorem 3.1, there exists at most one node v € N* where both
production bounds are strict, i.e., 0 < y, < ¥,. As z and 2’ have the same binding
production structure, z and z’ have the same productions in each flow-induced
component due to (8). Thus, y = ¢’ holds. This is a contradiction to the choice of
y and y/. O

We now briefly illustrate the necessity of Assumption 3 in Theorem 3.3. To this
end, we consider a two-node network with N = {1,2} and A = {(1,2)} as depicted in
Figure 1, where all parameters of production, demand, and transport are given. Note
that w1 — wse + my2 = 0 holds and, thus, Assumption 3 is violated. Two solutions
of Problem (7) are given by (di,d2,y1,¥2, f12) = (9,11.5,20.32,0.18,11.32) and
(d1,d2, 11, Y2, f12) = (9,11.5,19,1.5,10) and we obtain the equilibrium prices m; =1
and 7y = 2.

Up to now, we derived conditions under which the solution of Problem (7) is
unique in the demands and productions if the transport costs are piecewise linear
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w="79y=14
p(d) = —-3d+8

f==0,f* =20, f= =0, =20,
c(f) = 2.5|f] c(f) = 1.75]f|

w=4,y=14
p(d) = —2d + 8

w=2,y=18
p(d)=—-d+4

f_ :07f+ = 20,
c(f) = 0.75/ ]|

FIGURE 2. Three-node cycle with multiple solutions.

and symmetric. It remains to prove the uniqueness of the flows. In the following we
first consider uniqueness of flows for tree networks.

Theorem 3.4. Suppose Assumptions 1, 2, and 3 hold and let the network G be a
tree. Then, the solution of Problem (7) is unique.

Proof. Due to Theorem 2.2 and 3.3 the solution of Problem (7) has unique de-
mands d,, © € N, and productions y,, v € N. Let N(u) := {v € N: (u,v) € AV
(v,u) € A} be the neighborhood of a node u € N and let L := {u € N: |N(u)| =1}
be the set of leaf nodes. Without loss of generality, we assume that G is an out-tree.
Then, we can compute the unique flow as follows. As long as we have arcs in our
graph we do the following: For every leaf node u € L and unique arc a € §™(u) we
set fo < dy — y,, and then update y, < y, + fa for the unique neighbor v € N(u).
We then set N <= N\ L, A < A\U,c, 6™(u), and iterate. Obviously, this procedure
computes a unique flow and terminates after |A| iterations. O

We now illustrate that the conditions that are sufficient for uniqueness in the
tree case are no longer sufficient if the network contains cycles. To this end,
we consider a cycle with three nodes as depicted in Figure 2. In this situation
all assumptions of Theorem 3.4 are satisfied but we obtain multiple solutions
of Problem (7). Two solutions are given by common demands and productions
(d1,d2,d3,y1,92,y3) = (2,2.63,1.17,5.79,0,0) and different flows (fi2, fi3, f23) =
(3.21,0.58,0.58) as well as (fi2, fis, f23) = (2.96,0.83,0.34). Here we obtain the
equilibrium prices m = 2, my = 2.74, and w3 = 4.49. This example indicates that
we need additional assumptions to obtain uniqueness of Problem (7) for non-tree
networks.

In the rest of this section we consider general networks. The previous Theorems 2.2
and 3.3 together state that we only have to consider the flows of a solution of
Problem (7) to establish uniqueness of the overall solution. Thus, we can write
Problem (7) as the following min-cost flow problem for given net supplies vy, — dy
for all uw € N:

min Z Ma| fal (9a)
f acA
st. fo < f.< f;r, a€ A, (9b)

yu_du: Z fa_ Z faa u € N. (90)
)

a€dout(u a€din(u)
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Solving this problem then yields optimal flows for given productions and demands.
We now transform the arc set of the network such that all arc capacities are non-
negative and all transportation costs are linear. To this end, we make the following
case analysis for each arc a = (u,v) € A with transport costs cq(fs) = ma|fa| and
use the notation a~! := (v, u) for the corresponding backward arc.

(i) If 0 < f < f.F holds, the transport costs are given by ¢, (fa) = mafo. We
denote the corresponding arc set with A} :={a € A: 0 < f < f.r}.

(ii) If £, < fiF <0, we replace a by a~! with transport costs cg—1(f,-1) =
mq fa—1 and capacities f,-1 € [|f|,|fo|]. We denote the corresponding arc
set with A% :={a € A: f; < fF <0}

(iii) If f;7 < 0 < f.F, we use transport costs cq(fa) = mafa, capacities f, €
[0, f.F], and we add the backward arc a~* with transport costs cq-1(f,-1) =
mefq—1 and capacities fo—1 € [0,|f,|]. We denote the corresponding arc
set with A :={a€ A: f; <0< f}.

Thus, Problem (9) is equivalent to the min-cost flow problem

min Z Mg fa (10a)
Uy
st. fo < fo<ff, acAl, (10b)
[fal < far SUfal, a€ Ay, (10c)
0<fo<fa 0<for <|fgl, a€As, (10d)
Yu—du= > fo— > fa uwe€N (10e)

a€dout(u) a€din(u)

with non-negative flows on the graph G’ := (N, A’) with arc set A’, which we obtain
by the network transformation (i)—(iii). Hence, we can restrict ourselves to consider
uniqueness of solutions of Problem (10). To obtain unique flows in this setting we
need the following assumption.

Assumption 4. Let G = (N, A) be an arbitrary network. Then

Z TeMg # 0

acAc

holds for all cycles C = (N¢, Ac) of G.

Theorem 3.5. Suppose Assumption 4 holds. Then, the solution of Problem (10) is
unique.

Proof. Assume f # f’ are two solutions of Problem (10). Then, the flow difference
f — [’ is a circulation because at each node u € A’ the flow conservation reads

S (fa=t) = D> (fa— 1)

acdout(u) a€din (u)
= 2 fom D Lo | D fam D M) =0
a€dout(u) a€éin(u) a€dout(u) a€din (u)

Thus, f — f’ decomposes into flows on a set Z of cycles and there exists a cycle
C € Z with

Ac =714 (fa—fu) #0 (11)
for all arcs a € C. We next show that Z = (J, which yields a contradiction to f # f’.
As f and f’ are both solutions of Problem (10),

0= 3 malfa=fi) = 3 Ac S rama

acA’ ceZz acC
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follows from the objective function difference. Assume that there exists a cycle
C e Z with Az remg # 0 and, w.l.o.g.,

Ae > rama > 0. (12)

aeé

acC

Then, we define a new flow f by

f . fav ifa ¢ C’v
T\ fa—ralAs,  ifacC,

for all a € A’. Using (11) and the definition of r, we have fa = £ for all arcs a € C.

Hence, f satisfies the flow bounds (10b)—(10d) because both f and f’ are feasible.

We next show that f satisfies the flow conservation constraints (10e). For all nodes
u ¢ C we have

Sodam D fa= DY fam D fa=yu—du

a €8Ot (u) acdi (u) aEesout (u) a€di (u)

At all nodes u € C there exists either (i) exactly one arc a™ € 6™ (u) N C, exactly

one arc a®"* € §°"*(u) N C, and it is rgm = rgou, (ii) ai® # qizn € 6in(u)~ﬂ C,
8" (u) N C =0, and 74in = —7gpp, or (iii) ag™* # ag"* € &*"(u) N C, §™(u) N C =10,
and 74oue = —74gue. Hence, the flow f satisfies the flow conservation at each node
u € C due to
Z fa - Z fa
a€dout(u) a€din(u)
Z fa - Z fa
a€dout(u) a€din (u)
— (rgin — raoue) Ay if 0 (u) N C # 0, 6 (u) N C £ 0,
iy (railn + rai;) o 8w NC£0, 5% (u) N C =0,
('ra?ut —+ Tagut> A if Jin(u) n C’ = @, JOUt(U) n C’ # @

= Yu — dy.
Thus, f is feasible for Problem (10) and its objective function value is given by
Z mafa = Z mafa - AC‘ Z TaMg-
acA’ acA’ aeC
Using (12), we obtain an upper bound
Z mafa - Aé Z TaMq < Z mafa~
acA’ wcC acA’

The latter is a contradiction to the optimality of f. So, it implies A¢ D, Taa =0
for all cycles C' € Z and as Assumption 4 holds, we have Ag =0 for all C € Z and
thus Z = (). O

Combining Theorem 2.2, 3.3, and 3.5, we obtain the final uniqueness theorem.

Theorem 3.6. Suppose Assumptions 1, 2, 3, and 4 hold. Then, the solution of
Problem (7) is unique.
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