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Abstract. Goal-oriented mesh adaptation, in particular using the dual-weighted
residual (DWR) method, is known in many cases to produce very efficient
meshes. For obtaining such meshes the (numerical) solution of an adjoint
problem is needed to weight the residuals appropriately with respect to their
relevance for the overall error. For hyperbolic problems already the weak
primal problem requires in general an additional entropy condition to assert
uniqueness of solutions; this difficulty is also reflected when considering ad-
joints to hyperbolic problems involving discontinuities where again an addi-
tional requirement (reversibility) is needed to select appropriate solutions.

Within this article, an approach to the DWR method for hyperbolic prob-
lems based on an artificial viscosity approximation is proposed. It is discussed
why the proposed method provides a well-posed dual problem, while a direct,
formal, application of the dual problem does not. Moreover, we will discuss a
further, novel, approach in which the forward problem need not be modified,
thus allowing for an unchanged forward solution. The latter procedure intro-
duces an additional residual term in the error estimation, accounting for the
inconsistency between primal and dual problem.

Finally, the effectivity of the extended error estimator, assessing the global
error by a suitable functional of interest, is tested numerically; and the advan-
tage over a formal estimator approach is demonstrated.

1. Introduction

Within this article, we are concerned with deriving a posteriori error estimates
for certain functional values of (entropy) solutions to a first order hyperbolic partial
differential equation (PDE)

(1)

∂tu+∇x · f(u) = 0 on Ω× I,
u(x, t) = uΓ(x, t) on Γ× I,
u(x, 0) = uini(x) on Ω,

where Ω ⊂ Rd is a given domain, I = (0, T ) some time-interval, f : R → Rd is a
smooth function, and uΓ, uini some appropriate given data. It is well known, that
the entropy-solutions of (1) will not assume the given boundary values uΓ on all of
∂Ω. In fact, for smooth uΓ, uini the boundary conditions are given by the condition

min
k∈(u,uγ)

(
sign(u− uγ)(f(u)− f(uγ)) · n

)
for all (x, t) ∈ ∂Ω × I; where (u, uγ) denotes the interval spanned by the extreme
values u and uγ and n the outward unit normal on Γ, see, [6, Theorem 2]. It shows
the delicacy of the calculations that the analogous results for L∞-boundary and
initial conditions has only been obtained recently by [19].

Moreover, it is well known, that (1), in general, has no smooth solutions, even if
the data are arbitrarily smooth. This is due to the potential creation of so called
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shocks at which the entropy solution u of (1) is no longer continuous. Indeed, for
smooth data the solution u of (1) will be in BV(Ω× I), see, e.g., [6] and thus the
PDE is only satisfied in the distributional sense. For L∞-boundary and initial data
the solution will generally be in L∞(Ω × I), only, however such a (weak entropy)
solution will still assume its initial and boundary values, see, [19].

A posteriori error estimation for, in particular, elliptic and parabolic PDEs has a
long history, see, e.g., [4, 2, 40], and many others. In particular, for elliptic problems
it is possible to show that, suitable, adaptive algorithms based on residual error
estimates provide meshes of quasi-optimal cardinality for the energy H1-norm, see,
e.g., the pioneering work [10] and the reviews of the current state of the art [23]. For
hyperbolic problems, a posteriori upper bounds of residual type can be obtained
for the L1-error of the solution, see, e.g., the survey [24].

In contrast to the previously mentioned error estimates for global error norms,
goal-oriented error estimation is concerned with estimating a, post-processed, quan-
tity of interest, see, e.g., [2, 7, 11]. In the goal-oriented context, the DWR method,
cf., [7, 5], provides an error estimator consisting of weighted residuals of the pri-
mal and dual equation. In case of hyperbolic equations, the mathematically sound
formulation of a suitable dual solution is not as straightforward. Indeed, adjoint
calculus relies on differentiability of the corresponding problem, which is a subtle
issue, see for instance [37], [38], and [13, 14], where the problem was tackled by ‘shift
differentiability’, suitably modified adjoint based derivative computations, and ap-
plication of artificial viscosity to the primal and adjoint equations, respectively.
The difficulty becomes apparent, as the formal dual problem is a transport equa-
tion with potentially discontinuous coefficients for which a useful solution concept
requires the notion of reversible solutions, see, e.g., [8].

The difficulties given above for defining the adjoint problem have led to sev-
eral approaches to goal oriented error estimation for hyperbolic problems. First,
the standard approach consists in replacing the hyperbolic problem by an ellip-
tic/parabolic one by adding viscous regularization with a ’sufficiently small’ vis-
cosity parameter, see, e.g., [18, 35]. Further, [12] argue, without proof, that the
functional value is differentiable with respect to the viscosity parameter, and thus
the error due to the regularization can be estimated by a Taylor-expansion of the
goal-functional. [26] utilize adjoint information to post-process goal-functionals
where first the shock positions are recovered to higher accuracy and then the shock
is treated as an additional, internal, boundary for the adjoint; this is similar to the
derivative representation utilizing ‘shift-differentiability’. Finally, an error represen-
tation can be derived directly for the hyperbolic problem assuming that the solution
is sufficiently smooth, see, [17]. The thus derived estimator can than formally be
applied to hyperbolic problems where the assumptions made in the derivation are
no longer satisfied. From the results shown there it appears that this technique
works extremely well if the support of the goal-functional and the shock do not
interact, while a large overestimation of the error is reported in [17] for functionals
interacting with the shock, although subsequent refinement can cure this defect.

In this paper, we are concerned with deriving a hybrid of the two approaches
above. Namely, we will consider a DWR error representation that only requires
a modification in the dual problem, but is well-posed also for problems with non-
smooth solutions thereby combining the advantages of the previously mentioned
methods. Further research into the question of how to estimate the error in goal
functionals is warranted; since despite the difficulties of providing a mathematically
sound framework towards adjoint based goal-oriented in hyperbolic problems, ap-
proaches based on the formal ideas are utilized in applications, see, e.g., [29, 27, 39].
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The paper is organized as follows: In Section 2, we provide a detailed motivation
for the considered setting. To illustrate the substantial difficulty associated with
discontinuous solutions to the PDE, we will consider a simple linear test-case in
which all relevant difficulties become apparent in Section 3. Further, this section
will provide given analytical solutions for the numerical discussion in the end.

In Section 4, we briefly specify a particular discretization, and then, in Section 5,
the main part of this paper starts. We propose a new approach towards adjoint
based error estimation in which we do not change the forward problem, thereby
allowing for an arbitrary discretization of the PDE under consideration. The only
change we apply is that we perturb the dual problem, which we account for by an
additional consistency term in the derived error estimation.

In the final Section 6, we first provide a numerical experiment in a 1d setting
where we can in fact evaluate the error identity, up to quadrature error. This
example highlights the difficulty of the formal approach compared to our new hy-
brid estimator without the additional errors coming from the approximation of the
weights as it is always necessary in the DWR method. Finally, a 2d example is
shown in which the additional approximation of the weights is considered. The
numerical experiments confirm that our new modified adjoint approach is advan-
tageous compared to the formal DWR method when one is interested not only in
suitable error indicator but also in an estimate of the error in the goal-functional.

2. Motivation

For the use of the DWR method, it is suitable to rewrite the conservation law (1)
in weak form. In this context, let A(·, ·) : W × V → R be a semi-linear form, i.e., it
is linear in its second component, and let F (·) be a linear functional on V .

Suppose that u ∈W is a, weak entropy, solution of

(2) A(u, ψ) = F (ψ) ∀ψ ∈ V,

where W is a suitable function space and V is the proper test function space. As
discussed in the introduction suitable choices areW = BV (Ω×I) orW = L∞(Ω×I)
depending on the regularity of the boundary and initial data. In any case, functions
in W in general have only distributional, but not weak, derivatives, and thus test-
functions must be sufficiently regular, e.g., V = C1(Ω× I) to allow derivatives to
be applied to the test-function.

W.l.o.g, we assume that the same form may be used for the discretization, by the
finite element method. Then to estimate the discretization error in a goal-functional
J , the standard approach, see, e.g., [7, 5] requires a dual-problem of finding z ∈ V
solving

(3) A′(u;ϕ, z) = J ′(u;ϕ), ∀ϕ ∈W

where A′(u, ϕ, z) denotes the derivative of A(u; z) with respect to u in direction
ϕ. Unfortunately, since (3) is a transport equation, with potentially discontinuous
coefficient, the regularity z ∈ V can not be expected in general and we will discuss
this in more detail in Section 3. The problem of non-fitting solution and test spaces
for the primal and dual problem is also mentioned in [7, Remark 2.3].

There are two obvious possibilities to match the solution spaces and test spaces
in this setting: For a linear problem, modification of the goal functional, and conse-
quently the data of the dual problem, can increase the regularity of the dual solution
z and thus allowing z to be used as a test function in (2). Second, and more gen-
erally applicable to nonlinear problems, artificial viscosity can be used to prevent
shocks and obtain sufficiently smooth adjoint solutions, see for instance [13, 14, 34].
Additionally, we will present subsequently a third alternative, giving a well-posed
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dual problem without modification in the primal equation which may be advanta-
geous if changes in the discretization of the forward problem are not suitable.

3. Discontinuous test case

To illustrate, that the difficulty of unsuitable ansatz- and test-spaces is not only
a formality, we consider the most simple setting in which this becomes apparent.
Namely, we consider a scalar one dimensional transport equation with discontinuous
initial data.

We specify the domain Ω = (−2, 2) and the time interval I = (0, 1) and consider
the advection problem of finding a function u0 : Ω× I → R solving

∂tu0(x, t) +∇xu0(x, t) = 0 on Ω× I,
u0(−2, t) = 0 on I,
u0(x, 0) = uini(x) on Ω,

with the discontinuous initial condition

(4) u0(x, 0) = uini(x) =


1, −1 < x < 0,

0.5, x = −1 or x = 0,

0, otherwise.

To avoid confusion, the index 0 to the solution indicates that no viscosity is present
in the defining equation. Its weak, entropy, solution for t ≤ 1 is given by

u0(x, t) = uini(x− t) =


1, −1 + t < x < t,

0.5, x = −1 + t or x = t,

0, otherwise.

which is simply a translation of the initial condition along the characteristic curves.
It is clear, that the above function does not possess weak derivatives. However,

for all smooth test-functions ψ ∈ C1(Ω× I) it satisfies the weak problem

(5)

A0(u0, ψ) :=−
T∫

0

∫
Ω

u0(x, t)(∂t + ∂x)ψ(x, t) dx dt

−
∫
Ω

uini(x)ψ(x, 0) dx+

∫
Ω

u0(x, 1)ψ(x, 1) dx

+

∫
I

u(2, t)ψ(2, t) dt

= 0

note that the boundary integrals are indeed meaningful since weak entropy solutions
admit boundary traces in the L1 sense. Now, consider the goal functional

(6) J(u0) =

∫
R

u0(x, 1)zT (x) dx,

with the weight zT indicating an area of interest

zT (x) :=

{
1, 0 ≤ x ≤ 1,

0, otherwise.
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Using formal duality for (5) gives that the corresponding dual problem consists of
finding z0 such that for all ψ ∈ C1(Ω× I) satisfying

(7)

A0(ψ, z0) =

∫
I

∫
Ω

(∂t + ∂x)ψ(x, t)z0(x, t) dx dt

+

∫
Ω

z(x, 0)ψ(x, 0) dx−
∫
Ω

zT (x)ψ(x, 1) dx

+

∫
I

z0(−2, t)ψ(−2, t) dt

= 0.

Exchanging the temporal variable by t 7→ 1−t shows that this is exactly the forward
problem (5) with the initial condition zT (x).

Unfortunately, now neither u0 not z0 have a weak derivative, but in fact ∂x and
∂t are only defined in the sense of distributions. Consequently neither the weak
form (5) tested with z0 nor the dual (7) tested with u0 is well defined.

Remark 1. Clearly, taking ∂tu0 +∂xu0 = 0 the volume integral could be set to zero,
however, since our discretization will provide separate approximations to ∂tu0 and
∂xu0 it is desirable to have that each individual product, i.e., ∂tu0z0 is well defined!

4. Discretization schemes

Hyperbolic problems can develop or maintain discontinuities in the solutions, as
seen in the advection example in Section 3 and is generally well known. One ap-
proach for an accurate and efficient method to solve advection dominated problems
numerically are the discontinuous Galerkin (dG) methods. These methods com-
bined with slope limiters are able to capture the physically relevant discontinuities
without producing spurious oscillations, [9].

Some of the first to apply the dG method were W. Reed and T. Hill, [30],
in 1973. DG methods are generalizations of finite volume methods but possess
also properties of finite element methods, as for instance the simple handling of
complex geometries and of boundary conditions. The advantage of dG lies in the
discontinuities at the element boundaries and the thereby resulting simple routines
for parallelization and adaptivity. These advantages, however, have to be bought
by the price of a higher number of degrees of freedom than for the continuous finite
element schemes.

In this section, we will discuss the spatial discretization of the primal problem (1)
and its viscous regularization

(8)

∂tu+∇x · f(u) = ε∆u on Ω× I,
u(x, t) = uΓ(x, t) on Γ× I,
u(x, 0) = uini(x) on Ω,

and the corresponding dual by a discontinuous Galerkin method. For the temporal
discretization, we confine ourselves to a method-of-lines setting in which only one
spatial mesh is considered at each time-point.

For the spatial discretization the domain Ω is decomposed into a set E of non-
overlapping open elements E (intervals if d = 1, triangles or quadrilaterals if d = 2,
and so on) of diameter hE such that

Ω =
⋃
E∈E

E.
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For each element E ∈ E the flux in the element is defined as

Fε(v)(x, t) := f(v(x, t))− ε∂xv(x, t), (x, t) ∈ E × (0, 1).

For the boundaries, we select a suitable, consistent and conservative, flux-function
H : R× R× Rd → R, cf., [9, 16], i.e., it holds

H(v, w, n) = −H(w, v,−n), H(v, v, n) = n · F (v).

Then following the SIPG method of [41, 32] for the diffusion part, we obtain the
weak form for the spatial discretization

aε(u, v) =
∑
E∈E

(
−
∫
E

Fε(u)∇v dx+

∫
∂E

H(u+, u−, n)v ds

+

∫
∂E

cε
hE

[u][v]− ε{n · ∇u}[v]− ε{n · ∇v}[u] ds
)

for any functions u, v being piecewise smooth with respect to the subdivision E .
Here the superscripts + and − denote the interior and exterior trace of the piecewise
smooth functions, n the outer unit normal vector, and {} and [] denote the average
and jump across the given boundary; together with an appropriate definition of the
exterior trace when ∂Ω ∩ ∂E 6= ∅. Following [41], we set cε = p2 where p is the
polynomial degree of the dG-ansatz when ε > 0 and cε = 0 when ε = 0. Note for
ε = 0 all terms involving ε vanish, i.e.,

a0(u, v) =
∑
E∈E

(
−
∫
E

f(u)∇v dx+

∫
∂E

H(u+, u−, n)v ds
)
.

Choosing the finite dimensional space V h = {ψ ∈ L2(Ω) : ∀E ψ|E ∈ Pp(E)}
where Pp(E) is the space of polynomials of degree p on element E.

With these definitions, a semi-discrete version of (1) is to find a function uhε : Ω×
I → R with uhε (t) ∈ V h solving

−
∫
I

∫
Ω

uhε∂tϕ dx dt+

∫
I

aε(u
h
ε , ϕ) dt+

∫
Ω

uini(x)ϕ(x, 0) + uhε (x, T )ϕ(x, T ) dx = 0

for all ϕ ∈ C1(I;Vh). This corresponds to the weak form (5) which treats the
discontinuous test case of Section 3.

For the temporal-discretization, we utilize the simplest discretization by a θ-
scheme using its dG(0) interpretation. The setting can be extended to varying
spatial meshes in time with some additional technicalities, see, e.g., [33, 15]. We
consider 0 = t0 < t1 < . . . < tM = T , define ki = ti− ti−1 for i = 1, . . . ,M and con-
sider the space-time discrete space X = {v : Ω× I | v

∣∣
(t(i−1),ti]

∈ V h, i ∈ 1, . . . ,M}
of piecewise constants in time. For abbreviation, we write vi := v

∣∣
(t(i−1),ti)

for a

function v ∈ X. Then the dG(0) discretization in time reads: find ukhε ∈ X solving∫ ti

ti−1

∫
Ω

∂tu
kh
ε ϕ dx dt+

∫ ti

ti−1

aε(u
kh
ε , ϕ) dt+

∫
Ω

(uiε − ui−1
ε )ϕ(x) dx = 0(9)

for all i = 1, . . . ,M and ϕ ∈ V h where u0
ε = uini. Noting that ∂tukhε ≡ 0 and that

aε(u
kh
ε , ϕ) = aε(u

i
ε, ϕ) is constant on (ti−1, ti) gives the implicit Euler-scheme∫

Ω

uiεϕ(x) dx+ kiaε(u
i
ε, ϕ) =

∫
Ω

ui−1
ε ϕ(x) dx ∀ϕ ∈ V h.

In particular, the above shows, that any weak solution to (1) solves (9), with ε = 0,
as well, i.e.,∫ ti

ti−1

∫
Ω

∂tu0ϕ dx dt+

∫ ti

ti−1

a0(u0, ϕ) dt+

∫
Ω

(u0(t+i )− u0(t−i ))ϕ(x) dx = 0(10)



DUALITY BASED ERROR ESTIMATION IN THE PRESENCE OF DISCONTINUITIES 7

for all ϕ ∈ V h ∪ C1(Ω). We summarize the time-steps of equation (9) by defining

Aε(u, ϕ) :=

M∑
i=1

∫ ti

ti−1

∫
Ω

∂tu
kh
ε ϕ dx+ aε(u

kh
ε , ϕ) dt

+

M∑
i=2

∫
Ω

(uiε − ui−1
ε )ϕi(x) dx+

∫
Ω

u1
εϕ

1(x) dx

for u, ϕ ∈ X. Then ukhε ∈ X solves (9) if and only if

(11) Aε(u
kh
ε , ϕ) =

∫
Ω

uiniϕ
1(x) dx ∀ϕ ∈ X.

Similar procedures can give the explicit Euler-scheme, and many other known time-
stepping procedures. Note, however, that not in all cases is A0(u0, ϕ) = 0 satisfied
for the solution of (1) since quadrature errors may occur in the derivation.

A simple example is the explicit Euler-scheme combined with a left box rule for
integration: The forward Euler method gives a piecewise linear solution,

ukh0 |[t(i−1),ti]=

(
1− t− ti−1

ti − ti−1

)
ui−1

0 +
t− ti−1

ti − ti−1
ui0,

for i = 1, . . . ,M , which is continuous on I. Integration as
M∑
i=1

∫ ti

ti−1

∫
Ω

∂tu
kh
0 ϕ dx dt

can be done exactly by the box rule, since the piecewise derivative and ϕ are
piecewise constant in time. But

M∑
i=1

∫ ti

ti−1

a0

(
ukh0 , ϕ

)
dt ≈

M∑
i=1

kia0

((
ukh0

)i−1
, ϕ
)

dt, ki := ti − ti−1,

causes integration errors, because ukh0 is still piecewise linear in time, but evaluation
of a0

(
ukh0 , ϕ

)
will in general not result in constant functions in time. The error of

the box rule is of order O(k). Thus, A0(u0, ϕ) = 0 does not have to be satisfied
exactly.
Now, we define the linearized operator in some u ∈ X by

A′ε(u;ψ,ϕ) =

M∑
i=1

∫ ti

ti−1

∫
Ω

∂tψϕ dx+ a′ε(u;ψ,ϕ) dt

+

M∑
i=2

∫
Ω

(ψi − ψi−1)ϕi(x) dx+

∫
Ω

ψ1ϕ1(x) dx

for all ψ,ϕ ∈ X, where

a′ε(u;ψ,ϕ) =
∑
E∈E

(
−
∫
E

F ′ε(u;ψ)∇ϕ dx+

∫
∂E

H′(u+, u−, n)

(
ψ+

ψ−

)
ϕ ds

+

∫
∂E

cε
hE

[ψ][ϕ]− ε{n · ∇ψ}[ϕ]− ε{n · ∇ϕ}[ψ] ds
)

where H′(u+, u−, n) is the corresponding derivative of the flux with respect to
u+, u−.

When concerned with the evaluation of the discretization error in a linear func-
tional J : BV (Ω × I) → R the corresponding discrete dual problem reads as: find
z ∈ X solving

(12) A′ε(u;ϕ, z) = J(ϕ) ∀ϕ ∈ X
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To assert, that this is indeed a suitable discretization of the corresponding formal
continuous dual problem suitable numerical fluxesH and functionals J are required,
see, e.g., [16]. In what follows, we assume that the numerical fluxes are chosen
suitably asserting that the continuous dual solution zε satisfies

(13) A′ε(zε;uε − ukhε , zε) = J(uε − ukhε )

5. Error estimator with correction term

We will first provide a generic, and well known error estimate for the discretiza-
tion error in the functional J , see, e.g., [7]. As usual, we define the Lagrangian
Lε(u, z) = J(u)−Aε(u, z) +

∫
Ω
uini(x)z(x, 0) dx to simplify the exposition.

Theorem 1. Assume that the consistency relation Aε(uε, zε) =
∫

Ω
uini(x)z(x, 0) dx

holds for the solution uε of (8) and its adjoint zε and that the adjoint is consistent
in the sense that (13) holds. Define x = (uε, zε) and xkh = (ukhε , zkhε ) as solution
of (11) and (12) and assume that Lε is three times continuously differentiable on
the line conv(x,xkh).

Then for its discrete approximation ukhε given by (11) it holds the error repre-
sentation

J(uε)− J(ukhε ) =
1

2
L′ε(xkh)(x− x̃kh) +R

with an arbitrary x̃kh ∈ X2 and a remainder R; cubic in the error e = x− xkh.

Proof. The proof is the standard calculation for the DWR-method, see, e.g., [7]. It
is only detailed to clarify where the consistency assumption enters.

By our consistency assumption and (11) it holds

J(uε)− J(ukhε ) = Lε(uε, zε)− Lε(ukhε , zkhε ).

Then by the assumed differentiability, and the remainder term of the trapezoidal
rule it is

J(uε)− J(ukhε ) =
1

2

∫ 1

0

L′ε(xkh + s(e))(e) ds

=
1

2

(
L′ε(x)(e) + L′ε(xkh)(e)

)
+

1

2

∫ 1

0

L′′′ε (xkh + se)(e, e, e)s(s− 1) ds.

Utilizing Galerkin-orthogonality for the primal and adjoint-consistency (13) we get
L′ε(x)(e) = 0 and the definition of xkhε gives

L′ε(xkh)(e) = L′ε(xkh)(x− ˜xkh)

showing the assertion. �

Remark 2. Before we continue a few remarks are in order.

(1) If ε > 0, the problem (8) is a semi-linear parabolic problem, for which the
assumptions of the theorem regarding consistency and differentiability can
be verified in many cases.

(2) However, if ε = 0 several of the assumptions are questionable, e.g., we
have seen in Section 3 that the definition of Aε(uε, zε) is not straightfor-
ward. Furthermore, differentiability of the Lagrangian is a delicate issue
as it can not rely on a simple chain rule, since differences of discontinuous
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functions are generally not even directionally differentiable in L1. To see
this, compare [36, Example 3.1.1.], let

vε =

{
1 x < ε,

0 otherwise.

Then clearly vε → v0 pointwise a.e. as ε→ 0 but∫ 1

0

vε − v0

ε
ds =

∫ ε

0

1

ε
ds = 1

and consequently the limit of the difference quotient can not be a function.
This makes calculations of the type

d

ds
Lε(xkh + s(e)) = L′ε(xkh + s(e))e,

needed in the proof, quite intricate. Notice that in the example above the
mapping ε 7→

∫ 1

0
vε(s) ds = ε is clearly differentiable with the expected

derivative but this can not be obtained by application of the chain rule to
the mappings R → L1 with ε 7→ vε and L1 → R given by v 7→

∫ 1

0
v(s) ds

as it is commonly argued.

Consequently, a standard approach to the goal-oriented error estimation consists
of taking ε > 0 (small enough) and then estimate the discretization error for the
respective given ε. Unfortunately, this introduces an additional viscosity to the
problem (1) for the sole purpose of estimating the error. This may be undesirable
if numerics are tuned to add little viscosity in order to provide a better resolution
of the discontinuities.

To this end, we now propose a new approach that avoids adding additional
viscosity to the primal problem. We now introduce the residuals of the inviscid
problem and its dual by

ρ(u0, zε − zhkε ) : =

∫
Ω

uini(zε − zhkε ) dx−A0(u0, zε − zhkε ),(14)

ρ∗(w; zε, u0 − uhk0 ) : = J(u0 − uhk0 )−A′0(w;u0 − uhk0 , zε).(15)

Theorem 2. Let Ω ⊂ R and J(u) =
∫

Ω
ω(x)u(x, T ) dx with a weight ω ∈ L∞(Ω).

Further, let u0 be the entropy solution to (1) and ukh0 its discrete approximation
by (11) with ε = 0 and let zkhε be the adjoint defined by (12) and assume that
the numerical fluxes are such that the continuous adjoint satisfies (13). Define
x = (u0, zε) and xkh = (ukh0 , zkhε ) and assume that L0 is three times continuously
differentiable on the line conv(x,xkh).

Then the error representation

J(u0)− J(ukh0 ) =
1

2

(
ρ∗(ukh0 ; zkhε , ukh0 − ũhk0 ) + ρ(ukh0 , zε − z̃hkε )

+ ρ∗(u0; zε, u0 − uhk0 )

)
+R

holds with arbitrary ũkh0 , z̃khε ∈ X and a remainder R; cubic in the error e = x−xkh.

Proof. We know, that the solution u0 ∈ BV (Ω×I) and thus f ′(u0) ∈ L∞(Ω). Thus
the solution zε of the adjoint problem

−∂tzε − f ′(u0)∇xzε = ε∆ε on Ω× I,
z(x, t) = 0 on Γ× I,
z(x, T ) = ω(x) on Ω,
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satisfies the regularity zε ∈ C(I, L2(Ω))∩L2(I,H2(Ω)∩H1
0 (Ω)), see, e.g., [22]. By

standard embedding theorems, see, e.g., [1], it is therefore zε ⊂ L2(I, C1(Ω)).
As a consequence, zε is a suitable test function in A0, see (10). Analogous to

Theorem 1 we get

J(u0)− J(ukh0 ) = L0(u0, zε)− L(ukh0 , zkhε )

=
1

2

∫ 1

0

L′0(xkh + s(e))(e) ds

=
1

2

(
L′0(x)(e) + L′0(xkh)(e)

)
+

1

2

∫ 1

0

L′′′0 (xkh + se)(e, e, e)s(s− 1) ds.

In contrast to Theorem (1)

L′0(x)(e) =
1

2

[
ρ(u0, zε − zhkε ) + ρ∗(u0; zε, u0 − uhk0 )

]
(16)

=
1

2
ρ∗(u0; zε, u0 − uhk0 ) 6= 0(17)

in general, since zε does not solve the adjoint for ε = 0. With the remaining
arguments as in the proof of Theorem 1 we obtain the assertion. �

Remark 3. The simplification J(u) =
∫

Ω
ω(x)u(x, T ) dx and Ω ⊂ R is only needed

to assert that zε is regular enough. This can be done in many other situations as
well but for simplicity of the exposition we avoid the additional notation overhead.

In comparison to the error given in [7] the first two residuals now contain zε
instead of z0, as was expected, but an additional dual residual, ρ∗(zε, u0−uhk0 ) has
to be taken into account.

In fact, to obtain a computable error estimator, the errors u0− ũkh0 and zε− z̃khε
need to be approximated. For this several heuristic techniques are known, see,
e.g., [2, 7, 40]. For brevity, we will denote the resulting weights by wz ≈ zε − z̃khε
and wu ≈ u0−ũkhu . Further, if element-wise indicators are used for mesh-refinement,
integration by parts needs to be performed such that the derivatives in the residual
are all on the discrete solution, and not on the weight. This is required to assert
the correct localization of the indicators. An new alternative approach, [31], can
directly work on the weak form of the residual by testing with a suitable partition
of unity in the weak form.

The resulting time averaged element indicator is given by

2ηE : = ρE(ukh0 , wz)

=

M∑
i=1

[∫ ti

ti−1

∫
E

∂tu
kh
0 wz +∇ · f(ukh0 )wz dx

+

∫
∂E

{n · f(ukh0 )}[wz] +H((ukh0 )+, (ukh0 )−, n)wz ds

]
dt

+

M∑
i=2

[∫
E

(ukh0 (t+i−1)− ukh0 (t−i−1)wz(t
+
i−1) dx

]

+

∫
E

ukh0 (t+0 )wz(t
+
0 ) dx.

Analogously, the dual time averaged element indicators

2η∗E = ρ∗E(ukh0 ; zkhε , wu)
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and the adjoint-consistency indicator

2η̂∗E = ρ∗E(u0; zε, wu)

can be defined. We notice, that η̂∗E can not be evaluated exactly, hence unless u0

and zε are known need to be approximated. For the purpose of this article, we
simply take η̂∗E = η∗E as this approximation, although more elaborate techniques
might be advantageous as we will see.

We thus obtain the element indicator

(18) ηE := ηE + η∗E + η̂∗E

and the approximation

(19) η :=
∑
E∈E

ηE ≈ J (u0)− J
(
uhk0

)
to the global error.

In many other cases, the error identity is not the simple sum of weighted discrete
residuals as in Theorem 1 but contains additional residuals on the continuous level
as in Theorem 2. In many such cases, the size of the additional residual can be
used to estimate the error due to the parameter inducing the inconsistency, see,
e.g., [42, 21]. In other cases such residuals can be used to steer the accuracy of
non-linear solvers, see, e.g., [20, 28]. In particular, the appearance of such a term
may be utilized in the future to couple the size of the additional viscosity for the
dual problem to the size of the functional error.

Concluding, in this section it was shown that a modification in the dual equation
introduces an additional dual residual. Given the goal functional of the above
mentioned advection problem the error in the goal functional can be computed
easily. This representation of the error in the goal functional which is due to the
introduction of diffusion in the dual equation is going to be evaluated numerically
in the next section.

6. Numerical experiments

In this section, we study the dependence of the absolute value of the additional
residual on the spatial grid size numerically on a 1D and a 2D test case. Then,
we investigate the behavior of the local error estimators with and without the
additional dual residual and, in the end, we find the global error estimator including
the additional residual to gain a better effectivity index as the global estimator
without the artificial viscosity. We chose our first test case, such that analytical
solutions u0 and z0 are known. Therefore we can evaluate wz = zε − z̃khε and
wu = u0 − ũkhu at quadrature points. Since the analytic solutions are not known
in general, we use interpolation techniques in our second test case to approximate
the weights. In both examples at hand, we used the explicit Euler method for time
discretization and Lagrange polynomials of degree two for spatial discretization by
the above introduced dG method without any limiter. With the dG method the
box-shaped initial condition for the primal, uini, and the dual, zT, can be initialized
without any initialization error. But the numerical advection causes some over and
under shootings in front of steep gradients since we did not apply any limiter.
In contrast, the dual problem with diffusion advects the initial condition zT to
the left hand side and smooths the steep gradients. In this case, the numerical
solution is close to the analytical one. For sufficiently smooth solutions the SIPG
method provides convergence of L2-errors of the order p + 1, where p is the order
of the polynomial, compare [32]. For discontinuous initial conditions, the order of
convergence is lower.
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6.1. 1D Example. In the following, the spatial discretization on Ω = (−2, 2) in dG
manner uses basis and test function polynomials of order 2 and the discrete solutions
are evaluated such that a numerical quadrature, using a composite trapezoidal rule
on each element, can be performed. The value of the goal functional for the discrete
solution, J(uhk0 ), is also determined exactly by the trapezoidal rule. The goal value
of the analytic solution, J(u0), is one.

In this setting, the global value of the additional residual was computed for
different spatial resolutions and a fixed time step size of k = 0.0001.

Figure 1. Absolute value of the additional residual, k = 0.0001,
ε = 0.1.

Fig. 1 shows the absolute global value of the additional residual for ε = 0.1. This
extra term converges with second order to zero and is thus faster than the actual
error in the goal functional, implying that the additional residual is negligible on
sufficiently fine meshes.

However, the difference to the classical formulation is not only the additional
residual, but also the replacement of the discontinuous dual function by the solution
of the dual advection diffusion equation.

All three residuals together, element-wise evaluated, give the local error estima-
tors, see (18). For a uniform grid the local error estimator ηE,uni indicates the area
of influence for the goal functional, (6).

Figure 2. Absolute value of local error estimators on a uniform
grid with h = 0.0625 and artificial viscosity ε = 0.05

The area of interest, on which the goal functional is evaluated, is the interval
[0, 1]. Thus, for the discontinuous test case presented in this paper, each element
over which the box shaped function moves, has theoretically an equally high local
error estimator, while the regions outside are of minor influence to the value of the
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goal functional. This is reflected in the numerical results, as, e.g., in Fig. 2, despite
the diffusion in the dual the estimator does not smear.

Dörfler marking, [10], would suggest to refine the elements in the middle of Fig. 2,
namely in the interval Iref = [−1, 1], such that the sum of the absolute values of
the estimators in the set which is going to be refined, Eref, is larger then a specific
percentage of the sum of the absolute values of the estimators in the whole set E ,∑

E∈Eref

∣∣ηhkE + η∗hkE

∣∣ ≥ (1−Θ)
∑
E∈E

∣∣ηhkE + η∗hkE

∣∣ ,
for some Θ ∈ (0, 1). In the test case at hand, refinement in Iref is achieved with
1−Θ ≈ 1− 10−6, showing that most of the estimated error is in Iref.

The summation over each element of the signed local spatial error estimators on
the uniform grid brings the global estimator ηhkuni, while the sum of the estimators
over the locally refined, grid brings ηhkref.

Table 1. Dependence of the global error estimators and the error
in the goal functional on the grid size. Uniform grid size h is
marked in bold. ε = 0.1

h ηhkuni ηhkref |J(u0)− J(uhk0,uni)| |J(u0)− J(uhk0,ref)|
0.5/0.25 0.0674 0.0552 0.0832 0.0466

0.25/0.125 0.0437 0.0324 0.0466 0.0262
0.125/0.0625 0.0258 0.0174 0.0262 0.0140

0.0625/0.03125 0.0140 0.0080 0.0140 0.0062

Table 1 shows that the global error estimator on a uniform grid is greater than
the estimator on a mesh which is locally refined once by bisection according to the
error indicators. The bold h indicates the uniform grid size, the normal style h is
the size of the refined elements. Also the error in the goal functional evaluated on
a locally refined grid is smaller than on the uniform grid. On each element, the
quadrature rule is the same, such that the approximation of the integral is better
in the refined elements. But the numerically evaluated error estimator does not
satisfy the error identity. This could be caused by several reasons, for instance by
a quadrature error or by a non-adjoint consistent implementation [16]. However,
as the difference between estimator and error decrease with decreasing element size
h, we do not investigate this issue further.

Figure 3. Absolute value of local error estimators on a locally
refined grid with h = 0.5, 0.25, and ε = 0

If the dual equation is not modified and the computations are done nevertheless
by evaluating only

(20) ηE0 := ρhkE
(
uhk0 , z0 − zhk0

)
+ ρ∗hkE

(
zhk0 , u0 − uhk0

)
,
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compare equation (18), the local error estimators are even more evenly distributed
on the area which is expected to be refined, as shown in Fig. 3. For the computation
it was naively assumed, that ∂xz0 = ∂tz0 = 0 in [−2, 2], since this is true almost
everywhere – and in particular in the chosen quadrature points.

Concluding, the modification of the dual equation does not harm the local error
indication, and even the approach without modification – ignoring the unbounded-
ness in the analytic case – results in reasonable local error indication. So far, there
seems to be no advantage in the modification, but this is different for the global
error estimation:

The quality of the global error estimators is measured by the effectivity index,
see, e.g., [3, 4], which is the ratio of the estimator to the true error. Here it is

eff =
J(u0)− J(uhk0 )

ηhk
.

Fig. 4 shows the behavior of the effectivity index with respect to the spatial grid
size. The index for the global error estimator without viscosity, e.g., equation (20),
is increasing at first. If it ever converges to one, it is much later as in case of the
modified error estimator.

Figure 4. Effectivity of the global estimator without artificial vis-
cosity in the dual equation (left) and with and without the addi-
tional residual, ρ∗(zε, u0−uhk0 ) with viscosity ε = 0.001 in the dual
equation (right).

Figure 5. Effectivity of the global estimator with and without
the additional residual, ρ∗(zε, u0 − uhk0 ), for ε = 0.01 (left) and
ε = 0.1 (right).

The right hand side of Fig. 4 shows that the error estimator including the addi-
tional residual gains a better effectivity on coarse grids than the estimator without
the additional term, e.g., equation (19) with and without the last residual. Fig. 5
depicts this relation also for different values of ε. For any tested ε ∈ [0.0001, 0.1] the
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effectivity of the estimator including the addition was closer to one, but obviously
depending on the diffusion coefficient. Thus, the relation of the error and the error
estimator to the diffusion parameter ε is of interest. Table 2 shows the different
global spatial error estimators for a decreasing diffusion coefficient. For stability
reasons, the time step size was chosen to be k = 0.0001 and the spatial grid size
was fixed at h = 0.0625. Since neither the primal problem nor the goal functional
are modified, the error in the goal functional is constant for a fixed grid size.

Table 2. Dependence of the global spatial error estimators and
on the dual diffusion coefficient ε, with J(u0)− J(uhk0 ) = 0.0140

ε |ηhkuni| |eff|
0.0 0.0028 4.9515

0.0001 0.0076 1.8389
0.001 0.0051 2.7269
0.01 0.0138 1.0154
0.1 0.0140 0.9986

While the error in the goal functional is not influenced by the modification in
the dual equation, the error estimator and thus the effectivity is. Notice, that for
an exact evaluation of the residuals the effectivity is always one - since an error
identity is evaluated. However, with a fixed integration accuracy smaller values of
ε increase the quadrature error and consequently effectivity deteriorates. Once the
mesh is sufficiently refined the quadrature - fixed per element - gains accuracy and
thus the effectivity converges to one. The same effect has to be expected when
numerically recovering the unknown primal and dual solutions for the weights, as
the accuracy of the discrete primal and dual solutions are fixed on a given mesh
and can only be increased by refinement.

A ratio of the advection to the diffusion is given by the Peclet number, see,
e.g., [25]. Here, Ph shall be the approximation of the Peclet number for a constant
advection velocity of one, depending on the mesh size as Ph = h

ε .

Table 3. Effectivity and approximated Peclet number for ε =
0.0001 (left), ε = 0.01 (middle), and ε = 0.1 (right), with k = 10−4

constant and 40 quadrature points for a composite trapezoidal rule.

ε = 0.0001 ε = 0.01 ε = 0.1
h
0.5
0.25
0.125
0.0625

Ph eff
5000 -1.995
2500 -3.815
1250 7.290
625 1.885

Ph eff
50 1.924
25 1.678
12.5 1.277
6.26 1.018

Ph eff
5 1.235
2.5 1.065
1.25 1.016
0.626 1.000

Table 3 shows that the effectivity of the global error estimator is getting better,
the more the diffusion is of influence in the discretized scheme. Thus, it is suggested
that, if the diffusion is resolved sufficiently, the modified dual weighted residual error
estimator gives an effective approximation of the global error in the goal functional.

Concluding, these experiments suggest that in this setting the modified dual
weighted residual error estimator for a spatial refinement is a reasonable indicator
for grid refinement with respect to some goal functional and moreover the modified
global error estimator is in this case of discontinuities a better approximation of
the actual global error than the classical approach.
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6.2. 2D Example. In this section, we consider problem (1) with Ω = (−2, 2) ×
(−2, 2) and a goal functional causing discontinuities in the dual solution, as in the
previous section. But here we will also address the topic of patch wise interpolation
for approximation of the discretization error.

6.2.1. 2D Setting. We assume the initial condition

(21) u0(x, y, 0) = uini(x, y) =

{
1, −1 ≤ x, y ≤ 0,

0, else.

For this initial condition and f(·) chosen as the identity, the solution of the weak
advection equation is a translation along the characteristics, namely,

(22) u0(x, y, t) = uini(x− t, y − t) =

{
1, −1 + t ≤ x, y ≤ t,
0, else.

Since this problem does not include viscosity, i.e., ε = 0, the solution is, again,
denoted with subscript 0.
Choosing the goal functional analogously to the 1D test case as

(23) J(u0) =

∫
R2

u0(x, y, T )zT (x, y) dx dy,

with the weight zT indicating an area of interest

(24) zT (x, y) :=

{
1, 0 ≤ x, y ≤ 1,

0, else,

gives again a dual problem of the above advection equation. The analytic solution
z0, which coincides with u0 as in the 1D example, can be obtained by the application
of a Green’s function. But for the sake of generality, we assume the analytic solution
as unknown.

6.2.2. Discretization schemes and approximation of weights. As in the 1D test case,
the evaluation of a0(·, ·) at

(
u0, z0 − zhk0

)
is not well defined. Hence, the residuals

are evaluated with the more regular dual solution of the advection-diffusion equa-
tion, zε and zhkε , respectively. Again, we use a second order DG scheme for space
discretization, but now on the domain Ω̄ = [−2, 2] × [−2, 2] and an explicit Euler
time stepping. For the approximation of the spatial discretization errors u0 − uh0
and zε−zhε we use a patch-wise linear interpolation of the discrete solutions, see [5],
resulting in the approximation of the weights by

(25) wu = u0 − uhk0 ≈ I
(1)
hk u

hk
0 − uhk0

and

(26) wz = zε − zhkε ≈ I
(1)
hk z

hk
ε − zhkε ,

with I(1)
hk := I

(1)
h I

(1)
k .

For the spatial interpolation on an element, we used a linear interpolation between
the function values of three neighboring nodes, e.g., P1, P4, P5, to obtain the func-
tion value in Q, see Fig. 6. We obtained function values in P and R analogously
by linear interpolation between P3, P5, P6 and P2, P4, P6. The values in P , Q, and
R define a plane, which allows linear extrapolations back to the nodes P1 to P6.

For our explicit Euler method in time, we use a linear interpolation to approxi-
mate the discretization error. [15] did this for the implicit Euler method. Interpola-
tion such that the effectivity of the error estimator is converging towards one is up
to now only known for the Euler method, but not for Runge-Kutta methods. The
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P1 P2

P3

P4

P5 P6

P

Q R

Figure 6. Nodes of quadratic basis functions, Pi, i = 1, . . . , 6, and
interpolation points P , Q, and R.

explicit Euler and the corresponding linear interpolation are used in the application
section of this paper.
For the explicit Euler method, the linear interpolation for equidistant time steps
k = ti − ti−1, i = 1, . . . ,M is

I
(1)
k uhk0 (t) =

ti − t
k

uhk0,i +
t− ti−1

k
uhk0,i+1,

for t ∈ [ti−1, ti).

ti−1 ti ti+1 ti+2

uhk
0,i

uhk
0,i+1

uhk
0,i+2

Figure 7. Linear interpolation (dashed line) of the piecewise con-
stant explicit Euler solution.

With this interpolation operator, the derivative for t ∈ (ti−1, ti) is

∂tI
(1)
k uhk0 (t) =

uhk0,i+1 − uhk0,i

k
,

which is of use for the discrete evaluation of the residuals.
The discrete dual solution zhkε is interpolated in space and time in the same way
and the error estimator (18) can be evaluated.

6.2.3. Numerical experiments in 2D. In this section, we study the dependence of
the absolute value of the additional residual on the spatial grid size in 2D, as well
as the behavior of the local error estimators with and without the additional dual
residual. We find again the global error estimator including the additional residual
to gain a better effectivity index as the formal global estimator.
In the following, we used a spatial DG discretization on Ω̄ = [−2, 2]× [−2, 2] with
basis and test function polynomials of order 2. We used a composite box rule
on each element for numerical integration. The value of the goal functional for
the discrete solution, J(uhk0 ), is also determined exactly by a second order spatial
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quadrature rule. The goal value of the analytic solution, J(u0), is one, as in the
previous example.
In this setting, we computed the global value of the additional residual for differ-
ent spatial resolutions, a fixed time step size of k = 10−5 and a fixed diffusion
coefficient ε = 0.1. Fig. 8 shows the absolute global value of the additional resid-
ual, namely ρ∗

(
I

(1)
hk z

hk
ε ; I

(1)
hk u

hk
0 − uhk0

)
. In contrast to the 1D test case, the ad-

Figure 8. Absolute value of the additional residual, k = 10−5, ε = 0.1.

ditional term seems not to converge to zero. However, with the used parameters
(#E = 128, 256, 512, 1024, 2048 and ε = 0.1, k = 10−5) the additional residual is
approximately ten times smaller than the error in the quantity of interest.
The formal elementwise error estimator, analogous to (20), neglects the diffusion
and the additional dual residual. Both estimators, modified and formal, provide
similar error indicators for grid refinement, as in 1D. The effectivity index for the
example at hand is shown in Table 4. For a fixed time step size of k = 10−5 and a
dual viscosity ε = 0.1, the effectivity index of the modified error estimator improves,
though not monotone.

#E ηhkuni |J (u0)− J
(
uhk0

)
| |eff|

128 0.0615 0.1818 2.9584
256 0.0247 0.1242 5.0346
512 0.0467 0.0999 2.1386
1024 0.0283 0.0666 2.3554
2048 0.0477 0.0539 1.130

Table 4. Dependence of the modified global error estimator and
the error in the goal functional on the grid size (2D)

These results have to be considered in relation to the performance of the formal
error estimator. Fig. 9 shows dependency of the effectivity index of the formal error
estimator on the total number of elements of the uniform grid. It also depicts the
effectivity index of the modified error estimator with and without the additional
residual. The efficiency of the formal error estimator is worse than the efficiency
of the modified one. This is even true if the residuals are evaluated with the solu-
tion of the dual advection-diffusion equation, but without the additional residual
ρ∗
(
I

(1)
hk z

hk
ε ; I

(1)
hk u

hk
0 − uhk0

)
. With the additional term though, the efficiency is even

better, see also Table 5.
Although further investigation with different parameters is needed, we conclude

that our modified DWR error estimator proposed in this paper is a more efficient
estimator as the formal one, also in the general case with approximated weights.
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Figure 9. Effectivity of the formal global estimator and the mod-
ified estimator with and without the additional residual, with vis-
cosity ε = 0.1 in the dual equation.

Table 5. Effectivity index of the modified and of the formal error estimator

#E |eff| (modified) |eff| (formal)
128 2.9584 5.9125
256 5.0346 44.624
512 2.1386 3.126
1024 2.3554 10.977
2048 1.130 1.552
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