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Abstract Optimization problems under uncertain conditions abound in many
real-life applications. While solution approaches for probabilistic constraints
are often developed in case the uncertainties can be assumed to follow a
certain probability distribution, robust approaches are usually applied in case
solutions are sought that are feasible for all realizations of uncertainties within
some predefined uncertainty set. As many applications contain different types
of uncertainties that require robust as well as probabilistic treatments, we
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deal with a class of joint probabilistic/robust constraints. Focusing on complex
uncertain gas network optimization problems, we show the relevance of this class
of problems for the task of maximizing free booked capacities in an algebraic
model for a stationary gas network. We furthermore present approaches for
finding their solution. Finally, we study the problem of controlling a transient
system that is governed by the wave equation. The task consists in determining
controls such that a certain robustness measure remains below some given
upper bound with high probability.

Keywords stabilization, wave equation, feedback, robust optimization,
probabilistic constraints, probust, Karhunen-Loève
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1 Introduction

1.1 Joint probabilistic/robust constraints

Decision making problems are more than often affected by parameter uncer-
tainty. An optimization problem dealing with uncertain variables has the typical
form

min
x

g0(x)

subject to gi(x, z) ≥ 0 (i = 1, . . . , k).
(1)

Here x ∈ Rn is a decision vector, z ∈ Rm is an uncertain parameter, g0 : Rn → R
is the objective function and g : Rn×Rm → Rk is the constraint mapping. The
decision support schemes with non-deterministic parameters have to take into
account the nature and source of uncertainty while balancing the objective
and the constraints of the problem. There are two main approaches for dealing
with uncertainty in the constraints of an optimization problem: the first one is
the use of probabilistic constraints. This approach is based on the assumption
that historical data is available to estimate the probability distribution of the
uncertain parameter and thus considering it as a random vector ξ taking values
in Rm. Then (1) may be given the form

min
x

g0(x)

subject to P
(
g(x, ξ) ≥ 0

)
≥ p ∈ (0, 1]

(2)

(note that the first ’≥’ sign is to be understood component-wise). Here, a
decision x is declared to be feasible if and only if the original random inequality
system (1) is satisfied with a prescribed probability p, a level usually chosen
close to, but not identical to one. Of course, higher values of p lead to a smaller
set of feasible decisions x in (2), hence to optimal solutions at higher costs.
Concerning the random variable ξ we essentially focus on continuous ones. For
a standard reference on optimization problems with probabilistic constraints
we refer to the monograph [22].
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An alternative approach is given by robust optimization. It applies when
the uncertain parameter u is completely unknown or non-stochastic due to a
lack of available data. Then, satisfaction of the uncertain inequality system
(1) is required for every realization of the uncertainty parameter within some
uncertainty set U ⊆ Rm containing infinitely many elements in general, so that
one arrives at the following optimization problem:

min
x

g0(x)

subject to g(x, u) ≥ 0 ∀u ∈ U .
(3)

For a basic monograph on robust optimization, we refer to [3].
We notice that both optimization models with probabilistic and robust

constraints are deterministic reformulations of (1), since they depend only on
the decision vector x but no longer on the outcome of the uncertain parameter
z.

A central issue in robust optimization is the appropriate choice of the
uncertainty set U . Simple-shaped sets like polyhedra or ellipsoids induce com-
putationally tractability [2] and allow one to deal with much larger dimensions
than in the case of probabilistic constraints. Moreover, when choosing U such
that P(ξ ∈ U) = p, then the feasible set of decision variables x of (3) is con-
tained in that of probabilistic programming (2), so that an optimal solution to
(3) is a feasible solution to (2). For these two reasons, robust optimization is
not only preferred in the absence of statistical data, but also as a conservative
approximation of the probabilistic programming setting. This conservatism,
however, may be significant up to the point of ending up at very small or even
empty feasible sets possibly coming at much higher costs than under a proba-
bilistic constraints. This trade-off propels the use of probabilistic constraints
in the presence of statistical information at least in moderate dimension.

Although these approaches, probabilistic programming and robust opti-
mization are often dealt with separately, in many applications, one is faced
with uncertain variables of both mentioned types. This leads us naturally to
the consideration of uncertain inequalities (2) in which the uncertain variable
has a stochastic and a non-stochastic part, i.e., z = (ξ, u). A typical example
is optimization of gas transport in the presence of uncertain loads. Historical
data are available (stochastic uncertainty) for the exit loads in many situations.
On the other hand, observations can hardly be accessed (non-stochastic uncer-
tainty) for entry loads, or for example, uncertain roughness coefficients in pipes.
Therefore, it seems natural, to combine the originally separate models (2) and
(3). An appropriate way to do so is to formulate a probabilistic constraint
(w.r.t. ξ) involving a robustified (w.r.t. u) infinite inequality system:

P
(
g(x, ξ, u) ≥ 0 ∀u ∈ U

)
≥ p. (4)

This class of constraints has been recently investigated in [23] under the name
of hybrid robust/chance-constraints and in [10] under the name of probabilis-
tic/robust constraints. For easier reference, we shall be using in the following the
natural acronym of probust constraints. We note that even the more complex



4 D. Adelhütte et al.

situation of the uncertainty set depending on the decision and random variable
plays an increasing role in applications. Here, the constraint becomes

P
(
g(x, ξ, u) ≥ 0 ∀u ∈ U(x, ξ)

)
≥ p (5)

where the inner part resembles constraint sets arising in generalized semi-infinite
optimization [25].

We note that yet another form of combining the probabilistic and robust
parts of the inequality system would result from interchanging their arrange-
ments in (4):

P
(
g(x, ξ, u) ≥ 0

)
≥ p ∀u ∈ U .

In this way one does not arrive at a probabilistic constraint involving infnitely
many random inequalities as in (4) but rather at an infinite system of prob-
abilitic constraints. This setting is related to (robust) first-order stochastic
dominance constraints [6] and to distributionally robust probabilistic con-
straints [26], which currently receives increased attention. We won’t deal with
this model here but rather focus our considerations on (4) and (5) respectively,
which impose stronger conditions in the sense of joint probabilistic constraints
compared to individual ones.

The aim of this paper is to illustrate the application of this new class of
probust constraints to optimization problems in gas transport under uncertainty
in the exit and entry loads. Uncertainty in the roughness coefficients of the
pipe is not a part of this paper and it has been analysed for example in [1].
For a recent monograph on gas transport optimization we refer to [18]. We will
consider first the problem of maximizing free booked capacities in an algebraic
model for a stationary gas network. The corresponding model is presented in
Section 2. This overall problem is too complex, however, to be dealt with in
this paper. Therefore we will split it into two subproblems, namely capacity
maximization at exits (consumer side) which is discussed in Section 3 and
capacity maximization at entries (provider side) which is analyzed in Section 4.
Without loss of generality, we follow the convention of entry loads being non
positive and exit loads being non negative.

While often the research in optimization in finite-dimensional spaces (includ-
ing mixed-integer nonlinear optimization) and PDE-constrained optimization
takes place within disjoint communities, we think that it is important to
identify common problem structures that occur in both classes of problems,
in particular in the development of methods that allow to take into account
uncertainties. Therefore in Section 5 we discuss an optimization problem with a
probust constraint for a system that is governed by a PDE that is related to the
application in gas transport. The PDE model allows us to consider a transient
System in Section 5, whereas in the first two parts of the paper, stationary
problems are studied. The transient system is governed by the wave equation
under probabilistic initial and Dirichlet boundary data at one end of the space
interval. At the other end of the space interval, Neumann velocity feedback is
active. For the system a desired stationary state is given. The robustness of the
system is measured by the L∞-norm of the difference between the actual state
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ṽ and the desired state v̄. Due to the definition of the L∞-norm (as the essential
supremum of the absolute value), this approach gives information about the
maximal pointwise distance in space and time. Since our solutions are in fact
continuous for appropriate initial and boundary data, the L∞- norm is equal to
the maximum norm. The robustness requirement is that this pointwise distance
remains below a given upper bound vmax. In our system, the state depends
on uncertain initial and boundary data with a given probability distribution.
The meaning of the probabilistic constraint is the following: The probability
that the robustness requirement is satisfied is sufficiently large, i.e., greater
than or equal to a given value p ∈ (0, 1]. This probabilistic constraint can be
written in the form of (4); for details see Section 5, Eq. (43). As a numerical
example, we consider the optimization with respect to the feedback parameter
in Subsection 5.3.

2 Maximization of free capacities in a stationary network

We consider a passive stationary gas network given by a directed graph G =
(V,E) with a set V of vertices and a set E of edges. We shall assume that
the set of nodes decomposes into a set V+ of entries, where gas is injected
and a set V− of exits, where gas is withdrawn. Hence, V = V+∪ V− and V+∩
V− = ∅. Without loss of generality we label the nodes in a way that entries
come first and exits last. The gas transport along the network is triggered
by bilateral delivery contracts between traders who inject gas at entries and
traders covering customer demands by withdrawing gas at exits. An amount of
gas injected into or withdrawn from the network at certain nodes is called a
nomination. We shall refer to b ≤ 0 and ξ ≥ 0 as to the vectors of nominations
at entries and exits, respectively.

Nominations have to satisfy three conditions:
1. At each node (entry or exit) of the network, nominations must not exceed

the capacity booked for that node by the respective trader.
2. Nominations must be balanced over the whole network, i.e., the sum of

nominations at entries equals the sum of nominations at exits.
3. Nominations must be technically feasible in the sense that there exist

pressures within given bounds at the nodes and a flow through the network
such that the nominations at the exits can be served by the nominations at
the entries.

The first condition has to be satisfied by the traders. Referring to C−, C+ ≥ 0
as to the vectors of booked capacities at entries and exits, respectively, it can
be written as

b ∈ [−C+, 0] , ξ ∈ [0, C−] , (6)
where the intervals are to be understood in a multidimensional sense. The
second condition is an automatic consequence of the collection of bilateral
delivery contracts between entries and exits and can be written as

1T+b+ 1T−ξ = 0, (7)
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where 1+ and 1− are vectors filled with entries 1 of the respective dimension
of entries and exits.

The third condition of technical feasibility of some joint nomination vector
(b, ξ) can be characterized by the existence of vectors q of flows along the edges
of the network and π of pressure squares at the nodes satisfying the conditions

Aq =
(

b
ξ

)
; ATπ = −Φq |q| ; π ∈ [π∗, π∗] . (8)

Here, A is the incidence matrix of the network graph, Φ := diag((Φe))e∈E is a
diagonal matrix of roughness coefficients and the modulus sign for a vector has
to be understood componentwise. The first two equations in (8) correspond to
the first two Kirchhoff’s Laws (mass conservation and pressure drop), whereas
the interval condition imposes bounds on the pressure. It is actually these
bounds that constrain the feasibility of nominations b, ξ, see, e.g., [18].

It is the network owners’ responsibility to make sure - without knowledge of
concrete bilateral delivery contracts between entries and exits - that condition
3. is satisfied for all nominations fulfilling conditions 1. and 2. This requirement
clearly imposes a constraint on the booked capacities C+, C− via (6) saying for
all (b, ξ) satisfying (6), (7) there exists (q, π) satisfying (8). It can be formally
written as:

∀ (b, ξ) : (6) , (7) ∃ (q, π) : (8) . (9)

Satisfying (9) in a rigorous way would yield (too) small booking capacities
at the nodes of the network. Here, the network owner can benefit from the fact
that nominations at the exits (gas withdrawn for consumption) are endowed
with a typically large historical data base so that they can be modeled as
random vectors obeying some appropriate multivariate distribution. This offers
the possibility to relax the ’for all’ condition on ξ in a probabilistic sense as
to satisfy (9) with sufficiently high probability p. In this way, by choosing p
close to one, it is possible to keep a robust satisfaction of technical feasibility
while allowing for considerably larger booked capacities. A similar probabilistic
modeling of entry nominations would not be justified (although historical data
might be available here too) because their outcome is market driven and thus
not a genuine random vector.

This motivates the network owner to relax the worst case condition in a
probabilistic sense on the side of exits but keeping it on the side of entries.
He then arrives at the following probabilistic formulation of feasible booked
capacities C+, C−:

P
(
ξ ∈ [0, C−] , ∀b ∈ [−C+, 0] : 1T+b+ 1T−ξ = 0 ∃ (q, π) : (8)

)
≥ p. (10)

Here, P refers to a probability measure related with the random vector ξ and
p ∈ (0, 1] is a desired probability level chosen by the network owner. The
expression on the left-hand side of this inequality provides the probability
that a random exit nomination (within booked capacity) combined with an
arbitrary entry nomination (within booked capacity and in balance with the
exit nomination) is technically feasible.
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Now, for a given capacity vector (C+, C−) it may turn out that the as-
sociated probability on the left-hand side of (10) is larger than the desired
minimum probability p, e.g., 0.96 vs. 0.9. This would give the network owner
the opportunity to offer larger capacities while still keeping the desired proba-
bility p. Therefore, he might be led to determine the largest possible additional
capacities (x+, x−) he could offer for booking by new clients. This would lead
to the following optimization problem:

max
x+,x−

wT+x+ + wT−x− (11)

P


ξ ∈ [0, C−] ∀y ∈ [0, x−], ∀b ∈ [−C+ − x+, 0] :

1T+b+ 1T−ξ + 1T−y = 0

∃ (q, π) : Aq =
(

b
ξ + y

)
; ATπ = −Φq |q| ; π ∈ [π∗, π∗]

 ≥ p .
Here, the weight vector w in the objective reflects some preferences the network
owner could have in order to offer new booking capacities at different nodes.
In the absence of preferences, he could simply choose w := 1. Note, that the
nomination vector at exits has been split into ξ and y, where ξ refers to the
nominations of already existing clients (thus endowed with historical data and
amenable to stochastic modeling) while y refers to nominations of potentially
new clients without nomination history. As these can therefore not be treated
stochastically, they are considered with a ’for all’ requirement similar to entry
nominations. No such splitting is necessary on the side of entries because
nominations have to be considered there with a ’for all’ requirement anyway
as they cannot be modeled stochastically in a straightforward manner. In the
following section, we shall address in detail the capacity maximization problem
for exits only, a restriction which allows us to solve numerically the arising
entire optimization problem subject to probust constraints. In contrast, Section
4 will focus on entries only and discuss essential issues related with the solution
of this alternatively restricted optimization problem.

3 Maximization of booked capacities for exits in a stationary gas
network

As mentioned in the introduction, the overall problem of capacity maximization
(11) is too complex to be dealt with here. Therefore, we shall focus in a first
step on maximizing capacities at exits.

3.1 The capacity maximization problem for several exits and one entry

In the following we will make the assumption that the network is a tree and that
there exists only one entry point serving m exits. The presence of cycles in the
network would significantly complicate the numerical solution of the problem.
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Nonetheless, in Section 3.4, we sketch a possible methodology in the presence of
cycles. The restriction to a single entry is made here, in order not to deal with
the robust uncertainty related with the splitting of nominations within several
entry nodes (see ’∀b ∈...’ condition in (11)) which will be considered later in
Section 4 separately. Without loss of generality, we define the entry to be the
root of the network labeled by index ’0’. For simplicity, we assume moreover
that, the booked capacity C+ of the entry is large enough to meet the maximum
possible load by all exits as well as possible extensions thereof after adding
additional capacity at the exits as a result of an optimization problem. As a
consequence of this constellation our general capacity maximization problem
(11) reduces to an exit capacity maximization problem of the form

maxx− wT−x− (12)

P

 ξ ∈ [0, C−] ∀y ∈ [0, x−] ∃ (q, π) :

Aq =
(
−1T−ξ − 1T−y

ξ + y

)
; ATπ = −Φq |q| ; π ∈ [π∗, π∗]

 ≥ p .
Here, the remaining decision variables are just the extensions of exit capacities.
Since no capacity extension for the single entry is intended and since its existing
capacity is not constrained by our assumption, the corresponding constraint
disappears as well as the balance equation which is just substituted in the
description of technical feasibility. The resulting optimization problem does no
longer contain entry nominations at all but only random exit nominations ξ
and deterministic exit nominations y of new clients along with the additionally
allocated booking capacities x−.

Clearly, the probabilistic constraint in (12) is not yet in the explicit form
of the probust constraint (4). This can be achieved in our case, thanks to
the network being a tree having the single entry as its root. Note that by
this special structure the direction of the gas flow is completely determined.
Moreover, by directing all edges in E away from the root, according to [8], a
vector z of exit loads in this configuration is technically feasible, if and only if
in the notation introduced above, the inequality system

gk,l(z) := hk(z) + π∗k − hl(z)− π∗,l ≥ 0 (k, l = 0, . . . ,m) (13)

is satisfied, where

hk(z) :=


∑

e∈Π(k)
Φe

( ∑
t�H(e)

zt

)2

if k ≥ 1

0 if k = 0
. (14)

In order to explain the definition of the functions hk above, we denote k � l for
k, l ∈ V if the unique directed path from the root to k, denoted Π(k), passes
through l. The term H(e) refers to the head of the (directed) arc e ∈ E.



Optimization problems with probust constraints 9

With these specifications, which are fully explicit in terms of the initial
data of the problem, we reformulate problem (12) with the aid of inequalities
(13) as

maxwT−x− (15)
P (ξ ∈ [0, C−] gk,l (ξ + y) ≥ 0 ∀y ∈ [0, x−] ; ∀k, l = 0, . . . ,m) ≥ p.

The meaning of this constraint is as follows: The capacity extension x− is
feasible if and only if with probability larger than p ∈ (0, 1] the sum ξ + y of
the original random nomination vector and of a new nomination vector can be
technically realized for every such new nomination vector in the limits [0, x−].
Clearly, the probust constraint (15) is of the form (5), with u := y, x := x−
and the uncertainty set U(x) := [0, x].

In [16] it is shown, that the infinite random inequality system

gk,l (ξ + y) ≥ 0 ∀y ∈ [0, x] ; ∀k, l = 0, . . . ,m

inside (15) can be reduced - using (13) and (14) - to the following finite one

∑
e∈Π(k)\Π(l)

Φe

( ∑
t�H(e)

ξt

)2

−
∑

e∈Π(l)\Π(k)
Φe

( ∑
t�H(e)

ξt + (x−)t

)2

≥

π∗,l − π∗k; ∀k, l = 0, . . . ,m. (16)

For the random vector ξ of stochastic exit nominations we will suppose
that it follows a truncated multivariate Gaussian distribution:

ξ ∼ T N (µ,Σ, [0, C−]).

More precisely, the distribution of ξ is obtained by truncating anm-dimensional
Gaussian distribution with mean µ and covariance matrixΣ to anm-dimensional
rectangle [0, C−] representing the (historical) booked capacity at all exit nodes.
By definition of truncation, this means that there exists a Gaussian random
vector ξ̃ ∼ N (µ,Σ) such that

P (ξ ∈ A) =
P
(
ξ̃ ∈ A ∩ [0, C−]

)
P
(
ξ̃ ∈ [0, C−]

)
holds true for all Borel measurable subsets A ⊆ Rm. Hence, in order to
determine probabilities under a truncated Gaussian distribution, it is sufficient
to be able to determine probabilities under a Gaussian distribution itself.
Applying this observation to the probabilistic constraint (15) and combining it
with (16) yields the equivalent description

P
(
ξ̃ ∈ [0, C−] :

∑
e∈Π(k)\Π(l)

Φe

( ∑
t�H(e)

ξ̃t

)2

−
∑

e∈Π(l)\Π(k)
Φe

( ∑
t�H(e)

ξ̃t + (x−)t

)2

≥

π∗,l − π∗k; ∀k, l = 0, . . . ,m
)
≥ p · P

(
ξ̃ ∈ [0, C−]

)
. (17)
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This is now, in contrast to (15) a conventional probabilistic constraint over a
finite inequality system. We are aiming to apply an efficient gradient based
solution algorithm in the framework of gradient based optimization methods.
To this end, in order to deal algorithmically with the probabilistic constraint
(17), one has evidently to be able to calculate for each fixed decision vector x−
the probabilities occurring there, as well as their derivatives with respect to
x−. In the following section we briefly sketch the methodology used here.

3.2 Spheric-Radial decomposition of Gaussian random vectors

From the well-known spheric-radial decomposition (see, e.g., [7]) of a Gaussian
random vector ξ̃ ∼ N (µ,Σ) it follows that the probability of an arbitrary Borel
measurable subset M of Rm may be represented as the following integral over
the unit sphere Sm−1:

P
(
ξ̃ ∈M

)
=

∫
v∈Sm−1

µχ (E(v)) dµη(v).

Here, µχ refers to the one-dimensional Chi-distribution with m degrees of
freedom, µη is the uniform distribution on Sm−1 and

E(v) := {r ≥ 0|µ+ rPv ∈M} ,

where P is a factor from a decomposition Σ = PPT of the covariance matrix Σ.
Following these remarks, the probability on the left-hand side of (17) (depending
also on the decision variable x−) can be represented as∫

v∈Sm−1

µχ (E(v, x−)) dµη(v), (18)

where

E(v, x−) = {r ≥ 0|µ+ rPv ∈ [0, C−]} ∩
⋂

k,l=0,...,m
Ek,l(v, x−) (19)

and, with Pt denoting row number t of P , for k, l = 0, . . . ,m:

Ek,l(v, x−) :=
{
r ≥ 0| (20)

∑
e∈Π(k)\Π(l)

Φe

( ∑
t�H(e)

µt + rPtv

)2

−
∑

e∈Π(l)\Π(k)
Φe

( ∑
t�H(e)

µt + rPtv + (x−)t

)2

≥ π∗,l − π∗k
}
.

In order to evaluate the integrand in (18), one has to be able to characterize
(for each given v ∈ Sm−1 and x− ∈ Rm) the set E(v, x−) and to determine
its Chi probability. The latter task is easily accomplished, whenever the set
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E(v, x−) can be represented as a finite union of intervals because there exist nu-
merically highly precise approximations of the one dimensional Chi distribution
function.

Hence, we are left with the task of efficiently representing E(v, x−) as a
finite union of intervals. This is easily done for the first set in the intersection
providing E(v, x−) in (19) which can be shown either to be empty or an
interval: {

r ≥ 0|µ+ rPv ∈ [0, C−]
}

={
∅ if ∃t ∈ {1, . . . ,m} : Ptv = 0, µt /∈ [0, C−,t]

[L,R] else; (21)

L := max
{

0, max
Ptv>0

−µt
Ptv

, max
Ptv<0

C−,t − µt
Ptv

}
and

R := min
{

min
Ptv>0

C−,t − µt
Ptv

, min
Ptv<0

−µt
Ptv

}
.

As for the second part of the intersection in (19), we will provide for each k, l
an explicit representation of the set Ek,l(v, x) either as a single interval or as
the disjoint union of two intervals, such that the intersection of all these sets
(and the first set determined above) is readily obtained in the form of a finite
union of disjoint intervals. Indeed, upon developing the expressions in (20) in
terms of r, one arrives at the representation

Ek,l(v, x−) = {r ≥ 0|αk,lr2 + βk,lr + γk,l ≥ 0} (k, l = 0, . . . ,m) ,

where, for k, l = 0, . . . ,m:

αk,l :=
∑

e∈Π(k)\Π(l)

Φe

 ∑
t�H(e)

Ptv

2

−
∑

e∈Π(l)\Π(k)

Φe

 ∑
t�H(e)

Ptv

2

βk,l := 2
∑

e∈Π(k)\Π(l)

Φe

 ∑
t�H(e)

µt

 ∑
t�H(e)

Ptv


−2

∑
e∈Π(l)\Π(k)

Φe

 ∑
t�H(e)

µt + x−,t

 ∑
t�H(e)

Ptv


γk,l :=

∑
e∈Π(k)\Π(l)

Φe

 ∑
t�H(e)

µt

2

−
∑

e∈Π(l)\Π(k)

Φe

 ∑
t�H(e)

µt + x−,t

2

+ (π∗k)2 − (π∗,l)2
.
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This leads, by case distinction and elementary calculus, to the following explicit
representation of Ek,l(v, x−) for k, l = 0, . . . ,m:

Ek,l(v, x−) =



∅ 1) or 2)

R 3) or 4)[
− γ

k,l

βk,l ,∞
)

5)(
−∞,− γ

k,l

βk,l

]
6)(

−∞, −β
k,l−
√

(βk,l)2−4αk,lγk,l

2αk,l

]
∪
[
−βk,l+

√
(βk,l)2−4αk,lγk,l

2αk,l ,∞
)

7)[
−βk,l+

√
(βk,l)2−4αk,lγk,l

2αk,l ,
−βk,l−

√
(βk,l)2−4αk,lγk,l

2αk,l

]
8)

,

where the case study is done according to

1) αk,l = βk,l = 0, γk,l < 0

2) αk,l < 0,
(
βk,l

)2
< 4αk,lγk,l

3) αk,l = βk,l = 0, γk,l ≥ 0

4) αk,l > 0,
(
βk,l

)2
< 4αk,lγk,l

5) αk,l = 0, βk,l > 0
6) αk,l = 0, βk,l < 0

7) αk,l > 0,
(
βk,l

)2 ≥ 4αk,lγk,l

8) αk,l < 0,
(
βk,l

)2 ≥ 4αk,lγk,l.

Along with (21) we may use this explicit description in order to efficiently
represent the set E(v, x−) in (19) as the desired finite union of intervals by
determining the finite intersection of sets which are intervals or disjoint unions
of intervals.

It is important to note that, at the same time, the partial derivatives of
the probability with respect to the decision variable x− can be calculated as a
spherical integral of type (18) again, however with a different integrand which
is easily obtained from the partial derivatives of the initial data [24]. In this
gradient formula, the same disjoint union of intervals as in the computation of
the probability itself is employed. The spherical integrals can be approximated
by finite sums using Quasi-Monte Carlo sampling on the sphere (see, e.g., [4]).
Then, for each sampled direction v on the sphere, one may update first the
probability itself and then, simultaneously, the gradient of the probability with
respect to x− by using the same disjoint union of intervals in both cases. This
approach makes the gradient come almost for free as far as computation time is
concerned. Having access to values and gradients of the probabilistic constraint
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(17), one may set up an appropriate nonlinear optimization solver for solving
(15). For the subsequent numerical results, we employed a simple projected
gradient method.

3.3 Numerical results for an example

As an illustrating example, similar to [16, Section 6], we considered a network
as displayed in Fig. 1 with one entry (filled black circle) and 26 exits. The
parameters (i.e., pressure bounds, roughness coefficients, truncated Gaussian
distribution for the random nominations at exits) were chosen from modified
quantities of real network.

The applied gradient method cannot guarantee to find a global optimal
solution because the optimization problem is non-convex in x−. However, a
stationary point can be computed satisfying the probust constraint with a
high accuracy. We are able to control the quality of the accuracy via the
Quasi-Monte Carlo sampling. In our computations a number of 10 000 samples
turns out to allow for reasonably accurate results.

We didn’t assume any preferences in the allocation of new capacities, hence
the weight vector in the objective of (15) was chosen as w− := 1−. The
colored rings around exit points refer to the optimal cumulative capacities
(historical+new), i.e., C− + x− after maximization, upon choosing probability
levels p = 0.95, 0.9, 0.85, 0.8. The radii of the rings are proportional to the
available capacities. It can be clearly seen, how decreasing of the probability
level allows for increasing the allocation of capacity in certain regions of the
network.

Fig. 2 illustrates how the computed solution for a probability level p = 0.8
works for two random exit nomination scenarios ξ simulated a posteriori
according to the chosen truncated multivariate Gaussian distribution. The
first scenario is feasible because one could add a common capacity to every
exit (green color) in order to satisfy this scenario. In contrast, the second
scenario is infeasible because one would have to reduce the capacities by an
amount corresponding to the dark red rings, in order to satisfy this scenario.
When simulating a large set of such scenarios, say 1000, it would turn out that
according to the probability level p = 0.8 approximately 800 are feasible, while
200 are infeasible.

3.4 Methodology in the presence of cycles

It is generally acknowledged that the presence of cycles in gas networks is both
realistic for applications and demanding for formal analysis. In what follows
we elucidate this at calculating the probability of feasible nominations in a
gas network with cycles. Networks with a single or with multiple node-disjoint
cycles are covered in [8] which essentially relies on explicit formulas for the
roots of univariate real polynomials of degree less than 5.
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Fig. 1: Solution of the capacity maximization problem at exits for different
probability levels: 0.95 (top left); 0.9 (top right); 0.85 (bottom left); 0.8 (bottom
right).

If cycles in a gas network are sharing edges, then the approach via the
mentioned formula is no longer valid. It also cannot be stretched to more
general cases. A first alternative attempt in this respect has been undertaken
recently in [9] for networks with up to three mutually interconnected cycles.

To display the state-of-the-art in calculating by spheric-radial decomposition
probabilities of sets of feasible nominations in gas networks with cycles, consider
again

Ei := E(vi) = {r ≥ 0 | µ+ rPvi ∈M}

for every sample v1, ..., vs on the sphere. Analogously to the case of trees, the
set Ei can be expressed as a finite union of disjoint intervals, Ei = ∪lj=1[aj , bj ],
for calculating its probability, it is sufficient to determine all points where the
ray rPvi + µ enters or exits the set of feasible load vectors M .

With cycles, the matrix A decomposes into a basis part AB and a non-
vacuous non-basis part AN whose columns correspond to the fundamental
cycles with respect to the tree behind AB . Accordingly q, Φ are split into qB , qN
and ΦB , ΦN .
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Fig. 2: Two scenarios for random exit loads ξ according to the chosen multivari-
ate truncated Gaussian distribution. Left: feasible scenario; Right: infeasible
scenario.

In [8] it is shown that a given load (−1>ξ, ξ) is feasible iff there exists a
qN such that

A>Ng(ξ, qN ) = ΦN · |qN | · qN (22)
min

i=1,...,|V |−1
[π∗i + gi(ξ, qN )] ≥ max

i=1,...,|V |−1
[π∗,i + gi(ξ, qN )] (23)

π∗,0 ≤ min
i=1,...,|V |−1

[π∗i + gi(ξ, qN )] (24)

π∗0 ≥ max
i=1,...,|V |−1

[π∗,i + gi(ξ, qN )] (25)

with the function g : R|V |−1 × R|N | → R|V |−1 where

g(s, t) :=
(
A>B
)−1

ΦB
∣∣A−1

B (s−AN t)
∣∣(A−1

B (s−AN t)
)
∀(s, t) ∈ R|V |−1 × R|N |.

Having in mind the spheric-radial decomposition and the sets Ei, we insert
ξ(r) = rPvi+µ into the above characterization of feasible loads and reformulate
the min, max expressions. Then Ei consists of all r ∈ R≥0 for which there is a
qN such that

A>Ng(rPvi + µ, qN ) = ΦN |qN |qN (26)
π∗j + gj(rPvi + µ, qN ) ≥ π∗,k + gk(rPvi + µ, qN )

for all j, k = 1, . . . , |V | − 1, j 6= k (27)
π∗,0 ≤ π∗j + gj(rPvi + µ, qN )

for all j = 1, . . . , |V | − 1 (28)
π∗0 ≥ π∗,j + gj(rPvi + µ, qN )

for all j = 1, . . . , |V | − 1 (29)

To decide, for a given sample point vi, whether the ray rPvi +µ enters or exits
the set of feasible load vectors M and, in the affirmative, compute an entry
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or exit point, the following basic procedure is possible: Augment one of the
inequalities of the system (27)-(29) as an equation to (26) yielding a system of
|N |+ 1 degree-2 multivariate polynomial equations with |N |+ 1 unknowns.

Notice that the above considerations hold for gas networks with arbitrary
cardinality |N | of non-basis columns in A. Of course, the number of augmen-
tations, and hence the number of passes through some polynomial-equation
solver can become exorbitant.

A first attempt on solving systems with multivariate polynomials via com-
puter algebra is reported in [9] for |N | ≤ 3. In the core of the method there are
Gröbner bases inducing “triangular” representations of the polynomial equa-
tions, allowing for “reverse propagation” of solutions, in the spirit of Gaussian
elimination, with multivariate quadratic polynomials instead of linear forms.

In contrast with gradient-type analytical solvers, algebraic solvers using
symbolic computation usually detect infeasibility of the system under consid-
eration much faster, which can be crucial as the decision of (in-)feasibility is
one of the fundamental tasks in this context. These methods rely on iterating
bases of ideals. Emptiness follows as soon as there arises a constant polynomial
in the current ideal basis.

There are a number of possible improvements, some of which investigated
in [9] that deserve further explorations: identifying and removing redundant
inequalities in (27)-(29), studying the special structure of the system (26) and
exploring the impact of “Comprehensive Gröbner Systems” that were developed
for parametric polynomial equations, see [20].

4 Capacity maximization under uncertain loads and uncertain
distribution of entry nominations

After discussing the methodology for the case of uncertain exit loads, we address
the case of uncertain entry loads and fixed exit capacities, i.e., x− = 0, and
we only take extensions x+ of the entry capacities C+ into account. Thus, we
consider the following optimization problem:

max
x+

wT+x+ (30)

P

 ξ ∈ [0, C−] ∀b ∈ [−C+ − x+, 0] : 1T+b+ 1T−ξ = 0

∃ (q, π) : Aq =
(
b
ξ

)
; ATπ = −Φq |q| ; π ∈ [π∗, π∗]

 ≥ p .
In other words, for a realization d of the random variable ξ and for an extension
x+, we want every entry nomination of the uncertainty set

U(d, x+) := {b ∈ [−C+ − x+, 0] : 1T+b+ 1T−d = 0}. (31)



Optimization problems with probust constraints 17

to be feasible with probability p. The set of realizations of ξ for which every
entry nomination is feasible for a given x+ is henceforth denoted as D(x+):

D(x+) := {d ∈ [0, C−] : ∀b ∈ U(d, x+) ∃(q, π) :

Aq =
(
b
ξ

)
, ATπ = −Φ|q|q, π ∈ [π∗, π∗]}.

Applying this notation, we can formulate the probust constraint of problem (30)
more compactly:

maxx+ w
T
+x+ (32)

P(ξ ∈ D(x+)) ≥ p.

We note that the ’probust’ nature of the constraint is ’hidden’ in the probability
constraint that is expressed in D(x+).
Analogously to Section 3, we assume that ξ ∼ T N (µ,Σ, [0, C−]). Furthermore,
we assume that the following mild condition holds:

(C1) There is a bound y+ ≥ 0, such that µ ∈ D(x+) for all x+ ∈ [0, y+], i. e. the
mean µ of ξ is a feasible exit booking nomination for all admissible x+.

Since ξ is based on historical data, the mean being feasible for a capacity
extension x+ is a natural assumption for practical applications at least if the
upper bound y+ is not too large. Furthermore, since there is, naturally, no
infinite amount of capacity extension, such a bound y+ does naturally exist.
In the following, we apply the spherical radial decomposition, see Section 3.2,
to reformulate the probust constraint of problem (32) with an integral:

max
x+∈[0,y+]

wT+x+ (33)∫
v∈Sm−1

µχ (E(v, x+)) dµη(v) ≥ p.

As before, m is the number of exit nodes, Sm−1 the unit sphere, µχ refers
to the one-dimensional Chi-distribution with m degrees of freedom, µη is the
uniform distribution on Sm−1 and

E(v, x+) := {r ≥ 0 | µ+ rPv ∈ D(x+)}

where P is a factor from a decomposition Σ = PPT of the covariance matrix
Σ.
We aim to solve problem (33) numerically and we approximate the integral.
We briefly summarize the method of Section 3.2 for our purposes: We sample
N vectors v1, . . . , vN of the unit sphere Sm−1 and compute E(vi, x+) for each
sampled vector vi. Hence∫

v∈Sm−1

µχ (E(v, x+)) dµη(v) ≈ 1
N

N∑
i=1

µχ(E(vi, x+)). (34)
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In [8], it is pointed out that E(vi, x+) is a finite union of intervals:

E(vi, x+) =: ∪kj=0[aj , bj ]

and that in this case,

µχ(E(vi, x+)) =
k∑
j=0

Fχ(bj)− Fχ(aj). (35)

where Fχ is the distribution function of the respective χ distribution. Now, for
the numerical accessibility of (35) we make an additional assumption:

(C2) For any x+ ≥ 0, D(x+) is star-shaped with respect to µ.

Using (C2), it is immediately seen that E(vi, x+) = [a0, b0], i. e. E(vi, x+) is a
simple interval. Thus, equation (35) becomes

µχ(E(vi, x+)) = Fχ(b0)− Fχ(a0). (36)

Furthermore, due to condition (C1), we have 0 ∈ E(vi, x+) which implies
a0 = 0. With this b0 is the length of the interval E(v, x+), i.e., b0 = |E(vi, x+)|.
As there exist high-quality numerical approximations for Fχ, the value of
µχ(E(vi, x+)) can be computed, if b0is numerically accessible.
In summary, under conditions (C1) and (C2), approximating the integral in
(34) for a given capacity extension x+ effectively reduces to sampling vectors
vi on the unit sphere and determining |E(vi, x+)|.

Before we continue, we briefly discuss the role of (C2). First of all, it is
important to state that without (C2) it is not clear, how (34) can be evaluated
numerically. Second, to the best of our knowledge, there is no applicable
criterion for testing (C2). That means, we need to assume that in practice
(C2) holds. Fortunately, this is not as bad as it sounds at the first glance. The
reason is that we are able to show that in the case where E(vi, x+) consisted
of more than one interval, our algorithm would always correctly approximate
the length of the first interval, i.e., the interval with lower bound 0. Due to the
simple estimate∫
v∈Sm−1

µχ (E(v, x+)) dµη(v) ≈ 1
N

N∑
i=1

µχ(E(vi, x+)) ≥ 1
N

N∑
i=1

µχ(E0(vi, x+)),

this would mean that, instead of approximating |E(v, x+)|, we would compute
a valid lower bound. As a consequence, the computed result would be feasible
for the optimization problem (33) and thus a (potentially conservative) valid
underestimator of the true maximizer.

During the remainder of this section, we will present and discuss an al-
gorithm for approximating |E(vi, x+)| for any sampled vi. In particular, we
will apply binary search: In every iteration, it will be decided whether a given
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r ≥ 0 is an element of E(vi, x+). This decision is made by solving a nonlin-
ear optimization problem (NLP) which, for all b ∈ U(µ+ rPv, x+), checks if
the henceforth called pressure flow solution (π, q) fulfills (8). We prove the
correctness of this decision procedure under the following assumption:

(C3) There is a node j ∈ V with fixed pressure, i.e., πj,∗ = π∗j .

Condition (C3) implies that there exists exactly one solution (π, q) which fulfills
Aq = (b, ξ)T and ATπ = −Φ|q|q, see for example Theorem 7.2. of [18]. As we
will see later, the uniqueness of the pressure flow solution is crucial for the
correctness of the presented algorithm.
In order to ensure that all potential violations of pressure bounds are detected,
globally optimal solutions are required. In order to achieve this, we relax the
NLP to a mixed-integer linear problem (MIP) by interpolating the nonlineari-
ties with linear splines and modeling these splines through linear constraints
and additional binary and continuous variables. The resulting MIP can be
solved globally with off-the-shelf-software. The effects of the linearization are
pointed out in the remainder of the section.

We would like to point out that, like condition (C1), condition (C3) is not
a critical assumption in reality. Since gas is injected at some entry node, we
can assume that the pressure at this node is known.
We conclude this section by the presentation of computational results that
show the effectiveness of our method.

4.1 Methodology for general stationary networks

As discussed beforehand, approximating the integral under conditions (C1) and
(C2) can be reduced to deciding whether r ∈ E(v, x+) for a real number r ≥ 0
and a sampled vector v ∈ Sm−1. In other words, we need to check whether
µ+ rPv ∈ D(x+), i.e., whether µ+ rPv is robust feasible:

Definition 1 Let d be a realization of the random variable ξ and let x+ be
an entry capacity extension. If d ∈ D(x+), d is called robust feasible. The
problem of deciding d ∈ D(x+) is denoted as DecProb(d, x+). Analogously, for
a sampled vector v ∈ Sm−1, the real number r ≥ 0 is called robust feasible for
v, if µ+ rPv ∈ D(x+), i.e., r ∈ E(v, x+). The problem of deciding the robust
feasibility of a number r for a vector v is denoted as DecProb(r, v, x+).

In the special case of unbounded pressure at every node, DecProb(d, x+)
would be answered positively for every feasible realization d and every extension
x+ (see [18], Theorem 7.1). Although in real gas network operations and in
our setting the pressures are bounded, we can use the following: We introduce
penalty functions for every u ∈ V , in formulas,

fu : R→ R+, πu 7→ max{0, π∗,u − πu, πu − π∗u}.
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If fu(πu) > 0 for a node u ∈ V , πu lies outside its bounds. Consequently,
π ∈ [π∗, π∗] if and only if ∑

u∈V
fu(πu) = 0. (37)

Now consider a balanced nomination (b, d)T and the optimization problem

max
π,q

∑
u∈V

fu(πu)

s.t. Aq =
(
b
d

)
ATπ = −Φ|q|q.

(38)

Since the pressure is unbounded, there exists a pressure flow solution (π, q)
and since condition (C3) holds, it is unique and the feasible set of problem (38)
is atomic. Consequently, (b, d) is a realizable nomination if the optimal value
of problem (38) is 0, i.e., equation (37) holds.
However, for a given sampled vector v and a real number r, we want to check
whether DecProb(r, v, x+) is answered positively, i.e., if for any b which results
in a balanced nomination (µ + rPv, b), there exists a pressure flow solution
which satisfies (8). Therefore, we modify (38):

max
b,π,q

∑
u∈V

fu(πu)

s.t. Aq =
(

b
µ+ rPv

)
ATπ = −Φ|q|q
1T−(µ+ rPv) + 1T+b = 0
b ∈ [−C+ − x+, 0].

(Pen(r, v, x+))

The feasible set of Pen(r, v, x+) consists of the vectors (b, π, q) for which
(µ + rPv, b) is a balanced nomination and for which there exists a pressure
flow solution which satisfies (8) but could violate the pressure bounds.

In particular, we will show in the following theorem that r is robust feasible
for v if and only if the optimal value of problem Pen(r, v, x+) is 0.

Theorem 1 Let v ∈ Sm−1, r ≥ 0 and let x+ ≥ 0 be a capacity extension at the
entries. Assume that condition (C3) holds. Then DecProb(r, v, x+) is answered
positively if and only if problem Pen(r, v, x+) is solvable with optimal value 0.

Proof Since fu(πu) is nonnegative for all nodes u ∈ V , the optimal value of
Pen(r, v, x+) is at least zero.

Assume on the one hand that DecProb(r, v, x+) is answered positively, i.e.,
µ+ rPv is robust feasible. Now consider a solution (b, π, q) which is feasible
for problem Pen(r, v, x+). If the objective value of (b, π, q) was strictly positive,
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there would exist a node j ∈ V with πj /∈ [π∗,j , π∗j ]. Since the pressure flow
solution is unique (due to condition (C3)), this contradicts the robust feasibility
of µ + rPv. Therefore, the objective value is 0. Since this applies for every
feasible solution, the optimal value of Pen(r, v, x+) is 0.
On the other hand, assume that the optimal value is 0. We maximize which
implies that for all feasible solutions (b, π, q), π lies in its prescribed bounds. In
other words, for every b ∈ U(µ+ rPv, x+), the unique pressure flow solution
(π, q) satisfies (8). This implies the robust feasibility of (µ + rPv, x+), i.e.,
DecProb(r, v, x+) is answered positively. ut

We note that condition (C3) is crucial in the proof of Theorem 1. Without
pressure bounds, the projection of the pressure flow solutions to the squared
pressure component has, for a fixed π, the form

{π + η1 | η ∈ [max
u∈V
{π∗,u − πu},min

u∈V
{π∗u − πu}]},

see Theorem 7.2. of [18]. Hence, unless one pressure is fixed, the pressure
values are not necessarily unique and problem Pen(r, v, x+) can be unbounded
although r is robust feasible.
As already discussed, we need to determine the length of the interval E(v, x+)
and as a consequence of Theorem 1, problem Pen(r, v, x+) can be used to
determine the length. In particular, by applying a binary search, which solves
the subproblem Pen(r, v, x+) in every iteration, we can determine the length
of E(v, x+).
A binary search algorithm requires a lower and an upper bound. Since 0 ∈
E(v, x+) ⊂ R≥0 (condition (C1)), we choose 0 as a lower bound. A trivial
upper bound for E(v, x+) is given by the exit capacities

0 ≤ µ+ rPv ≤ C−.

However, we can even give an even tighter bound. Due to (8), the pressure
drop constraint

πi − πj = Φi,j |qi,j | qi,j (39)

holds for every arc (i, j) ∈ E. Since the pressures are bounded and Φi,j > 0 for
every arc (i, j), we can derive flow bounds for every arc which do not depend
on the actual nomination. In the following, these flow bounds, which are called
implicit flow bounds and are denoted by q∗ and q∗, are exploited to determine
a tighter upper bound for E(v, x+):

Lemma 1 Let v ∈ Sm−1, let q∗ and q∗ be the implicit flow bounds and x+ ≥ 0
be a capacity extension at the entry nodes. For a node u ∈ V , let δ−(u) denote
the set of incoming arcs and let δ+(u) denote the set of outgoing arcs. Then
an upper bound for E(v, x+) is given by the optimal value of the optimization
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problem

max
r

r

s.t. 0 ≤ µ+ rPv ≤ C−∑
e∈δ−(u)

q∗e −
∑

e∈δ+(u)

q∗,e ≥ µu + r(Pv)u ∀u ∈ V−

∑
e∈δ−(u)

q∗,e −
∑

e∈δ+(u)

q∗e ≤ µu + r(Pv)u ∀u ∈ V−

r ≥ 0.

(UB(v, x+))

Proof Since we are interested in an upper bound for E(v, x+), 0 ≤ µ+ rPv ≤
C− and r ≥ 0 are satisfied. Furthermore, Kirchoff’s first law demands∑

e∈δ−(u)

qe −
∑

e∈δ+(u)

qe = µu + r(Pv)u ∀u ∈ V−

for a flow q. Substituting the flow variables by the implicit flow bounds q∗ and
q∗ results in ∑

e∈δ−(u)

q∗e −
∑

e∈δ+(u)

q∗,e ≥ µu + r(Pv)u ∀u ∈ V−

and ∑
e∈δ−(u)

q∗,e −
∑

e∈δ+(u)

q∗e ≤ µu + r(Pv)u ∀u ∈ V−.

This concludes the proof. ut

With Lemma 1, the prerequisites for the binary search have been taken. However,
problem Pen(r, v, x+) is a non-convex nonlinear optimization problem. Since
we require global optima, we aim to linearize the non-linear constraints of
problem Pen(r, v, x+), i.e., the Weymouth equation

πi − πj = Φi,j |qi,j | qi,j

by interpolating Φi,j |qi,j |qi,j with linear splines si,j(qi,j). For a given lineariza-
tion error ε > 0, the linear splines are constructed such that

si,j(qi,j)− ε ≤ Φi,j |qi,j |qi,j ≤ si,j(qi,j) + ε (40)

for every (i, j) ∈ E. Therefore, in Pen(r, v, x+), we relax (39) with

si,j(qi,j)− ε ≤ πi − πj ≤ si,j(qi,j) + ε (41)

for all (i, j) ∈ E. The splines si,j(qi,j) are modeled with the incremental
method, see [21], using an additional set of linear inequalities and equations
and additional continuous and binary variables. Hence subproblem Pen(r, v, x+)
is relaxed to a MIP which can be solved to global optimality. The optimal
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value of the relaxation is an upper bound for the optimal value of prob-
lem Pen(r, v, x+). Due to the objective being non-negative, if the optimal value
of the linearized problem is zero, the optimal value of problem Pen(r, v, x+)
is zero as well. The linearized version of problem Pen(r, v, x+) is henceforth
denoted as Pen(r, v, x+, ε).
Before we summarize our algorithm for finding a lower bound for the length of
E(v, x+), we note that the incremental method is applied for modeling linear
splines which are defined on compact intervals. In our case, the spline variables
are the flow variables which are, at least by definition, unbounded. In practice,
one can for example apply the preprocessing developed in [1] for determining
flow bounds. This method neglects the pressure bounds as well, which is the
reason why we can apply it.
In the following, we summarize our procedure to find a lower bound for the
length of E(v, x+). The tolerance for the binary search is henceforth given by
tol > 0: Algorithm 1 bounds |E(v, x+)| from below with an error of at most
tol. Due to Theorem 1 and Lemma 1, Algorithm 1 terminates with a correct
lower bound.

Algorithm 1 Finding a lower bound for |E(v, x+)|
Input: Sampled vector v ∈ Sm−1, capacity x+ ≥ 0, tolerance tol > 0 , linearization error
ε > 0

Output: r ∈ R, such that |E(v, x+)| − r < tol
l← 0
z ← Optimal value of UB(v, x+)
while z − l > tol do

r ← z+l
2

Solve Pen(r, v, x+, ε)
Let z∗ be the optimal value of Pen(r, v, x+, ε)
if z∗ = 0 then

l← r
else

z ← r
end if

end while
r ← l
return r

This concludes the presentation of our method to determine a lower bound
for |E(v, x+)| under the conditions (C1), (C2) and (C3). We note that there
are several sources of approximation errors which are caused by the binary
search and the linearization of Pen(r, v, x+). Yet, those can be limited by
reducing tol and ε in Algorithm 1, respectively. However, one has to keep in
mind that reducing tol results in more iterations and that reducing ε, i.e., a
tighter linearization, results in more binary variables for Pen(r, v, x+, ε). Both
lead to an increase of the running time, see Section 4.2.
Before we discuss our numerical results, we would like to demonstrate, how
our algorithm could be modified to produce a lower bound on E(v, x+) in
the case when condition (C2) fails to hold. As pointed out before, without
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condition (C2), the set E(v, x+) is in general not an interval but a finite union
of intervals. Due to condition (C1), one of those intervals, henceforth denoted
as E0(v, x+), has 0 as its lower bound. Obviously, R ∈ E0(v, x+) only holds
if [0, R] ⊂ E0(v, x+), i.e., if all r ∈ [0, R] are robust feasible for v. Therefore,
we can check whether R ∈ E0(v, x+) by modifying problem Pen(r, v, x+) and
solving

max
r,b,π,q

∑
u∈V

fu(πu)

s.t. Aq =
(

b
µ+ rPv

)
ATπ = −Φ|q|q
1T−(µ+ rPv) + 1T+b = 0
b ∈ [−C+ − x+, 0]
r ∈ [0, R].

The feasible set of this optimization problem consists of the vectors (r, b, π, q)
for which (µ+ rPv, b) is a balanced nomination (with r ≤ R) with pressure
flow solution (π, q) which is unique due to condition (C3). Thus, the only
difference in problem Pen(r, v, x+) and the above optimization problem is r
being a variable since we have to check whether µ + rPv is robust feasible
for every r ∈ [0, R]. Consequently, using this modified problem in Algorithm 1
instead of problem Pen(r, v, x+) yields a lower bound for E0(v, x+) and thus a
(potentially conservative) lower bound on E(v, x+).
In the next subsection, we evaluate Algorithm 1 with respect to quality of the
obtained solutions and running time.

4.2 Numerical results

We modify the gas network instance of Section 3.3 by adding a second entry
next to the first entry (the black filled node) which implies that x+ ∈ R2. We
note that the instance is still a tree and that the structure of the instance
has not changed substantially which has been desired since we do not want to
analyze an instance which is very different from the one of Section 3. However,
if the instance had only one entry, the uncertainty set would have only one
element which is not interesting in the context of this section. In addition,
we fix the pressure at a leaf node. Beyond that, we provide sphere vectors v
by sampling a collection of 10 000 elements on the unit sphere using a Quasi-
Monte Carlo method. Our goal is to approximate the probability of robust
feasibility for this network and uncertain entry loads by using a spheric radial
decomposition and applying Algorithm 1. Since we can not verify condition
(C2), we assume that D(x+) is not star-shaped with respect to the mean.
The performance of the algorithm is investigated by testing the algorithm on
the given instance under a variety of parameter combinations. All experiments
were carried out using Gurobi 7.5 [15] with 4 threads running on machines
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with Xeon E3-1240 v5 CPUs (4 cores, 3.5 GHz each).
We apply Algorithm 1 to all 10 000 rays using all combinations of relaxation
parameters ε ∈ {2−6, 2−5, . . . , 24} and bisection termination tolerances tol ∈
{0.001, 0.01, 0.1}. Experiments for smaller tolerances down to tol = 10−6 were
carried out as well but are omitted here since they produced almost identical
probabilities, when compared to tol = 10−3. The results of this study are
displayed in Figure 3. The approximated probabilities for robust feasibility of
the exit nomination and the capacity extension of the instance are displayed
in Figure 3a. We approximate the overall probability to be between 78 % and
78.5 %, depending on ε and tol. As expected, we obtain more conservative
solutions for increasing approximation parameters ε. However, the influence of
ε is much smaller than expected, even for large ε. In the same fashion, increasing
the bisection termination tolerances tol leads to more conservative solutions.
We note that for both parameters, a combination of ε = 1

2 and tol = 0.001
produces solutions that can be improved only very little (within the scope of
this study) by decreasing both parameters further. The overall running times
for all rays, i.e., the cumulated running time of Algorithm (1), applied for
each ray, are plotted in Figure 3b. As expected, the running times increase
for decreasing parameter ε, as the latter leads to more complex MIP models.
A decrease of the tolerance tol leads to a larger number of iterations of the
bisection algorithm and thus to longer running times as well. In the previous
experiments, we focused on the influence of the relaxation parameter ε and
the bisection precision tolerance tol on the algorithm’s running time and on
the reliability of the obtained probability. Another important impact on the
overall running time is the number of rays that needs to be used. Figure 4a
shows the resulting probability when only the first k rays of the 10 000 given
samples are used for the probability approximation. At a glance, we observe
large fluctuations when using only up to about 2500 rays. A considerable
decrease in the magnitude of the probability fluctuation can be seen for values
of k ≥ 2500. We further strengthen this observation in Figure 4b by comparing
the first graph with a second graph that was obtained from 5000 other random
sphere vectors in the same fashion. Since the second graph follows the same
pattern, we conclude that for the instance considered here, the number of rays
should not be smaller than 2500 if the approximation of the probability has
is supposed to be reliable. Assuming that the parameter selection k = 2500,
ε = 1

2 , and tol = 0.001 is sufficient for a reliable probability calculation, the
sum of all MIP running times is about 8 min.

As a final experiment, we demonstrate the practical applicability of our
method by solving a simple optimization task where we assume that the
number of sampled points k is large enough and that our approximation is
good enough to check whether the probust constraint is satisfied for a given
capacity extension.

The goal is to determine capacities for the two entry nodes such that the
probability of robust feasibility is at least 75 %. We use a linear cost function
with equal costs for expansion at each node. In Section 3, the capacity problem
with uncertain exit loads has been solved using (sub)gradient information in
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Fig. 3: Resulting probability and total running time for 10 000 rays using
different relaxation qualities ε and bisection termination tolerances tol.
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Fig. 4: Probability plot when using only the first k rays for its computation.
Parameters used in ray length calculation: ε = 1

2 and tol = 0.001.

the sense of [24]. However, due to the different situation here caused by the
MIP-approximations and the robust constraints, the derivation of suitable
(sub)gradients needs further research that is beyond the scope of this article.
Instead, we decided to apply a gradient free pattern search algorithm available
in MATLAB [19]. It is important to note that - due to the fact that the
probust constraint is in general non-smooth - no convergence of this algorithm
to a stationary point can be guaranteed. Instead, one can expect convergence
to a point in which directional derivatives are nonnegative for all directions in
the positive basis used by the algorithm. We refer to [5] for a further discussion
on this, as well as a general overview of derivative-free optimization.
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In every major iteration, a capacity extension x+ has been proposed by the
algorithm. For all sampled vectors vi, Algorithm 1 is applied to approximate
|E0(vi, x+)|. Hence, the probability of robust feasibility is estimated from below
by 1

2500
∑2500
i=1 Fχ(|E0(vi, x+)|) and thus, the inequality

1
2500

2500∑
i=1

Fχ(|E0(vi, x+)|) ≥ 0.75

is checked.
In our experiment, we consider the entry capacities in the box [28000, 32000]×
[4000, 8000] and start with C+ = (−28000,−4000). In other words the extension
x+ is an element of the box [0, 4000]× [0, 4000] and our starting point is (0, 0).

Overall, the pattern search algorithm converged after 149 function evalua-
tions. The red lines which connect the black, filled dots show the trajectory
of the pattern search algorithm, with the optimum marked by a red cross.
The extra function evaluations are represented by black circles. Obviously, the
probability is not very sensitive with respect to capacity changes at entry 1 but
clearly decreases, when the capacity is increased at entry 2. This concludes the
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Fig. 5: Contour plot of the probability for robust feasible entry capacities
together with the trajectory of a gradient-free optimization method to determine
a capacity with 75 % feasibility.

discussion and presentation of the methodology for stationary gas networks.
In the next section, transient systems controlled by the wave equation are
discussed.
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5 Stabilization with probabilistic constraints of a system governed
by the wave equation

Now, we consider a transient system that is governed by the wave equation. The
wave equation is a linear model of the gas flow in gas pipelines for sufficiently
small velocities. The state is determined by an initial boundary value problem
with Dirichlet boundary data at one end and Neumann boundary feedback at
the other end of the space interval. The initial data and the boundary data are
given by a stochastic process. The aim is to maximize the probability to stay
near a desired state everywhere in the time space domain.

Let a finite length L > 0 and a finite time T > 0 be given. In this section, let
U = [0, T ]× [0, L]. Let c > 0 denote the sound speed in the gas. Let a stationary
velocity field v̄ be given, see [13]. Let v = ṽ − v̄ denote the difference between
the velocity and the stationary state. If the norm of v̄ is sufficiently small, the
dynamics for v are governed by the wave equation vtt = c2 vxx. Moreover the
gas density ρ satisfies the wave equation ρtt = c2ρxx and the flow rate q of
the gas satisfies the wave equation qtt = c2qxx; see [14]. For given uncertain
boundary data (that model the uncertain demand) ξ ∈ L∞(0, T ), an uncertain
initial state (v0, v1) ∈ L∞(0, L)×L1(0, L) and a feedback parameter η > 0, we
consider the closed loop system that is governed by the initial boundary value
problem for (t, x) ∈ U

v(0, x) = v0(x), vt(0, x) = v1(x),
vx(t, 0) = η vt(t, 0), v(t, L) = ξ(t),
vtt(t, x) = c2vxx(t, x).

(S)

An explicit representation of the generated state in terms of travelling waves
(d’Alembert’s solution) is given in [11], [12]. This allows the computation of
the system state v ∈ L∞(U) without discretization errors. In the operation of
pipeline networks, there is a constraint on the magnitude of the flow velocity
in the pipe. Let vmax > 0 be an upper bound for the velocity. We consider the
probabilistic constraint for the probability

P
(
‖v‖L∞ ≤ vmax

)
(42)

where v solves (S) and ‖ · ‖L∞ denotes the norm on L∞(U).
In order to write the probabilistic constraint similar to (4), we introduce

the notation
g(ṽ, ξ, u) := vmax − |ṽ(u)− v̄(u)|, (43)

with ξ = (a, b), a = (ak)Nk=1, b = (bk)Nk=1, u = (t, x) ∈ U , where ṽ solves the
initial boundary value problem (S) with initial and boundary data that depend
on the parameter (a, b) (see (KL-id) and (KL-bd) below).
Theorem 2 (Solution of system (S)) Consider system (S) with ξ ∈ L∞(0, T )
and (v0, v1) ∈ L∞(0, L)× L1(0, L) for the feedback parameter η = 1

c . Define
the antiderivative of v1 by

V1(x) :=
∫ x

0
v1(s) ds
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and define for

α(s) :=
{
v0(cs) + 1

cV1(cs) for s ∈
[
0, Lc

)
2ξ
(
s− L

c

)
− β

(
s− L

c

)
for s ∈

[
L
c , T + L

c

]
and

β(s) :=
{
v0(L− cs)− 1

cV1(L− cs) for s ∈
[
0, Lc

)
v0(0) for s ∈

[
L
c , T + L

c

]
.

Then the function

v(t, x) := 1
2α
(
t+ x

c

)
+ 1

2β
(
t+ L−x

c

)
(44)

solves system (S) and the solution v lies in L∞(U).

Proof We show that v defined in (44) fulfills the PDE system (S). First we see
that v satisfies the wave equation, because we have

vtt = 1
2α
′′ (t+ x

c

)
+ 1

2β
′′ (t+ L−x

x

)
vxx = 1

2c2α
′′ (t+ x

c

)
+ 1

2c2 β
′′ (t+ L−x

c

)
= 1

2c2 vtt.

Now we show that v satisfies the initial conditions. At t = 0, we have for all
x ∈ (0, L)

v(0, x) = 1
2α
(
x
c

)
+ 1

2β
(
L−x
c

)
= 1

2
[
v0 (x) + 1

cV1 (x)
]

+ 1
2
[
v0 (x)− 1

cV1 (x)
]

= v0(x).

For the time derivative at t = 0, x ∈ (0, L) we have

vt(0, x) = 1
2α
′ (x

c

)
+ 1

2β
′ (L−x

c

)
= 1

2 [v′0(x) + v1(x)]− 1
2 [v′0(x)− v1(x)] = v1(x),

where the derivatives are to be understood in the sense of distributions. Finally,
we show that the boundary conditions are fulfilled. Now, we prove that the
Dirichlet boundary condition at x = L is fulfilled for t > 0. We have

v(t, L) = 1
2α(t+ L

c ) + 1
2β(t) = 1

2 [2ξ(t)− β(t)] + 1
2β(t) = ξ(t).

For the feedback law at x = 0, we have

vx(t, 0) = 1
2cα
′(t)− 1

2cβ
′(t+ L

c ) = 1
2cα
′(t)− 1

2cv
′
0(0)

ηvt(t, 0) = η
2α
′(t)− η

2β
′(t+ L

c ) = 1
2cα
′(t)− 1

2cv
′
0(0).

Now we show that v lies in L∞(U). By the assumptions, we have v0 ∈ L∞(0, L)
and ξ ∈ L∞(0, L). The claim is true if V1 is in L∞(0, L). We know that v1 is
in L1(0, L). This implies

‖V1‖L∞ = ess sup
x∈(0,L)

∣∣∣∣∫ x

0
v1(s) ds

∣∣∣∣ ≤ ess sup
x∈(0,L)

∫ x

0
|v1(s)|ds ≤

∫ L

0
|v1(s)|ds = ‖v1‖L1 .

This finishes the proof Theorem 2. ut



30 D. Adelhütte et al.

0 L
0

T

Ω1
Ω2 Ω3

Ω4

Ω5

Fig. 6: Decomposition of the space-time domain U

Theorem 3 (Value of ‖v‖L∞ in terms of initial and boundary data)
Let v be a solution of system (S) under the assumptions of Theorem 2. For
(t, x) ∈ U , define

m1(t, x) := 1
2
[
v0(x+ ct) + 1

cV1(x+ ct)
]

+ 1
2
[
v0(x− ct)− 1

cV1(x− ct)
]
,

m2(t, x) := 1
2
[
v0(ct+ x) + 1

cV1(ct+ x) + v0(0)
]
,

m3(t, x) := ξ
(
t+ x−L

c

)
+ 1

2
[
v0(ct+ x)− 1

cV1(ct+ x)−
v0(2L− x− ct) + 1

cV1(2L− x− ct)
]
,

m4(t, x) := ξ(t+ x−L
c ) + 1

2
[ 1
cV1(2L− x− ct) + v0(0)− v0(2L− x− ct)

]
,

m5(t, x) := ξ(t+ x−L
c ).

Set

Ω1 :=
{

(t, x) ∈ U | t < min{L−xc , xc }
}
,

Ω2 :=
{

(t, x) ∈ U | xc ≤ t <
L−x
c

}
,

Ω3 :=
{

(t, x) ∈ U | L−xc ≤ t < x
c

}
,

Ω4 :=
{

(t, x) ∈ U | max{L−xc , xc } ≤ t <
L
c + L−x

c

}
,

Ω5 :=
{

(t, x) ∈ U | t ≥ L
c + L−x

c

}
(see Fig. 6). Furthermore, for i ∈ {1, . . . , 5}, set

Mi := sup{|mi(t, x)| : (t, x) ∈ Ωi}.

Then the L∞-norm of the velocity v is given by

‖v‖L∞ = max{M1,M2,M3,M4,M5}.

Proof By Theorem 2 the solution of system (S) is given by

v(t, x) := 1
2α
(
t+ x

c

)
+ 1

2β
(
t+ L−x

c

)
.

By the definition of α and β, there are four cases to consider. The last case
is split into two subcases. The first case t < min

{
x
c ,

L−c
c

}
is the first case for

both α and β. We have

v(t, x) = 1
2
[
v0(x+ ct) + 1

cV1(x+ ct)
]

+ 1
2
[
v0(x− ct)− 1

cV1(x− ct)
]
.
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For x
c ≤ t <

L−x
c , we are in the first case for α and in the second case for β.

Note that the interval for t can only be nonempty for x ∈ (0, L2 ). We have

v(t, x) = 1
2
[
v0(ct+ x) + 1

cV1(ct+ x) + v0(0)
]
.

For L−x
c ≤ t < x

c , we are in the second case for α and in the first case for
β. Note that the interval for t can only be nonempty for x ∈ (L2 , L). Since
t < x

c <
L
c and x−L

c < 0, we have t+ x−L
c < L

c and therefore

v(t, x) = 1
2
[
2ξ(t+ x−L

c )− β(t+ x−L
c ) + β(t+ L−x

c )
]

= ξ(t+ x−L
c )− 1

2β(t+ x−L
c ) + 1

2
[
v0(ct+ x)− 1

cV1(ct+ x)
]

= ξ(t+ x−L
c )− 1

2
[
v0(2L− x− ct)− 1

cV1(2L− x− ct)
]

+ 1
2
[
v0(ct+ x)− 1

cV1(ct+ x)
]
.

The last case to consider is t ≥ max{L−xc , xc }. It leads to

v(t, x) = 1
2
[
2ξ(t+ x−L

c )− β(t+ x−L
c ) + v0(0)

]
={

ξ(t+ x−L
c ) + 1

2
[ 1
cV1(2L− x− ct) + v0(0)− v0(2L− x− ct)

]
, t < L

c + L−x
c

ξ(t+ x−L
c ), t ≥ L

c + L−x
c .

This yields the assertion of Thm. 3. ut

5.1 Boundary data with random amplitude, frequency and phaseshift

For the boundary data, we consider the parametric family

ξ(t) := λ cos(ωt+ κ) (cos-bd)

with a random variable (λ, κ, ω) and the compatible initial data

v0(x) = λ cos(κ), v1 = 0. (cos-id)

We assume that (λ, κ, ω) is normally distributed with expected value µ ∈ R3

and a positive definite covariance matrix Σ ∈ R3×3. For the numerical compu-
tation of the probability, we use the spheric radial decomposition described in
Section 3.2.

Corollary 1 (Analytic formula for ‖v‖L∞) Let v be a solution of system (S)
under the assumptions of Theorem 2 for the initial conditions given by (cos-id)
and the Dirichlet boundary data at x = L given by (cos-bd). Then

‖v‖L∞ ≤ |λ|.
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Fig. 7: The solution v of the wave equation for nine samples (λ, ω, κ) on the
sphere. The radius r is scaled such that ‖v‖L∞ = vmax holds. The value of
the cumulative distribution of the chi distribution evaluated at this radius is
given on top of each picture. The probability for the solution to be bounded by
vmax is P (‖v‖L∞ ≤ vmax) ≈ 0.7856 for the data T = 6, L = 2, c = 0.5, vmax =
1.8. The random vector (λ, ω, κ) is normal distributed with expected value
µ = (1, 1, 1) and covariance matrix Σ = I. The number of samples used to
approximate the probability is 20000.

Proof With the definitions from Theorem 3 and (cos-bd) as well as (cos-id),
we have

m1(t, x) := v0(ct+ x) = λ cos(κ),
m2(t, x) := 1

2
[
v0(ct+ x) + 1

cV1(ct+ x) + v0(0)
]

= λ cos(κ),
m3(t, x) := ξ

(
t+ x−L

c

)
+ 1

2
[
v0(ct+ x)− 1

cV1(ct+ x)−
v0(2L− x− ct) + 1

cV1(2L− x− ct)
]

= λ cos
(
ω
(
t+ x−L

c

)
+ κ
)

m4(t, x) := ξ(t+ x−L
c ) + 1

2
[ 1
cV1(2L− x− ct) + v0(0)− v0(2L− x− ct)

]
= λ cos

(
ω
(
t+ x−L

c

)
+ κ
)
.

m5(t, x) := ξ(t+ x−L
c ) = λ cos

(
ω
(
t+ x−L

c

)
+ κ
)

By |mi(t, x)| ≤ |λ| for i = 1, . . . , 5 the claim follows. ut

Remark 1 If ω 6= 0 and T is sufficiently large, then ‖v‖∞ = |λ| holds.
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5.2 Karhunen-Loève approximation of a Wiener process as initial and
boundary data

We consider the Karhunen-Loève representation (see [17]) of a Wiener process
on [0, T ] with covariance function Cov(Wt,Ws) = min(s, t) given by

Wt =
√

2T
∞∑
k=1

ak
sin
(
ωkπ

t
T

)
ωkπ

, ωk = k − 1
2 ,

with independently normally distributed random variables ak. It is reasonable
to use a finite approximation of it as boundary data, i.e.,

ξ(t) =
√

2T
N∑
k=1

ak
sin
(
ωkπ

t
T

)
ωkπ

, ωk = k − 1
2 , on [0, T ]. (KL-bd)

Analogously, we choose the compatible initial data

v0(x) =
√

2L
N∑
k=1

bk
sin
(
ωkπ

L−x
L

)
ωkπ

, ωk = k − 1
2 , on [0, L], (KL-id)

with independently normally distributed random variables bk. We have the
compatibility condition ξ(0) = v0(L) = 0. Furthermore, set v1 = 0. Different
realizations of the initial and boundary data can be seen in Figures 8 and 9.
The solution of the wave equation for different realizations of the initial and
boundary data is depicted in Figure 10.

The case is much more involved than that in Section 5.1, since the value of
‖v‖L∞ is not easily expressed as an analytic function of the random variables.
This means a sampling scheme based on spheric radial decomposition can not
be directly be applied. We use a quasi Monte Carlo method based on a Sobol
sequence instead.

If one wants to approximate the L∞- norm of the velocity by pointwise
evaluation on a grid, Lipschitz continuity of the velocity is required.

Theorem 4 (Lipschitz continuity of the solution ) Assume the boundary
data ξ ∈ C0,1(0, T ) and initial data v0 ∈ C0,1(0, L) to be Lipschitz continuous
and assume that Lipschitz compatibility over the edge holds, i.e., we have

|ξ(t)− v0(L− x)| ≤ K|t− L+ x|, for (t, x) ∈ U (45)

with a Lipschitz constant K > 0. Furthermore, let v1 ∈ L∞(0, L).
Then, under the assumptions of Thm. 2, the solution v of system (S) is Lipschitz
continuous on U , i.e., v ∈ C0,1(U).

Proof The sum of Lipschitz continuous functions is Lipschitz continuous. It
is therefore sufficient to show the Lipschitz continuity of α and β defined
as in Theorem 2. Without loss of generality—by going to the maximum of
the occurring Lipschitz constants—we assume that they are all the same and
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Fig. 8: Different realizations
(21) of the initial data for a
Karhunen-Loève sum with 20
standard normally distributed
coefficients

Fig. 9: Different realiza-
tions (21) of the boundary
data for a Karhunen-Loève
sum with 20 standard nor-
mally distributed coefficients

denote each of them by K > 0. First, we show the Lipschitz continuity of V1.
We have, for x, y ∈ [0, L]

|V (x)− V (y)| =
∣∣∣∣∫ x

0
v1(s) ds−

∫ y

0
v1(s) ds

∣∣∣∣ =
∣∣∣∣∫ x

y

v1(s) ds
∣∣∣∣

≤ |x− y| ‖v1‖L∞ ≤ K|x− y|.

The Lipschitz continuity of β is clear in the individual intervals
[
0, Lc

)
and[

L
c , T + L

c

)
. Consider s ∈

[
0, Lc

)
and r ∈

[
L
c , T + L

c

)
. Then, using V1(0) = 0

and
∣∣L
c − s

∣∣ = L
c − s ≤ r − s = |r − s|, leads to

|β(s)− β(r)| = 1
c |cv0(L− cs)− V1(L− cs)− cv0(0) + V1(0)|

≤ K
c |L− cs| ≤ K|r − s|.

The Lipschitz continuity of β of ξ imply that α is Lipschitz on t ≥ L
c and by

the Lipschitz continuity of v0 and V1 it is Lipschitz on
[
0, Lc

)
. Again, the case

s ∈
[
0, Lc

)
and r ≥ L

c is remaining. We obtain

|α(s)− α(r)| =
∣∣v0(cs) + 1

cV1(cs)− 2ξ
(
r − L

c

)
+ β

(
r − L

c

)∣∣.
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Fig. 10: The solution v of the wave equation with boundary and initial data
given by the functions in (KL-bd) and (KL-id) for nine samples of the standard
normal distributed random vector (a, b) with realizations in R40, i.e., N = 20.
The constants T = 6, L = 2, c = 0.5 were used. The bound vmax = 5 was chosen
and v̄ = 0 was used. The probability of ‖v+ v̄‖L∞ ≤ vmax is 0.8808 with 10000
samples used. The value of the L∞-norm is approximated by evaluation on a
100× 100 grid on U . The points, where the value of the L∞- norm is attained
are marked with a point.

For L
c ≤ r <

2L
c , this yields by the definition of β

|α(s)− α(r)| =
∣∣v0(cs) + 1

cV1(cs)− 2ξ
(
r − L

c

)
+ v0(2L− cr)− 1

cV1(2L− cr)
∣∣

=
∣∣v0(cs)− v0(L) + 2(v0(L)− ξ

(
r − L

c

)
)

+ v0(2L− cr)− v0(L) + 1
c (V1(cs)− V1(2L− cr))

∣∣ .
By the triangle inequality and the compatibility v0(L) = ξ(0), we obtain

|α(s)− α(r)| ≤ |v0(cs)− v0(L)|+ 2
∣∣ξ(0)− ξ

(
r − L

c

)∣∣
+ |v0(2L− cr)− v0(L)|+ 1

c |V1(cs)− V1(2L− cr)|
≤ K|cs− L|+ 2K

∣∣−r + L
c

∣∣+K|L− cr|
+ K

c |cs− L|+
K
c |−L+ cr|

= K
[
L− cs+ 2(r − L

c ) + cr − L+ L
c − s+ r − L

c

]
≤ K [c(r − s) + 2(r − s) + (r − s)] = K(c+ 3)|r − s|,
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since −Lc ≤ −s. For r ≥
2L
c , we have by the definition of β and V1(0) = 0

|α(s)− α(r)| =
∣∣v0(cs) + 1

cV1(cs)− 2ξ
(
r − L

c

)
+ v0(0)

∣∣
= |v0(cs)− v(L) + 2

(
v0(L)− ξ

(
r − L

c

))
+ v0(0)

− v0(L) + 1
cV1(cs)− 1

cV1(0)|
≤ |v0(cs)− v(L)|+ 2

∣∣ξ(0)− ξ
(
r − L

c

)∣∣
+ |v0(0)− v0(L)|+ 1

c |V1(cs)− V1(0)|
≤ K|cs− L|+ 2K

∣∣−r + L
c

∣∣+K|L|+ K
c |cs|

= K
[
L− cs+ 2(r − L

c ) + L+ s
]

≤ K [c(r − s) + 2(r − s) + (r − s)] ≤ K(c+ 3)|r − s|,

because 2L ≤ rc, −Lc ≤ −s and r − s ≥ 2L
c − s ≥

L
c ≥ s. This shows the

Lipschitz continuity of α and concludes the proof.

Remark 2 Also for general feedback gains η > 0, results similar to Thm. 2 and
Thm. 4 hold.

5.3 Optimization of the feedback parameter

The feedback parameter η can be chosen such that the probability (42) as
a function of η is maximized. We call this function G(η). We consider the

1.5 2 2.5 3 3.5 4

0.86

0.86

0.87

0.87

0.88

0.88

2
η

G
(η
)

Fig. 11: The probability to stay under the bound vmax = 5 over the feedback
parameter η for the data L = 2, c = 0.5, T = 2 using 2000 samples. The
maximum of the probability is reached for completely absorbing feedback
η = 1/c = 2.
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probability to stay under the bound vmax = 5 for different feedback parameters
η > 0 on a grid with stepsize 0.05 between 1.5 and 4. The data for the example
has been chosen as L = 2, T = 2, c = 0.5. For the approximation of the
probability, 2000 samples were used for each value of η. The maximum of the
probability is reached for completely absorbing feedback η = 1/c = 2. The peak
in probability is very distinct. At the peak the probability function appears
to be nonsmooth. Numerically, we find that the choice η = 1/c is optimal; see
Fig. 11.

6 Conclusion

In this paper we dealt with a joint model of probabilistic and robust con-
straints, so-called probust constraints and illustrated their importance for
gas transport under uncertainty. In particular, we addressed the problem of
capacity maximization under uncertainty thereby distinguishing between the
cases of uncertain exit and uncertain entry loads. Moreover, we considered a
stabilization problem in a transient system governed by the wave equation and
subject to probust constraints. By applying the spheric radial decomposition
of Gaussian random vectors, we approximated the occurring probabilities and—
where possible—their sensitivities with respect to the decision variables in order
to numerically solve the resulting optimization problems. There are a lot of
remaining challenges for future work, such as efficient incorporation of cycles or
active elements in the network. Moreover, a full integration of the methodology
outlined in Section 4 for the robust treatment of uncertain entries with the
capacity maximization problem described in Section 3 ultimately would allow
an application of the probust approach to arbitrary network topologies.
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