
Decomposable Robust Two-Stage
Optimization: An Application to Gas
Network Operations Under Uncertainty

Denis Aßmann∗ Frauke Liers∗ Michael Stingl∗

January 19, 2018

We study gas network problems with compressors and control valves under
uncertainty that can be formulated as two-stage robust optimization problems.
Uncertain data are present in the physical parameters of the pipes as well
as in the overall demand. We show how to exploit the special decomposable
structure of the problem in order to reformulate the two-stage robust problem
as a standard single-stage optimization problem. Since this structure is present
in similar problems on e.g., water or direct current electricity networks, we
investigate the consequences of the decomposable structure in an abstract
setting: The right-hand side of the single-stage problem can be precomputed
by solving a series of optimization problems and multiple elements of the
right-hand side can be combined into one optimization task. In order to apply
our results to gas network problems, we extend piecewise relaxations and
preprocessing techniques to incorporate uncertain input data. The practical
feasibility and effectiveness of our approach is demonstrated with benchmarks
on realistic gas network instances. We observe large speedups due to the
described aggregation method together with the developed preprocessing
strategies. Furthermore, we are able to solve even comparably large gas
network instances quickly for the price of slightly more conservative solutions.

1 Introduction
In this paper, we study a class of two-stage robust network optimization problems with a
special decomposable structure. The aim of robust optimization is to solve optimization
tasks that are parameterized by a so-called uncertainty set U . In the easiest setting,
solving a robust problem amounts to specifying a solution for the problem variables
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that is feasible for all possible realizations of the uncertainty within U . Potentially,
this approach can lead to too conservative or even infeasible models, for example for
applications where part of the variables can adapt to the realization of the uncertainty.
In this setting, a two-stage approach should be used instead. For the two-stage model,
the problem variables are classified as here-and-now variables that have to be decided
before the uncertainty is realized and wait-and-see or adjustable variables whose values
can be chosen after the uncertainty is realized.
A two-stage approach is natural for gas network optimization tasks with remotely

controllable elements (“active elements”). Uncertainties are present in the physical param-
eters or in the demand situation. The network operator has to decide the configuration
of the controllable network elements before knowing the realization of the uncertainty,
whereas the physical state, i.e., pressures and flows within the network, adjusts itself
once the uncertainty is revealed.
This two-stage model has two special properties: first, it is known that the physical

state of the network is uniquely determined by the uncertain parameters, and second,
there is no coupling between first-stage and second-stage variables. In this paper we
show how this structure can be exploited in order to reformulate the two-stage problem
as a single-stage problem whose right-hand side comprises the optimal values of a series
of subproblems arising from this transformation. By further exploiting the problem
structure, we show how the number of subproblems to solve can be reduced. We also
show that solving the subproblems to global optimality is not absolutely necessary as
relaxations can be used instead to obtain a more conservative—but still robust feasible—
solution. Using relaxations instead of the original model allows us to apply the presented
methods to problems where obtaining global optimal solutions can be very challenging,
e.g., non-convex problems. Furthermore, we show how relaxations can be used to tackle
even large instances for the price of more conservative solutions. Our experiments indicate
a very modest decrease of optimality due to the employed relaxations.
In order to apply these ideas to the nonlinear, non-convex gas network problem, we

extend the well-known piecewise linearization technique for the nonlinear pressure drop
constraints to incorporate uncertain parameters. The chosen linearization approach is
particularly effective for network problems since the nonlinear constraints of these kind of
problems often involve univariate functions of e.g., the flow along an arc or the potential
at a node. As our approach requires solving a potentially large number of subproblems
where each one is very similar to the nominal problem, it is crucial to reduce the problem
size as much as possible for the overall solution time to stay within an acceptable time
frame. To this end, we describe a variety of preprocessing techniques which are adapted
from the literature and generalized to handle uncertain parameters.
For an introduction to robust optimization we refer the reader to the book [3] or the

review articles [6, 15]. Our goal is to a solve a two-stage nonlinear robust optimization
task.
A typical solution approach for solving multi-stage robust problems is to reformulate

the wait-and-see variables with decision rules of a predefined class. This introduces a
predefined structure on the adaptability of the wait-and-see variables, for example an
affine linear dependency of the variables on the uncertain parameters [4]. Due to the
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a priori selected structure of the decision rules, this solution approach often produces
more conservative solutions when compared to analytic solutions without the restriction
to a given function class. As will be explained later, the wait-and-see variables of the
gas network problem are uniquely dependent on the uncertainty and therefore only an
“optimal” or fully-adjustable decision rule could be used for the problem at hand. While
there are some simple problem classes where “optimal” decisions rules are known [8],
no such result could be found for problems with the nonlinear and random recourse
structure of the gas network problem. Reformulations for nonlinear but convex robust
optimization tasks [2] are also not applicable since the gas network problem is modeled
using non-convex constraints.
A different solution idea for robust (two-stage) problems is the so-called adversarial

approach, where the continuous uncertainty set is replaced by a finite scenario set which is
gradually expanded until robust feasibility of the whole problem can be proven [7, 15, 29].
Under special conditions, the critical scenarios of a two-stage problem can be identified
readily which leads to a reformulation as a single-stage problem [27]. In general, the
adversarial approach requires solving subproblems to global optimality, a difficult task for
the non-convex gas network problem. Our solution method is similar to an adversarial
approach in the sense that we also identify critical scenarios by solving a series of
mixed-integer linear (MIP) relaxations.
An overview of the challenges arising in gas network operations is given in [23]. The

studied stationary gas network problem is known as the nomination validation problem.
A comprehensive treatment of this and similar problems can be found in the book [18] and
in references therein. In previous works concerning the nominal case, a piecewise-linear
approximation approach proved to be very effective for this type of problem. The main
idea of this method is to replace the univariate nonlinear pressure drop constraints with
piecewise-linear relaxations [13,14,21]. By casting these models as MIPs, even very large
problems can be solved with a small loss of accuracy that arises due to the piecewise-linear
relaxations. We extend this concept to similar constraints found in gas network problems
under uncertainty.

This work is structured as follows: In Section 2, we introduce the gas network problem
and show how reduction techniques for passive networks can be extended to networks
with linear compressor models. In Section 3, uncertain parameters are introduced to
the gas network problem and the two-stage robust optimization task is formulated. We
first describe two structural properties of the gas network problem. On an abstract
level, we show how all two-stage problems with this structure can be transformed to a
single-stage problem. We also present further simplifications of the obtained single-stage
problem. In Section 4, we extend previously known relaxations of the nonlinear constraints
found in gas network operations to the uncertain setting. Section 4.1 presents several
generalizations of known preprocessing techniques to incorporate uncertain parameters
like demand and pressure drop coefficients. In Section 5, the presented methods are
benchmarked on a variety of freely available large scale gas network instances to show
their practical feasibility for nonlinear two-stage robust optimization problems. This
work closes with a summary in Section 6.
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2 Stationary Gas Network Operations with Linear Compressor
Models

In this section, we introduce the gas network problem with linear compressor models and
show how previously known reduction techniques for passive networks can be extended
to this setting.

2.1 The Stationary Gas Network Transport Problem with a Linear
Compressor Model

For a comprehensive treatment of stationary gas network problems, we refer to the
book [18] and references therein. A gas network comprises a number of different compo-
nents. Apart from pipes which allow gas transport, there are compressors and control
valves which increase and decrease the pressure, valves which can prohibit flow along an
arc, and resistors which can hinder the gas flow and can decrease pressure. In this article,
we only consider networks with pipes and simple compressor models. Let G = (V,A)
be a digraph with |V| = |{1, . . . , n}| = n nodes and |A| = m ≥ n arcs. Without loss of
generality, we assume G to be weakly connected, i.e., the corresponding undirected graph
is connected. If G is not weakly connected, all presented results can be applied to each
connected component separately.

Gas can be inserted or withdrawn at the graph’s nodes. Let dv ∈ R denote the demand
at node v ∈ V where inflowing gas is indicated by a negative sign and outflowing gas
by a positive sign. In gas network operations, the vector d ∈ R|V| is also called the
network’s nomination. As for any network flow problem, this vector has to be balanced:∑
v∈V dv = 0.
Let qa ∈ R denote the gas flow over arc a ∈ A. Flow in arc direction is indicated by a

positive sign of qa, whereas flow in reverse arc direction is indicated by a negative sign
of qa. Just like linear network flow problems, the flow is conserved at each node:∑

a=(v,w)∈A
qa −

∑
a=(w,v)∈A

qa = dv for all v ∈ V. (1)

Furthermore, we introduce variables pv ∈ R≥0 to model the pressure at node v ∈ V.
Since pressure variables always appear in squared form in our setting, we define variables
πv = p2

v modeling the squared pressure.
Let A = Api ∪ Acs with Api ∩ Acs = ∅ be a partition of the network’s arcs into a set
Api of pipes and a set Acs of compressors.
Gas traveling along a pipe experiences a pressure drop (see [19] for a derivation):

πw − πv = −φaqa |qa| for all (v, w) = a ∈ Api. (2)

The magnitude of this pressure loss depends on the amount qa of gas and the pressure drop
coefficient φa ∈ R>0. The factor φa is computed from a number of physical properties of
the pipe and the quality of the gas mixture, see [18, 21] for an in-depth definition. Since
many of these parameters can be affected by uncertainty or can only be measured with
great effort, φa lends itself for a robust treatment.
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Compressors can be used to increase the pressure of the gas. This is needed e.g., when
gas is inserted into a higher pressure network, or in order to compensate for pressure
loss when gas is transported over a long distance. There are several compressor models
available, ranging from very simple to highly complex [10,18, 25, 28]. We use a simple
linear compressor model where the increase in pressure is independent of the flow through
the compressor. The squared pressure difference may be increased linearly by some
nonnegative amount ∆a ∈ [∆a,∆a] ⊆ R≥0:

πw − πv = ∆a for all (v, w) = a ∈ Acs. (3)

We remark that in general compressors can only increase pressure if the passing gas flows
through them in the correct direction. As is shown later on in Section 4.1, tight flow
bounds for our setting can be calculated easily with (39). The obtained bounds can be
used to verify the direction constraint.

Let ∆ ∈ R|Acs|
≥0 be the vector of all compressor “power levels” within the network. The

optimization task consists in minimizing the cost of compressor operations (e.g., due to
fuel consumption). To this end, we define a linear cost function

∆ 7→ wT∆ (4)

where w ∈ R|Acs|
≥0 is a cost vector associated with the given compressors.

Let A ∈ Rn×m be the node-arc incidence matrix of G, that is (A)av = −1 and
(A)aw = +1 for a = (v, w) ∈ A. With this matrix, the gas transport problem can be
expressed in a very concise fashion. Flow conservation (1) can be written as

Aq = d. (5)

Let F : R|A| ×R|Acs| → R be an aggregation of pipe (2) and compressor (3) models:

Fa(q,∆) =
{
−φaqa|qa|, if a ∈ Api,

∆a, if a ∈ Acs.

Hence, the constraint for the network component on arc a = (v, w) ∈ A = Api ∪ Acs is
given by

πw − πv = Fa(q,∆). (6)

Using the node-arc incidence matrix A, constraint (6) for all arcs amounts to

ATπ = F (q,∆). (7)

Combining flow conservation (5), pressure constraints (7), linear compressor model (3),
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and objective function (4) yields the following minimum cost gas transport problem:

min wT∆
Aq = d, (8a)

ATπ = F (q,∆), (8b)

∆ ∈ [∆,∆] ⊆ R|Acs|
≥0 (8c)

π ∈ [π, π] ⊆ R|V|≥0, (8d)

q ∈ R|A|. (8e)

2.2 A Reformulation of the Gas Transport Problem
We next present an equivalent formulation of problem (8) where a number of variables
are eliminated. This is an extension of a result in [16] for passive networks to active gas
networks with a linear compressor model. For our result, we use the following assumption:
Assumption 1. Let a gas network problem with compressors over graph G be given.
Then no compressor is part of a cycle in the undirected counterpart of G.

In [16], the authors show that all squared pressure variables and |V| − 1 flow variables
can be eliminated from a gas network model without compressors. This is done by
expressing the flows within the network as a combination of flows on a spanning tree
together with flows on the remaining cycles. The pressure at each node is expressed
relative to an arbitrary chosen root node r ∈ V by defining an aggregated pressure drop
function between root node and each node in G. Similar to Kirchhoff’s loop rule in
electrical circuits, another set of constraints forces the aggregated pressure drop on every
fundamental cycle to be zero. The next paragraph introduces the required concepts
from [16] used in the reformulation.

Since we assume G to be weakly connected, its node-arc incidence matrix A has rank
n − 1 and an arbitrary row can be removed. We choose an arbitrary root node r ∈ V
and discard the row corresponding to r. In the same fashion, a reduced demand vector
d̃ is obtained from demand vector d by removing the entry concerning the root node.
The remaining matrix Ã ∈ Rn−1×m has full rank. After fixing a basis B of Ã, matrix
Ã is partitioned into a basic submatrix ÃB ∈ R(n−1)×(n−1) and a nonbasic submatrix
ÃN ∈ R(n−1)×(m−n+1). Moreover, let (FB, FN ) and (qB, qN ) be the respective partitions
of F and q. In the reduced model only nonbasic flows qN ∈ R|N | remain. Since every
nonbasic element corresponds to a fundamental cycle in G, we call the remaining flow
variables qN ∈ R|N | cycle flows.

It is well known from linear algebra that the solution space of the linear equation
system Ãq = d̃ can be parameterized by the nonbasic variables qN . We define a function
q(·) that maps nonbasic flows to flows in the whole network:

q : R|N | → R|A|,

qa(qN ) =


(
Ã−1
B

(
d̃− ÃN qN

))
a
, if a ∈ B,

(qN )a , if a ∈ N .

(9)
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Next we define an aggregated pressure loss function:

g̃(q,∆) =
(
ÃT
B

)−1
FB (q,∆) . (10)

We notice that each entry Fa depends either on qa or on ∆a. Thus, the arguments of FB
can be restricted to their basis parts qB and ∆B. Next, with (9) we rewrite (10) such
that g̃ only depends on the nonbasic part qN of q:

g̃(qN ,∆B) =
(
ÃT
B

)−1
FB (qB(qN ),∆B) . (11)

We extend g̃ to incorporate the root node r ∈ V and obtain the final definition of the
aggregated pressure drop function g:

g : R|N | ×R|B∩Acs|
≥0 → R|V|,

gv(qN ,∆B) =
{

0, if v = r,

g̃v(qN ,∆B), if v 6= r,
for all v ∈ V.

(12)

By construction, gv(qN ,∆B) is the sum of all pressure loss values on the unique path
between root node r ∈ V and node v ∈ V on the spanning tree as induced by B. This
includes the pressure drops along the pipes as well as the pressure changes due to
compressors.

Elimination of Variables and Equations The next theorem establishes an equivalent
formulation of the gas network problem (8). This result was proven for pipe-only networks
without active elements in [16]. We observe next that the result of [16] can easily be
generalized to networks with compressors, providing Assumption 1 is satisfied. With
Acs ∩N = ∅, it is ∆ ≡ ∆B and thus we can remove any ∆N from the model.

Theorem 2.1. Let G = (V,A) be a weakly connected digraph with nodes V and arcs A.
Let set A = Api ∪ Acs of arcs be partitioned into a set Api of pipes and a set Acs
of compressors. Let Ã be the node-arc incidence matrix of G after removing the row
corresponding to the root node, with an arbitrary partition (ÃB, ÃN ) into basis and
nonbasis as described above. Let (FB, FN ) and (qB, qN ) be the corresponding partitions of
F and q, respectively. Let g be the aggregate pressure drop function as defined in (12).
Then (8a)–(8e) has a feasible solution if and only if the following reduced system in

variables qN , ∆ has a solution:

ÃT
N g̃(qN ,∆B) = FN (qN ,∆N ), (13)

gw(qN ,∆B)− gv(qN ,∆B) ≤ πv − πw for all v, w ∈ V, (14)
qN ∈ R|N |, (15)
∆ ∈ R|Acs|.

Moreover, any solution of the reduced system can be expanded to a solution of the original
system. If qN is feasible for (13) and (14) exists, the remaining original variables qB, π

7



can be recovered through qB = Ã−1
B

(
d̃− ÃN qN

)
and πv = πr − gv(qN ,∆B) for v ∈ V.

The value of πr is an arbitrary given element of[
max
v∈V

[πv + gv(qN ,∆B)], min
v∈V

[πv + gv(qN ,∆B)]
]
.

Conversely, a vector qN that was extracted from a solution q∗, π∗ of (8a)–(8e) is feasible
for (13)–(15).

Proof. The original result of [16] is established for pipe-only networks, i.e., for Acs = ∅.
However, the form of the pressure drop law is never exploited explicitly. Therefore, it is
not difficult to see that their result still holds for networks with compressors or more
general constraints of the form

πw − πv = αa(qa) for all (v, w) = a ∈ A,

where αa is some scalar-valued function of the flow qa.

Existence and Uniqueness of Flow We consider a connected gas network without
pressure bounds and without compressors. In this setting a feasible flow always exists,
see [9, 24].

Theorem 2.2 ( [9]). Consider a connected gas network without pressure bounds and
compressors. Then the set

X = {(q, π) | (q, π) satisfy (8a)–(8c) and (8e)}

of feasible solutions has the following properties:

1. A flow solution always exists and is unique, i.e., |{q | ∃π : (q, π) ∈ X}| = 1.

2. Given a flow solution q∗, the set X of feasible solutions has the form

X =
{

(q∗, π)
∣∣∣π = π∗ + η(1, . . . , 1)T , η ∈ R

}
.

A feasible π∗ can be computed by first fixing the pressure π∗r at the root node to
an arbitrary value. The remaining squared pressures can be computed via πv =
πr − gv(qN ∗) for all v ∈ V.

Theorem 2.3. Consider a gas network where the compressor power vector ∆∗ is fixed.
Let Assumption 1 be fulfilled, i.e., no compressors are part of a cycle. Then Theorem 2.2
still holds.

Proof. We proof both parts of Theorem 2.2 separetly.

1. The solution space of the linear flow problem (8a) can be parameterized by the
nonbasic flows qN , see (9). A nonbasic flow qN

∗ is feasible for the gas network
problem without pressure bounds if it satisfies equation system (13):

ÃT
N g̃(qN ,∆B∗) = FN (qN ,∆N ∗). (16)
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Due to Assumption 1, all terms in (16) related to ∆∗ cancel out since no compressor
is part of a cycle. This can be seen as follows:
For ease of explanation, let us assume that G contains a single fundamental cycle
and thus the set of nonbasic arcs N contains only a single arc a = (v, w) ∈ N .
Our reasoning can be generalized to graphs with multiple fundamental cycles by
considering each cycle separately. Plugging the definition (11) of g̃ into the left-hand
side of (13), we obtain

ÃT
N g̃(qN ,∆B∗) = ÃT

N

(
ÃT
B

)−1
FB(qN ,∆B∗) =

(
Ã−1
B ÃN

)T
FB(qN ,∆B∗).

The matrix product Ã−1
B ÃN can be interpreted as the solution of linear network

flow problem on the tree induced by the basis B with demands given by the column
vector ÃN . We recall that ÃN has entries (ÃN )v = −1, (ÃN )w = +1 and zero
entries everywhere else. Thus Ã−1

B ÃN describes a linear network flow solution where
one unit is transported from v to w in the spanning tree as induced by B. Since
the spanning tree B emerges from G by removing the nonbasic arc a = (v, w) ∈ N
from the single fundamental cycle in G, the linear network flow Ã−1

B ÃN must take
the unique path between v and w over the remaining arcs of the fundamental cycle.
This shows that (Ã−1

B ÃN )TFB(qN ,∆B∗) is a linear combination of the pressure
drops on each arc of the fundamental cycle in B. Together with the right-hand side
of (16), we conclude that this equation system only contains pressure drops on arcs
of fundamental cycles. Since no compressor is part of a cycle due to Assumption 1,
this system is independent of ∆∗.
We apply Theorem 2.2 to system (16) to obtain a unique solution qN

∗. The
remaining flows on basis arcs a ∈ B can be computed using (9):

qa(qN ∗) =
(
Ã−1
B

(
d̃− ÃN qN

∗
))

a
for all a ∈ B.

2. After having fixed the squared pressure at the root node to an arbitrary value, the
squared pressure at all other nodes v ∈ V can be computed with (11):

πv = πr − gv(qN ∗,∆B∗).

Since the compressor power ∆∗ is fixed and is linked to the adjacent node’s squared
pressures via

πw − πv = ∆a
∗ for all (v, w) = a ∈ Acs,

any feasible π∗ remains feasible after adding η(1, . . . , 1)T , where η ∈ R.

3 Robust Treatment of the Gas Transport Problem
A robust optimization task is a family of optimization problems that is parameterized by
a so-called uncertainty set U ⊆ Rnu , nu ∈ N:{

min
z∈Rn

{f(z) : g(z, u) = 0, h(z, u) ≤ 0}
}
u∈U

. (17)
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In addition to the problem variables z ∈ Rn with n ∈ N, the constraint functions
g : Rn×Rnu → Rm1 and h : Rn×Rnu → Rm2 for m1,m2 ∈ N0 accept an additional data
vector u ∈ U , where U is a compact and convex set. Without loss of generality, we assume
an objective function f : Rn → R that is certain, see [4]. The goal of robust optimization
is to find solutions for (17) which are immunized against all possible realizations u ∈ U .
In the most basic setting, all problem variables have to be fixed before the uncertainty
becomes known. This leads to the strict robust counterpart (see [5])

min
z∈Rn

{f(z) | g(z, u) = 0, h(z, u) ≤ 0 ∀u ∈ U} , (RC)

where the feasible region is the set of all z which are feasible for all possible realizations
of the uncertainty.
For some applications, strict robustness is the wrong modeling choice, e.g., when

problem variables can adjust to the revealed uncertainty. In this case, a two-stage
approach has to be used. Here, the problem variables are partitioned into first-stage and
second-stage variables: z = (x, y) ∈ Rn = Rn1+n2 with n1 ∈ N0, n2 ∈ N. First-stage or
here-and-now variables x ∈ Rn1 have to be fixed before the uncertainty becomes known,
whereas second-stage or wait-and-see variables y ∈ Rn2 can be decided with knowledge of
the revealed uncertainty. Since the second-stage variables thus depend on the uncertain
parameter, they are also called adjustable variables. The notion of different actions
happening at different points in time directly leads to the adjustable robust counterpart
(see [4])

min
x
{f(x) | ∃x ∈ Rn1 ∀u ∈ U ∃ y ∈ Rn2 with g(x, y, u) = 0, h(x, y, u) ≤ 0} . (ARC)

Again, without loss of generality, the objective only depends on here-and-now variables.
A typical solution approach in this setting consists in modeling the wait-and-see

variables with decision rules [4]. The second-stage variable vector y is replaced by an
unknown function y : U → Rn2 that maps elements of the uncertainty set to values of
the second-stage variables. Finding the function y(·) is now part of the optimization
task. In order to solve this problem in practice, the decision rule function y(·) has to be
restricted to some function class that can be expressed as part of an optimization problem.
Several classes of decision rules have been investigated in the literature, e.g., affine linear
functions [4], piecewise linear [29], and polynomials [8]. The predefined function class is
often not rich enough to contain the best possible or fully adjustable decision rule y∗(·).
If this is the case, all obtained solutions are more conservative when compared to the
fully adjustable solution as only suboptimal approximations of y∗(·) can be found. As
will be shown later, the wait-and-see variables of the gas network problem introduced in
Section 2 depend uniquely on the uncertain parameters, i.e., there is exactly one function
y(·) that is feasible for the problem. Since the gas network problem is nonlinear with
random recourse (see [4] for a definition), we don’t expect this function to be contained
in any of the studied decision rule classes and therefore, we cannot use a decision rule
approach. This motivates the approach outlined in Section 3.3.
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3.1 The Gas Network Problem Under Uncertainty
There are two main sources of uncertainty that are studied in this article: fluctuations in
the demand vector d as well as uncertainties in the pressure drop coefficient φ. We define
two polyhedral uncertainty sets, P ⊆ R|Api|

>0 for uncertain pressure drop coefficients, and
D ⊆ R|V| for uncertain demands. The efficiency of the presented methods is tied to the
choice of uncertainty set as its definition is part of the developed optimization tasks.
Therefore, other compact convex sets could be used instead, like e.g., sets defined by
convex quadratic constraints.
When not explicitly stated otherwise, the considered problems are affected by both

types of uncertainty. Thus, we typically use an uncertainty set of the form U = P ×D.

Uncertain pressure loss coefficients This is an arc-wise uncertainty and influences the
pressure drop between two incident nodes. For all arcs a ∈ Api, let φa, φa ∈ R>0 with
0 < φa,≤ φa be given. This leads to the uncertainty set

P =
{
φ ∈ R|Api|

>0

∣∣∣φa ≤ φa ≤ φa for all a ∈ Api
}
, (18)

which is also known as a box uncertainty.

Uncertain demand This node-wise uncertainty has an impact on the solution space of
the linear network flow problem. For all nodes v ∈ V, let dv, dv ∈ R with dv ≤ dv be
given: As the overall demand always has to be balanced, the uncertainty set includes a
balancing constraint.

D =
{
d ∈ R|V|

∣∣∣∣∣ dv ≤ dv ≤ dv for all v ∈ V∑
v∈V dv = 0

}
. (19)

A polyhedral set of the form D is also known as hose polytope, see [11].

3.2 The Reduced Gas Network Problem as a Two-Stage Problem
Robust treatment of the gas network problem (8) requires a two-stage model. We assume
for a moment that single-stage (also known as strict) robustness is applied to the problem
at hand. In the single-stage setting, a solution for the flow vector q and the squared
pressure vector π has to be found which is valid for all possible realizations of data
contained in the uncertainty set. When considering flowing gas as a physical system,
such a solution is very unlikely to exist as flows and pressures within the network are
highly dependent on the given parameters, i.e., demands and pressure loss coefficients.
Therefore, a two-stage robust approach is appropriate.

For the gas network problem, the compressor power vector ∆ is a first-stage decision,
whereas the flow vector q and the squared pressure vector π are adjustable second-stage
variables. Thus, the two-stage problem can be formulated as

min
{
wT∆

∣∣∣ ∃∆ such that ∀u = (φ, d) ∈ U ∃ q, π that satisfy (8a)–(8e)
}
.
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This is also known as the (fully) adjustable robust counterpart of problem (8). With
Theorem 2.1, the squared pressure variables and some equations can be eliminated from
the model to obtain an equivalent formulation:

min
{
wT∆

∣∣∣ ∃∆ such that ∀u = (φ, d) ∈ U ∃ qN that satisfies (13) and (14)
}
. (20)

3.3 Transforming the Adjustable Robust Model to a Single-Stage Problem
By exploiting structural properties of the gas network problem, we show how the two-stage
problem (20) can be transformed to a single-stage problem. In particular, we exploit
separability of the constraints (see (21)) and the weak connection between first-stage and
second-stage variables. As this transformation can be applied to all two-stage problems
with this structure, we abstract our presentation from gas networks and state our results
for the general two-stage problem (ARC). Problems with a similar structure include e.g.,
direct current electricity networks, water networks, and other potential driven networks.

The necessary conditions for our approach are summarized in the following assumption:

Assumption 2. (a) The equation system g(x, y, u) = 0 does not depend on x and
admits a unique solution y∗(u) for all u ∈ U .

(b) The inequality constraints h(x, y, u) ≤ 0 are separable in the following way:

h(x, y, u) = s(x) + t(y, u). (21)

Before proceeding to the abstract presentation, we first show that the gas network
problem satisfies Assumption 2.

Theorem 3.1. Suppose that Assumption 1 holds. Then the constraints of the two-stage
gas network problem (20) satisfy Assumption 2.

Proof. First we restate equation system (13):

ÃT
N g̃(qN ,∆B) = FN (qN ).

Assumption 1 implies that this system is independent of the first-stage variables ∆.
Moreover, uniqueness and existence of a solution qN ∗ holds due to Theorem 2.3. Thus,
the constraint system satisfies the first part of Assumption 2.
With the assumption’s second part in mind, we take a closer look at inequality

system (14):

gw(qN ,∆B)− gv(qN ,∆B) ≤ πv − πw for all v, w ∈ V.

We have

gv(qN ,∆B) =
[(

ÃT
B

)−1
FB (qB(qN ),∆B)

]
v
,

=
(
ÃT
B

)−1

v·
FB (qB(qN ),∆B) ,
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where (ÃT
B)−1
v· denotes the v-th row of (ÃT

B)−1. Since there is no row in (ÃT
B)−1 corre-

sponding to the root node r, we let (ÃT
B)−1
r· = (0, . . . , 0) for ease of notation.

From this definition it is evident that gv is a linear combination of the entries of FB.
Every entry in FB corresponds to either a pipe and depends on qN or a compressor and
depends on ∆. Therefore the inequalities are separable:(

ÃT
B

)−1

w·
FB (qB(qN ),∆B)−

(
ÃT
B

)−1

v·
FB (qB(qN ),∆B)− πv + πw

= svw(∆) + tvw(φB, qB(qN )) ≤ 0 for all v, w ∈ V (22)

for suitable functions svw and tvw.

In the remainder of this chapter, we present the transformation of the abstract two-stage
problem (ARC) to single-stage problem along with further simplifications.

Lemma 3.2. Under Assumption 2, the set of feasible first-stage decisions x of the
adjustable robust counterpart (ARC) is given by

X = {x ∈ Rn1 | s(x) ≤ b} , (23)

where b = (bi)i=1,...,m1 ∈ Rm1 with

bi = −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2} .

Proof. Due to Assumption 2, the equality constraints of (ARC) only depend on y
and u, i.e., g(x, y, u) ≡ g(y, u). Furthermore the inequality constraints are separable:
h(x, y, u) = s(x) + t(y, u). Therefore, the set of feasible first-stage decisions x of (ARC)
can be written as

{x | ∃x ∈ Rn1 ∀u ∈ U ∃ y ∈ Rn2 with g(y, u) = 0, s(x) + t(y, u) ≤ 0} . (24)

From Assumption 2 it follows that there is a function y∗(u) which maps values u of the
uncertainty set U to solutions of g(y, u) = 0. This function exists and is well defined
since solutions of the equality system exist for all u ∈ U and are unique. With this in
mind, the exists quantor for variable y and the equality constraints can be eliminated
from (24) and thus we obtain the feasible region of a single-stage robust optimization
problem of form (RC):

{x ∈ Rn1 | s(x) + t(y∗(u), u) ≤ 0 ∀u ∈ U} .

This semi-infinite problem can be reformulated by maximizing the left-hand side of the
inequality:

s(x) + t(y∗(u), u) ≤ 0 for all u ∈ U ,
⇐⇒ max

u∈U
(si(x) + ti(y∗(u), u)) ≤ 0 for all i = 1, . . . ,m1,

⇐⇒ si(x) + max
u∈U

(ti(y∗(u), u)) ≤ 0 for all i = 1, . . . ,m1.

13



After rewriting the solution function y∗ in terms of g and letting

bi := −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2} for all i = 1, . . . ,m1, (25)

we obtain

si(x) + max
u∈U

(ti(y∗(u), u)) = si(x)− bi ≤ 0

and thus set of feasible first-stage decisions x of (ARC) is equivalent to

{x ∈ Rn1 | s(x) ≤ b} . (26)

We want to highlight two properties of (23) which may be beneficial for solving such
problems in practice.
Remark 3.3. Calculating bi involves solving an optimization task to global optimality.
In situations where this is not possible or where it can only be done with great effort,
e.g., due to non-convex constraints, relaxations of the problem can be used instead.
We propose to use convex or mixed-integer linear (MIP) relaxations as they lead to
optimization tasks which can be solved to global optimality using available software. We
consider the definition of bi:

bi = −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2}︸ ︷︷ ︸
(?)

. (27)

Replacing (?) by a relaxed optimization problem leads to an optimal value b′i ≤ bi.
Plugging b′ into (26) yields a smaller feasible region for the first-stage decision variables x:{

x ∈ Rn1
∣∣ s(x) ≤ b′

}
⊆ {x ∈ Rn1 | s(x) ≤ b} .

Since the feasible region of the relaxed problem’s first-stage variables is a subset of
the original feasible region, solutions obtained in this fashion are still robust feasible.
Depending on the quality of used relaxations, solutions obtained in this way can be
more conservative, i.e., have a worse objective function value. On the other hand, using
relaxations of non-convex problems typically allows us to solve much larger instances
compared to using the original problem formulation.
The second observation explains how the bi can be calculated efficiently in practice.

Suppose there are two constraints hi(x, y, u) = si(x) + ti(y, u) ≤ 0 for i = 1, 2 which are
reformulated as s1(x) ≤ b1 and s2(x) ≤ b2 due to Lemma 3.2. If the functions s1 and s2
are identical, both constraints can be aggregated into one constraint by setting

s1(x) = s2(x) ≤ min(b1, b2). (28)
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In order to implement reduction (28), one can solve a single optimization problem
rather than two separate ones:

min(b1, b2) (25)= min
i=1,2

(
−max

u∈U
{ti(y, u) | g(y, u) = 0, y ∈ Rn2}

)
= min

i=1,2

(
min
u∈U
{−ti(y, u) | g(y, u) = 0, y ∈ Rn2}

)
= min

u∈U

{
min
i=1,2

(−ti(y, u))
∣∣∣∣ g(y, u) = 0, y ∈ Rn2

}
. (29)

Compared to (25), the aggregated optimization problem (29) has the same feasible set
but a different objective function. For mixed-integer models, this minimum-of-functions
objective structure can be modeled with binary variables.

This can be generalized to any finite number of constraints hi (i = 1, . . . ,m1). We want
to emphasize that this situation may not be that uncommon in practice. For example,
all variable bounds yi ≤ yi are independent of x and can therefore be reduced to one
constraint of the form s(x) = 0 ≤ c for some c ∈ R.

The Robust Gas Transport Problem as a Single-Stage Problem After applying
Lemma 3.2 to the two-stage robust gas transport problem (20), we obtain the single-stage
problem

min
∆∈[∆,∆]

wT∆,

svw(∆) ≤ bvw for all v, w ∈ V,
(30)

where bvw is precomputed as

bvw = −max

tvw(φB, qB(qN ))

∣∣∣∣∣∣∣∣
ÃT
N g̃(qN ) = FN (qN )

(φ, d) ∈ U
qN ∈ R|N |.

 . (31)

for v, w ∈ V. Assuming (31) is precomputed, (30) reduces to a linear program (LP).
As (31) is a non-convex optimization task, we next explain how relaxations can be
computed effectively in this context.

4 Precomputation of the Right-Hand Side of Problem (30)
using Piecewise Linear Relaxations

In order to solve the robust gas network problem via the linear problem (30), one first
needs to compute bvw by solving a series of nonlinear and non-convex optimization
problems to global optimality. Since this is a difficult task in general, we first replace all
nonlinear terms by piecewise-linear relaxations and use this surrogate model to compute
the right-hand side b. As is discussed in Section 3.3, using relaxations for computing
b can lead to a somewhat smaller feasible region but preserves robust feasibility of the
obtained solution.
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For ease of explanation, we transform problem (31) back into its non-reduced form
and show how b can be computed using the original model formulation. We also express
the pressure drop in each pipe equivalently by defining sets of feasible pressure drops
Laφa

for each pipe a ∈ A:

(qa, λa) ∈ Laφa
= {(qa, λa) |λa = −φa |qa| qa, qa ∈ R} , (32)

which is equivalent to

πw − πv = λa = −φaqa |qa| .

For the following Lemma, we remember that the row of (ÃT
B)−1 corresponding to the

root node r is a vector of zeros, i.e., (ÃT
B)−1
r· = (0, . . . , 0).

Lemma 4.1. Let v, w ∈ V be two given nodes. Let cvw = (ÃT
B)−1
w· − (ÃT

B)−1
v· , where

(ÃT
B)−1
v· denotes the row of (ÃT

B)−1 corresponding to v. Furthermore, let Laφa
be defined

for all a ∈ Api as in (32).
Then, bvw of (31) is the optimal value of the following optimization problem:

bvw = min − (cvwTλ− πv + πw)
Aq = d, (33a)

AAcs
Tπ = 0, (33b)

AApi
Tπ = λ, (33c)

(qa, λa) ∈ Laφa
for all a ∈ Api, (33d)

q ∈ R|A|, (33e)
λ ∈ R|Api|.

Proof. The reduced and non-reduced model of the gas network problem are equivalent
due to Theorem 2.1. Therefore, we replace the constraints of the reduced model (31) by
their non-reduced counterparts (33a)–(33e). As the compressor power ∆ has no influence
on (31) due to Assumption 1, the compressor power in the non-reduced model (33b) is
set to zero in (33b).

In order to transform the objective to fit the non-reduced model, we observe that the
objective of (31) is a linear combination of entries in F , i.e., of the pressure drops. We
introduce auxiliary variable λ ∈ R|Api| to model the pressure drop in equations (33c) and
(33d). A closer look at (22) shows that the linear objective function can be written as
cTλvw − πv + πw using the coefficient vector

cvw =
(
ÃT
B

)−1

w·
−
(
ÃT
B

)−1

v·
for all v, w ∈ V.

Our aim is to solve problem (33) or a relaxation thereof to global optimality. To this
end, we present several relaxations of the nonlinear and non-convex set Laφa

that can
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be used for that purpose. Since global optimal solutions are required to ensure robust
feasibility of the obtained results, we develop piecewise-linear relaxations of Laφa

which can
then be used in a mixed-integer linear program (MIP). Of course other relaxations like
linear (see Section 4.1) or semidefinite relaxations arising from polynomial programming
(see [1]) are also conceivable, however, we restrict ourselves to piecewise-linear relaxations
as a priori error bounds can be computed. In the remainder of this section, we drop
the arc-specific indices of Laφa

. Furthermore, we assume the flow variables to be in a
finite interval, i.e., qa ∈ [qa, qa]. This is no restriction as the pressure and flow variables
of problem (33) are always bounded, see Section 4.1 for more details regarding their
computation.
Relaxations with a priori error bounds are of particular interest as they allow us to

compute solutions with arbitrary precision by reducing the error ε.

Definition 4.1 (ε-exact relaxation). Let L = {(x, y) ∈ [x, x]×R | y = f(x)} ⊆ R2 be
the function graph of a function f : R→ R over a finite interval [x, x] and let ε > 0 be a
given error. We call L̃ ⊆ [x, x]×R an ε-exact relaxation of L, if

1. L ⊆ L̃ and

2. |y − ỹ| ≤ ε for all x ∈ [x, x] with (x, y) ∈ L and (x, ỹ) ∈ L̃

are satisfied.

As all presented relaxations are constructed using piecewise-linear functions, we briefly
restate how to express piecewise-linear functions in MIPs using the delta method [20].
Let (xi, yi)i=1,...,k a series of points in R2 with x1 < x2 < . . . < xk. Then the graph of the
piecewise-linear function with sampling points (xi, yi) is described given by the following
mixed-integer constraints:

x = x1 +
∑

i=1,...,k−1
(xi+1 − xi)δi,

y = y1 +
∑

i=1,...,k−1
(yi+1 − yi)δi,

δ1 ≥ z1 ≥ δ2 ≥ z2 ≥ . . . ≥ zk−2 ≥ δk−1,

δi ∈ [0, 1] for all i = 1, . . . , k − 1,
zi ∈ {0, 1} for all i = 1, . . . , k − 2.

In our implementation, the delta method was used exclusively since it is known for its
good performance for gas network problems in practice (see [12]).
Finding approximations for L, i.e., the function graph of cx|x| for a fixed c > 0 is

straightforward as follows. After eliminating the absolute value by splitting the function
graph into negative and positive parts, only square functions cx2 need to be treated. We
show next that the error of approximating cx2 by a (piecewise) linear function only depends
on the parameter c and on the distance between two adjacent sampling points but not on
the position of the chosen sampling points. Indeed pick any two points (x1, y1), (x2, y2)
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Figure 1: Nominal pressure drop and piecewise-linear relaxation for constant pressure
drop coefficient φ = 1 and approximation quality ε = 1.0.

on the graph of f sq(x) = cx2 with x1 < x2 and let f lin(x) = y2−y1
x2−x1

(x−x1)+y1 be the line
connecting both points. To calculate the maximum deviation ε = maxx f lin(x)− f sq(x),
we observe that f lin(x)− f sq(x) is a degree two polynomial and thus attains its extreme
value between its two roots x1 and x2 at x∗ = 1

2(x1 + x2). A short calculation shows
that the maximum error is given by ε = f lin(x∗) − f sq(x∗) = c

2(x2 − x1)2. Since the
approximation error only depends on c and on the distance x2−x1 between two sampling
points, we conclude that cx2 can be approximated by a piecewise-linear function with a
given error ε by equidistant sampling points. See Fig. 1 for an example.
Two different cases need to be distinguished when building relaxations for Laφa

, de-
pending on whether φa is constant or affected by uncertainty. If the coefficient φa is
constant, the standard relaxation from the literature with equidistant sampling points
can be applied to obtain an ε-exact relaxation L̃, see [14]. For the second case, we assume
the pressure drop coefficient φa to be uncertain. In general, this requires a relaxation
Lφa which is parameterized by φa so that it can adjust to the different realizations of
φa to preserve the ε-approximation quality. However, due to uncorrelated pressure drop
coefficients (18), a simplification can be applied. Since the realization of pressure drop
coefficient φa at arc a is independent of all other uncertainties, it is sufficient to construct
an ε-exact relaxation of the union ⋃

φa∈[φa,φa]
Laφa

.

Due to continuity and monotonicity of the function value φaqa|qa| in φa, the union
∪φa∈[φa,φa]Laφa

has no holes and its boundary can be described by piecewise functions of
the form φaqa|qa|:⋃

φa∈[φa,φa]
Laφa

=
{

(qa, λa)
∣∣∣∣∣−φaqa |qa| ≤ λa ≤ −φaqa |qa| , if qa ≥ 0
−φaqa |qa| ≤ λa ≤ −φaqa |qa| , if qa ≤ 0

}
. (35)

Finally, the relaxations for functions with constant φa can be applied to the boundary
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Figure 2: Pressure drop and piecewise-linear relaxation for uncertain pressure drop
coefficient φ ∈ [0.5, 1.5] and approximation quality ε = 1.0.

functions of (35) in order to obtain an ε-exact relaxation of the union of all possible
pressure drops for the given uncertain parameters, see Fig. 2 for an example.

We want to emphasize that the shown relaxation ideas for nonlinear constraints under
uncertainty can be applied to other nonlinear problems as well. Although the presented
model for piecewise-linear functions (34) can be generalized to higher dimensions [13],
the relaxation approach is most effective for univariate functions. This is often the case
for problems on networks where some quantities of interest solely depend on e.g., the
flow along an arc or the potential at a specific node. As was mentioned earlier, first-stage
solutions obtained through relaxations of (27) are always robust feasible but can be more
conservative compared to exact solutions.

4.1 Reducing Model Size by Preprocessing
Binary variables are used for the construction of the presented piecewise-linear relaxations.
The overall complexity of solving a MIP typically depends heavily on the number of
discrete variables. Our settings requires solving not a single but a series of MIPs to
determine the right-hand sides bi. It is therefore very desirable to speed up the solution
process as much as possible.

The number of binary variables in our setting depends on the flow bounds [qa, qa] and
on the approximation error ε. Since the approximation error is given, we can decrease
the number of required binary variables by providing strong bounds for qa. To this
end, our methods comprise two trivial bounds and an optimization method using linear
relaxations. Preprocessing ideas for gas network problems can be found in [12], including
more complex procedures like pressure and flow propagation heuristics. For a broader
overview of different preprocessing ideas for mixed-integer nonlinear programs, see the
review article [22]. However, we cannot use most of the mentioned ideas as is since they
are tailored towards nominal problems without uncertainty. Due to the nature of our
problem setting where we optimize over the uncertainty set, our preprocessing methods
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must preserve the full range of states in the network depending on the uncertainty. All
methods are presented with the full range of uncertainty in mind, i.e., uncertain demand
and uncertain pressure drop coefficients. For problems where only one or no uncertainty
is given, the presented methods can often be simplified considerably.

Trivial bounds We present two trivial flow bounds, one resulting from the maximum
overall total demand and one resulting from the decomposition of the linear flow solution
space into tree and cycle flows. The problem is assumed to be affected by uncertain
demands and uncertain pressure drop coefficients.
A trivial flow bound can be derived by calculating the maximum possible positive

demand:
dtotal = 1

2 max {‖d‖ 1 | d ∈ D}

In general this problem is NP-hard and has to be reformulated as a MIP. Typically, the
preprocessing has to be very be fast (compared to solving the actual problem MIPs), so
we calculate a simple upper bound on dtotal instead. We consider uncertainty set (19).
After omitting the balancing hyperplane, every demand parameter dv is only affected by
upper and lower bounds:

dv ≤ dv ≤ dv for all v ∈ V.

With this in mind, we first bound the maximum total gas injection and withdrawal. A
simple bound can be obtained from these quantities by taking the minimum of their
absolute values:

d+ =
∑
v∈V

max (0, dv) , d− =
∑
v∈V

min (0, dv) , (36)

drelax = min(d+,−d−).

The gas flow over each arc can never exceed the total injection, thus

qa ∈ [−drelax, drelax] (37)

is a feasible bound for all arcs a ∈ A.
The previous bound can be improved considerably for certain arcs if the structure of

the linear network flow solution space is exploited. Recall from (9) that any feasible flow
q can be written as

q = Ã−1
B

(
d̃− ÃN qN

)
, (38)

where qN ∈ R|N | is a free parameter. It is known from linear flow theory that due to (38),
the flow over all arcs which are not part of a cycle is independent of qN , i.e., can be
written as qa = (Ã−1

B d̃)a. This allows us to find tight bounds for qa over non-cycle arcs a
by optimizing over the demand uncertainty set:

qa ∈
[
min
d∈D

(Ã−1
B d)a,max

d̃∈D
(Ã−1
B d̃)a

]
. (39)
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Figure 3: Linear convex hull of nominal (φ = 1.0) and uncertain pressure drop coefficient
(φ ∈ [0.5, 1.5]).

If it is not desirable to solve an optimization task, lower and upper bounds for (39)
can be found with a similar approach as (36). We remark that for problems without
demand uncertainty, there is nothing to optimize and the exact, constant flow qa can be
evaluated by calculating (Ã−1

B d̃)a. In this case, the nonlinear pressure drop equation can
be removed by evaluating the signed square function at qa.

Bounds due to linear relaxations Every fundamental cycle introduces a free parameter
qN into the description of the flow (38). The flow on every arc that is part of a cycle
depends on the unbounded paramter qN . Consequently, equation (38) cannot be used to
derive finite bounds for the flow on arcs that are part of cycle. In order to derive bounds
in this setting, we supplement (38) with a very rough approximation of the pressure drop
constraints. This was done previously for the nominal case in [12] by defining a convex
hull of the pressure drop constraint’s graph through linear inequalities. When compared
to the piecewise linearization approach in Section 4, the defined set is still a relaxation of
the original constraint but does not guarantee an ε-approximation.
Next, we generalize the linear model to incorporate uncertain pressure drop coeffi-

cients φ ∈ U . To this end, we construct a convex hull L̂a of the set of all possible pressure
drops when given an uncertain coefficient φa ∈ [φa, φa]:

L̂a ⊃
⋃

φa∈[φa,φa]
Laφa

.

See Fig. 3 for a linear convex hull for nominal pressure drop as well as for pressure drop
under uncertainty.
Given relaxations L̂a for each pipe a ∈ Api, a very similar problem as (33) is defined

by replacing the nonlinear sets (33d) with their corresponding relaxations. Let X̂ be
the feasible region of the resulting problem. Then bounds qa ∈ [qa,lb∗, qa,ub

∗] for the flow
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along each arc a ∈ A can be derived by minimizing and maximizing qa over X̂ :

qa,lb
∗ = min

q,π∈X̂
qa, qa,ub

∗ = max
q,π∈X̂

qa. (40)

Since the problems in (40) are linear programs (LPs), we also call this the LP-based
relaxation preprocessing approach. In the literature, this type of preprocessing strategy
is also known as feasibility-based bounds tightening, see [22].

We remark that in case of demand uncertainty, the problems (40) contain description
of the uncertainty set. For pressure drop uncertainty, the uncertainty set is incorporated
into the relaxations of the pressure drop equations and therefore is not present in the
linear programs.

Preprocessing strategy In our implementation, all three bounds—trivial total demand,
linear flows on non-cycle arcs and LP relaxation based bounds—are combined into an
iterative bound tightening procedure. Initially, trivial flow bounds (37) are derived for
each arc to obtain finite bounds. Next, the flow bounds of all non-cycle arcs are tightened
with (39). The procedure then enters a loop where the linear programs (40) are solved
repeatedly for all remaining arcs. In one iteration step, model (40) is build only once
and then reused with different objectives for each flow variable. At the end of each
iteration step, all flow bounds are updated with the newly calculated bound information.
The algorithm terminates if either a maximum number of iterations is reached or if the
Euclidean norm of the difference between the bounds of two subsequent iterations is
smaller than a specified cutoff value. We use a maximum number of fifteen iterations
and a cutoff value of 1.0 in our computations.

5 Numerical Experiments
In this section, the performance of the developed methods is evaluated on a family of
gas network instances. We first examine the influence of the preprocessing routines and
of the aggregation idea (29) to determine the best possible combination of both. Using
this as a basis for further study, problem running times are studied in more detail under
different aspects such as relaxation quality and magnitude of the uncertainty.

Instances and setup The studied problems are taken from GasLib [26], a freely available
collection of realistic gas network instances comprising of topology and nomination data.
We used networks GasLib-11, GasLib-24, and GasLib-40 with their supplemented
demand and pressure nominations. The employed instances were slightly modified to fit
the context of this article: Any element which is no compressor and no pipe is replaced
by a so-called short pipe—an special type of pipe with zero pressure drop coefficient that
can be traversed freely by gas without experiencing a pressure drop. In order to satisfy
Assumption 1, the compressor of GasLib-40 which is part of a cycle was replaced by a
short pipe as well. Furthermore, the demands of GasLib-24 and GasLib-40 were scaled
to obtain nominations whose corresponding robust problems are feasible for all studied

22



uncertainty sets and have nonzero optimal solutions, i.e., compressors have to used to
reach feasibility. Table 1 gives an overview over the features of the used instances. We
abbreviate compressors with “comprs.” and control valves with “ctrl. valves”.

Table 1: Instances for numerical experiments.
scaling #nodes #pipes #comprs. #ctrl. valves #short pipes

GasLib-11 1.00 11 8 2 0 1
GasLib-24 2.05 24 19 3 1 2
GasLib-40 0.67 40 39 5 0 1

Each instance can be affected by uncertainty. We use relative perturbations around
the nominal demand values or pressure drop coefficients as uncertainty sets. A unified
naming scheme of the defined uncertainty sets is utilized for both demand and pressure
drop uncertainty. The network’s demand or pressure drop coefficients may be affected
independently by four levels of uncertainty: nominal (i.e., no uncertainty), small, medium,
and large uncertainty, see Table 2. Any combination of the provided levels defines an
uncertainty set for the numerical experiments, ranging from no uncertainty (“nominal
demand and nominal pressure drop uncertainty”) to the combination of large demand
uncertainty with large pressure drop uncertainty. The chosen uncertainty level is then
applied to all affected elements, e.g., demands or pressure drop coefficients. Thus, there
are 16 uncertainty sets in total. The concrete definitions can be found in Table 2.

Table 2: Every combination of demand and pressure drop uncertainty level defines an
uncertainty set used in the numerical study.

demand pressure drop coefficient

nominal {d} {φ}
small [0.95 · d, 1.05 · d] [φ, 1.10 · φ]
medium [0.90 · d, 1.10 · d] [φ, 1.50 · φ]
large [0.80 · d, 1.20 · d] [φ, 2.00 · φ]

The linearization error for the piecewise-linear relaxation of the pressure drop equations
was chosen as ε ∈ {0.01, 0.1, 1.0}.

All experiments were carried out on a machine with a four core Xeon E3-1240 v5
CPU running at 3.5GHz each and 16 GB of RAM. The linear and mixed-integer linear
problems were solved using Gurobi 7.5 [17] using 4 threads.

Running time improvements due to preprocessing and aggregation We compare
preprocessing strategies on GasLib-11 and GasLib-24 since GasLib-40 is already too
large to be solved in an acceptable timespan without preprocessing. In order to cover a
wide range of problems, we derive average running times of instance groups where each
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group contains all possible combinations of the remaining parameters like approximation
quality ε and uncertainty set.

First we take a look at the average running times depending on the employed prepro-
cessing method, see Table 3 and Fig. 4a. The columns denote the different preprocessing
choices: trivial from equation (37), treeflows (39), and LP-based bound tightening (40)
(“opt”). Each entry of Table 3 is the averaged running time of 96 instances arising
from all combinations of uncertainty set, ε ∈ {0.01, 0.1, 1.0}, and choice of individual or
aggregated model. The number in brackets displays the relative speedup, when compared
to the trivial preprocessing bounds. Speedups from treeflows preprocessing is negligible,
possibly due to the fact that the studied GasLib instances contain only few arcs which
are not part of cycle. We observe a dramatic speedup of a factor of about 30–50 when
the LP-based bound tightening is used.

Table 3: Mean running times when using different preprocessing strategies. The number
in brackets denotes the speedup compared to “trivial” preprocessing bounds.

trivial treeflows opt

GasLib-11 14.7 s (1.0×) 11.5 s (1.3×) 0.5 s (31.6×)
GasLib-24 327.1 s (1.0×) 327.1 s (1.0×) 6.2 s (52.4×)

Next, the influence of aggregation is benchmarked. We only consider instances after
applying LP-based bound tightening. Recall that in order to calculate the right-hand
side of (30) with problem (33), we can either solve O(|V|2) problems individually to
obtain each bvw or a smaller number of problems after applying an aggregation step (28).
In Table 4 we compare the mean running times on instances GasLib-11, GasLib-24, and
GasLib-40 when choosing to solve all problems individually or in an aggregated fashion.
As with the preprocessing strategies, the numbers in brackets denote the relative speedup
compared to the slowest method, see also Fig. 4b. Each cell of Table 4 is an average over
all instances with varying approximation quality and varying uncertainty set. We observe
a mean speedup factor of about 8.5 for the larger instances and a smaller speedup of a
factor of about 2.6 for the smallest instance when using the aggregated model. In total,

Table 4: Mean running times of individual and aggregated models after LP-based prepro-
cessing. The number in brackets denotes the speedup compared to the individual
model.

individual aggregated

GasLib-11 0.7 s (1.0×) 0.3 s (2.6×)
GasLib-24 11.1 s (1.0×) 1.4 s (7.8×)
GasLib-40 193.8 s (1.0×) 21.4 s (9.1×)

a combination of LP-based bound tightening and an aggregation of subproblems yields a
mean speedup factor of up to 400 for GasLib-24 when compared to no preprocessing
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and to solving all problems individually (see Fig. 4).
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Figure 4: Different speedups due to preprocessing and aggregation. With both techniques,
mean speedup reaches a factor of up to 400.

Running times and number of subproblems The overall running time of the gas
network problem mainly consists of running times of the preprocessing LPs, running
times of the MIP subproblems, and running time of last LP for deciding a solution of
the compressors. In our setting, solving all occurring LP problems is trivial and can be
done within fractions of a second. Therefore, we focus on the performance of the MIP
subproblems when LP-based preprocessing has been applied.

Table 5: Number of MIP subproblems for individual and aggregated models, together
with their mean and total running times.

individual aggregated
#probs rt mean rt total #probs rt mean rt total

GasLib-11 110 0.0 s 0.7 s 7 0.0 s 0.2 s
GasLib-24 552 0.0 s 11.0 s 21 0.1 s 1.3 s
GasLib-40 1560 0.1 s 193.3 s 31 0.7 s 20.8 s

Table 5 gives a more detailed summary over the mean running times for the individual
and aggregated method. As before, every cell is the average over all possible combinations
of approximation quality and uncertainty set. We use LP-based preprocessing for all
instances. The columns are partitioned into one group related to solving all problems
individually and one group where the aggregated method is applied. In each column
group, we list the number of required subproblems together with their mean and total
running times. It can be observed that applying the aggregation method drastically
reduces the number of subproblems required to solve. For the studied instances, the

25



running times of the aggregated models increases at a smaller rate compared to the
reduction of problems. Thus, the increase in complexity of the aggregated models is more
than compensated by the smaller number of instances that need to be solved.

Influence of relaxation parameter: Price of piecewise-linear relaxations Finally, we
investigate the influence of the relaxation parameter on the optimal value of the single-
stage robust problem. Larger values of ε lead to coarser relaxations of the nonlinear
constraints and thus should lead to more conservative solutions. For each GasLib instance,
we solve the robust problem for the “large × large” combination of uncertainty sets (see Ta-
ble 2 for a definition) and for varying relaxation parameters ε ∈ {0.001, 0.01, 0.1, 1.0, 10.0}.
All comparisons in this paragraph are relative to the solution obtained with the smallest
relaxation parameter ε = 0.001, which we assume to be “close enough” to the exact
solution of the mixed-integer nonlinear problem. We use LP-based preprocessing and
the aggregation method for all problems. The results are summarized in Table 6. Each
column corresponds to a different choice of ε. We associate three rows with each gas
network instance, where the first row denotes the absolute objective function value, the
second row denotes the relative increase when compared to the finest relaxation ε = 0.001,
and the third row denotes the running time.

Table 6: Absolute and relative comparison of optimal total compressor cost for different
relaxation parameters ε together with their respective running times.

relaxation parameter ε
0.001 0.01 0.1 1.0 10.0

GasLib-11 763.78 763.79 763.90 764.76 768.15
+0.002 % +0.016 % +0.128 % +0.572 %

30.74 s 3.21 s 0.44 s 0.14 s 0.08 s

GasLib-24 647.83 647.86 648.08 649.93 665.37
+0.004 % +0.039 % +0.325 % +2.708 %

130.27 s 16.25 s 2.59 s 0.66 s 0.32 s

GasLib-40 45.12 45.16 45.69 49.50 79.21
+0.102 % +1.281 % +9.711 % +75.575 %

2948.58 s 374.17 s 42.30 s 10.05 s 3.67 s

As a general trend, the objective value increases with the relaxation parameter ε as
well as with the instance size, i.e., the number of nodes in the network. Furthermore, we
observe an increase in running times for decreasing relaxation parameters. This is to be
expected since smaller ε lead to finer approximations and thus to larger MIP models
with more binary variables and constraints.

Concerning the optimal value, we observe a very small relative increase for GasLib-11
and GasLib-24 of at most 3 % for all choices of ε. Even for the largest instance
GasLib-40, the additional cost due the chosen relaxation only amounts to about 10 % for
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a comparatively small ε = 1.0. Only for the largest choice of ε = 10.0 does the objective
increase drastically by 76 %.

Next, we want to highlight the quality of solutions that can be found within the fixed
timespan of 1minute. As is shown in Table 6, we can solve GasLib-11 for ε = 0.001,
GasLib-24 for ε = 0.01, and GasLib40 for ε = 0.1 within this timespan. Moreover, the
additional cost due to relaxation is very small: +0.004 % for GasLib24 and +1.281 % for
GasLib40. This demonstrates that our method can be used to find high quality robust
solutions for—in the context of robust optimization—large real-world networks within a
short timespan.
Finally, we want to investigate the influence of ε on the absolute magnitude of the

optimal value and the total running times of the resulting problems. To this end, the
left part of Fig. 5 shows the absolute increase of objective relative to the smallest choice
of ε = 0.001 for all three networks. The right part displays the corresponding total
running times on a logarithmic scale. We observe a seemingly linear dependence of the
optimal value on the choice of ε and note that the displayed curves are almost, but not
completely, monotonically increasing. The lack of monotonicity is due to the fact that
the feasible region of a piecewise-linear relaxation with parameter ε1 does not necessarily
have to be a subset of the feasible region of another relaxation with ε2 > ε1. In fact, two
piecewise-linear relaxations that are constructed with different ε can have very different
sampling points and thus one is not necessarily contained within the other.

When comparing both figures, we observe the objectives to scale almost linearly with
ε whereas the corresponding running times scale exponentially for roughly ε ≤ 1, but
are influenced only very little by the relaxation parameter for about ε ≥ 2. Since the
running times for ε ∈ [2, 10] are roughly the same, there is no reason not to solve the
problem with smaller values of ε and thus profit from higher quality solutions. On the
other hand, the improvement of objective for small relaxation parameters, e.g., ε ∈ (0, 1]
is so small that taking values from that range seems to be unjustified when taking the
potentially large increase of running times into account. In total, there seems to be sweet
spot at 1 ≤ ε ≤ 2 where high quality solutions can be found for a comparatively small
computational effort.
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Figure 5: Influence of the relaxation parameter ε on objective and running times. The
absolute increase of objective in the left picture is shown relative to ε = 0.001.
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6 Concluding Remarks
In this work, gas network problems with a linear compressor model under uncertainties
in demand or pressure drop coefficients were studied. The two-stage robust network
optimization problem at hand has a special structure: first and second-stage variables
are not coupled, and the second-stage variables are uniquely determined by the uncertain
data. We showed how these properties can be exploited to reformulate a general, possibly
nonlinear, two-stage robust optimization task with this structure as a single-stage problem.
The right-hand side of the resulting problem is made up of the optimal objective values
of a series of optimization tasks. On closer examination of the newly created single-stage
problem, we obtained an aggregated model where certain subsets of subproblems can be
treated as a single optimization task.
Even if these subproblems cannot be solved to global optimality, e.g., because the

original problem contains very challenging nonlinear and non-convex constraints, it is
nevertheless possible to obtain conservative but robust feasible solutions for the overall
problem by solving relaxations instead. As the gas network problem is nonlinear and
non-convex, we generalized previously known piecewise linearization techniques for the
nominal case to incorporate uncertain parameters. This allowed us to construct strong
relaxations for the robust gas network problem. To further increase the efficiency of
our methods, we developed uncertainty-aware preprocessing techniques by adapting
techniques for the nominal setting previously described in the literature.

This work is concluded with a series of benchmarks using realistic gas network instances
from the freely available GasLib in order to demonstrate the practical feasibility of our
approach. By combining optimization-based preprocessing techniques with the aggregated
model, we observed speedups of a factor of up to 400 when compared to models without
preprocessing and aggregation. Further investigations regarding the influence of the
strength of the relaxation on the objective function value suggested a relatively small
decline in solution quality even for coarser relaxations. A mix of all developed techniques
allowed us to obtain high quality robust feasible solutions for a large 40-node instance
with both types of uncertainties in under a minute.

As an outlook, we remark that the reformulation of the abstract two-stage problem and
the developed aggregation technique can be applied to any robust network problem that
admits the studied structure. Moreover, the presented uncertainty-aware preprocessing
and linearization techniques could be used on other potential driven network problems
like e.g., water networks.
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