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Abstract. We consider the non-isothermal flow of a compressible fluid through pipes.
Starting from the full set of Euler equations, we propose a variational characterization
of solutions that encodes the conservation of mass, energy, and entropy in a very direct
manner. This variational principle is suitable for a conforming Galerkin approximation in
space which automatically inherits the basic physical conservation laws. Three different
spaces are used for approximation of density, mass flux, and temperature, and we consider
a mixed finite element method as one possible choice of suitable approximation spaces.
We also investigate the subsequent discretization in time by a problem adapted implicit
time stepping scheme for which exact conservation of mass as well as a slight dissipation
of energy and increase of entropy are proven which are due to the numerical dissipation
of the implicit time discretization. The main arguments of our analysis are rather general
and allow us to extend the approach with minor modification to more general boundary
conditions and flow models taking into account friction, viscosity, heat conduction, and
heat exchange with the surrounding medium.
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1. Introduction

We consider the systematic numerical approximation of compressible flow in pipelines.
Such problems arise for instance in the simulation and optimization of gas networks [4, 25].
Motivated by such applications we tacitly assume throughout the text that the flow is
subsonic. For ease of presentation, we neglect for the moment the presence of friction,
viscosity, and heat transfer, and therefore consider the Euler equations

∂tρ+ ∂xm = 0, (1.1)

∂tm+ ∂x

(
m2

ρ
+ p

)
= 0, (1.2)

∂tE + ∂x

(
m

ρ
(E + p)

)
= 0. (1.3)

More general flow models will be considered below. Here ρ denotes the density, m the
mass flux, p the pressure, and E = m2

2ρ
+ ρe the total energy; further m2

2ρ
is the kinetic

energy, and e the internal energy. The above equations are assumed to hold on a bounded
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2 VARIATIONAL DISCRETIZATION OF NON-ISOTHERMAL COMPRESSIBLE FLOW

closed interval ω representing the pipeline and for all t > 0. We further assume for the
moment that the pipe is closed, i.e.,

m = 0 on the boundary. (1.4)

It is well-known that for smooth solutions of the Euler equations (1.1)–(1.3), one can also
deduce a conservation law for the entropy [13, 24], namely

∂t(ρs) + ∂x(ms) = 0. (1.5)

One may replace one of the equations in (1.1)–(1.3) by the entropy equation (1.5) and thus
obtain an equivalent system for the unknown density ρ, mass flux m, and temperature θ.
This viewpoint will play an important role in our considerations below.

The system (1.1)–(1.5) is complemented by equations of state. Here we choose to
characterize the pressure p, the specific internal energy e, and the specific entropy s as
functions of density ρ and temperature θ, i.e.,

p = p(ρ, θ), e = e(ρ, θ), and s = s(ρ, θ). (1.6)

In order to comply to the basic laws of thermodynamics, these functions have to satisfy
certain compatibility conditions; see [2, 13] and Section 2 below.

Under appropriate assumptions on the initial data and the constitutive relations, the
local existence of smooth solutions to the system (1.1)–(1.6) can be guaranteed [13, 24].
In the context of gas pipelines, solutions are expected to remain smooth for all time,
which can be explained by the stabilizing effect of friction [21, 22]. Moreover, the flow
takes place at low Mach number and therefore no shocks should be generated.

Notation 1.1. A triple (ρ,m, θ) ∈ C1((0, T ] × ω)3 is called smooth positive solution of
the system (1.1)–(1.6) above, if all equations hold in a point wise sense and ρ, θ > 0.

Due to the many important applications, a vast amount of literature has been devoted
to the study of numerical methods for compressible flow problems, and the one dimen-
sional problem discussed above is typically used as a starting point. Despite that fact, the
convergence analysis for the flow of inviscid fluids is not completely settled, not even in one
space dimension. Finite volume methods are probably most widely used for the numerical
approximation of compressible flow. While a rather complete convergence theory has been
established for scalar conservation laws, only partial results are available concerning the
analysis of finite volume methods for the Euler equations; we refer to [18, 19] and the ref-
erences given there. Similar results hold for discontinuous Galerkin methods [5, 6] which
can be understood as high-order generalization of finite volume schemes. Using the stabi-
lizing effect of viscosity, some truly implementable numerical schemes for the isothermal
compressible Navier-Stokes equations have been shown to be globally convergent to weak
solutions [28, 29, 30]. These are however formulated in Lagrangian coordinates which
is prohibitive for a possible extension to pipe networks. In [14, 17], a globally conver-
gent non-conforming finite element method for the isothermal compressible Navier-Stokes
equations in Eulerian coordinates has been proposed and analyzed. This method is based
on the approximation of the velocity and density field and makes use of several stabiliza-
tion terms which leads to a rather strong violation of the conservation laws. Moreover,
the method degenerates in the inviscid limit; see [17, Sec. 3.1].

The main goal of the current manuscript is to construct a numerical scheme that can
handle general flow models for viscous and inviscid fluids. Moreover, the method should
have good stability properties and preserve the basic conservation laws that encode the
underlying the physical principles as good as possible. For this purpose, we consider
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here an extension of our previous work [10], which dealt with the conforming Galerkin
approximation of isentropic flow on networks. The extension to the full set of Euler
equations and generalization thereof, which are the subject of this paper, will require
some non-trivial extensions. In contrast to the isentropic setting considered in [10], we
are not yet able to systematically handle pipe networks and such extension are therefore
left as a topic for future research. One obstacle here is the formulation of appropriate
coupling conditions at pipe junctions. In contrast to the isentropic case [10, 23, 23], this
issue seems not completely settled in the general case; we refer to [1, 3, 7, 15, 16] for
positive as well as negative examples.

The remainder of the manuscript is organized as follows: In the first part of the paper,
we discuss in detail the Euler equations on a closed pipe. We first recall some basic rela-
tions of equilibrium thermodynamics, and then introduce a variational characterization of
smooth solutions which rather directly encodes the conservation of mass, energy, and en-
tropy. In the second part, we investigate the numerical approximation of this variational
principle in space by a conforming Galerkin method and then consider the subsequent
discretization in time by a problem adapted implicit time stepping scheme. We prove
strict conservation of mass, energy, and entropy for the semi-discretization and a slight
dissipation of energy and monotonic increase in entropy for the fully discrete scheme. The
proposed method therefore perfectly complies to the basic principles of thermodynamics.
In the third part of the paper, we investigate the extension of our approach to more gen-
eral flow models. The last part of the paper is devoted to numerical tests which illustrate
the theoretical results and demonstrate the stability and conservation properties of the
fully discrete schemes. Our research is motivated mainly by gas transport in pipelines,
which takes place at low Mach number and therefore avoids the generation of shocks. We
however also consider a shock tube problem to demonstrate the correct handling of shocks,
rarefaction waves, and contact discontinuities that may arise in more general applications.

Part I: Analysis on the continuous level

In the following three sections, we first review some basic relations of equilibrium ther-
modynamics and then present and analyze a particular variational principle for the Euler
equations which will serve as the basis for our further considerations.

2. Auxiliary results

Let us first consider in a bit more detail the relations of pressure, internal energy, and
entropy. It is well known, see e.g. [2, 8, 13], that for thermodynamical consistency, the
pressure p has to be related to the specific internal energy e by

eρ =
1

ρ2
(p− θpθ). (2.1)

Subscripts denote partial derivatives and functions may in general depend on ρ and θ. By
integration with respect to ρ, we can then express the internal energy as

e(ρ, θ) = P (ρ, θ)− θPθ(ρ, θ) +Q(θ), (2.2)

Here P denotes a pressure potential defined by

P (ρ, θ) =

∫ ρ

1

p(r, θ)

r2
dr, (2.3)
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and accordingly we call Q(θ) the thermal potential which is independent of ρ. The two
potentials allow us to rewrite various other terms that arise in our analysis later on in a
common form. The spatial derivative of the pressure, for instance, can be expressed as

1

ρ
∂xp =

1

ρ
∂x(ρ

2Pρ) = ∂x
(
(ρP )ρ

)
− Pθ∂xθ. (2.4)

Another important quantity is the specific enthalpy h, which is given by

h = e+
p

ρ
= P − θPθ +Q+ ρPρ = (ρP )ρ − θPθ +Q. (2.5)

The temporal change of the internal energy can then be expanded as

∂t(ρe) = h∂tρ+ (e− h)∂tρ+ ρ∂te = h∂tρ+ ρ∂te−
p

ρ
∂tρ. (2.6)

The last two terms of this splitting turn out to be related to the specific entropy s, which
is again determined up to a constant by thermodynamic relations [2, 13], namely

θsρ = eρ −
p

ρ2
and θsθ = eθ. (2.7)

A suitable entropy can then be found by integration and reads

s(ρ, θ) =

∫ θ

1

Qθ(t)

t
dt− Pθ(ρ, θ). (2.8)

The time derivative of this entropy can again be expressed via the potentials as

ρθ∂ts = −ρθPθρ∂tρ+ ρ(Qθ − θPθθ)∂tθ (2.9)

= ρ(Pρ − θPθρ)∂tρ+ ρ(Pθ − Pθ − θPθθ +Qθ)∂tθ − ρPρ∂tρ = ρ∂te−
p

ρ
∂tρ.

Note that the last term already appeared in formula (2.6) for the time derivative of the
internal energy. The spatial derivative of the entropy can finally be expressed as

θ∂xs = θ(sρ∂xρ+ sθ∂xθ) = θsρ∂xρ+ θsθ∂xθ (2.10)

= −θPθρ∂xρ+ (Pθ − (θPθ)θ +Qθ)∂xθ = ∂x(Q− θPθ) + Pθ∂xθ.

A combination of these two formulas and the Euler equations (1.1)–(1.3) shows, see Re-
mark 3.2 for details, that the evolution of the entropy is governed by

ρ∂ts+m∂xs = 0. (2.11)

Together with (1.1) this yields the conservation law (1.5) for the entropy.

Remark 2.1. To completely describe the constitutive relations for the fluid under inves-
tigation, it is thus sufficient to prescribe the two potentials P (ρ, θ) and Q(θ). Pressure p,
internal energy e, entropy s, and derivatives of these quantities can then be expressed in
terms of these potentials. This will substantially simplify our analysis later on.

Following physical intuition and to guarantee the well-posedness of the problem under
investigation, we make the following structural assumptions about the potentials.

Assumption 2.2. Let P ∈ C3(R2
+) and Q ∈ C2(R+) and assume that Pρ ≥ 0, (ρPρ)ρ ≥ 0,

and Qθ − θPθθ ≥ cv for all ρ, θ > 0 and with some constant cv > 0.

These assumptions will tacitly be utilized at several places in our analysis below and
they are therefore assumed to hold for the rest of the manuscript. To show that they are
reasonable, let us briefly discuss a particular example that has been discussed in literature.
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Example 2.1 (Admissible state equations). Let us define

P (ρ, θ) =
cγ

γ − 1
ργ−1 + C(ρ)θ + c′ and Q(θ) =

∫ θ

1

cv(t)dt+ c′′.

with cγ ≥ 0, γ > 1, and such that c(ρ) = ρ2Cρ ≥ 0, (ρCρ)ρ ≥ 0, and cv(θ) ≥ cv > 0. The
constants c′, c′′ do not play a significant role in the following. Via (2.2) and (2.3), we can
then express the pressure and internal energy as

p(ρ, θ) = cγρ
γ + c(ρ)θ and e(ρ, θ) =

cγ
γ − 1

ργ +Q(θ) + c′.

This yields an extension of the state equations for an ideal gas that has already been
considered in [13]. From the definition of the pressure potential, we can further see that

Pρ(ρ, θ) = cγρ
γ−2 + Cρ(ρ)θ ≥ 0 for all ρ, θ > 0

and

(ρPρ)ρ = cγ(γ − 1)ργ−2 + (ρCρ)ρ ≥ 0 for all ρ, θ > 0.

In addition, we obtain

Qθ − θPθθ = Qθ = cv(θ) ≥ cv > 0 for all θ > 0.

Hence all assumptions about the potentials made above are valid. Note that this simple
example already covers, as special cases, the state equations of polytropic gases [8, 19] and
of barotropic flow [13, 24]. Our results are therefore directly applicable in these situations.

3. An equivalent formulation

We next present an equivalent formulation for the Euler equations which turns out to
be particularly well suited for numerical approximation. Recall the definition of the total
energy density E = m2

2ρ
+ ρe. With the formulas of the previous section, we then obtain

∂tE = ∂t

(
m2

2ρ2

)
+ ∂t(ρe) (3.1)

= m

(
1

ρ
∂tm−

m

2ρ2
∂tρ

)
+ h(∂tρ) + (ρ∂te−

p

ρ
∂tρ).

Note that the last term could also be expressed in terms of the entropy by θρ∂ts, which
will in fact be utilized below. By the Euler equations (1.1)–(1.3) and the relations between
the constitutive equations and the potentials derived in the previous section, the terms
in parenthesis on the right hand side of (3.1) can be expressed as

∂tρ = −∂xm, (3.2)

1

ρ
∂tm−

m

2ρ2
∂tρ = −∂x(

m2

2ρ2
+ (ρP )ρ)−

m

2ρ2
∂xm+ Pθ∂xθ, (3.3)

ρ∂te−
p

ρ
∂tρ = −m∂x(Q− θPθ)−mPθ∂xθ. (3.4)

These equations provide an equivalent formulation for the problem under investigation.

Lemma 3.1 (Equivalence). Let the state equations be defined as in Section 2. Then any
smooth positive solution (ρ,m, θ) of the Euler equations (1.1)–(1.3) also solves (3.2)–(3.4),
and vice versa. The two systems are equivalent in this sense.
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Proof. The first equation (3.2) is the same as (1.1).
Next consider (3.3): From equations (1.1)–(1.2), we can deduce that

1

ρ
∂tm−

m

2ρ2
∂tρ = −1

ρ
∂x

(
m2

ρ
+ p

)
+

m

2ρ2
∂xm = (i) + (ii) + (iii).

The first term can be expanded as

−1

ρ
∂x

(
m2

ρ

)
= −m

ρ
∂x

(
m

ρ

)
− m

ρ2
∂xm = −∂x

(
m2

2ρ2

)
− m

ρ2
∂xm.

The second term (ii) can be replaced by the expression for 1
ρ
∂xp derived in (2.4). Adding

up all three terms then directly yields the second equation (3.3).
Now consider the third identity (3.4): From equation (3.1), we immediately obtain

ρ∂te−
p

ρ
∂tρ = ∂tE −m

(
1

ρ
∂tm−

m

2ρ2
∂tρ

)
− h∂tρ = (∗).

We can now use (1.3), (3.3), and (3.2) to replace the time derivative terms, which yields

(∗) = −∂x
(
m

ρ
(E + p)

)
+m

(
∂x

(
m2

2ρ2
+ (ρP )ρ

)
+

m

2ρ2
∂xm− Pθ∂xθ

)
+ h∂xm.

Using that E+p
ρ

= m2

2ρ2
+ h and h = (ρP )ρ − θPθ +Q, we can expand the first term as

−∂x
(
m

ρ
(E + p)

)
= −m∂x

(
m2

2ρ2

)
− ∂xm

(
m2

2ρ2

)
−m∂x

(
(ρP )ρ − θPθ +Q

)
− h∂xm.

A combination with the remaining terms then yields the third identity (3.4). Reversing
the individual steps yields the other direction and completes the proof of the lemma. �

Remark 3.2. Using the formulas (2.9) and (2.10) for the derivatives of the entropy, the
third equation (3.4) could also be expressed as

ρθ∂ts = −mθ∂xs.
Since θ > 0 for any smooth positive solution, this is equivalent to (2.11) and together
with equation (1.1) leads to the conservation law (1.5) for the entropy. The above three
equations (3.2)–(3.4) thus actually describe the conservation of mass and the evolution of
kinetic energy and of entropy. The unknown fields here are the density ρ, the mass flux
m, and the temperature θ. This is the basic framework for our further considerations.

4. A variational principle

The equivalent formulation (3.2)–(3.4) allows us to establish the following variational
characterization of solutions to the Euler equations which will be the starting point and
main ingredient for the construction and analysis of numerical approximations later on.

Lemma 4.1 (Variational characterization). Let the state equations be given as in Sec-
tion 2. Then any smooth positive solution (ρ,m, θ) of (1.1)–(1.4) also solves

(∂tρ, q) + (∂xm, q) = 0, (4.1)(
1

ρ
∂tρ−

m

2ρ2
∂tρ, v

)
−
(
m2

2ρ2
+ (ρP )ρ, ∂xv

)
+

(
m

2ρ2
∂xm− Pθ∂xθ, v

)
= 0, (4.2)(

ρ∂te−
p

ρ
∂tρ,

w

θ

)
−
(
Q− θPθ, ∂x

(
m
w

θ

))
+
(
mPθ∂xθ,

w

θ

)
= 0, (4.3)
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for all test functions q ∈ L2(ω), v ∈ H0(div;ω), w ∈ H1(ω), and all t ≥ 0. Vice versa,
any smooth positive solution of (4.1)–(4.3) and (1.4) also solves (1.1)–(1.3).

Notation 4.2. Here (u, v) =
∫
ω
uvdx denotes the standard scalar product of L2(ω) and

H1(ω) = {θ ∈ L2(ω) : ∂xθ ∈ L2(ω)} is the usual Sobolev space. In addition, we denote
by H0(div;ω) = {m ∈ L2(ω) : ∂xm ∈ L2(ω) with m = 0 on ∂ω} the space of smooth
flux functions that additionally vanish at the boundary. Note that on networks [10] or in
multiple dimensions, H(div) 6= H1. We therefore use this specific notation already here.

Proof of Lemma 4.1. The assertion follows directly from the equivalence of the Euler
equations with (3.2)–(3.4), by multiplying these latter set of equations with appropri-
ate test functions, integration over the domain, and integration-by-parts for some of the
terms. Note that all boundary terms vanish due to the homogeneous boundary condi-
tions for m and v. This shows that any solution of the Euler equations satisfies the above
variational principle. The other direction follows by reversing the individual steps. �

From the previous two lemmas and the physical principles underlying the Euler equa-
tions, one can now immediately deduce global conservation laws for mass, energy, and
entropy for all smooth positive solutions of the above variational principle.

Lemma 4.3 (Global conservation).
Let (ρ,m, θ) be a smooth positive solution of (4.1)–(4.3) and (1.4). Then

d

dt

∫
ω

ρdx = 0,
d

dt

∫
ω

Edx = 0, and
d

dt

∫
ω

ρsdx = 0.

Proof. We provide a detailed proof that is only based on the particular form of the varia-
tional principle and which carries over directly to the discrete setting considered later on.
Conservation of mass follows by testing (4.1) with q = 1 which yields∫

ω

∂tρdx = (∂tρ, 1) = −(∂xm, 1) = −
∫
ω

∂xmdx = 0,

where we used the boundary conditions (1.4) in the last step. The second identity is
obtained as follows: Using formula (3.1) for the derivative of the total energy, we get

d

dt

∫
ω

Edx = (∂tE, 1)

=

(
1

ρ
∂tm−

m

2ρ2
∂tρ,m

)
+
(
∂tρ, (ρP )ρ − θPθ +Q

)
+

(
ρ∂te−

p

ρ
∂tρ, 1/θ

)
.

Testing the variational principle with q = (ρP )ρ − θPθ +Q, v = m, and w = θ leads to

d

dt

∫
ω

Edx =

(
m2

2ρ2
+ (ρP )ρ, ∂xm

)
−
(
m

2ρ2
∂xm,m

)
+
(
Pθ∂xθ,m

)
−
(
∂xm, (ρP )ρ − θPθ +Q

)
+
(
Q− θPθ, ∂xm

)
−
(
Pθ∂xθ,m

)
= 0.

Note that all terms vanish due to the particular structure of the variational principle which
is thus responsible for the conservation of energy. In order to verify the conservation of
entropy, we proceed as follows: We start by observing that

d

dt

∫
ω

ρsdx = (s∂tρ+ ρ∂ts, 1) = (∂tρ, s) +

(
θρ∂ts,

1

θ

)
= (i) + (ii).
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Testing the first equation in the variational principle with q = s leads to

(i) = −(∂xm, s) = −
(
∂xm,

∫ θ

1

Qθ(t)

t
dt− Pθ

)
=
(
m,

1

θ
∂xQ

)
+
(
∂xm,Pθ

)
.

In the last step, we used integration-by-parts and the boundary conditions (1.4) for m.
The expression (2.9) for the derivative of the entropy and the third equation in the vari-
ational principle tested with w = 1 then allows us to express the second term as

(ii) =

(
ρ∂te−

p

ρ
∂tρ,

1

θ

)
=
(
Q, ∂x

m

θ

)
−
(
θPθ,

1

θ
∂xm−m

1

θ2
∂xθ

)
−
(
mPθ∂xθ,

1

θ

)
= −

(
1

θ
∂xQ,m

)
−
(
Pθ, ∂xm

)
.

A summation of the two terms now directly yields the conservation of entropy. �

Part II: Discretization

In the following two sections, we discuss the discretization of the variational principle
for the Euler equations. We start by a Galerkin approximation in space and then study
the subsequent discretization in time by an implicit time stepping scheme.

5. Galerkin approximation

For the numerical approximation in space, we consider a conforming Galerkin approx-
imation of the variational principle (4.1)–(4.3) stated above. For this purpose, we choose
finite dimensional subspaces Qh ⊂ L2(ω), Vh ⊂ H0(div;ω), and Wh ⊂ H1(ω). The
semi-discrete solution is then defined by the following discrete variational problem.

Problem 5.1 (Galerkin semi-discretization).
Let ρh,0 ∈ Qh, mh,0 ∈ Vh, θh,0 ∈ Wh be given. Find (ρh,mh, θh) ∈ C([0, T ];Qh× Vh×Wh)
such that ρh(0) = ρh,0, mh(0) = mh,0, θh(0) = θh,0, and such that

(∂tρh, qh) + (∂xmh, qh) = 0,(
1

ρh
∂tmh −

mh

2ρ2h
∂tρh, vh

)
−
(
m2
h

2ρ2h
+ (ρhPh)ρ, ∂xvh

)
+

(
mh

2ρ2h
∂xmh − Pθ,h∂xθh, vh

)
= 0,(

ρh∂teh −
ph
ρh
∂tρh,

wh
θh

)
−
(
Qh − θhPθ,h, ∂x

(
mh

wh
θh

))
+

(
mhPθ,h∂xθh,

wh
θh

)
= 0,

holds for all test functions qh ∈ Qh, vh ∈ Vh, wh ∈ Wh, and for all t ≥ 0.

Here Ph = P (ρh, θh), Pθ,h = Pθ(ρh, θh), Pρ,h = Pρ(ρh, θh), and Qh = Q(θh) denote
the respective functions evaluated at the discrete solutions. Also note that the solution
components ρh, mh, and θh depend on t, while the test functions qh, vh, and wh are
independent of time. We next establish the local well-posedness of this problem.

Lemma 5.2. Let ρh,0 ≥ ρ > 0, θh,0 ≥ θ > 0, and let P,Q be given as in Section 2. Then
Problem 5.1 admits a unique local solution (ρh,mh, θh) on [0, T ] for some T > 0.

Proof. By definition of the discrete internal energy, we have

eh = e(ρh, θh) = P (ρh, θh)− θhPθ(ρh, θh) +Q(θh).
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Differentiation with respect to time thus yields

∂teh = (Pρ,h − θhPθρ,h)∂tρ+ (Pθ,h − Pθ,h − θPθθ,h +Qθ,h)∂tθh

= (Pρ,h − θhPθρ,h)∂tρ+ (Qθ,h − θPθθ,h)∂tθh.

After choosing a basis for Qh, Vh, and Wh, the semi-discrete problem thus leads to a
system of ordinary differential equations of the form

M(Y )Y ′ + F (Y ) = 0, (5.1)

where Y = (ρ̂, m̂, θ̂) denotes the coordinate vector for the functions ρh, mh, and θh. Due
to our assumptions on P and Q, the function F and the matrix M are continuously differ-
entiable as long as ρh and θh are strictly positive. Moreover, M(Y ) has block triangular
form and therefore is regular, if the diagonal blocks are regular. The diagonal blocks, on
the other hand, correspond to the mass matrices for the function spaces Vh, Qh, and Wh

with weight functions 1, 1
ρh

, and ρh
θh

(Qθ(θh) − θhPθθ(ρh, θh)). By our assumptions on the

potentials, these functions are strictly positive as long as ρh and θh are strictly positive.
Therefore, the matrix M(Y ) is regular if ρh and θh are strictly positive. Local existence
of a unique solution then follows from the Picard-Lindelöf theorem. �

Remark 5.3. By inspection of the proof, one can see that the solution can be extended
uniquely in time as long as it remains bounded and ρh and θh stay strictly positive.

Due to the conforming Galerkin approximation and the particular form of the varia-
tional principle, conservation of mass, energy, and entropy also hold on the discrete level.

Lemma 5.4. Let (ρh,mh, θh) be a solution of Problem 5.1 with ρh > 0 and θh > 0. Then

d

dt

∫
ω

ρhdx = 0,
d

dt

∫
ω

Ehdx = 0, and
d

dt

∫
ω

ρhshdx = 0.

Here Eh =
m2

h

2ρh
+ ρhe(ρh, θh) and sh = s(ρh, θh) denote the discrete energy and entropy.

Proof. The assertions can be proved with literally the same arguments as already employed
in the proof of Lemma 4.3 on the continuous level. �

Remark 5.5. The conservation of energy also allows to obtain appropriate bounds for
the norms of ρh, θh, and mh. As a consequence, one can expect global existence of the
solution, as long as ρh and θh remain uniformly bounded away from zero. This may be
used as a first step towards a complete convergence analysis of the proposed method.

6. Time discretization

As a final step of our investigations for the flow on a single pipe, we now discuss an
appropriate discretization in time which preserves the underlying conservation laws as
good as possible. Given a time step τ > 0, we define tn = nτ for n ≥ 0, and we denote by

∂̄τd
n :=

dn − dn−1

τ
for n ≥ 0,

the backward differences which are taken as approximations for the time derivatives. As
will become clear below, adaptive time steps τn > 0 could be considered as well.
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6.1. Fully discrete scheme. For the time discretization of the Galerkin approximation
stated in Problem 5.1, we now consider the following implicit time stepping scheme.

Problem 6.1 (Fully discrete method). Set ρ0h = ρ0,h, m0
h = mh,0, and θ0h = θ0,h with

initial values as in Problem 5.1. For n ≥ 1 find (ρnh,m
n
h, θ

n
h) ∈ Qh × Vh ×Wh, such that(

∂̄τρ
n
h, qh

)
+ (∂xm

n
h, qh) = 0,(

1

ρn−1h

∂̄τm
n
h −

mn
h

2(ρnh)2
∂̄τρ

n
h, vh

)
−
(

(mn
h)2

2(ρnh)2
+ (ρP )nρ,h, ∂xvh

)
+

(
mn
h

2(ρnh)2
∂′xm

n
h − P n

θ,h∂xθ
n
h , vh

)
= 0,(

ρn−1h ∂̄τe
n
h −

pnh
ρnh
∂̄τρ

n
h,
wh
θnh

)
−
(
Qn
h − θnhP n

h , ∂x

(
mn
h

wh
θnh

))
+

(
mn
hP

n
h ∂xθ

n
h ,
wh
θnh

)
= 0,

holds for all test functions qh ∈ Qh, vh ∈ Vh, and wh ∈ Wh.

As before P n
h = P (ρnh, θ

n
h) and similar expressions denote the corresponding functions

evaluated at the discrete solutions ρnh and θnh . The local well-posedness of this fully discrete
scheme can be obtained with similar arguments as that of the semi-discrete problem.

Lemma 6.2. Let (ρn−1h ,mn−1
h , θn−1h ) be given with ρn−1h > 0 and θn−1h > 0. Furthermore,

let the state equations be defined as in Section 2. Then for τ > 0 sufficiently small, the
system in Problem 6.1 has a locally unique solution (ρnh,m

n
h, θ

n
h) with ρnh > 0 and θnh > 0.

Proof. With similar arguments as in the proof of Lemma 5.2, one can see that the problem
for the nth time step can be formulated in algebraic form as

M(Y n;Y n−1)∂̄τY
n + F (Y n) = 0.

For τ = 0 we may set M(Y n;Y n−1) = M(Y n−1) with matrix M(Y ) as in the proof
of Lemma 5.2. There it was shown that M(Y ) is regular under the assumptions of the
lemma. Moreover, M(Y ; Ỹ ) and F (Y ) are continuously differentiable with respect to their
arguments. Existence of a locally unique solution then follows by the implicit function
theorem. For sufficiently small τ > 0, we can deduce the positivity of ρnh and θnh from
their continuous dependence on the time step size. �

We comment in more detail on the size of the admissible time step below. Before, let
us summarize the basic stability and conservation properties of the fully discrete scheme.

Lemma 6.3 (Conservation of mass, dissipation of energy, and non-decrease of entropy).
Let (ρnh,m

n
h, θ

n
h)n≥0 denote a positive solution of Problem 6.1. Then∫

ω

ρnhdx =

∫
ω

ρkhdx,

∫
ω

En
hdx ≤

∫
ω

Ek
hdx, and

∫
ω

ρnhs
n
hdx ≥

∫
ω

ρkhs
k
hdx

for all 0 ≤ k ≤ n. As before En
h and snh denote the functions evaluated at ρnh, mn

h, and θnh .

We call the solution of the discrete problem positive, if ρkh > 0 and θkh > 0 for all 0 ≤ k ≤ n.

Proof. It suffices to consider the case k = n − 1; the results for k < n − 1 follow by
induction. Testing the first equation with qh = 1 yields the exact conservation of mass∫

ω

ρnhdx = (ρnh, 1) = (ρn−1h , 1) + τ(∂̄τρ
n
h, 1) = (ρn−1h , 1)− τ(∂xm

n
h, 1) =

∫
ω

ρn−1h dx.
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In the last step we used here that mn
h = 0 on the boundary.

Next consider the energy balance: Using the definition of the total energy E, we obtain

1

τ

(
En
h − En−1

h

)
= ∂̄τE

n
h = ∂̄τ

(
(mn

h)2

2ρnh

)
+

(
enh +

pnh
ρnh

)
∂̄τρ

n
h +

(
ρn−1h ∂̄τe

n
h −

pnh
ρnh
∂̄τρ

n
h

)
.

The first term in this expression can be further expanded as

1

τ

(
(mn

h)2

2ρnh
− (mn

h)2

2ρn−1h

)
+

1

τ

(
(mn

h)2

2ρn−1h

− (mn−1
h )2

2ρn−1h

)
≤ − (mn

h)2

2(ρnh)2
∂̄τρ

n
h +

mn
h

ρn−1h

∂̄τm
n
h.

In the last step, we used that for any convex differentiable function f(y) there holds

f(yn)− f(yn−1) ≤ f ′(yn)(yn − yn−1).

This was applied here to the convex functions f(ρ) =
(mn

h)
2

2ρ
and f(m) = m2

2ρn−1
h

, respectively.

Substituting enh +
pnh
ρnh

= hnh in the second term, we obtain after integration over ω that∫
ω

En
hdx−

∫
ω

En−1
h dx =

(
En
h − En−1

h , 1
)

≤ τ

(
1

ρn−1h

∂̄τm
n
h −

(mn
h)2

2(ρnh)2
∂̄τρ

n
h,m

n
h

)
+ τ

(
∂̄τρ

n
h, h

n
h

)
+ τ

(
ρn−1h ∂̄τe

n
h −

pnh
ρnh
∂̄τρ

n
h, 1

)
.

The time differences can be further evaluated by testing the fully discrete problem with
test functions qh = hnh, vh = mn

h, and wh = θnh , similar as in the proof of Lemma 4.3. One
can then see again that the right hand side above sums up to zero.

The change of the discrete entropy can finally be expressed as∫
ω

ρnhs
n
hdx−

∫
ω

ρn−1h sn−1h dx = (ρnhs
n
h, 1)− (ρn−1h sn−1h , 1)

=
(
ρnh − ρn−1h , snh

)
+
(
ρn−1h , snh − sn−1h

)
= (i) + (ii).

By similar arguments as in the proof of Lemma 4.3, the term (i) can be further evaluated
using the first equation in the fully discrete problem with qh = snh, leading to

(i) =
(
ρnh − ρn−1h , snh

)
= τ
(
∂̄τρ

n
h, s

n
h

)
= τ
(
mn
h,

1

θnh
∂xQ(θnh)

)
+ τ
(
∂xm

n
h, P

n
θ,h

)
.

To estimate the second term, we start by deriving a discrete analogue of (2.9). Using
integration along a suitable path and the thermodynamic relations (2.11), we obtain

snh − sn−1h = s(ρnh, θ
n
h)− s(ρn−1h , θn−1h )

=

∫ ρnh

ρn−1
h

sρ(ρ, θ
n
h)dρ+

∫ θnh

θn−1
h

sθ(ρ
n−1
h , θ)dθ

=

∫ ρnh

ρn−1
h

1

θnh
eρ(ρ, θ

n
h)dρ+

∫ θnh

θn−1
h

1

θ
eθ(ρ

n−1
h , θ)dθ −

∫ ρnh

ρn−1
h

1

θnh

p(ρ, θnh)

ρ

1

ρ
dρ.

We can now use that 1/θ is decreasing in θ, 1/ρ is decreasing in ρ, and p
ρ

= ρPρ is

increasing in ρ. Moreover, these functions and also eθ are non-negative. Hence we get

snh − sn−1h ≥
∫ ρnh

ρn−1
h

1

θnh
eρ(ρ, θ

n
h)dρ−

∫ ρnh

ρn−1
h

1

θnh

p(ρnh, θ
n
h)

ρnh

1

ρn−1h

dρ+

∫ θnh

θn−1
h

1

θnh
eθ(ρ

n−1
h , θ)dθ

=
1

θnh

(
enh − en−1h

)
− 1

ρn−1h

1

θnh

pnh
ρnh

(
ρnh − ρn−1h

)
.
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By testing the fully discrete variational principle with wh = 1, we thus obtain

(ii) = (ρn−1h , snh − sn−1h ) ≥ τ
(
ρn−1h ∂̄τe

n
h −

pnh
ρnh
∂̄τρ

n
h,

1

θnh

)
= τ
(
Qn
h − θnhP n

θ,h, ∂x
(mn

h

θnh

))
− τ
(
mn
hP

n
h ∂xθ

n
h ,

1

θnh

)
= −τ

(∂xQn
h

θnh
,mn

h

)
− τ
(
P n
θ,h, ∂xm

n
h

)
.

A combination of the two estimates for (i) and (ii) now yields the entropy inequality. �

Remark 6.4. The previous lemma shows that the total mass of the discrete solution is
conserved exactly for all time, while the total energy may be slightly decreasing and the
discrete entropy may be slightly increasing due to numerical dissipation caused by the
implicit time stepping scheme. The fully discrete scheme is therefore energy and entropy
stable, and in perfect agreement with the second law of thermodynamics.

Remark 6.5. The energy identity can be used to obtain bounds for the discrete solution.
As long as ρn−1h and θn−1h are bounded away from zero sufficiently well, the time step in
the fully discrete scheme can hence be chosen reasonable large. For appropriate initial
values, we therefore expect well-posedness of the scheme for a uniform time step τ > 0
and for all n ≥ 0, which is also observed in our numerical tests. Let us note that, as a
consequence of the numerical dissipation of the implicit time stepping scheme, the fully
discrete solution will actually converge to a steady state on the long run.

Part III: Generalizations

In the following two sections, we briefly discuss some possible extensions of our approach
to more general flow models. It will turn out that such generalizations can be incorporated
very naturally and analyzed without difficulties.

7. Non-homogeneous boundary conditions

The case of a closed pipe which was considered in the previous section was convenient
for the analysis and allowed us to establish global conservation laws for mass, energy, and
entropy. This situation is however of minor practical relevance. We therefore discuss now
the possibility to incorporate more general boundary conditions. Motivated by transport
of gas in pipelines, we always assume that the flow is sub-sonic in the whole pipe.

Let v1, v2 denote the start and end point of the pipe ω = [v1, v2]. Then v ∈ {v1, v2} is
called inflow vertex, if n(v)m(v) < 0, and outflow vertex, if n(v)m(v) ≥ 0. Here

n(v1) = −1 and n(v2) = 1,

plays the role of a normal vector at the boundary of the domain and m is the mass flux.
From the general theory of hyperbolic equations one can then deduce that in the sub-sonic
regime, two boundary conditions have to be defined at an inflow boundaries, while only
one condition has to be prescribed at an outflow boundary. The typical situations that
may occur are depicted in Figure 7.1. The case of a closed pipe considered in the previous
sections corresponds to that with two outflow boundaries here. Let us emphasize that the
choice of appropriate boundary conditions that give rise to a well-posed problem is not
trivial; an excellent review about appropriate choices can be found in [27].

For later reference, let us briefly discuss one particular setting which will be utilized in
our numerical tests below. As before, let ω = [v1, v2] and assume that

m(v1) = m∗1 > 0, θ(v1) = θ∗1, and m(v2) = m∗2 > 0,
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2 2 2 1

1 2 1 1

in | in in | out

out | in out | out

Figure 7.1. Number of boundary conditions required for different flow
situations. The closed pipe corresponds to two outflow vertices.

with m∗1 ,m∗2, and θ∗1 given. Here v1 is the inflow boundary, where two conditions have to
be prescribed, and v2 is the outflow boundary, where only one condition is required. The
following changes are needed in the variational principle (4.1)–(4.3):

(i) We now have m = m0+m∗ with m0 ∈ H0(div) and m∗ given such that m∗(vi) = m∗i .
The space for the corresponding test function v does not have to be modified.

(ii) To incorporate the additional boundary condition for the temperature, we can split
θ = θ0 + θ∗ with θ0 ∈ H1

0,1 = {w ∈ H1(ω) : w(v1) = 0} and θ∗ such that θ∗(v1) = θ∗1. The
zero boundary condition at the inflow has also be required for the test function w.

(iii) In the derivation of (4.3), one obtains an additional boundary term

(Q(θ(v2))− θ(v2)Pθ(ρ(v2), θ(v2))
v(v2)

θ(v2)
m∗2

which comes from integration-by-parts and where we replaced m(v2)n(v2) by m∗2. This
term does not vanish here, since neither v nor m vanish at the vertex v2.

Similar modifications are also required for the Galerkin approximation and fully discrete
scheme. These can however easily be implemented on the algebraic level.

Due to the non-homogeneous boundary conditions, conservation of mass, energy, and
entropy do no longer hold here in general. The change in total mass is given by

d

dt

∫
ω

ρ dx =

∫
ω

∂tρ dx = −
∫
ω

∂xm dx = m∗2 −m∗1.

The total mass will thus still be conserved if the mass fluxes at the in- and outflow
are of the same size. Note that this identity is again satisfied exactly by the Galerkin
semi-discretization and also by the fully discrete scheme.

8. More general flow models

We next discuss the extension of our approach to more general flow models including
the effects of viscosity, friction, heat conduction, and heat transfer across the pipe walls.
The corresponding generalizations of the compressible Euler equations then read

∂tρ+ ∂xm = 0, (8.1)

∂tm+ ∂x

(
m2

ρ
+ p

)
= aρ∂x

(
1

ρ2
∂xm

)
− b |m|m

ρ
, (8.2)

∂tE + ∂x

(
m

ρ
(E + p)

)
= am∂x

(
1

ρ2
∂xm

)
− b

ρ2
|m|3 + ∂x(c∂xθ) + d(θ∗ − θ). (8.3)

Here a, b, c, d ≥ 0 denote the coefficients for viscosity, friction, heat conduction, and heat
transfer, and θ∗ is the temperature of the surrounding medium.

Remark 8.1. The particular form of the viscous term has been proposed in [10] in the
context of isentropic flow. For a constant density ρ = ρ̄ and corresponding flux m = ρ̄u,
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we have ρ∂x(
1
ρ2
∂xm) = ∂xxu which is the usual viscosity term arising in the compressible

Navier-Stokes equations [13, 20, 24]. Also note that the first two terms on the right hand
side of the energy equation are sometimes neglected in the literature on gas networks; see
for instance [4, 25]. They are however required to obtain a consistent formulation.

For convenience of notation, we again consider a pipe which is closed at the ends, i.e.,

m = 0 and c∂xθ = 0 at the boundary. (8.4)

The incorporation of more general boundary conditions will be discussed below. As a
direct consequence of the above system of equations, we again obtain a balance equation
for the entropy, which now reads

∂t(ρs) + ∂x(ms) =
1

θ
∂x(c∂xθ) +

d

θ
(θ∗ − θ). (8.5)

With similar reasoning as in Section 4, we deduce the following variational principle.

Lemma 8.2 (Variational characterization). Let the state equations be given as in Sec-
tion 2. Then any smooth positive solution (ρ,m, θ) of problem (8.1)–(8.4) also solves

(∂tρ, q) + (∂xm, q) = 0, (8.6)(1

ρ
∂tm−

m

2ρ2
∂tρ, v

)
−
(m2

2ρ2
+ (ρP )ρ, ∂xv

)
+
( m

2ρ2
∂xm, v

)
−
(
Pθ∂xθ, v

)
(8.7)

= −
( a
ρ2
∂xm, ∂xv

)
−
(b|m|
ρ2

m, v
)
,(

ρ∂te−
p

ρ
∂tρ,

w

θ

)
−
(
Q− θPθ, ∂x

(
m
w

θ

))
+
(
mPθ∂xθ,

w

θ

)
(8.8)

= −
(
c∂xθ, ∂x

(w
θ

))
+
(
d(θ∗ − θ), w

θ

)
,

for all test functions q ∈ L2(ω), v ∈ H0(div;ω), w ∈ H1(ω), and all t ≥ 0. Vice versa,
any smooth positive solution of (8.6)–(8.8) and (8.4) also solves problem (8.1)–(8.3).

The proof follows with minor modifications of that of Lemma 4.1 and is therefore
omitted. Proceeding like in Section 4, we now obtain the following global balance laws.

Lemma 8.3. Let (ρ,m, θ) be a smooth positive solution of (8.6)–(8.8) and (8.4), and let
the state equations be defined as in the Section 2. Then

d

dt

∫
ω

ρdx = 0,
d

dt

∫
ω

Edx = −
∫
ω

a

ρ2
|∂xm|2 +

b

ρ2
|m|3 + d(θ − θ∗)dx,

and
d

dt

∫
ω

ρsdx =

∫
ω

c

θ2
|∂xθ|2 +

d

θ
(θ∗ − θ)dx.

Proof. The assertions follow with minor modifications of the proof of Lemma 4.3. �

Remark 8.4. Note that in comparison with the Euler equations, the additional effects
of viscosity, friction, and heat conduction lead to dissipation of energy and to increase in
entropy, respectively. Depending on the sign of θ− θ∗, the heat transfer through the pipe
walls may yield a positive or a negative contribution to the global energy and entropy.

We can now further proceed in the very same manner as outlined for the Euler equations
in the previous sections. We skip the details but briefly comment on the main arguments.
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Remark 8.5. For the semi-discretization in space, we may use a Galerkin approximation
as discussed in Section 5. The global balance laws for mass, energy, and entropy stated
in Lemma 8.3 are again inherited literally. For the discretization in time, we can also
utilize the same strategy as outlined in Section 6; the additional terms appearing in the
right hand side of (8.7)–(8.8) are treated implicitly. The fully discrete solution then again
satisfies global balance laws for mass, energy, and entropy similar as the ones stated in
Lemma 8.3, but with the equalities replaced by respective inequalities in the energy and
entropy balances; compare with Lemma 6.3. These results follow with minor modifications
of the proofs of Lemma 5.4 and 6.3 and details are therefore left to the reader.

Part IV: Numerical validation

In the final part of our paper, we now illustrate the theoretical results by some numerical
tests which demonstrate the stability and performance of the proposed discretization.

For all our computations, we utilize a Galerkin approximation with mixed finite ele-
ments that we briefly introduce next. Let [0, `e] be the interval related to the edge e and
let Th(e) = {K} be a uniform partition of e into elements K of length h. The global mesh
is defined as Th(E) = {Th(e) : e ∈ E}. Next we define spaces of piecewise polynomials by

Pk(Th(E)) = {v ∈ L2(E) : v|e ∈ Pk(Th(e)) ∀e ∈ E}.

Here Pk(Th(e)) = {v ∈ L2(e) : v|K ∈ Pk(K), K ∈ Th(e)} denotes the space of piecewise
polynomials over the mesh Th(e), and Pk(K) is the space of polynomials of degree ≤ k
on the subinterval K. We then seek approximations for the density ρ, the mass flux m,
and the temperature θ, in the finite element spaces

Qh = P0(Th(E)) ∩ L2, Vh = P1(Th(E)) ∩H0(div), and Wh = P1(Th(E)) ∩H1.

These spaces are known to have good approximation properties. The first two spaces
have already been used successfully for the numerical approximation of damped wave
propagation problems and the isentropic Euler equations on networks in [12, 10].

9. Numerical tests

For illustration of our theoretical considerations, we now present some numerical results
for two simple test problems. In both cases, we consider the case of an ideal gas which in
our language can be modeled by the potentials

P (ρ, θ) = Rθ log ρ and Q(θ) = cvθ.

By simple computations and the formulas of Section 2, we then obtain

p = Rθρ, e = cvθ, h = cpθ, and s = cv log θ −R log ρ. (9.1)

Here R is the gas constant, cv is the specific heat at constant volume, and cp = R + cv
is the specific heat at constant pressure. For the following tests, we set R = 1, cv = 2.5
which corresponds to cp = 3.5 and an adiabatic coefficient of γ = cp/cv = 1.4.

9.1. A shock tube problem. As a first test scenario, we consider the Sod problem [26]
which is known to exhibit a shock wave, a rarefaction wave, and a contact discontinuity.
This allows us to demonstrate the stability and performance of our discretization scheme
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in a rather general situation. The flow is described by the Euler equations (1.1)–(1.6) on
a pipe ω = [−2.5, 2.5]. As initial values, we choose

ρ0 =

{
1, x < 0,

3, x ≥ 0,
m0 =

{
0, x < 0,

0, x ≥ 0,
θ0 =

{
1, x < 0,

1, x ≥ 0,

which corresponds to the setting considered in [19, Sec. 14.13]. In Figure 9.1, we depict
the numerical solution for this test problem at time T = 1 obtained with the mixed finite
element method with discretization parameters h = τ = 1/100. In the left column, we

Figure 9.1. Numerical solution for the Sod problem at time T = 1 ob-
tained with the mixed finite element method and discretization parameters
h = τ = 1/100. The plots on the left correspond to the fields that are
approximated directly in the numerical method. The plots on the right
correspond to derived quantities.

depict the density ρ, the mass flux m, and the temperature θ, which are the fields that are
solved for in our numerical scheme. In all three solution components, one can see, from
left to right, the rarefaction wave, the contact discontinuity, and the shock wave. The
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rarefaction wave leads to a smooth transition of the states, while the two latter features
correspond to discontinuities which are slightly smeared out by the numerical scheme.
The fronts however get sharper when further refining the mesh. The three pictures in the
right column display the numerical approximations for the pressure p, the velocity u, and
the specific entropy s, which are derived via (9.1) and the relation m = ρu. As can be
seen from the solution of the corresponding Riemann problem, the contact discontinuity
does not appear in the pressure p and velocity u; see [26] and [19, Sec.13] for details.

As another validation of our theoretical results, let us also investigate the conservation
of mass, energy, and entropy in the numerical solution. For this, we repeat the previous
test for different discretization parameters h and τ . The results are listed in Table 9.1. As

h = τ 1/20 1/40 1/80 1/160 1/320

4Mh 0.0000 0.0000 0.0000 0.0000 0.0000
4Eh −0.0509 −0.0400 −0.0321 −0.0268 −0.0237
4Sh 0.0797 0.0549 0.0384 0.0276 0.0207

Table 9.1. Differences 4Mh, 4Eh, and 4Sh in total mass, energy, and
entropy of the numerical solution between time t = 1 and t = 0.

predicted by Lemma 6.3, the total mass is exactly conserved on the discrete level. Due to
the numerical dissipation of the implicit time stepping scheme, the total energy is slightly
decreasing and the total entropy is slightly increasing. The deviation from the exact
conservation of energy and entropy, which is valid on the continuous and semi-discrete
level, can be made smaller by decreasing the mesh size h and the time step τ . This can
in fact already be observed when only the time step size τ is decreased.

9.2. Gas transport through a pipe. As a second test problem, we consider the trans-
port of gas through a long pipeline. Here friction plays a major role for the dynamics and
we also take into account heat exchange across the pipe walls.

The pipe is again modeled by the interval ω = [−2.5, 2.5] and the evolution is now
governed by the generalized flow model (8.1)–(8.4) with model parameters

a = 0, b = 20, c = 0, d = 5, and θ∗ = 1.

The state equations are chosen as before with parameters γ = 1.4 and R = 1. We assume
that the fluid is at rest before t = 0 and choose as initial conditions

ρ0 = 3, m0 = 0, and θ0 = 1.

For time t > 0, gas is injected at the left end and the same amount is drained at the right
end of the pipe. This is modeled by the boundary conditions

m = 0.3, θ = 1.2 at x = −2.5 and m = 0.3 at x = 2.5.

This setting corresponds to the one discussed in Section 7. From a simple dimension anal-
ysis one can deduce that the resulting flow is friction dominated and almost isothermal,
which is the typical setting observed in gas pipelines [4, 25]. In Figure 9.2, we display a
few snapshots of the numerical solution obtained with the fully discrete scheme based on
the mixed finite element method with mesh size h = 1/100 and time step τ = 1/100.

As a consequence of the damping and since the boundary conditions do not change
with time, the system here converges to a new steady state (ρ∞,m∞, θ∞), governed by



18 VARIATIONAL DISCRETIZATION OF NON-ISOTHERMAL COMPRESSIBLE FLOW

Figure 9.2. Initial values (black, dash-dot), steady states (red, dashed),
and solution for the gas transport in a long pipeline at time t = 1, 2, 4, 8, 16
(blue) obtained with the mixed finite element method and discretization
parameters h = τ = 1/100. The plots on the left denote the pressure field
and those on the right the temperature.
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the corresponding stationary problem, which here reads

∂xm∞ = 0,

∂x

(
m2
∞

ρ∞
+ p(ρ∞, θ∞)

)
= −b |m∞|

ρ∞
m∞,

∂x

(
m∞

(
m2
∞

2ρ2∞
+ h(ρ∞, θ∞)

))
= −b |m∞|

3

ρ2∞
+ d(θ∗ − θ∞).

In addition, we have

m∞ = 0.3, θ∞ = 1.2 at x = −2.5 and m∞ = 0.3 at x = 2.5.

Since ∂xm∞ = 0, one of the boundary conditions is redundant here and therefore the
stationary system does not completely determine the steady state. Due to conservation
of mass, we however additionally get as another condition∫

ω

ρ∞dx =

∫
ω

ρ0dx

here which together with the previous equations uniquely determines the steady state.
Due to exact conservation of mass on the discrete level, the discrete solution converges

with t → ∞ to an approximation of the correct steady which illustrates that the exact
conservation of mass is very important for the long-term behavior. In Table 9.2, we display
the distance to steady state for the three solution components.

t 1 2 4 8 16 32

4ρ 0.6190 0.4730 0.3117 0.1426 0.0318 0.0017
4m 0.3560 0.1629 0.0986 0.0424 0.0091 0.0005
4θ 0.0916 0.0719 0.0422 0.0183 0.0041 0.0002

Table 9.2. Distances 4ρ := ‖ρh(t) − ρh,∞‖, 4m := ‖ρh(t) − ρh,∞‖, and
4θ := ‖ρh(t)− ρh,∞‖ to steady state for the three solution components.

From the numerical results, one can deduce an exponential convergence to equilibrium.
This could in principle be proven rigorously here by a linearized stability analysis; we
refer to [9, 11] for related results in a simplified setting.

10. Discussion

In this paper we proposed and analyzed the systematic discretization of compressible
flow problems on a pipe by Galerkin approximation in space and a problem adapted
implicit time integration scheme. Exact conservation of mass, energy, and entropy could
be proven for the semi-discretization of the Euler equations. For the fully discrete scheme,
exact conservation of mass is still preserved, while a slight decay in energy and a slight
increase in entropy may be observed due to numerical dissipation of the implicit time
stepping scheme. These properties and the stability of the scheme in the presence of
shocks, rarefaction waves, and contact discontinuities was demonstrated by numerical
results for a shock tube problem. For a problem involving high friction and heat exchange,
which is the typical setting observed in gas transport through pipelines, we demonstrated
the convergence to the correct quasi-steady state.

The numerical method discussed in this paper is a generalization of the one for isentropic
flow presented in [10]. There the method could be extended to problems on pipe networks,
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which is of relevance in the simulation of gas networks. We were not successful yet to
provide a corresponding extension to networks for problems and methods discussed in this
paper. One obstacle here is the formulation of appropriate coupling conditions at pipe
junctions. Such extension are therefore left for future research.
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