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Abstract We consider a parameter dependent family of damped hyperbolic equa-
tions with interesting limit behavior: the system approaches steady states exponen-
tially fast and for parameter to zero the solutions converge to that of a parabolic
limit problem. We establish sharp estimates and elaborate their dependence on the
model parameters. For the numerical approximation we then consider a mixed fi-
nite element method in space together with a Runge-Kutta method in time. Due to
the variational and dissipative nature of this approximation, the limit behavior of
the infinite dimensional level is inherited almost automatically by the discrete prob-
lems. The resulting numerical method thus is asymptotic preserving in the parabolic
limit and uniformly exponentially stable. These results are further shown to be inde-
pendent of the discretization parameters. Numerical tests are presented for a simple
model problem which illustrate that the derived estimates are sharp in general.

1 Introduction

Pipeline networks in gas or water supply systems are usually made up of rather long
pipes and the time scales of interest are typically large as well. The propagation of
pressure waves in such long pipes may then be described by a hyperbolic system

∂t pε +∂xmε = 0 (1)
ε

2
∂tmε +∂x pε +amε = 0 (2)

together with appropriate initial and boundary conditions. Here pε corresponds to
the pressure, mε to the momentum or mass flux, and a is a generalized friction
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coefficient which encodes information about the pipe diameter and roughness. This
system can be derived by a parabolic rescaling t = t̃ε2, x = x̃ε of the physical space
and time variables x̃, t̃ from the Euler equations or the shallow water equations under
some simplifying assumptions [1, 14] and ε can be assumed to be small.

The parameter dependent hyperbolic problem (1)–(2) has an interesting limit be-
havior for long time t→ ∞ and in the parabolic limit ε → 0 which has been studied
intensively in the literature [1, 11, 10, 12, 15, 16]. Many interesting results are avail-
able even for more general problems including the isentropic Euler equations with
damping and rather general hyperbolic systems [3, 13]. In this note, we contribute
to this active research field by establishing the following theoretical results:

(R1) For ε→ 0, the solutions (pε ,mε) of (1)–(2) converge to the solution (p0,m0)
of the corresponding parabolic limit problem and

‖pε(t)− p0(t)‖2 +
∫ t

0
‖mε(s)−m0(s)‖2ds≤Cε

2

with a constant C that is uniform in ε and independent of time t ≥ 0.
(R2) Assume that the boundary values are kept constant. Then for any 0≤ ε ≤ 1

the solutions (pε ,mε) converge to the same steady state (p̄, m̄) and

‖pε(t)− p̄‖2 + ε
2‖mε(t)− m̄‖2 ≤Ce−γt

with constants C and γ > 0 that are independent of t ≥ 0 and ε .

Our proofs are based on careful energy estimates that explicitly take into account
the dependence on the parameter ε . As a consequence, the results not only hold for
single pipes but can be extended without much difficulty to pipeline networks.

Due to the many important applications, the systematic approximation of param-
eter dependent hyperbolic problems and, in particular, the preservation of asymp-
totic stability have been investigated intensively as well [2, 4, 7, 8, 9]. For the dis-
cretization of the model problem (1)–(2) we here consider a mixed finite element
method in space combined with an implicit Runge-Kutta time-stepping scheme. The
resulting method can be shown to exactly conserve mass and to be slightly dissipa-
tive in energy, thus capturing the relevant physical behavior [5]. In this paper, we
additionally establish the following properties:

(R3) The scheme is asymptotic preserving, i.e., the solutions (pε
h,τ ,m

ε
h,τ) converge

with ε → 0 to the solution (p0
h,τ ,m

0
h,τ) of the parabolic limit problem, and

‖pε
h,τ(t)− p0

h,τ(t)‖2 +
∫ t

0
‖mε

h,τ(s)−m0
h,τ(s)‖2ds≤Cε

2

with C independent of ε and of the discretization parameters h and τ .
(R4) The method is uniformly exponentially stable, i.e., for constant boundary

data the solutions (pε
h,τ ,m

ε
h,τ) converge towards steady state (p̄h, m̄h) and

‖pε
h,τ(t)− p̄h‖2 + ε

2‖m2
h,τ(t)− m̄h‖2 ≤Ce−γt
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with C and γ > 0 independent of ε and the discretization parameters h, τ .

The numerical method is also well-balanced in the sense that it automatically pro-
vides a stable approximation (p̄h, m̄h) for the corresponding stationary problem.
Since the proposed discretization strategy is of variational and dissipative nature,
the above assertions can be proven with only slight modification of the energy ar-
guments used on the continuous level. In summary, we thus obtain uniformly stable
and accurate approximations for the parameter dependent problem (1)–(2) that cap-
ture all relevant physical and mathematical properties of the underlying system.

The remainder of this note is organized as follows: In Section 2, we prove the
assertions (R1) and (R2) for the case of a single pipe. Section 3 is then concerned
with the numerical approximation and the proof of assertions (R3) and (R4) for a
single pipe. In Section 4, we briefly indicate how the results can be generalized
with minor modifications to pipe networks. In Section 5, we discuss in detail a
specific test problem and present numerical results that illustrate the sharpness of
our estimates and also indicate directions for possible improvements.

2 Analysis on a single pipe

Let us start with describing in more detail the model problem under investigation.
The pipe shall be represented by the unit interval and we consider

∂t pε(x, t)+∂xmε(x, t) = 0, x ∈ (0,1), t > 0 (3)
ε

2
∂tmε(x, t)+∂x pε(x, t)+a(x)mε(x, t) = 0, x ∈ (0,1), t > 0. (4)

We assume that 0 < a≤ a(x)≤ a and that the pressure at the boundary is given by

pε(0, t) = g0, pε(x, t) = g1, x ∈ {0,1}, t > 0. (5)

For ease of presentation g0, g1 are assumed to be independent of time here. Other
boundary conditions could be considered with obvious modifications. From stan-
dard results of semigroup theory, one can easily deduce the following.

Lemma 1. Let p0,m0 ∈H1(0,1) be given with p0(0) = g0 and p1(1) = g1. Then for
any ε > 0 problem (3)–(5) has a unique classical solution

(p,m) ∈C1(R+;L2(0,1)×L2(0,1))×C(R+;H1(0,1)×H1(0,1))

satisfying initial conditions pε(x,0) = p0(x) and mε(x,0) = m0(x) for all x ∈ (0,1).
The parabolic problem (3)–(5) with ε = 0 also has a unique solution

p0 ∈C1(R+;L2(0,1))×C(R+;H1(0,1)), m0 ∈C(R+;L2(0,1))

satisfying the initial condition p0(x,0) = p0(x) for all x ∈ (0,1).
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Note that only one single initial condition is required in the parabolic limit. By
elementary arguments one can verify that the corresponding stationary problem

∂xm̄(x) = 0, x ∈ (0,1) (6)
∂x p̄(x)+a(x)m̄(x) = 0, x ∈ (0,1) (7)
p̄(0) = g0, p̄(1) = g1 (8)

is independent of ε and has a unique solution (p̄, m̄) ∈ H1(0,1)×H1(0,1) as well.
Using standard energy arguments and the linearity of the time dependent and of the
stationary problem, one can then establish the following assertions.

Lemma 2. Let (pε ,mε) and (p̄, m̄) denote solutions of (3)–(5) and (6)–(8), respec-
tively. Then for any ε ≥ 0 and any t ≥ 0, there holds

‖pε(t)− p̄‖2 + ε
2‖mε(t)− m̄‖2 +2

∫ t

0
a‖mε(s)− m̄‖2ds

≤ ‖p0− p̄‖2 + ε
2‖m0− m̄‖2.

For ε > 0, one can additionally bound the time derivatives of (pε ,mε) by

‖∂t pε(t)‖2 + ε
2‖∂tmε(t)‖2 +2

∫ t

0
a‖∂tmε(s)‖2ds

≤ ‖∂xm0‖2 +
1
ε2 ‖∂x p0 +am0‖2.

Here and below, ‖ · ‖ and (·, ·) denote the norm and the scalar product on L2(0,1).
In addition, the functions pε , mε are understood as functions of time with values in
Hilbert spaces. The fact that the second estimate degenerates as ε → 0 resembles
the fact that the second initial condition becomes superfluous in the parabolic limit.

Proof. Due to linearity of the problem, we may assume without loss of generality
that g0 = g1 = 0 and hence p̄≡ m̄≡ 0. From (3)–(4) we then get

1
2

d
dt
‖pε‖2 +

ε2

2
d
dt
‖mε‖2

= (∂t pε , pε)+ ε
2(∂tmε ,mε)

= −(∂xmε , pε)− (∂x pε ,mε)− (amε ,mε).

Using integration-by-parts for the second term in the last line, the homogeneous
boundary conditions for pε , and the lower bound for the parameter a, we get

d
dt
‖pε‖2 + ε

2 d
dt
‖mε‖2 ≤−2a‖mε‖2.

The first estimate now follows by integration with respect to time. Next assume
that (pε ,mε) ∈ C2(R+;L2(0,1)× L2(0,1)). Then by formal differentiation of the
problem one can see, that the time derivative (∂t pε ,∂tmε) also solves (3)–(5) with
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homogeneous boundary conditions. The previous estimate thus yields

‖∂t pε(t)‖2 + ε
2‖∂tmε(t)‖2 +2

∫ t

0
a‖∂tmε(t)‖2

≤ ‖∂t pε(0)‖2 + ε
2‖∂tmε(0)‖2.

The differential equations (3) and (4) can be used to replace the terms on the right
hand side which proves the second estimate for the case of smooth solutions. The
general case finally follows by a density argument. ut

A combination of these energy estimates allows us to provide a precise formula-
tion and to prove the first assertion about solutions of the continuous problem.

Theorem 1. Let ε > 0 and let (pε ,mε) and (p0,m0) denote the unique solutions of
problem (3)–(5) with initial values pε(0) = p0(0) = p0 and mε(0) = m0. Then

‖pε(t)− p0(t)‖2 +
∫ t

0
a‖mε(s)−m0(s)‖2ds

≤ ε4

2a2 (‖∂xm0‖2 +
1
ε2 ‖∂x p0 +am0‖2).

Proof. Let rε = pε− p0 and wε = mε−m0 denote the differences between the solu-
tions of the hyperbolic and the parabolic problem. Then by linearity of the equations,
one can deduce that rε = 0 at the boundary and that

∂trε +∂xwε = 0,
∂xrε +awε = −ε

2
∂tmε .

Applying similar arguments as in the proof of the previous lemma then leads to

1
2

d
dt
‖rε(t)‖2 +a‖wε(t)‖2 ≤ ε

2‖∂tmε(t)‖‖wε(t)‖

≤ ε4

2a
‖∂tmε(t)‖2 +

a
2
‖wε(t)‖2.

Multiplication by two and integration with respect to time further yields

‖rε(t)‖2 +
∫ t

0
a‖wε(s)‖2ds≤ ‖rε(0)‖2 +

ε4

a

∫ t

0
‖∂tmε(s)‖2ds.

Since pε and p0 satisfy the same initial conditions, we have rε(0) = 0, and the
remaining integral on the right hand side can be estimated by Lemma 2. ut

The estimates of Lemma 2 provide uniform bounds for the distance to steady
state. A refined analysis reveals that in fact exponential convergence takes place.

Theorem 2. Let (pε ,mε) denote a solution of (3)–(5) for some 0 ≤ ε ≤ 1. Further
let (p̄, m̄) be the unique solution of the corresponding stationary problem. Then
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‖pε(t)− p̄‖2 + ε
2‖mε(t)− m̄‖2 ≤Ce−γ(t−s)(‖pε(s)− p̄‖2 + ε

2‖mε(s)− m̄‖2)

which holds for all 0≤ s≤ t and with some constants C,γ > 0 independent of ε .

Proof. Set τ = t/ε and σ = s/ε and define πε(τ) = pε(t) and µε(τ) = εmε(t).
Then by elementary calculations, one can see that

∂tπ
ε +∂xµ

ε = 0

∂t µ
ε +∂xπ

ε +
a
ε

µ
ε = 0.

The exponential convergence for this problem has been established in [5] and a
direct application of Theorem 3.3 in [5] yields

‖πε(τ)− π̄‖2 +‖µε(τ)− µ̄‖2 ≤Ce−cε(τ−σ)(‖πε(σ)− π̄‖2 +‖µε(σ)− µ̄‖2).

Using τ = t/ε and σ = s/ε and the definition of πε and µε then directly yields the
estimate for ε > 0. The result for ε = 0 follows directly but also from the uniformity
of those for ε > 0 and the convergence to the parabolic limit. ut

3 A mixed finite element Runge-Kutta scheme

For the discretization of problem (3)–(5), we now consider a mixed finite element
method in space and the implicit Euler method in time. More general Galerkin and
time-integration schemes could be analyzed in a similar manner. Let Th = {e} denote
a uniform mesh of the interval (0,1) into elements e of size h and denote by

Qh = {q ∈ L2(0,1) : q|e ∈ P0(e)} and Vh = {v ∈C[0,1] : v|e ∈ P1(e)}

the spaces of piecewise constant and piecewise linear and continuous functions,
respectively. Furthermore, let τ > 0 be the time step size, define tk = kτ , and denote
by ∂̄τ u(tk) = 1

τ
[u(tk)−u(tk−1)] the backward difference quotient. We then consider

Problem 1. Let pε
h,τ(0) and mε

h,τ(0) be the L2 projections of the initial data onto the
finite element spaces. For k ≥ 1 find (pε

h,τ(t
k),mε

h,τ(t
k)) ∈ Qh×Vh, such that

(∂̄τ pε
h,τ(t

k),qh)+(∂xmε
h,τ(t

k),qh) = 0

ε
2(∂̄τ mε

h,τ(t
k),vh)− (pε

h,τ(t
k),∂xvh)+(amε

h,τ(t
k),vh) = g0vh(0)−g1vh(1)

holds for all test functions qh ∈ Qh and all vh ∈Vh.

Recall that (·, ·) denotes the scalar product of L2(0,1). Existence of a unique dis-
crete solution (pε

h,τ ,m
ε
h,τ) to Problem 1 and of a unique solution (p̄h, m̄h) of the

corresponding stationary problem can be deduced from the results in [5].

Lemma 3. For any ε ≥ 0, Problem 1 admits a unique solution (pε
h,τ ,m

ε
h,τ) and
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‖pε
h,τ(t

k)− p̄h‖2 + ε
2‖mε

h,τ(t
k)− m̄h‖2 +2a

k

∑
j=1

τ‖mε
h,τ(t

j)− m̄h‖2

≤ ‖p0− p̄h‖2 + ε
2‖m0− m̄h‖2

for all k ≥ 0, where (p̄h, m̄h) ∈ Qh×Vh denotes the unique solution of the corre-
sponding stationary problem. For ε > 0, we additionally have

‖∂̄τ pε
h,τ(t

k)‖2 + ε
2‖∂̄τ mε

h,τ(t
k)‖2 +2a

k

∑
j=1

τ‖∂̄τ mε
h,τ(t

j)‖2

≤C(‖∂xm0‖2 +
1
ε2 ‖∂x p0 +am0‖2 +a2‖m0‖2)

with constant C that is independent of ε and the discretization parameters h and τ .

Proof. Without loss of generality, we may set g0 = g1 = 0 and hence p̄h ≡ m̄h ≡ 0.
For ease of notation, let us abbreviate pk := pε

h,τ(t
k) and mk := mε

h,τ(t
k). Then by

elementary calculations, one can verify that

‖pk‖2 + ε
2‖mk‖2 + ‖pk− pk−1‖2 + ε

2‖mk−mk−1‖2

= ‖pk−1‖2 + ε
2‖mk−1‖2 +2τ[(∂̄τ pk, pk)+ ε

2(∂̄τ mk,mk)].

Using the discrete problem and the lower bounds for the parameter, we thus obtain

‖pk‖2 + ε
2‖mk‖2 ≤ ‖pk−1‖2 + ε

2‖mk−1‖2−2aτ‖mk‖2.

The first estimate now follows by recursion and by noting that ‖p0‖ ≤ ‖p0‖ and
‖m0‖ ≤ ‖m0‖, since the initial iterates were defined as L2 orthogonal projections of
the initial values onto the respective subspaces. By linearity of the problem, one can
then deduce in a similar manner that

‖∂̄τ pk‖2 + ε
2‖∂̄τ mk‖2 +2a

k

∑
j=2

τ‖∂̄τ m j‖2 ≤ ‖∂̄τ p1‖2 + ε
2‖∂̄τ m1‖2.

Using the discrete problem for k = 1, we further get

τ(‖∂̄τ p1‖2 + ε
2‖∂̄τ m1‖2)

=−(∂xm1, p1− p0)+(p1,∂xm1−∂xm0)− (am1,m1−m0)

≤−(m1−m0,∂x p0 +am0)− (p1− p0,∂xm0)

≤ τ‖∂̄τ m1‖‖∂x p0 +am0‖+ τ‖∂̄τ p1‖‖∂xm0‖.

Using Young’s inequality, the bounds for the parameter a, and the stability of the L2

projection in the H1 norm, we may conclude that

‖∂̄τ p1‖2 + ε
2‖∂̄τ m1‖2 ≤C′‖∂xm0‖2 +

1
ε2 (2‖∂x p0 +am0‖2 +2a2‖m0−m0‖2),
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which together with the energy estimate from above completes the proof. ut

Similarly as on the continuous level, a combination of the previous estimates now
immediately allows to show convergence of the solutions (pε

h,τ ,m
ε
h,τ) of the discrete

hyperbolic problem to that of the discrete parabolic problem when ε → 0.

Theorem 3. Let (pε
h,τ ,m

ε
h,τ) and (p0

h,τ ,m
0
h,τ) denote solutions of Problem 1 for ε > 0

and ε = 0, respectively. Further assume that pε
h,τ(0) = p0

h,τ(0). Then

‖pε
h,τ(t

k)− p0
h,τ(t

k)‖2 +2a
k

∑
j=1

τ‖mε
h,τ(t

j)−m0
h,τ(t

j)‖2

≤Cε
4(‖∂xm0‖2 +

1
ε2 ‖∂x p0 +am0‖2 +

a2

ε2 ‖m0‖2)

with constant C independent of ε and of the discretization parameters h and τ .

Proof. Define rk = pε
h,τ(t

k)− p0
h,τ(t

k) and wk = mε
h,τ(t

k)−w0
h,τ(t

k). Then by linear-
ity of the discrete problem, one can see that

(∂̄τ rk,qh)+(∂xwk,qh) = 0
−(rk,∂xvh)+(awk,vh) = −ε

2(∂̄τ mε
h,τ(t

k),vh)

for all qh ∈ Qh and vh ∈Vh and for all k ≥ 0. Testing with qh = wk and vh = mk and
proceeding similarly as in the previous lemmas leads to the energy estimate

‖rk‖2 +2a
k

∑
j=1

τ‖wk‖2 ≤ ‖r0‖2 + ε
2

k

∑
j=1

τ‖∂̄τ mε
h,τ(t

j)‖‖wk‖

≤ ‖r0‖2 +a
k

∑
j=1

τ‖wk‖2 +
ε4

a

k

∑
j=1

τ‖∂̄τ mε
h,τ(t

j)‖2.

The assertion now follows by noting that r0 ≡ 0 and application of the second esti-
mate of the previous lemma to estimate the last term in this expression. ut

Similarly as on the continuous level, one can again prove uniform exponential
convergence of discrete solutions to steady states.

Theorem 4. Let (pε
h,τ ,m

ε
h,τ) denote a solution of Problem 1 and let (p̄h, m̄h) let be

the unique solution of the corresponding stationary problem. Then

‖pε
h,τ(t

k)− p̄h‖2 +ε
2‖mε

h,τ(t
k)− m̄h‖2

≤Ce−γ(k− j)τ‖pε
h,τ(t

j)− p̄h‖2 + ε
2‖mε

h,τ(t
j)− m̄h‖2

for all 0≤ j ≤ k with constants C,γ > 0 that are independent of ε , h, and τ .

Proof. Using a rescaling like in the proof of Theorem 2, the result for ε > 0 can be
deduced directly from Theorem 7.4 in [5]. The estimate for ε = 0 follows from the
uniformity of the estimates and convergence to the parabolic limit. ut
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4 Extension to pipe networks

The results of the previous sections can be extended to the following class of hyper-
bolic problems on networks: Let G = (V ,E ) be a finite directed graph representing
the topology of the network. On every single pipe e, the dynamics shall again be
described by the linear damped hyperbolic system

∂t pε
e +∂xmε

e = 0 (9)
ε

2
∂tmε

e +∂x pε
e +aemε

e = 0. (10)

At any junction v of several pipes e ∈ E (v) of the network, we require that

∑
e∈E (v)

ne(v)mε
e(v) = 0 (11)

pε
e(v) = pv ∀e ∈ E (v). (12)

Here ne(v) takes the value minus or plus one, depending on whether the pipe e start
or ends at the junction v. At the boundary vertices v of the network, we require

pε
e(v) = gv. (13)

Using the arguments developed in [6], all results stated in Theorem 1–4 hold verba-
tim also for the system (9)–(13). Details are left to the interested reader.

5 Numerical validation

We now illustrate our theoretical results by considering in detail a particular model
problem. For constant damping parameter a≡ 1, initial data p0 = sin(πx), m0 ≡ 0,
and boundary values g0 = g1 ≡ 0, the solution of problem (3)–(5) is given by

pε(x, t) =
(

2π2ε2

1− s(ε)
1

s(ε)
exp
(
− 1

2ε2 (1− s(ε))t
)

− 2π2ε2

1+ s(ε)
1

s(ε)
exp
(
− 1

2ε2 (1+ s(ε))t
))

sin(πx)

and

mε(x, t) =
(

π

s(ε)
exp
(
− 1

2ε2 (1− s(ε))t
)

− π

s(ε)
exp
(
− 1

2ε2 (1+ s(ε))t
))

cos(πx).

with parameter s(ε) =
√

1−4π2ε2. By Taylor expansion w.r.t. ε , we deduce that
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pε(x, t) =
(
(1+O(ε2))exp

(
(−π

2−O(ε2))t
)

− O(ε2)exp
(
(− 1

ε2 +O(1))t
))

sin(πx)

and

mε(x, t) =
(
(π +O(ε2))exp

(
(−π

2−O(ε2))t
)

− (π +O(ε2))exp
(
(− 1

ε2 +O(1))t)
))

cos(πx).

For ε = 0, we simply obtain p0(x, t) = e−π2t sin(πx) and m0(x, t) = πe−π2t cos(πx)
and the steady state for this problem is given by p̄, m̄≡ 0.

From the explicit solution formulas, one can then immediately see that exponen-
tial convergence towards the steady state takes place with t → ∞ for all 0 ≤ ε ≤ 1
with a rate that is independent of ε which was the assertion of Theorem 2. In Ta-
ble 1, we depict numerical results obtained with the numerical scheme discussed in
Section 3. As predicted by Theorem 4, the exponential convergence towards steady

t\ε 1/4 1/8 1/16 1/32 1/64 1/128

0.0 5.00e-01 5.00e-01 5.00e-01 5.00e-01 5.00e-01 5.00e-01
0.1 2.72e-01 9.09e-02 7.26e-02 7.02e-02 6.96e-02 6.95e-02
0.5 3.56e-04 5.35e-06 1.94e-05 2.42e-05 2.54e-05 2.57e-05
1.0 8.51e-08 2.71e-11 6.64e-10 1.13e-09 1.28e-09 1.32e-09

γ 15.59 23.64 20.44 19.90 19.78 19.75

Table 1 Distance ‖pε
h,τ (t)− p̄h‖2 + ε2‖mε

h,τ − m̄h‖2 ≤Ce−γt of the numerical solution to the dis-
crete steady state for different values of ε and times t = 0,0.1,0.5,1.0 and estimated exponential
convergence rate γ . Discretization parameters were set to h = 0.01 and τ = 10−5.

state with t → ∞ is uniform in ε also for the discrete schemes. Mesh independence
of the exponential decay rate was already demonstrated in [6].

Let us next have a closer look on the convergence to the parabolic limit. Using
the analytical solution formulas and Taylor expansion w.r.t. ε , one can deduce that

pε − p0 =

(
O(ε2)(t +1)exp

(
−π

2t +O(1)t
)

+ O(ε2)exp
(
− 1

ε2 t +O(1)t
))

sin(πx)

and
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mε −m0 =

(
O(ε2)(t +1)exp

(
−π

2t +O(1)t
)

− (π +O(ε2))exp
(
− 1

ε2 t +O(1)t
))

cos(πx).

This shows that ‖pε − p0‖2 = O(ε4) and
∫ t

0 ‖mε −m0‖2 = O(ε2) which yields ex-
actly the asymptotic behavior predicted in Theorem 1. In Table 2, we display the
corresponding results obtained with the proposed discretization scheme. Also here

tk\ε 1/4 1/8 1/16 1/32 1/64 1/128 α

0.1 9.81e-02 3.47e-02 9.41e-03 2.38e-03 5.89e-04 1.39e-04 1.87
0.5 1.18e-01 3.58e-02 9.44e-03 2.39e-03 5.89e-04 1.39e-04 1.93
1.0 1.18e-01 3.58e-02 9.44e-03 2.39e-03 5.89e-04 1.39e-04 1.93

Table 2 Error ‖pε
h,τ (t

k)− p0
h,τ (t

k)‖2+∑
k
j=1 a‖mε

h,τ (t
j)−m0

h,τ (t
j)‖2 = O(εα ) between the discrete

approximations for the hyperbolic problem and the parabolic limit problem for different values of
ε and time steps tk and observed convergence rate α . Discretization with h = 0.01 and τ = 10−5.

we can exactly observe the convergence rate predicted by Theorem 3. Note that the
second term in the error measure is strictly increasing w.r.t. time, which together
with the exponential convergence to steady states explains that the error is almost
independent of t here.

In Table 3, we report about further numerical tests to illustrate the independence
of the results on the discretization parameters. Again, the observations are in perfect

ε 1/4 1/8 1/16 1/32 1/64 1/128 α

h = 0.010,τ = 10−5 1.18e-01 3.58e-02 9.44e-03 2.39e-03 5.89e-04 1.39e-04 1.93
h = 0.002,τ = 10−5 1.18e-01 3.58e-02 9.44e-03 2.39e-03 5.89e-04 1.39e-04 1.99
h = 0.010,τ = 10−6 1.18e-01 3.58e-02 9.46e-03 2.40e-03 6.00e-04 1.49e-04 1.90
h = 0.002,τ = 10−6 1.18e-01 3.58e-02 9.46e-03 2.40e-03 6.00e-04 1.49e-04 1.90

Table 3 Error ‖pε
h,τ (t

k)− p0
h,τ (t

k)‖2+∑
k
j=1 a‖mε

h,τ (t
j)−m0

h,τ (t
j)‖2 = O(εα ) between the discrete

approximations for the hyperbolic problem and the parabolic limit problem for time tk = 1 and
different values of ε and the discretization parameters h and τ .

agreement with the theoretical predictions made in Theorem 3.
Let us finally note that the previous formulas reveal that the error between the

solutions of the hyperbolic and the parabolic problem actually behaves like

‖pε(t)− p0(t)‖2 +‖uε(t)−u0(t)‖2 = O(ε4) for t� ε.
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This shows that the estimate of Theorem 3 is dominated by the error in the mass
flux within the initial layer 0≤ t � ε which again resembles the fact that the second
initial condition gets superfluous in the parabolic limit. This behavior can also be
observed for the numerical approximations obtained with the method discussed in
Section 3. A theoretical explanation of this fact would require a refined analysis
which is left for future research.
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