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1. Introduction. The notion of a Quasi-Variational Inequality (QVI) was in-
troduced by Lions and Bensoussan in [6] and [34] in connection with impulse control
problems and in a general setting for obstacle-type problems. For this problem class,
the state of the underlying system is charaterized by a variational inequality involv-
ing a set-valued constraint mapping, which again depends on the state variable. For
the aforementioned obstacle-type constraint, for instance, the QVI setting imposes
state-dependent upper (and/or lower) bounds on the state variable. We note that
QVIs represent generalizations of Variational Inequalities (VIs) and arise as math-
ematical models of various phenomena. Indeed, instances of QVIs can be found in
game theory, solid and continuum mechanics or electrostatics, to mention only a few.
For further examples of QVI-models and associated analytical investigations, we refer
here to [7, 13, 18, 33, 35, 38, 41] and the monographs [2, 32].

A very interesting QVI model involving pointwise constraints on the gradient of
the state variable in a parabolic setting is related to superconductivity. The QVI
arises here as an equivalent reformulation of Bean’s critical state model; see, e.g.,
[41, 45, 3, 36]. General existence results, approximation techniques, and numerical
solution procedures for this and related gradient constrained problems can be found
in the work by Rodrigues and Santos in [45] and the first two authors of this paper
in [23]. More specifically, in [45] an approximation technique replacing the QVI by a
sequence of quasi-linear partial differential equations (PDEs) is utilized. On the other
hand, in [23] a semi-group approach is employed for proving existence of a solution
and its discrete approximations. Alternatively, the gradient constrained QVI can be
re-written as a generalized equation rendering the QVI problem a particular instance
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of a yet more general problem class; see, e.g., [28, 29]. Additional work of Kenmochi
and collaborators can be found in [27, 15, 26, 16].

The first physical applications of non-dissipative (in the sense that the spatial
part of the partial differential operator vanishes) QVIs with gradient constraints were
studied by Prigozhin in [39] when modeling the surface growth of a cohesionless gran-
ular material that is poured on a supporting structure. Subsequently, several physical
models for the growth of sandpiles as well as of river networks were developed by
resorting to VI and QVI problems with gradient type constraints. This is evidenced
by a series of seminal papers by Prigozhin [4, 43, 42, 40]. In this body of work, not
only theoretical aspects are studied but also the numerical simulation is considered.
It is worth mentioning that some of the aforementioned models are within the scope
of the general results in [46], which involve quasi-linear first-order QVI problems.

Interestingly, despite their wide applicability the literature on solution algorithms
for QVIs with gradient constraints is rather scarce. Some of the few papers on nu-
merical solvers include [22] in the elliptic case, and [23, 3, 4, 24] in the time evolution
case. This scarcity of solvers is mainly due to the highly nonlinear and nonsmooth
nature of the problems and the fact that QVIs (in the elliptic setting) are typically not
related to first-order conditions of constrained energy minimization. For the iterative
solution, in some cases these challenges may be overcome by considering fixed point
iterations which, however, require rather strong assumptions for convergence.

In view of the above discussion, this paper extends the current state of the art
in two directions: (i) In both, a dissipative and a non-dissipative, settings we are
interested in obtaining existence and extra-regularity results, as well as qualitative
properties of solutions such as the non-decrease in time. (ii) We establish a solution
algorithm involving only a finite number N ∈ N of convex sub-problems in a time
discrete setting and where convergence of the discrete solutions uN to the solution of
the original problem u is guaranteed. While, in the dissipative setting, these results
apply to problems in transient electrostatics or thermo-plasticity, the non-dissipative
setting is of interest in the modeling of growth behavior of granular materials.

The rest of the paper is organized as follows. In section 2 we provide the notation
used throughout the paper and elementary results involving variational inequalities
such as stability of solutions with respect to Mosco convergence of constraint sets.
The problem formulation and its semi-discrete counterparts are given in section 3.
The main results concerning the non-dissipative problem are the subject of section 4
and the ones for the dissipative problem can be found in section 5. In these sections,
we provide existence and regularity results for the original evolutionary QVIs and
properties concerning their time discrete approximations. The paper ends by a report
on numerical tests in section 6, where we show that a variable splitting approach with
rather simple subproblems can be used as a solver.

2. Notation and Preliminaries. The sets of natural and real numbers are
denoted by N and R, respectively, and positive real numbers by R+. The Euclidian
norm in Rn is written as | · |, and the positive and negative parts for x ∈ R as
x+ := max(x, 0) and x− := −min(x, 0), respectively. Further, for a measurable set
Ω ⊂ Rn, we denote its measure by |Ω|.

For ν ∈ R+, the set L∞ν (Ω) is defined as L∞ν (Ω) := {v ∈ L∞(Ω) : v ≥ ν a.e.}
where where “a.e.” stands for “almost everywhere”. Additionally, “for a.e.” stands
for “for almost every”. Further, L∞+ (Ω) corresponds to the cone of a.e. non-negative
functions in L∞(Ω). We denote by H1

0 (Ω) the usual Sobolev space of L2(Ω) functions
with weak derivatives also in L2(Ω) and zero on ∂Ω (in the sense of the trace), and we
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write 〈·, ·〉 : H−1(Ω)×H1
0 (Ω)→ R for the usual duality pairing between H−1(Ω) and

H1
0 (Ω). Further, W 1,∞(Ω) is the space of uniformly Lipschitz continuous functions

over Ω.
A function F : (0, T ) → X, where T > 0 and X is a Banach space, is called

Bochner measurable if there exists a sequence {Fn} of simple X-valued functions
such that limn→∞ Fn(t) = F (t) in X and for a.e. t ∈ (0, T ) (see [19]). We denote by
Lp(0, T ;X) the (Lebesgue-Bochner) space of Bochner measurable X-valued functions

with domain (0, T ) such that
∫ T

0
|F (t)|pXdt < +∞ where the integral is taken in

Lebesgue’s sense. Further, the space of Lipschitz continuous X-valued maps on [0, T ]
is denoted by C0,1([0, T ];X).

Let f ∈ L2(Ω), K be a closed, convex and nonempty subset of H1
0 (Ω), and

suppose the operator A : H1
0 (Ω) → H−1(Ω) induces a continuous coercive bilinear

form 〈Au, v〉 := a(u, v) with a : H1
0 (Ω)×H1

0 (Ω)→ R. Then, we denote by S(A, f,K)
the unique solution (see [30] for the existence and uniqueness proof) of the problem:

(1) Find u ∈ K : 〈Au− f, v − u〉 ≥ 0, ∀v ∈ K.

It is well-known (see also [30]) that (u, v) 7→ a(u, v) is a bilinear coercive form, if
and only if, the operator A : H1

0 (Ω) → H−1(Ω) is linear, continuous and uniformly
monotone, i.e., if there is c > 0 such that

(2) 〈Av −Aw, v − w〉 ≥ c|v − w|2H1
0 (Ω), ∀v, w ∈ H1

0 (Ω).

It should be noted that if K is a bounded, closed, convex and nonempty subset of
H1

0 (Ω) and A : H1
0 (Ω) → H−1(Ω) linear, continuous and strictly monotone, i.e., A

satisfies (2) with c = 0 and 〈Aw,w〉 = 0⇐⇒ w = 0, then S(A, f,K) is also uniquely
defined for each f ∈ L2(Ω) (see [30])

We make use of the concept of a lower solution of a variational inequality which
was initially developed by Bensoussan.

Definition 1 (lower solutions). We say that z ∈ K is a lower solution for
the triple (A, f,K), if 〈Az − f, φ〉 ≤ 0 for all φ ∈ H1

0 (Ω) such that φ ≥ 0 a.e. in Ω.

In the case where K = {v ∈ H1
0 (Ω) : v ≤ ϕ a.e. in Ω}, with ϕ ∈ L∞+ (Ω), we

have that S(A, f,K) is a lower solution, and for any lower solution z, we have that
z ≤ S(A, f,K) (see Proposition 11 in the Appendix A ).

Some of the subsequent results concern convergence of closed, convex and non-
empty subsets of a reflexive Banach space. For this matter, we make use of Mosco
convergence (see [37, 44]):

Definition 2 (Mosco convergence). Let K and Kn, for each n ∈ N, be non-
empty, closed and convex subsets of X, a reflexive Banach space. We say that the
sequence {Kn} converges to K in the sense of Mosco as n→∞ if:
i. ∀v ∈ K,∃vn ∈ Kn : vn → v in X.
ii. If vn ∈ Kn and vn ⇀ v in X along a subsequence, then v ∈ K.

In this case we write Kn
M−−→ K, as n→∞.

An important consequence of Mosco convergence in our context for X = H1
0 (Ω), is

given by the fact that the map K 7→ S(A, f,K) is continuous in H1
0 (Ω) with respect

to the topology induced by Mosco convergence. In other words, Kn
M−−→ K implies

S(A, f,Kn) → S(A, f,K) in H1
0 (Ω) as n → ∞. For a proof, we refer to [44], for

instance.
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3. Problem Formulation. We are interested in the following problems (P0)
and (P1), which we refer to as the non-dissipative and the dissipative problem, re-
spectively. Both problems are special cases of the following general formulation:

Problem (P). Find u ∈ L2(0, T ;H1
0 (Ω)), with u(0) = u0 ∈ H1

0 (Ω) and ∂tu ∈
L2(0, T ;H−1(Ω)) such that for a.e. t ∈ (0, T ), u(t) ∈ K(Φ(t, u(t))) and that for every
v ∈ L2(0, T ;H1

0 (Ω)), with v(t) ∈ K(Φ(t, u(t))) for a.e. t ∈ (0, T ), it holds that∫ T

0

〈∂tu(t) +Au(t)−Θ(t, u(t))− f(t), v(t)− u(t)〉 dt ≥ 0,(3)

where, for a non-negative φ, K(φ) ⊂ H1
0 (Ω) is defined as

(4) K(φ) := {v ∈ H1
0 (Ω) : |∇v| ≤ φ a.e. in Ω}.

The tools for analyzing problem (P) vary significantly with respect to the choice
of A. Therefore, we distinguish the following two different problems announced above:

Problem (P0). Solve problem (P) with A ≡ 0.

Problem (P1). Solve problem (P) when A 6≡ 0 is a monotone operator.

Applications for these two problems are diverse. For example, problem (P0) arises
in the mathematical modelling of surface growth for granular cohesionless materials
and in the determination of lakes and river networks, while problem (P1) is used
in superconductivity for certain geometries, as a model for the magnetic field (see
[41, 3, 4, 43, 42, 40]).

The requirements on Θ, Φ and f are different for the two cases above and they
are made explicit in the beginning of section 4 and section 5 below.

It should be noted that if φ ∈ L2(Ω) is non-negative, then K(φ) ⊂ H1
0 (Ω) is closed,

convex, bounded and 0 ∈ K(φ). In addition to K(φ), we are also interested in two
other types of set-valued mappings: For w non-negative, these are K+(w) ⊂ H1

0 (Ω)
and K±(w) ⊂ H1

0 (Ω) defined by

K+(w) : = {v ∈ H1
0 (Ω) : v(x) ≤ w(x)dist(x, ∂Ω) for a.e. x ∈ Ω}, and

K±(w) : = {v ∈ H1
0 (Ω) : |v(x)| ≤ w(x)dist(x, ∂Ω) for a.e. x ∈ Ω},

where dist(x, ∂Ω) is the distance of x ∈ Ω to the boundary ∂Ω of Ω, respectively.
The following sequence of approximating problems represents a specific semi-

discretization of (P) in time. It can be described as an implicit Euler integration
scheme where the nonlinearities associated with Θ and Φ are lagged behind in the
discretization.

Problem (PN). Let N ∈ N, k := T/N , tn := nk and In := [tNn−1, t
N
n ) with

n = 0, 1, . . . , N . Find {uNn }Nn=0 with uN0 = u0, uNn ∈ K(Φ(tNn−1, u
N
n−1)), and for which〈

uNn − uNn−1

k
+A(uNn )−Θ(tNn−1, u

N
n−1)− fNn , v − uNn

〉
≥ 0,(5)

for all v ∈ K(Φ(tNn−1, u
N
n−1)) with

fN =

N∑
n=1

fNn χ[tNn−1,t
N
n ) and fNn =

1

k

∫ tNn

tNn−1

f(t) dt.
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It should be noted that problem (PN ) is equivalent to solving N variational
inequalities with gradient constraints. Hence, it is not only useful to find properties
of the solution to problem (P) (as we observe in what follows), but it is also suitable
for numerical implementation as we shown in section 6. Analogously as with (P0) and
(P1), we distinguish the following two different problems:

Problem (PN0 ). Solve problem (PN ) with A ≡ 0.

Problem (PN1 ). Solve problem (PN ) when A 6≡ 0 is a monotone operator.

3.1. The instantaneous problem. A typical variation of problem (P) arises
when the integral inequality in (3) is replaced by a non-negativity requirement for the
integrand for a.e. t ∈ (0, T ). This problem is termed the instantaneous problem:

Problem (iP). Find u ∈ L2(0, T ;H1
0 (Ω)), with u(0) = u0 ∈ H1

0 (Ω) and ∂tu ∈
L2(0, T ;H−1(Ω)) such that for a.e. t ∈ (0, T ), u(t) ∈ K(Φ(t, u(t))) and

〈∂tu(t) +A(u(t))−Θ(t, u(t))− f(t), v − u(t)〉 ≥ 0,(6)

for all v ∈ K(Φ(t, u(t))).

Further the instantaneous versions of problems (P0) and (P1) are referred to as
problems (iP0) and (iP1), respectively. In order to provide a link between (P) and
(iP) we need to define versions of the constraints K,K+, and K± on the cylinder
(0, T )× Ω. In fact, provided that ϕ ∈ L2(0, T ;L∞ν (Ω)) we define

(7) K (ϕ) := {v ∈ L2(0, T ;H1
0 (Ω)) : v(t) ∈ K(ϕ(t)) for a.e. t ∈ (0, T )},

and analogously for K +(ϕ) and K ±(ϕ).
Under certain conditions problems (P) and (iP) are equivalent. The proof of this

assertion is based on the application of the following result.

Proposition 3. For Γ ∈ L2(0, T ;L2(Ω)) with Γ(t) := γ(t)ϕ, γ ∈ C([0, T ],R+)
and ϕ ∈ L∞ν (Ω), suppose that u ∈ L2(0, T ;H1

0 (Ω)), u(t) ∈ K(Γ(t)) for a.e. t ∈ (0, T ),
and F ∈ L∞(0, T ;H−1(Ω)). Then, the following holds true:

(8) 〈F (t), v − u(t)〉 ≥ 0, ∀v ∈ K(Γ(t)), for a.e. t ∈ (0, T ),

if and only if,

(9)

∫ T

0

〈F (τ), w(τ)− u(τ)〉 dτ ≥ 0, ∀w ∈ K (Γ).

Proof. Let w ∈ K (Γ) be arbitrary. Then, by definition w(t) ∈ K(Γ(t)) for a.e.
t ∈ (0, T ), and if (8) holds true, then it follows that (9) is satisfied by time integration
of the initial inequality.

Next we prove the reverse implication “(9)=⇒ (8)”. Let τ ∈ (0, T ) and v ∈
K(Γ(τ)) be arbitrary. For sufficiently small ε > 0, define

wτε (t) := v
γ(t)

sups∈(τ−ε,τ+ε) γ(s)
χ(τ−ε,τ+ε)(t) + u(t)χ(0,T )\(τ−ε,τ+ε)(t),

where χO denotes the characteristic function of the set O. It follows that wτε ∈
L2(0, T ;H1

0 (Ω)) and |∇wτε (t)| = |∇u(t)| ≤ Γ(t) if t ∈ (0, T ) \ (τ − ε, τ + ε) and if
t ∈ (τ − ε, τ + ε) we have

|∇wτε (t)| = γ(t)

sups∈(τ−ε,τ+ε) γ(s)
|∇v| ≤ γ(t)

sups∈(τ−ε,τ+ε) γ(s)
γ(τ)ϕ ≤ γ(t)ϕ = Γ(t).
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Using kτε (t) := γ(t)/ sups∈(τ−ε,τ+ε) γ(s), we infer

0 ≤ 1

2ε

∫ T

0

〈F (t), wτε (t)− u(t)〉 dt =
1

2ε

∫ τ+ε

τ−ε
〈F (t), kτε (t)v − u(t)〉 dt

=
1

2ε

∫ τ+ε

τ−ε
〈F (t), (kτε (t)− 1)v〉 dt+

1

2ε

∫ τ+ε

τ−ε
〈F (t), v − u(t)〉 dt.

Since F ∈ L∞(0, T ;H−1(Ω)) and limε↓0 supτ−ε≤t≤τ+ε |kτε (t)− 1| = 0, we have

lim
ε↓0

1

2ε

∣∣∣∣∫ τ+ε

τ−ε
〈F (t), (kτε (t)− 1)v〉 dt

∣∣∣∣
≤ |F |L∞(0,T ;H−1(Ω))|v|H1

0 (Ω)

(
lim
ε↓0

sup
τ−ε≤t≤τ+ε

|kτε (t)− 1|
)

= 0.

Moreover, t 7→ (F (t), v − u(t)) belongs to L1(0, T ) and hence, almost every point t is
a Lebesgue point (see [12] for a proof). As a consequence, we obtain

lim
ε↓0

1

2ε

∫ τ+ε

τ−ε
〈F (t), v − u(t)〉 dt = 〈F (τ), v − u(τ)〉 ≥ 0,

for a.e. τ ∈ (0, T ).

4. The non-dissipative problem (P0). In this section we consider problem
(P0). For its investigation, throughout this section we rely on the following assump-
tions on f, u0,Θ and Φ.

Assumption 1.
i. f ∈ L∞(0, T ;L2(Ω)) is non-negative, i.e., f(t) ≥ 0 a.e. in Ω, for a.e. t ∈

(0, T ).
ii. The initial condition u0 ∈ H1

0 (Ω) satisfies |∇u0| ≤ Φ(0, u0) a.e. in Ω.
iii. Θ : [0, T ]× L2(Ω)→ L2(Ω) is uniformly continuous and satisfies Θ(t, v) ≥ 0

a.e. if v ≥ u0 a.e. in Ω, for a.e. t ∈ [0, T ]. It is further assumed that Θ has
α-order of growth:

(10) ∃ α > 0, LΘ > 0 : |Θ(t, v)|L2(Ω) ≤ LΘ|v|αL2(Ω), ∀t ∈ [0, T ],∀v ∈ L2(Ω).

iv. The operator Φ : [0, T ] × L2(Ω) → L∞(Ω) is uniformly continuous and
Φ(t, v) ≥ ν > 0 a.e. in Ω, for a.e. t ∈ [0, T ] and all v ∈ L2(Ω). We
also assume that Φ is non-decreasing:

0 ≤ t1 ≤ t2 ≤ T, u0 ≤ v1 ≤ v2 a.e. =⇒ Φ(t1, v1) ≤ Φ(t2, v2) a.e.,

and that v 7→ Φ(T, v) maps bounded sets in L2(Ω) into bounded sets in L∞(Ω).

It should be noted that even in the case where Φ(t, v) = φ ∈ L∞ν (Ω) for all
(t, v) ∈ [0, T ] × L2(Ω) so that K(Φ(t, v)) = K(φ) is a constant set, no assumptions
on the monotonicity of −Θ are made and as a consequence the standard theory
for parabolic variational inequalities can not be applied here. Note also that since
0 < ν ≤ Φ(t, v) ≤ Φ(T, v) a.e. in Ω, for a.e. t ∈ [0, T ] and all v ∈ L2(Ω), we actually
observe that for each t ∈ [0, T ], v 7→ Φ(t, v) maps bounded sets in L2(Ω) into bounded
sets in L∞(Ω).

The main result of this section is stated next.
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Theorem 4. Let α ∈ [0, 1] in (10). Then there exists a solution u∗ to problem
(P0) that satisfies:

(i)

u∗ ∈ L∞(0, T ;W 1,∞
0 (Ω)) ∩ C0,1([0, T ];L2(Ω)), ∂tu

∗ ∈ L∞(0, T ;L2(Ω)).

(ii) It is non-decreasing, i.e., if 0 ≤ t1 ≤ t2 ≤ T then u0 ≤ u∗(t1) ≤ u∗(t2) ≤
u∗(T ) a.e. in Ω.

(iii) Solves in addition problem (iP0) if Φ(t, u∗(t)) = γ(t)ϕ for t ∈ [0, T ] for some
γ ∈ C([0, T ],R+) and ϕ ∈ L∞ν (Ω).

(iv) The sequence {ũN} defined by

ũN (t) = u0 +

∫ t

0

N∑
n=1

uNn − uNn−1

k
χ[tn−1,tn)(s) ds,

where {uNn }Nn=0 solves (PN0 ), satisfies

ũN → u∗ in C([0, T ];L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ;L2(Ω)),

along a subsequence.
Furthermore, if α > 1, then the same holds true provided that

(11) |u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)) <
1

((α− 1)LΘT )
1

α−1

.

Remark 1. It should be noted that since ∂tu
∗ ∈ L∞(0, T ;L2(Ω)) the represen-

tation u∗(t) = u0 +
∫ t

0
∂tu
∗(s)ds immediately implies that u∗ is Lipschitz continuous

in L2(Ω).
Remark 2. In the case where α > 1, the condition (11) is a type of “small data”

assumption. However, this condition does not imply that the solution u∗ remains
inactive over [0, T ], i.e., that |∇u∗(t)| < Φ(t, u∗(t)) a.e. in Ω, for a.e. t ∈ (0, T ). This
can be seen from the fact that for arbitrary u0 and f , there will be a solution provided
that LΘ is small enough.

Note that if u∗ solves (P0), then the fact that it additionally solves (iP0) if
Φ(t, u∗(t)) = γ(t)ϕ for t ∈ [0, T ] for some γ ∈ C([0, T ],R+) and ϕ ∈ L∞ν (Ω) fol-
lows by direct application of Proposition 3. Further, in the trivial case |u0|L2(Ω) =
|f |L2(0,T ;L2(Ω)) = 0 we have uNn = 0 for all 0 ≤ n ≤ N and all N ∈ N and it is elemen-
tary to check that the solution u∗ = 0 satisfies the conditions of the previous theorem.
Henceforth, we will assume throughout this section that |u0|L2(Ω)+|f |L2(0,T ;L2(Ω)) > 0.

In order to prove Theorem 4 we consider the following propositions and lemmas.

Proposition 5. The solution {uNn }Nn=0 to (PN
0 ) is well-defined and the following

assertions hold true:
i. For each N ∈ N, n → uNn is non-decreasing, i.e., uNn−1 ≤ uNn a.e. in Ω with

n = 1, 2, . . . , N .
ii. If α ∈ [0, 1], then there is a constant C1 > 0 such that

(12) |∇uNn | ≤ C1, a.e. on Ω,

uniformly in n = 0, 1, . . . , N and N ∈ N. If α > 1, then the same holds true,
provided that

(13) |u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)) <
1

((α− 1)LΘT )
1

α−1

.
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iii. If α ∈ [0, 1] (or if α > 1 and (13) holds), then there exists a constant C2 > 0 such
that

(14)
∣∣uNn − uNn−1

∣∣
L2(Ω)

≤ C2k,

uniformly in n = 1, 2, . . . , N and N ∈ N.

Proof. Let Ak : H1
0 (Ω)→ H−1(Ω) be defined as

〈Ak(w), v〉 :=
1

k

∫
Ω

w(x)v(x) dx.

Then, Ak is strictly monotone over H1
0 (Ω), i.e., 〈Ak(w), w〉 = 1

k |w|
2
L2(Ω) ≥ 0 and

〈Ak(w), w〉 = 0 implies w = 0. Also, Ak is linear, continuous and K(Φ(tNn−1, u
N
n−1))

is a closed, convex, bounded (because Φ(t, v) ∈ L∞ν (Ω)) and non-empty set. Hence,
for any g ∈ L2(Ω) the problem

Find u ∈ K(Φ(tNn−1, u
N
n−1)) : (Ak(u)− g, v − u) ≥ 0, ∀v ∈ K(Φ(tNn−1, u

N
n−1)),

admits a unique solution. This result follows from [30]. Then, for uNn−1 ∈ H1
0 (Ω) and

taking g := 1
ku

N
n−1 + Θ(tNn−1, u

N
n−1), uNn ∈ K(Φ(tNn−1, u

N
n−1)) is well defined by (5).

We concentrate first on i and proceed by induction. For uN1 in (5) we consider
v := uN1 + (u0 − uN1 )+ = max(u0, u

N
1 ) ∈ H1

0 (Ω) such that

∇v =

{
∇u0, u0 ≤ uN1 ;
∇uN1 , u0 > uN1 .

Since |∇u0| ≤ Φ(0, u0) a.e. by assumption, |∇v| ≤ Φ(0, u0) a.e., and using this v in
(5), we have (

uN1 − u0

k
−Θ(0, u0)− fN1 , (u0 − uN1 )+

)
≥ 0.

Also, Θ(0, u0) ≥ 0 and fN1 ≥ 0 a.e., and hence

0 ≥ −k(Θ(0, u0) + fN1 , (u0 − uN1 )+) ≥
(
u0 − uN1 , (u0 − uN1 )+

)
,

which implies that (u0−uN1 )+ = 0. Hence u0 ≤ uN1 and |∇uN1 | ≤ Φ(0, u0) ≤ Φ(tN1 , u
N
1 )

a.e. in Ω because Φ is non-decreasing in both variables according to Assumption 1.
Suppose u0 ≤ uNn−1 and |∇uNn−1| ≤ Φ(tNn−1, u

N
n−1) a.e. and let v := max(uNn , u

N
n−1)

= uNn + (uNn−1 − uNn )+. Since uNn solves (5), we have |∇uNn | ≤ Φ(tNn−1, u
N
n−1) and

therefore |∇v| ≤ Φ(tNn−1, u
N
n−1) a.e. in Ω. Using this v in (5), we obtain(

uNn − uNn−1

k
−Θ(tNn−1, u

N
n−1)− fNn , (uNn−1 − uNn )+

)
≥ 0.

This implies(
uNn−1 − uNn , (uNn−1 − uNn )+

)
≤ −k(Θ(tNn−1, u

N
n−1) + fNn , (u

N
n−1 − uNn )+).

Since u0 ≤ uNn−1 a.e., we observe that Θ(tNn−1, u
N
n−1) ≥ 0 a.e. and also, by assumption,

fNn ≥ 0. Therefore, (uNn−1 − uNn )+ = 0, i.e., uNn−1 ≤ uNn a.e., and by the fact that Φ
is non-decreasing in both variables, we have |∇uNn | ≤ Φ(tNn−1, u

N
n−1) ≤ Φ(tNn , u

N
n ).
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Next we focus on ii. Let v = 0 in (5). Reordering terms, it follows that
|uNn |2L2(Ω) ≤ (uNn−1, u

N
n ) + k(Θ(tNn−1, u

N
n−1) + fNn , u

N
n ). Since u0 ≤ uNn−1 ≤ uNn a.e.

and |Θ(t, v)|L2(Ω) ≤ LΘ|v|αL2(Ω) for all t ∈ [0, T ], v ∈ L2(Ω), we infer

(15) |uNn |L2(Ω) − |uNn−1|L2(Ω) ≤ LΘk|uNn−1|αL2(Ω) + k|fNn |L2(Ω).

Summation over n yields

|uNm|L2(Ω) ≤ |u0|L2(Ω) + LΘ

m∑
n=1

k|uNn−1|αL2(Ω) +

m∑
n=1

k|fNn |L2(Ω)

= (|u0|L2(Ω) + kLΘ|u0|αL2(Ω)) +

m∑
n=1

k|fNn |L2(Ω) + LΘ

m−1∑
n=1

k|uNn |L2(Ω).(16)

Recalling that fNn = 1
k

∫ tNn
tNn−1

f(t) dt, and |Im| = tNm − tNm−1 = k we obtain the bound

m∑
n=1

k|fNn |L2(Ω) ≤
∫ T

0

|f(t)|L2(Ω) dt ≤ T 1/2|f |L2(0,T ;L2(Ω)).

Further, considering uN :=
∑N
n=1 u

N
n χ[tNn−1,t

N
n ), we have for t ∈ [tNm−1, t

N
m)

m−1∑
n=1

k|uNn |αL2(Ω) ≤
∫ t

0

|uN (τ)|αL2(Ω) dτ.

Therefore, the inequality in (16) implies that

|uN (t)|L2(Ω) ≤M0 + LΘ

∫ t

0

|uN (τ)|αL2(Ω) dτ,

with M0 := (|u0|L2(Ω) + LΘ|u0|αL2(Ω)) + T 1/2|f |L2(0,T ;L2(Ω)). Here we have used that

k = 1/N ≤ 1. Now we consider three different cases: 0 ≤ α < 1, α = 1 and 1 < α,
respectively.

For α = 1, by Gronwall’s inequality, we have |uN (t)|L2(Ω) ≤M0e
LΘt and

|uNn |L2(Ω) ≤
(

(1 + LΘ)|u0|L2(Ω) + T 1/2|f |L2(0,T ;L2(Ω))

)
eLΘT =: M.

For 0 ≤ α < 1 and 1 < α, Gronwall’s inequality can not be applied, but the
generalization by Willet and Wong (see Theorem 2 in [51]) is applicable. In the case
α > 1, condition (13) is equivalent (in terms of M0) to M1−α

0 + (1 − α)LΘT > 0,

and hence for α ∈ [0, 1) ∪ (1,∞), |uN (t)|L2(Ω) ≤ (M1−α
0 + (1 − α)LΘt)

1
1−α . As a

consequence, we get

|uNn |L2(Ω) ≤
(

(|u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)))
1−α + (1− α)LΘT

) 1
1−α

=: M.

Therefore, for all cases we obtain that |uNn |L2(Ω) ≤M holds uniformly. Since |∇uNn | ≤
Φ(tNn−1, u

N
n−1) ≤ Φ(T, uNn−1) a.e. (because Φ is non-decreasing in both variables) and

Φ(T, ·) maps bounded sets in L2(Ω) into bounded sets in L∞(Ω), we have

|∇uNn | ≤ sup
v∈L2(Ω):|v|L2(Ω)≤M

|Φ(T, v)|L∞(Ω) =: C1
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where C1 does not depend on n nor N .
Finally, we focus on iii. Since n 7→ uNn is non-decreasing, Φ is non-decreasing in

both variables and |∇uNn−1| ≤ Φ(tNn−2, u
N
n−2), we have |∇uNn−1| ≤ Φ(tNn−1, u

N
n−1) a.e.

in Ω. Choosing v = uNn−1 in (5), we obtain(
uNn − uNn−1

k
, uNn − uNn−1

)
≤ (Θ(tNn−1, u

N
n−1) + fNn , u

N
n − uNn−1),

from which we infer

|uNn − uNn−1|L2(Ω) ≤ (LΘ|uNn−1|αL2(Ω) + |fNn |L2(Ω))k ≤ C2k,

for C2 := LΘM
α + ess-supt∈(0,T )|f(t)|L2(Ω). Since C2 is independent of n and N , this

finalizes the proof.

Remark 1. It should be noted that in order for the previous result to hold, weaker
conditions (than the ones assumed in the introduction) on the operators Θ and Φ can
be considered. In fact, the uniform continuity of both operators is superfluous and
if Φ : [0, T ] × L2(Ω) → L2(Ω) is non-decreasing in both variables, Φ(t, v) ≥ 0 for all
t ∈ [0, T ] and all v ∈ L2(Ω) and for each t ∈ [0, T ], v 7→ Φ(t, v) maps bounded sets in
L2(Ω) into bounded sets in L2(Ω), then the previous proposition also holds. However,
for the following results the continuity assumption is heavily invoked.

We define uN , uN− and ũN , which correspond to functions in L2(0, T ;H1
0 (Ω)) con-

structed with different arrangements of {uNn }Nn=0 and that are used throughout the
paper for the characterization of the solutions to problem (P). In fact, we define

uN (t) :=

N∑
n=1

uNn χ[tn−1,tn)(t), uN− (t) :=

N∑
n=1

uNn−1χ[tn−1,tn)(t),(17)

and ũN ∈ C([0, T ];H1
0 (Ω)) as

ũN (t) := u0 +

∫ t

0

N∑
n=1

uNn − uNn−1

k
χ[tn−1,tn)(s) ds.(18)

For t ∈ [tm−1, tm), the latter definition yields

ũN (t) = uNm−1 +
uNm − uNm−1

k
(t− tm−1) =

t− tm−1

k
uNm +

(
1− t− tm−1

k

)
uNm−1.

If n 7→ uNn is non-decreasing, then we have that the three mappings uN , uN− and ũN

are non-decreasing, as well. They also satisfy u0 ≤ uN− (t) ≤ ũN (t) ≤ uN (t) a.e. in Ω,
for a.e. t ∈ (0, T ), and the following inequality holds:

(19) |ũN (t)− uN− (t)|L2(Ω) ≤ |uN (t)− uN− (t)|L2(Ω) ≤ kC2, ∀t ∈ [0, T ].

In particular, note that ũN ∈W (0, T ) where

W (0, T ) := {v ∈ L2(0, T ;H1
0 (Ω)) : ∂tv ∈ L2(0, T ;L2(Ω))}.

As L2(0, T ;H1
0 (Ω)) and L2(0, T ;L2(Ω)) are reflexive spaces, W (0, T ) is a reflexive

Banach space (see [11] or [47]) endowed with the norm

|v|W (0,T ) := |v|L2(0,T ;H1
0 (Ω)) + |∂tv|L2(0,T ;L2(Ω)).
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Now, consider the sequence of continuous functions {ũN}∞N=1. Under the as-
sumptions of the previous proposition, we next characterize the limiting behaviour of
N 7→ ũN .

Theorem 6. Suppose that for N ∈ N, {uNn }Nn=0 satisfies the following assump-
tions:
a. The map n 7→ uNn is non-decreasing.
b. There exists C1 > 0 such that |∇uNn | ≤ C1 a.e. in Ω uniformly in n = 0, 1, . . . , N

and N ∈ N.
c. There exists C2 > 0 such that

∣∣uNn − uNn−1

∣∣
L2(Ω)

≤ kC2 a.e. in Ω, uniformly in

n = 1, 2, . . . , N and N ∈ N.
Then, there exist a u∗ ∈W (0, T ) such that

ũN → u∗ in C([0, T ];L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ;L2(Ω)),

along a subsequence of {ũN}∞N=1 defined in (18). Furthermore, u∗ : [0, T ]→ L2(Ω) is

Lipschitz continuous, non-decreasing, it satisfies u∗ ∈ L∞(0, T ;W 1,∞
0 (Ω)) and ∂tu

∗ ∈
L∞(0, T ;L2(Ω)) and, in addition, |∇u∗(t)| ≤ Φ(t, u∗(t)) a.e. in Ω, for a.e. t ∈ (0, T ).

Proof. A direct calculation yields |∇ũN (t)|L2(Ω) ≤ C1 and |∂tũN (t)|L2(Ω) ≤ C2

a.e. in Ω. In particular, ũN is bounded in W (0, T ). Since W (0, T ) is reflexive
and is compactly embedded into L2(0, T ;L2(Ω)) (by the Lions-Aubin Lemma, see
Proposition 1.3, Chapter III in [47] or Theorem 3.4.13 in [11]), we have ũN ⇀ u∗ in
L2(0, T ;H1

0 (Ω)), ũN → u∗ and ∂tũ
N ⇀ ∂tu

∗ both in L2(0, T ;L2(Ω)) along a subse-
quence for some u∗ ∈W (0, T ). Since also the space W (0, T ) is continuously embedded

into C([0, T ];L2(Ω)) by virtue of the representation u∗(t) = u(0) +
∫ t

0
∂tu
∗(s)ds (see

the proof of Theorem 3.4.13 in [11]), we have that u∗ ∈ C([0, T ];L2(Ω)).
Since |∇ũN (t)| ≤ C1 a.e. with C1 independent of t and N ∈ N, we have that

{ũN (t)} is uniformly (in t ∈ [0, T ] and N ∈ N) bounded in H1
0 (Ω). For a fixed

t ∈ [0, T ], consider the sequence {ũN (t)} in H1
0 (Ω). Hence, by the Rellich-Kondrachov

Theorem, ũN (t)→ v in L2(Ω) along a subsequence, so that

(20) {ũN (t) : N = 1, 2, . . .} is precompact in L2(Ω).

Since ũN (t) := u0 +
∫ t

0
∂tũ

N (s) ds and |∂tũN (t)|L2(Ω) ≤ C2, we observe that

|ũN (θ)− ũN (η)|L2(Ω) ≤ C2|θ − η|, ∀θ, η ∈ [0, T ],

i.e., {ũN (t)} is equicontinuous in L2(Ω). Then, the Arzelá-Ascoli Theorem (see Theo-
rem 2.0.15 in [14]), implies ũNi → u∗ in C([0, T ];L2(Ω)) for some subsequence {ũNi}.
Considering ũNi in the above inequality and taking the limit as i→∞, we find that
t 7→ u∗(t) is Lipschitz continuous in L2(Ω), i.e.,

|u∗(θ)− u∗(η)|L2(Ω) ≤ C2|θ − η|.

Since u∗ ∈W (0, T ), the strong derivative in the L2(Ω)-sense pointwise in time is well
defined (see [47]), and therefore |∂tu∗(s)|L2(Ω) ≤ C2, i.e., ∂tu

∗ ∈ L∞(0, T ;L2(Ω)) and

|∂tu∗|L∞(0,T ;L2(Ω)) ≤ C2.

In addition, given that ũNi(t1) ≤ ũNi(t2) a.e. for all t1 ≤ t2 and i ∈ N, and in view
of limi→∞ ũNi = u∗ in L2(Ω), we observe that u∗(t1) ≤ u∗(t2), i.e.,

t 7→ u∗(t) is non-decreasing over [0, T ].
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Since ũNi → u∗ uniformly on [0, T ] in the L2(Ω)-sense and t 7→ u∗(t) is uniformly
continuous in the L2(Ω)-norm (for being Lipschitz continuous), the estimate

(21) |ũNi(τi)− u∗(τ)|L2(Ω) ≤ |ũNi(τi)− u∗(τi)|L2(Ω) + |u∗(τi)− u∗(τ)|L2(Ω)

implies for τi → τ that limi→∞ uNi(τi) = u∗(τ) in L2(Ω). Therefore, given that
Φ : [0, T ]× L2(Ω)→ L∞(Ω) is continuous, we obtain

(22) Φ(τi, ũ
Ni(τi))→ Φ(τ, u∗(τ)) in L∞(Ω) as i→∞.

Let Ω0 be an open ball in Ω. Consider F : Ω × Rl → R defined as F (x, ξ) =
1
|Ω0|χΩ0(x)|ξ| ≥ 0. Then, it follows that ξ 7→ F (x, ξ) is convex and continuous,

and x 7→ F (x, ξ) is measurable (as a real valued function) for each ξ ∈ Rl. Hence,
the functional J(v) =

∫
Ω
F (x,∇v) dx is weakly lower semicontinuos on H1

0 (Ω) (see
Theorem 3.23 in [10]), i.e., if vj ⇀ v in H1

0 (Ω), then

(23)

∫
Ω

F (x,∇v) dx ≤ lim inf
j→∞

∫
Ω

F (x,∇vj) dx.

Fix τ ∈ [0, T ], then we have |∇ũNi(τ)| ≤ C1, a.e. on Ω, and thus, ũNij (τ) ⇀ w(τ)
in H1

0 (Ω) for some subsequence {ũNij } of {ũNi}. Furthermore, w(τ) = u∗(τ): We
have therefore proven that ũNij (τ) → u∗(τ) in L2(Ω) and since H1

0 (Ω) is compactly
embedded into L2(Ω), we also have that ũNij (τ) → w(τ) in L2(Ω), so that w(τ) =
u∗(τ). Then, by (23) we have

(24)
1

|Ω0|

∫
Ω0

|∇u∗(τ)| dx ≤ lim inf
j→∞

1

|Ω0|

∫
Ω0

|∇ũNij (τ)| dx.

We recall that |∇uNn | ≤ Φ(tNn−1, u
N
n−1) and Φ(tNn−1, u

N
n−1) ≤ Φ(tNn , u

N
n ) a.e. by the

fact that {uNn } is non-decreasing, Φ is also non-decreasing (in both arguments) and
also ũN (tNn ) = uNn . Suppose τ ∈ [tNm−1, t

N
m), where m = m(τ,N). Then, we have

|∇ũN (τ)| ≤ τ − tm−1

k
|∇uNm|+

(
1− τ − tm−1

k

)
|∇uNm−1| ≤ Φ(tNm−1, u

N
m−1)

= Φ(tNm−1, ũ
N (tNm−1)).

If τ ∈ [t
Nij
m−1, t

Nij
m ), with m = m(τ,Nij ), then limj→∞ t

Nij
m−1 = τ , and

Φ(t
Nij
m−1, ũ

Nij (t
Nij
m−1)) → Φ(τ, u∗(τ)) in L∞(Ω) (as proven in (22)) and hence from

(24) we observe

1

|Ω0|

∫
Ω0

|∇u∗(τ)| dx ≤ lim inf
j→∞

1

|Ω0|

∫
Ω0

|∇ũNij (τ)| dx

≤ lim inf
j→∞

1

|Ω0|

∫
Ω0

Φ(t
Nij
m−1, ũ

Nij (t
Nij
m−1)) dx ≤ 1

|Ω0|

∫
Ω0

Φ(τ, u∗(τ)) dx.

Since Ω0 was an arbitrary ball in Ω, by taking Ω0 := Br(x0) with x0 ∈ Ω and r ↓ 0, we
have that 1

|Ω0|
∫

Ω0
|∇g(x)| dx→ g(x0) for almost all x0, if g ∈ L1(Ω). Consequently,

|∇u∗(τ)| ≤ Φ(τ, u∗(τ)).
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Finally, as t 7→ u∗(t) is continuous in L2(Ω), the set {u∗(s) : s ∈ [0, T ]} is bounded,
and since Φ is non-decreasing (in both arguments) and Φ(T, ·) maps bounded sets in
L2(Ω) into bounded sets in L∞(Ω), we have

Φ(τ, u∗(τ)) ≤ Φ(T, u∗(τ)) ≤ |Φ(T, u∗(τ))|L∞(Ω) ≤ sup
s∈[0,T ]

|Φ(T, u∗(s))|L∞(Ω) <∞,

a.e. in Ω. This implies |∇u∗(·)| ∈ L∞(0, T ;L∞(Ω)), i.e., u∗ ∈ L∞(0, T ;W 1,∞
0 (Ω)).

Remark. The result ũN → u∗ in C([0, T ];L2(Ω)) along a subsequence of {ũN}
can also be obtained by the application of the Lions-Aubin-Simon Lemma (see [48],
Corollary 4, page 85): For this purpose, let X1, X2 and X3 be Banach reflexive spaces
such that the embedding X1 ↪→ X2 is compact and the embedding X2 ↪→ X3 is
continuous. Moreover, let F be a set of mappings from [0, T ] to X1 such that

F is bounded in L∞(0, T ;X1) and ∂tF is bounded in Lr(0, T ;X2) with r > 1.

Then F is relatively compact in C([0, T ];X2) by the Lions-Aubin-Simon lemma.
Choosing X1 = H1

0 (Ω), X2 = L2(Ω) and X3 = H−1(Ω) in our context, the result
is obtained.

The following result guarantees (among others) that, for a fixed τ ∈ [0, T ], the
sequence of sets K(Φ(τ, ũN (τ))) (with N = 1, 2, . . .) satisfies i. in Definition 2, pro-
vided that ũN → u∗ in C([0, T ];L2(Ω)) as N → ∞. Condition ii. of Definition
2 was actually proven in Theorem 6. We delay the proof of the following result to
Appendix B.

Lemma 7. Let u∗ be given according to Theorem 6 and define K1(·) := K (·),
K2(·) := K +(·), K3(·) := K ±(·), K1(·) := K(·), K2(·) := K+(·), and K3(·) :=
K±(·). Then the following two statements hold true.

a. Let Ψ = Φ(·, u∗(·)) and suppose that wi ∈ Ki(Ψ) for i = 1, 2, 3 are arbitrarily
fixed. Then, there exist sequences {wNi }, for i = 1, 2, 3, in L2(0, T ;H1

0 (Ω)) such that

wNi (t) ∈ Ki(Φ(tNn−1, u
N
n−1)),

where t ∈ [tNn−1, t
N
n ), for 1 ≤ n ≤ N and satisfy wNi → w in L2(0, T ;H1

0 (Ω)) along a
subsequence, for i = 1, 2, 3.

b. Let τ ∈ [0, T ] be fixed, such that τ ∈ [tNn−1, t
N
n ), and let n = n(τ,N). Define

φ := Φ(τ, u∗(τ)) and φN := Φ(tNn−1, u
N
n−1), and consider arbitrary wi ∈ Ki(φ) for

i = 1, 2, 3. Then, there exist sequences {wNi } in H1
0 (Ω), for i = 1, 2, 3, such that

wNi ∈ Ki(φ
N ),

and wNi → w in H1
0 (Ω) along a subsequence.

Lemma 7 provides sufficient conditions for the existence of a recovery sequence
in the definition of Mosco convergence for a variety of settings which involve problem
(P). In light of this result, we are now in shape to provide the following result which
finalizes the proof of Theorem 4.

Proposition 8. Let u∗ be given according to Theorem 6. Then, it solves problem
(P0).

Proof. For the sake of brevity, let {ũN} denote the subsequence according to
Theorem 6. It fulfils

ũN → u∗ in C([0, T ];L2(Ω)), ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ;L2(Ω)),(25)
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u∗ ∈ K(Φ(t, u∗(t))) a.e. for t ∈ [0, T ], and u∗ ∈W (0, T ).
Suppose that w ∈ L2(0, T ;H1

0 (Ω)) satisfies |∇w(τ)| ≤ Φ(τ, u∗(τ)) a.e. in Ω
and for a.e. τ ∈ [0, T ]. By Lemma 7, there exists {wN} such that |∇wN (t)| ≤
Φ(tNn−1, u

N
n−1) a.e. with t ∈ [tNn−1, t

N
n ) for n = 1, 2, . . . , N and wN → w in

L2(0, T ;H1
0 (Ω)).

We define

Θ̂(τ, uN− (τ)) :=

N∑
m=1

Θ(tNm−1, u
N
− (τ))χ[tNm−1,t

N
m)(τ) =

N∑
m=1

Θ(tNm−1, u
N
m−1)χ[tNm−1,t

N
m)(τ).

Since Θ : [0, T ]×L2(Ω)→ L2(Ω) is uniformly continuous (by the exact same argument
as in the proof of Lemma 7) we have

lim
N→∞

sup
τ∈[0,T ]

|Θ̂(τ, uN− (τ))−Θ(τ, u∗(τ))|L2(Ω) = 0,

or

(26) Θ̂(·, uN− (·))→ Θ(·, u∗(·)), in L∞(0, T ;L2(Ω)),

as N →∞. Also, defining fN =
∑N
n=1 f

N
n χ[tNn−1,t

N
n ) with fNn = 1

k

∫ tNn
tNn−1

f(t) dt we get

(27) fN → f in L2(0, T ;L2(Ω)) as N →∞,

(see for example [17] or page 21 in [23])
Then, by definition of {uNn }Nn=0 from (5), uN and ũN , the following holds:

(∂tũ
N (τ)− Θ̂(τ, uN− (τ))− fN (τ), wN (τ)− uN (τ)) ≥ 0, ∀τ ∈ (0, T ),

and hence, by integration over (0, T ) we obtain

(28)

∫ T

0

(∂tũ
N (τ)− Θ̂(τ, uN− (τ))− fN (τ), wN (τ)− uN (τ)) dτ ≥ 0.

Finally, using (25), (26), (27) in the inequality (28), by taking the limit N →∞,
we infer

(29)

∫ T

0

(∂tu
∗(τ)−Θ(τ, u∗(τ))− f(τ), w(τ)− u∗(τ)) dτ ≥ 0.

Since u∗(τ) ∈ K(Φ(τ, u∗(τ))) for all τ ∈ [0, T ] by Theorem 6, and additionally w ∈
L2(0, T ;H1

0 (Ω)) satisfies |∇w(τ)| ≤ Φ(τ, u∗(τ)) a.e. in Ω, for a.e. τ ∈ [0, T ], but
otherwise is arbitrary, the assertion is proven.

5. The dissipative problem (P1). In this section we focus on the dissipative
problem (P1) where prototypical operator A is given by −∆, where ∆ is the Laplacian.
Although for this problem we obtain an analogous result to Theorem 4, this is possible
only under more restrictive conditions than in the previous section. For the rest of the
paper we suppose that Ω ⊂ Rl is open, bounded and convex which implies that the
boundary ∂Ω is Lipschitz. Further, we make the following assumptions throughout
this section on A, f, u0,Θ and Φ.

Assumption 2.
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i. The operator A : H1
0 (Ω) → H−1(Ω) is supposed to be of the form Av =

−
∑N
n=1 ∂xnan∂xnv, that is

〈Av,w〉 =

N∑
n=1

an

∫
Ω

∂v

∂xn

∂w

∂xn
dx ∀v, w ∈ H1

0 (Ω)(30)

with an ≥ a > 0, an ∈ R for n = 1, 2, . . . , N . Therefore, A is linear,
|Av|H−1(Ω) ≤MA|v|H1

0 (Ω) with MA ≥ 0 and it is uniformly monotone.
ii. f ∈ L∞(0, T ;R) is non-decreasing.
iii. The initial condition u0 ∈ H1

0 (Ω) satisfies A(u0) ∈ L2(Ω),

|∇u0| ≤ Φ(0, u0) and A(u0) ≤ Θ(0, u0) +
1

k

∫ k

0

f(t) dt,

a.e. in Ω, for all k ∈ (0, εk) and some εk > 0.
iv. Θ : [0, T ]× L2(Ω)→ R is uniformly continuous, non-decreasing:

(31) 0 ≤ t1 ≤ t2 ≤ T, u0 ≤ v1 ≤ v2 a.e. =⇒ Θ(t1, v1) ≤ Θ(t2, v2) a.e.,

and has α-order of growth:

(32) ∃ α > 0, LΘ > 0 : |Θ(t, v)| ≤ LΘ|v|αL2(Ω), ∀t ∈ [0, T ],∀v ∈ L2(Ω).

v. Φ : [0, T ] × L2(Ω) → R is uniformly continuous and Φ(t, v) ≥ ν > 0 for all
t ∈ [0, T ] and all v ∈ L2(Ω). We also assume it is non-decreasing (as (31))
and that , v 7→ Φ(T, v) maps bounded sets in L2(Ω) into bounded sets in R.

Analogous to Theorem 4 in the non-dissipative case, the following theorem is
the main result for the dissipative problem and concerns existence, regularity and
approximation of solutions.

Theorem 9. Let α ∈ [0, 1] in (32), then there is a solution u∗ to problem (P1)
such that

u∗ ∈ L∞(0, T ;W 1,∞
0 (Ω)) ∩ C0,1([0, T ];L2(Ω)), and ∂tu

∗ ∈ L∞(0, T ;L2(Ω)).

Moreover, u∗ is nondecreasing, i.e., if 0 ≤ t1 ≤ t2 ≤ T then u0 ≤ u∗(t1) ≤ u∗(t2) ≤
u∗(T ) a.e. in Ω, and it satisfies

A(u∗) ∈ L∞(0, T ;L2(Ω)),(33)

and solves problem (P1) and (iP1) when the map K is replaced by either K+ or K±.
Furthermore, the sequence {ũN} defined as

ũN (t) = u0 +

∫ t

0

N∑
n=1

uNn − uNn−1

k
χ[tn−1,tn)(s) ds,

where {uNn }Nn=0 solves problem (PN1 ), satisfies

ũN → u∗ in C([0, T ];L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ;L2(Ω)),

along a subsequence.
If α > 1, then the same holds true provided that

(34) |u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)) <
1

((α− 1)LΘT )
1

α−1

.
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The first step for proving Theorem 9 is to provide the necessary conditions for
applying Theorem 6. This is the purpose of the following proposition.

Proposition 10. Problem (PN
1 ) is well-posed and there exists N∗ ∈ N such that

its solution {uNn }Nn=0, for N ≥ N∗, satisfies i, ii and iii of Proposition 5 and in
addition
iv. there exists a constant C3 > 0,

|A(uNn )|L2(Ω) ≤ C3,

uniformly in n = 1, 2, . . . , N and N ∈ N.
Further, we have that uNn ∈ K+(Φ(tNn−1, u

N
n−1)) and〈

uNn − uNn−1

k
+A(uNn )−Θ(tNn−1, u

N
n−1)− fNn , v − uNn

〉
≥ 0,(35)

for all v ∈ K+(Φ(tNn−1, u
N
n−1)), and the same holds when K+ is replaced by K±.

Proof. Let Ak : H1
0 (Ω)→ H−1(Ω) be defined as Ak := I/k +A, i.e.,

〈Ak(w), v〉 :=
1

k

∫
Ω

w(x)v(x) dx+

N∑
n=1

an

∫
Ω

∂v

∂xn
(x)

∂w

∂xn
(x) dx, ∀w, v ∈ H1

0 (Ω).

It follows that it is uniformly monotone over H1
0 (Ω), i.e., 〈Ak(w), v〉 ≥ 1

k |w|
2
L2(Ω) +

a|∇w|2L2(Ω) ≥ 0 for some a > 0. Also, Ak is continuous and K(tNn−1,Φ(uNn−1)) is a

closed, convex and non-empty subset of H1
0 (Ω). Hence, the problem

Find u ∈ K(Φ(tNn−1, u
N
n−1)) : 〈Ak(u)− g, v − u〉 ≥ 0, ∀v ∈ K(Φ(tNn−1, u

N
n−1)),

admits an unique solution for any g ∈ L2(Ω) (see [30]). Then, provided uNn−1 ∈ H1
0 (Ω)

and taking g = 1
ku

N
n−1 + Θ(tNn−1, u

N
n−1), it follows that uNn ∈ K(Φ(tNn−1, u

N
n−1)) is well

defined by (5).
We concentrate first on i. For each 1 ≤ n ≤ N , we have that uNn ∈ H1

0 (Ω),
|∇uNn | ≤ Φ(tNn−1, u

N
n−1) and〈(

I

k
−A

)
uNn −

(
Θ(tNn−1, u

N
n−1) + fNn +

uNn−1

k

)
, v − uNn

〉
≥ 0,

for all v ∈ H1
0 (Ω) such that |∇v| ≤ Φ(tNn−1, u

N
n−1). Since Φ(tNn−1, u

N
n−1) ≥ ν > 0, we

define

ūNn :=
uNn

Φ(tNn−1, u
N
n−1)

and f̄Nn :=
Θ(tNn−1, u

N
n−1) + fNn

Φ(tNn−1, u
N
n−1)

+
uNn−1

Φ(tNn−1, u
N
n−1)k

.

Then, we have that ūNn solves

Find u ∈ K(1) :

〈(
I

k
−A

)
u− f̄Nn , v̄ − u

〉
≥ 0, ∀v̄ ∈ K(1),

where K(1) = {v ∈ H1
0 (Ω) : |∇v| ≤ 1 a.e. in Ω}.

Then, for n ≥ 2 and because |∇uNn−1| ≤ Φ(tNn−2, u
N
n−2) a.e., the following state-

ment holds true:

Φ(tNn−2, u
N
n−2) ≤ Φ(tNn−1, u

N
n−1) =⇒

|f̄Nn |W 1,∞(Ω)

1/k
≤ 1.
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Also, since |∇u0| ≤ Φ(0, u0) a.e. by assumption, for n = 1 we also have that
|f̄N1 |W1,∞(Ω)

1/k ≤ 1. Therefore, for n = 1 and provided that uNn−2 ≤ uNn−1 a.e. for

n ≥ 2 (which implies Φ(tNn−2, u
N
n−2) ≤ Φ(tNn−1, u

N
n−1) a.e. since Φ is non-decreasing in

both variables), by the the equivalence result of Brézis-Sibony (see [8]), ūNn solves

Find u ∈ K±(1) :

〈(
I

k
−A

)
u− f̄Nn , v̄ − u

〉
≥ 0, ∀v̄ ∈ K±(1).

It is straightforward to observe that this implies that uNn belongs to

K±n−1 := {v ∈ H1
0 (Ω) : |v(x)| ≤ Φ(tNn−1, u

N
n−1)dist(x, ∂Ω) for a.e. x ∈ Ω},

and solves the problem

Find u ∈ K±n−1 :

〈(
I

k
+A

)
u− FNn , v − u

〉
≥ 0, ∀v ∈ K±n−1,(36)

with FNn := Θ(tNn−1, u
N
n−1) + fNn +

uNn−1

k .
We now proceed by induction: we first prove that u0 ≤ uN1 a.e. in Ω. We know

that uN1 = S(Ak, F
N
1 ,K±0 ). Consider K+

n−1 defined as

K+
n−1 := {v ∈ H1

0 (Ω) : v(x) ≤ Φ(tNn−1, u
N
n−1)dist(x, ∂Ω) for a.e. x ∈ Ω}.

For u0, due to Assumption 2 we have that A(u0) ≤ Θ(0, u0) + fN1 a.e. for N larger
than some N∗ and this implies〈(

I

k
+A

)
u0 −

(
Θ(0, u0) + fN1 +

u0

k

)
, φ

〉
≤ 0,

for all φ ∈ H1
0 (Ω), φ ≥ 0 a.e. in Ω. Also by our initial assumption, |∇u0| ≤

Φ(0, u0) a.e. and u0 ∈ K±0 ⊂ K+
0 . Hence, we have that u0 is a lower solution of

the triple (Ak, F
N
1 ,K+

0 ) (see Definition 1). Then, by Proposition 11, we have that
u0 ≤ S(Ak, F

N
1 ,K+

0 ) a.e. in Ω. The latter implies that

−Φ(0, u0)dist(x, ∂Ω) ≤ S(Ak, F
N
1 ,K+

0 )(x)

for a.e. x ∈ Ω and hence, S(Ak, F
N
1 ,K+

0 ) ∈ K±0 . Since the solutions S(Ak, F
N
1 ,K+

0 )
and S(Ak, F

N
1 ,K±0 ) are uniquely defined and K±n−1 ⊂ K+

n−1, we have

(37) S(Ak, F
N
1 ,K+

0 ) = S(Ak, F
N
1 ,K±0 ) = uN1 ,

and hence u0 ≤ uN1 a.e. in Ω. In addition, the latter also implies that uN2 satisfies
(36) (for n = 2).

We now prove that S(Ak, F
N
n ,K

+
n−1) = S(Ak, F

N
n ,K

±
n−1) = uNn , provided that

uNn−2 ≤ uNn−1 a.e. and S(Ak, F
N
n−1,K

+
n−2) = S(Ak, F

N
n−1,K

±
n−2) = uNn−1. The latter

condition implies that FNn−1 ≤ FNn and K+
n−2 ⊂ K+

n−1 (these follow since n 7→ fNn ,
and the maps Θ and Φ, in both variables, are non-decreasing). Then, by Proposi-
tion 11, we have that S(Ak, F

N
n−1,K

+
n−2) ≤ S(Ak, F

N
n ,K

+
n−1) a.e. in Ω. However,

S(Ak, F
N
n ,K

+
n−2) = S(Ak, F

N
n ,K

±
n−2) and therefore

−Φ(tNn−1, u
N
n−1)dist(x, ∂Ω) ≤ −Φ(tNn−2, u

N
n−2)dist(x, ∂Ω) ≤ S(Ak, F

N
n ,K

+
n−1)(x),
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for a.e. x ∈ Ω, which implies S(Ak, F
N
n ,K

+
n−1) ∈ K±n−1. Since S(Ak, F

N
n ,K

+
n−1)

and S(Ak, F
N
n ,K

±
n−1) are uniquely defined, and K±n−1 ⊂ K+

n−1, we observe that

S(Ak, F
N
n ,K

+
n−1) = S(Ak, F

N
n ,K

±
n−1).

In particular, since we have that u0 ≤ uN1 a.e. and (37), this implies that uN2 =
S(Ak, F

N
2 ,K±1 ) = S(Ak, F

N
2 ,K+

1 ).
Now, suppose that S(Ak, F

N
n−1,K

+
n−2) = uNn−1 and uNn−2 ≤ uNn−1 a.e. in Ω. There-

fore uNn satisfies (36) and S(Ak, F
N
n ,K

+
n−1) = uNn . We also have that FNn−1 ≤ FNn ,

given the fact that n 7→ fNn and Θ (in both variables) are non-decreasing. Fur-
thermore, since Φ (in both variables) is non-decreasing, it follows that |∇uNn−1| ≤
Φ(tNn−2, u

N
n−2) ≤ Φ(tNn−1, u

N
n−1) a.e., which implies that uNn−1 ∈ K+

n−1. These facts

yield that uNn−1 is a lower solution of the triple (Ak, F
N
n ,K

+
n−1): By definition uNn−1 =

S(Ak, F
N
n−1,K

+
n−2) is a lower solution of (Ak, F

N
n−1,K

+
n−2), but uNn−1 ∈ K+

n−1 and
FNn−1 ≤ FNn imply that

〈Ak(uNn−1)− FNn , φ〉 ≤ (FNn−1 − FNn , φ) ≤ 0,

for all φ ∈ H1
0 (Ω) such that φ ≥ 0 a.e. in Ω. Hence, by definition uNn−1 is a lower

solution of the triple (Ak, F
N
n ,K

+
n−1).

From Proposition 11, we infer that uNn−1 ≤ S(Ak, F
N
n ,K

+
n−1) = uNn . In turn, this

implies that uNn+1 satisfies (36) (for n replaced by n+ 1) and uNn+1 = S(Ak, F
N
n ,K

+
n ).

The application of the above argument by means of induction proves i. and the
equivalent formulation in (35) with the exchange of K± by K+.

Next, we focus on ii. Using v = 0 in (5), we obtain

|uNn |2L2(Ω) + 〈A(uNn ), uNn 〉 ≤ (uNn−1, u
N
n ) + k(Θ(tNn−1, u

N
n−1) + fNn , u

N
n ).

Since 〈A(uNn ), uNn 〉 ≥ a|∇uNn |2L2(Ω) ≥ 0, we have

(38) |uNn |2L2(Ω) ≤ (uNn−1, u
N
n ) + k(Θ(tNn−1, u

N
n−1) + fNn , u

N
n ),

from which, since |Θ(t, v)|L2(Ω) ≤ LΘ|v|αL2(Ω) for all t ∈ [0, T ], v ∈ L2(Ω), we obtain

|uNn |L2(Ω) − |uNn−1|L2(Ω) ≤ LΘk|uNn−1|αL2(Ω) + k|fNn |L2(Ω).

This is the same inequality as in (15) in the proof of ii in Proposition 5, thus the
same conclusion holds true, i.e., there exist M > 0 and C1 > 0 such that

|uNn |L2(Ω) ≤M and |∇uNn | ≤ sup
v∈L2(Ω):|v|L2(Ω)≤M

|Φ(T, v)|L∞(Ω) =: C1,

a.e. in Ω and uniformly for 1 ≤ n ≤ N and N ∈ N.
We consider now iii. Since n 7→ uNn is non-decreasing, Φ is non-decreasing in both

variables and |∇uNn−1| ≤ Φ(tNn−2, u
N
n−2) a.e., we have |∇uNn−1| ≤ Φ(tNn−1, u

N
n−1) a.e. in

Ω. Choosing v = uNn−1 in (5), we have

(39)

〈
uNn − uNn−1

k
+A(uNn )−Θ(tNn−1, u

N
n−1)− fNn , uNn−1 − uNn

〉
≥ 0.

We split the rest of proof in steps:
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Step 1. We first prove |(uN1 − u0)/k|L2(Ω) is bounded uniformly for N ∈ N and
1 ≤ n ≤ N . From the above inequality, in the case when n = 1, we have that(
uN1 − u0

k
, uN1 − u0

)
+ 〈A(u0)−A(uN1 ), u0−uN1 〉 ≤ (A(u0)−Θ(0, u0)−fN1 , u0−uN1 ).

Since A is monotone, A(u0) ∈ L2(Ω) and |fN1 |L2(Ω) ≤ supt∈[0,T ] |f(t)|L2(Ω) we have

(40)
∣∣uN1 − u0

∣∣
L2(Ω)

≤

(
|A(u0)|L2(Ω) + |Θ(0, u0)|L2(Ω) + sup

t∈[0,T ]

|f(t)|L2(Ω)

)
k <∞.

Step 2. We now prove that uNn are regular enough so that A(uNn ) ∈ L2(Ω). Define,
ūNn and f̄Nn as

ūNn :=
uNn

Φ(tNn−1, u
N
n−1)

and f̄Nn :=
Θ(tNn−1, u

N
n−1) + fNn

Φ(tNn−1, u
N
n−1)

+
uNn−1 − uNn

Φ(tNn−1, u
N
n−1)k

.

Therefore, ūNn solves the problem

Find u ∈ K(1) : 〈A(u)− f̄Nn , v̄ − u〉 ≥ 0, ∀v̄ ∈ K(1).

Then, since by initial assumption we have that A is defined as (30), the domain Ω being
open, bounded and convex, and f̄Nn ∈ L2(Ω), we can apply the regularity result by
Brézis-Stampacchia (see [9], § III) which implies that A(ūNn ) ∈ L2(Ω) and moreover,
we have the bound |A(ūNn )|L2(Ω) ≤ |f̄Nn |L2(Ω) (see [9], page 170). Equivalently,

(41) A(uNn ) ∈ L2(Ω), |A(uNn )|L2(Ω) ≤
∣∣∣∣Θ(tNn−1, u

N
n−1) + fNn +

uNn−1 − uNn
k

∣∣∣∣
L2(Ω)

.

Step 3: There is a uniform bound for |(uNn − uNn−1)/k|L2(Ω). Let ûNn , with n ≥ 1, and
v̂ be defined as

ûNn := uNn −
n∑

m=1

k(Θ(tNm−1, u
N
m−1) + fNm ), v̂ := uNn−1 + k(Θ(tNn−1, u

N
n−1) + fNn ),

and also ûN0 := u0. Then, by direct calculation, we have that

A(ûNn ) = A(uNn ) and |∇v̂| = |∇uNn−1| ≤ Φ(tNn−2, u
N
n−2) ≤ Φ(tNn−1, u

N
n−1),

a.e. in Ω. Here we use that n 7→ uNn is non-decreasing and Φ is also non-decreasing,
in both variables. Additionally, we have that

ûNn − ûNn−1

k
+A(uNn ) =

uNn − uNn−1

k
+A(uNn )−Θ(tNn−1, u

N
n−1)− fNn ,(42)

ûNn−1 − ûNn = v̂ − uNn ,(43)

ûNn−2 − ûNn−1

k
= Θ(tNn−2, u

N
n−2) + fNn−1 +

uNn−2 − uNn−1

k
.(44)

Using v = v̂, (42) and (43) in (5), we therefore have that〈
ûNn − ûNn−1

k
+A(uNn ), ûNn−1 − ûNn

〉
≥ 0,
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and (since A(ûNn−1) = A(uNn−1)) equivalently(
ûNn − ûNn−1

k
, ûNn − ûNn−1

)
+ 〈A(ûNn−1)−A(ûNn ), ûNn−1− ûNn 〉 ≤ 〈A(uNn−1), ûNn−1− ûNn 〉.

Since A is monotone and A(uNn−1) ∈ L2(Ω), as in (41), we obtain the inequality
|(ûNn − ûNn−1)/k|L2(Ω) ≤ |A(uNn−1)|L2(Ω); or, by using the bound in (41) and (44),∣∣ûNn − ûNn−1

∣∣
L2(Ω)

≤
∣∣ûNn−1 − ûNn−2

∣∣
L2(Ω)

,(45)

and hence

∣∣ûNn − ûNn−1

∣∣
L2(Ω)

≤
∣∣ûN1 − u0

∣∣
L2(Ω)

≤
∣∣uN1 − u0

∣∣
L2(Ω)

+ (|Θ(0, u0)|+ |fN1 |L2(Ω))k.

(46)

From (40), the fact hat Θ is non-decreasing in both variables, |uNn |L2(Ω) ≤ M uni-
formly and (44), we infer

∣∣uNn − uNn−1

∣∣
L2(Ω)

≤

|A(u0)|L2(Ω) + 3 sup
t∈[0,T ]

|f(t)|L2(Ω) + 3 sup
v ∈ L2(Ω)
|v|
L2(Ω)

≤ M

|Θ(T, v)|

 k

=: C2k.

Finally, we focus on iv. Using the above result and (41), we obtain that

(47) |A(uNn )|L2(Ω) ≤ sup
t∈[0,T ]

|f(t)|L2(Ω) + sup
v ∈ L2(Ω)
|v|
L2(Ω)

≤ M

|Θ(T, v)|+ C2 =: C3,

where C3 > 0 is independent of n and N .

We are now in shape to provide the proof of the main result of the section.

Proof (Theorem 9). The approximants {ũN} satisfy

ũN → u∗ in C([0, T ];L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ;L2(Ω)),(48)

along a subsequence as proven by Theorem 6: Note that by Proposition 10 we have
that n 7→ uNn is non-decreasing and there are uniform bounds on |∇uNn |L2(Ω) and
|(uNn − uNn−1)/k|L2(Ω). Additionally, the fact that u∗ : [0, T ] → L2(Ω) is Lipschitz

continuous, non-decreasing, u∗ ∈ L∞(0, T ;W 1,∞
0 (Ω)), ∂tu

∗ ∈ L∞(0, T ;L2(Ω)) and
|∇u∗(t)| ≤ Φ(t, u∗(t)) a.e. in Ω for a.e. t ∈ (0, T ), follow again from the aforemen-
tioned theorem.

Let τ ∈ [0, T ] be fixed. Denote by {ũN} to the convergent subsequence obtained
in (48). Then, in addition to ũN → u∗ in C([0, T ];L2(Ω)) we also have that uN → u∗

in L∞(0, T ;L2(Ω)) by the inequality (19). Also, since |∇uN (τ)| ≤ C1 a.e., then
uN (τ) ⇀ w(τ) in H1

0 (Ω) along a subsequence. The embedding L2(Ω) ↪→ H1
0 (Ω) is

compact, and thus we have that uN (τ) → w(τ) in L2(Ω) along a further subquence,
but uN → u∗ in C([0, T ];L2(Ω)) which implies w(τ) = u∗(τ). By the very same
argument, any weakly convergent sequence in H1

0 (Ω) has the same limit. Therefore,
the original sequence satisfies uN (τ) ⇀ u∗(τ) in H1

0 (Ω).
By Proposition 10, we have |A(uN (τ))|L2(Ω) ≤ C3 and hence

lim
N→∞

|(A(uN (τ)), uN (τ)− u∗(τ))| ≤ C3 lim
N→∞

|uN (τ)− u∗(τ)|L2(Ω) = 0.
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Since uN (τ) ⇀ u∗(τ) in H1
0 (Ω), we conclude (see Lemme I.2., page 156 in [9]) that

A(uN (τ)) ⇀ A(u∗(τ)) in H−1(Ω). Finally, from uN (τ) → u∗(τ) in L2(Ω), uN (τ) ⇀
u∗(τ) in H1

0 (Ω) and |A(uN (τ))|L2(Ω) ≤ C3, we infer (see Démonstration du théorème
I.1. and Corollaire I.2’. in [9]) that

(49) A(uN (τ)) ⇀ A(u∗(τ)) in L2(Ω).

Note that the above limit holds for the entire sequence {A(uN (τ))} and not only for
a subsequence: This follows since every weakly convergent subsequence converges to
the same limit. Additionally, by the lower semicontinuity of the norm, we observe
that

|A(u∗(τ))|L2(Ω) ≤ lim
N→∞

|A(uN (τ))|L2(Ω) ≤ C3.

In order to show that A(u∗) ∈ L∞(0, T ;L2(Ω)), we only need to prove the (Bochner)
measurability of the map A(u∗(·)) : [0, T ]→ L2(Ω); and since L2(Ω) is separable, we
only require weak measurability (see Corollary 1.1.2., page 8 in [1]), i.e., that t 7→
(g,A(u∗(t))) is measurable, as a real-valued function, for each g ∈ L2(Ω). However,
t 7→ (g,A(uN (t))) is measurable for each N ∈ N for being a step function, and
t 7→ 〈g,A(u∗(t))〉L2(Ω) is the pointwise limit of the previous sequence and hence it is
measurable Hence, A(u∗) ∈ L∞(0, T ;L2(Ω)), holds.

Now, let z ∈ L2(0, T, L2(Ω)), then t 7→ (A(uN (t)), z(t)) is integrable, bounded as
|(A(uN (t)), z(t))| ≤ C3|z(t)|L2(Ω) and also limN→∞(A(uN (t)), z(t)) = (A(u∗(t)), z(t))
for t ∈ [0, T ]. The function t 7→ (A(u∗(t)), z(t)) is also integrable, then by Lebesgue
bounded convergence theorem we have

lim
N→∞

∫ T

0

(A(uN (t)), z(t)) dt =

∫ T

0

(A(u∗(t)), z(t)) dt,

i.e.,

(50) A(uN (·)) ⇀ A(u∗(·)) in L2(0, T ;L2(Ω)) as N →∞.

Let w ∈ L2(0, T ;H1
0 (Ω)) with |∇w(τ)| ≤ Φ(τ, u∗(τ)) a.e. in Ω, for a.e. τ ∈ (0, T ),

be arbitrary. By Lemma 7, there exists {wN} such that |∇wN (t)| ≤ Φ(tNn−1, u
N
n−1)

with t ∈ [tNn−1, t
N
n ) for n = 1, 2, . . . , N and

(51) wN → w in L2(0, T ;H1
0 (Ω)) as N →∞.

Since fN =
∑N
n=1 f

N
n χ[tNn−1,t

N
n ) with fNn = 1

k

∫ tNn
tNn−1

f(t) dt, we have that

(52) fN → f in L2(0, T ;L2(Ω)) as N →∞,

(see for example [17] or page 21 in [23]) and also, as proven in Proposition 8 we observe
that

(53) Θ̂(·, uN− (·))→ Θ(·, u∗(·)), in L∞(0, T ;L2(Ω)) as N →∞.

Then, by definition of {uNn }Nn=0 in problem (PN
1 ), uN and ũN , we have

(∂tũ
N (τ) +A(uN (τ))− Θ̂(τ, uN− (τ))− fN (τ), wN (τ)− uN (τ)) ≥ 0, ∀τ ∈ (0, T ),
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and hence by integration on (0, T ), we observe

(54)

∫ T

0

(∂tũ
N (τ) +A(uN (τ))− Θ̂(τ, uN− (τ))− fN (τ), wN (τ)− uN (τ)) dτ ≥ 0.

Taking the limit as N → ∞ in (54) (using (48), (50), (51), (52) and (53)) , we
have

(55)

∫ T

0

(∂tu
∗(τ) +A(u∗(τ))−Θ(τ, u∗(τ))− f(τ), v − u∗(τ)) dτ ≥ 0.

Further, u∗(τ) ∈ K(Φ(τ, u∗(τ))) a.e. in Ω, for a.e. τ ∈ [(0, T ]), as shown in the first
paragraph of the proof. Since w ∈ L2(0, T ;H1

0 (Ω)) with |∇w(τ)| ≤ Φ(τ, u∗(τ)) a.e.
in Ω, for a.e. τ ∈ (0, T ) is arbitrary, then u∗ solves Problem (P1).

It follows immediately, from |∇u∗(t)| ≤ Φ(t, u∗(t)) a.e. Ω, for a.e. t ∈ (0, T ), that

(56) − Φ(t, u∗(t))dist(x, ∂Ω) ≤ u∗(t) ≤ Φ(t, u∗(t))dist(x, ∂Ω),

for a.e. x ∈ Ω, t ∈ (0, T ), i.e., u(t) ∈ K±(Φ(t, u(t))) and consequently u(t) ∈
K+(Φ(t, u(t))) for a.e. t ∈ (0, T ).

Let y ∈ L2(0, T ;H1
0 (Ω)) such that y ∈ K±(Φ(τ, u(τ))) for a.e. τ ∈ [0, T ] be arbi-

trary. By Lemma 7 there exists {yN} such that |yN (τ)| ≤ Φ(tNn−1, u
N
n−1))dist(x, ∂Ω)

for a.e. x ∈ Ω with τ ∈ [tNn−1, t
N
n ) a.e. and

(57) yN → y in L2(0, T ;H1
0 (Ω)) as N →∞.

Then, by definition of {uNn }Nn=0 from Problem (PN
1 ) and the equivalence result of

Proposition 10 we have

(∂tũ
N (τ) +A(uN (τ))− Θ̂(τ, uN− (τ))− fN (τ), yN (τ)− uN (τ)) ≥ 0, ∀τ ∈ (0, T ),

and hence, integrating with respect to τ from 0 to T and subsequently taking the
limit as N →∞ (using (48), (50), (57), (52) and (53))

(58)

∫ T

0

(∂tu
∗(τ) +A(u∗(τ))−Θ(τ, u∗(τ))− f(τ), v − u∗(τ)) dτ ≥ 0.

Since y ∈ L2(0, T ;H1
0 (Ω)) with y(τ) ∈ K±(Φ(τ, u∗(τ))) for a.e. τ ∈ (0, T ) is arbitrary,

then u∗ solves Problem (P1) with K exchanged by K±.
An analogous argument and Lemma 7 proves that u∗ also solves Problem (P1)

with K exchanged by K+. Finally, the fact that u∗ solves Problem (iP1) follows
directly by application of Proposition 3.

6. Numerical Tests. In this section we report on variable splitting type solution
algorithms for (PN

0 ) and (PN
1 ), respectively. For N ∈ N, the problems (PN

0 ) and (PN
1 )

reduce to finding {uNn }Nn=1 where, for a fixed n and given uNn−1, uNn is the unique
solution to the convex minimization problem:

Problem (Pn).

min JNn (u) :=
1

2k
|u− uNn−1|2L2(Ω) +

1

2
〈Au, u〉 − (Θ(tn−1, u

N
n−1) + f(tn−1), u)

over u ∈ H1
0 (Ω)

subject to (s.t.) u ∈ K(Φ(tn−1, u
N
n−1)).
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The initial state uN0 = u0 is given and an equidistant discretization in time with
mesh size k := T/N is used. Here T > 0 corresponds to the final time and tn := nk.

Furthermore, A ≡ 0 corresponds to (PN
0 ) and Av =

∑`
n=1

∂
∂xn

an
∂v
∂xn

to (PN
1 ). The

computation of uNn , for fixed n, is performed by Algorithm 1 and the overall sequence
{uNn }Nn=1 by Algorithm 2.

Note that (Pn) is a gradient constrained optimization problem which can be
solved by a variety of algorithms such as first-order descent, or semismooth Newton
methods. Here, we provide a variable splitting approach which has the advantage of
rather simple subproblem solves in its respective steps.

6.1. A Variable Splitting Approach. For Ω ⊂ R`, we define the convex and
closed set Kn−1 ⊂ L2(Ω)` by

(59) Kn−1 := {v ∈ L2(Ω)` : |v| ≤ Φ(tn−1, u
N
n−1) a.e. in Ω}.

Note that if u solves (Pn) then ∇u ∈ Kn−1. Based on this, we introduce a new
variable p ∈ Kn−1 and penalize violations of ∇u − p = 0 in L2(Ω)` via the following
family of γ-parametrized approximating problems:

Problem (Pnγ ).

minJNn,γ(u, p) := JNn (u) + γ
2 |∇u− p|

2
L2(Ω)`

over (u, p) ∈ H1
0 (Ω)× L2(Ω)`

s.t. p ∈ Kn−1.

The existence of minimizers (u∗, p∗) of (Pnγ ) follows from standard arguments. In
the case where A is a second-order elliptic operator, variable splitting methods for
solving elliptic variational problems with gradient constraints have been investigated
recently in [21]: In particular, for γ →∞ the convergence of solutions {uγ , pγ} of (Pnγ )
to {u,∇u}, where u is the minimizer of (Pn), is established. Minor modifications of
the arguments yield a similar consistency result for A ≡ 0.

Algorithm 1 Variable Splitting Algorithm

Data: n ∈ N, k, γ ∈ R+, uNn−1 ∈ L2(Ω)

1: Choose u(0) ∈ L2(Ω) and set l = 0.
2: repeat
3: Compute p(l+1) = argminp∈L2(Ω)` |p−∇u(l)|2L2(Ω)` + IKn−1

(p).

4: Compute u(l+1) = argminu∈H1
0 (Ω)JNn,γ(u, p(l)).

5: Set l = l + 1.
6: until some stopping rule is satisfied.

For given γ > 0, a solution to (Pnγ ) is obtained via alternating minimization
according to Algorithm 1. Here, IKn−1 denotes the indicator function of the constraint
set defined by the iterate uNn−1, i.e.

IKn−1(p) =

{
0 if p ∈ Kn−1,

+∞ else.

The problem in step 3 of Algorithm 1 has a unique solution in closed form. In fact,
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it is given by the projection of ∇u(l) onto the set Kn−1, i.e.,

p(l+1) = PKn−1
(∇u(l)) =

{
∇u(l) min{1, Φ(tn−1,u

N
n−1)

|∇u(l)| }, if |∇u(l)| > 0,

0 else.

Note here that the min-operation is pointwise. Further, for given p(l) ∈ L2(Ω)`,
there exists a unique minimizer u∗ ∈ H1

0 (Ω) of the problem in step 4 of Algorithm 1.
Consequently, the sequence {u(l)} obtained by Algorithm 1 is generated as follows:
Given u(l), u(l+1) is the unique solution of

minJNn,γ(u, PKn−1
(∇u(l))), over u ∈ H1

0 (Ω).(60)

Denoting the solution mapping u(l) 7→ u(l+1) in (60) by T : H1
0 (Ω) → H1

0 (Ω), we
have u(l+1) = T (u(l)). For establishing convergence of the associated algorithm, we
next study continuity properties of the map T . For this purpose, we observe that the
first-order necessary optimality condition for (60) reads

k−1u(l+1) +Au(l+1) − γ∆u(l+1)

= k−1uNn−1 + Θ(tn−1, u
N
n−1) + f(tn−1)− γ∇ · PKn−1

(∇u(l)), in H−1(Ω).

(61)

Let v, w ∈ H1
0 (Ω) and define V := T (v),W := T (w). Using V −W as a test function

in the corresponding equations (61) for T (v) and T (w), respectively, and subtracting
the resulting equations, we obtain the estimate

|V −W |2L2(Ω)

k|V −W |H1
0 (Ω)

+ (γ + ηA)|V −W |H1
0 (Ω) ≤ γ|v − w|H1

0 (Ω),(62)

where ηA ≥ 0 is the uniform monotonicity constant of A : H1
0 (Ω)→ H−1(Ω). For this

estimate we also use the non-expansiveness of the map PKn−1
: L2(Ω)` → Kn−1, i.e.,

|PKn−1(q1)− PKn−1(q2)|L2(Ω)` ≤ |q1 − q2|L2(Ω)` for all q1, q2 ∈ L2(Ω)`. Consequently,
we find

|V −W |H1
0 (Ω) ≤

γ

γ + ηA
|v − w|H1

0 (Ω).(63)

In the case of problem (P1), we have ηA > 0. Thus, T is a contractive mapping
and for each γ > 0 there exists a unique fixed point uγ due to Banach’s fixed point
theorem. Further, the pair (uγ , PKn−1

(∇uγ)) is a solution to (Pnγ ) and uγ converges
to the solution of (Pn) in H1

0 (Ω) as γ → ∞. In the case of problem (P0) (where
A ≡ 0) we have ηA = 0 and only obtain non expansiveness of T . Here the existence of
a fixed point (which is not necessarily unique) is ensured by the theorem of Browder-
Göhde-Kirk (see [5, Chapter 4.3]). Moreover, let uγ be one of these fixed points for
each γ, then uγ converges to the solution of Pn in L2(Ω) as γ →∞.

6.2. Finite Element Discretization. Next we introduce the spatial discretiza-
tion of the problem and restrict ourselves to the setting of polygonal and bounded
subsets Ω ⊂ R2. Let T be a shape regular, quasi uniform triangularization of Ω of
mesh width h with shape parameter CT = maxτ∈T hτ/ρτ . Here, hτ is the diameter
of the triangle τ and ρτ the radius of the largest ball inscribed into it, respectively.
The set of inner nodes is denoted by N . For the discretization of the functions uNn we
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utilize P1,0; the space of globally continuous functions v : Ω→ R with zero boundary
conditions such that v|τ is affine for τ ∈ T . The associated nodal basis is

{ϕz ∈ P1,0 : z ∈ N ,∀z̄ ∈ N , ϕz(z̄) = δz,z̄}

where δz,z̄ denotes the Kronecker-Delta with δz,z̄ = 1 for z̄ = z and δz,z̄ = 0 otherwise.
As a consequence, the gradient of the discrete approximations of uNn is a T -piecewise
constant vector.
The variable p ∈ L2(Ω)2 is discretized by vectors of T -piecewise constant functions,
and the forcing terms f(tn−1) and Θ(tn−1, u

N
n−1), both elements of L2(Ω), by T -

piecewise constant functions, as well. The gradient bound Φ(tn−1, u
N
n−1) is discretized

as a T -piecewise constant function where we use averages on the elements of the dis-
cretization in case Φ(tn−1, u

N
n−1) is a spatially distributed function (cf. [25]). In

Examples 6.3.2 and 6.3.3 this average can be computed exactly for the discrete ap-
proximations of the state while in Example 6.3.4 we used a Gaussian quadrature rule
with four evaluation points on the reference triangle. For more information on finite-
element discretizations we refer to [49, 50]. Based on this discretization, the so called
inverse inequality is available, providing (see, e.g. [50, Chapter 3.6]) the estimate
|vh|2H1

0 (Ω)
≤ β̃(h)|vh|2L2(Ω) for all vh ∈ P1,0 with

β̃(h) = 2(3/2)3(2 +
√

2)CT max
τ∈T

(h−2
τ ).

Restricting arguments of T and solutions to (61) to the subspace P1,0 ⊂ H1
0 (Ω), we

can further refine (63) by utilizing the inverse inequality in (62). In fact, we obtain

|Vh −Wh|H1
0 (Ω) ≤

γ

γ + ηA + (β̃(h)k)−1
|vh − wh|H1

0 (Ω).(64)

for vh, wh ∈ P1,0 with Vh = T (vh) and Wh = T (wh). Consequently, there exist a
unique fixed point of the solution mapping T by the Banach Contraction Principle
for the discretized versions of both problems, (P0) and (P1).

6.3. Overall Solution Algorithm. For each time step in (P0) and (P1), Algo-
rithm 2 states our overall numerical solution scheme. In this context, Algorithm 1 is
used in steps 3 and 4, respectively. Moreover, Algorithm 2 consist of two parts: First,
the time step n = 1 is considered and an approximate solution to (P 1) is computed
by a γ-path following strategy via the family of problems (P 1

γ ). The parameter γ
is increased until it reaches a value γmax where we accept the solution of (P 1

γ ) as
approximation to the solution of (P 1). In the second part, the remaining time steps
n = 2, . . . , N are computed with fixed γ ≥ γmax.

We are left to specify the stopping rule for Algorithm 1 which is used in each time
step in Algorithm 2. For this purpose, consider the following: Let X be a Banach
space and H : X → X a contractive mapping with contraction rate r ∈ (0, 1). Denote
its unique fixed point by x∗ and let {xi}∞i=0 be the sequence generated by xi+1 = H(xi)
for a given starting point x0 ∈ X . From Banach’s fixed point theorem we obtain

|xi − x∗|X ≤
1

1− r
|xi+1 − xi|X .

In light of (64), this yields a suitable way to estimate |u(l)
h − u∗h|H1

0 (Ω) in terms of
the distance of two consecutive iterates, with u∗h denoting the fixed point of the
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Algorithm 2 QVI Solution Algorithm

Data: N ∈ N, k, γ0, γmax ∈ R+, βγ > 1 uN0 ∈ L2(Ω)

1: Initialize u(0) = uN0 , and set γ = γ0.
2: repeat
3: Compute uN1,γ by Algorithm 1 initialized with u(0) for n = 1, k, γ and uN0 .

4: Set u(0) := uN1,γ and γ := βγγ.
5: until γ ≥ γmax.
6: Set uN1 = uN1,γ .
7: For n = 2 to N
8: Compute uNn by Algorithm 1 initialized with u(0) := uNn−1 for n, k, γ and uNn−1.
9: end

discretized version of T , the solution mapping of (60). The contraction rate here is
r = γ(γ + ηA + (β̃(h)k)−1)−1 and, hence, Algorithm 1 is stopped as soon as

|u(l+1)
h − u(l)

h |H1
0 (Ω) ≤ TOL

ηA + (β̃(h)k)−1

γ + ηA + (β̃(h)k)−1
(65)

is satisfied, which ensures |u(l+1)
h − u∗h|H1

0 (Ω) ≤ TOL for some user-specified stopping
tolerance TOL > 0.

The value of γmax in Algorithm 2 is selected based on two considerations: (i) the
discretization error of the finite element method, and (ii) the error introduced by the
regularization of the state constraint u ∈ K(Φ(tn−1, u

N
n−1)). In [20], a heuristic rule

was developed for this purpose and evidence was found that the discretization error
dominates if γ ≥ ch−4 for some constant c > 0. On the other hand, in numerical
computations, the maximal value γ is limited by (65) and the limited accuracy of
implementations on computers (double precision floating point representation in our
case). Thus, we utilize γmax = max{10−12/TOL, ch−4} in all our numerical tests.

6.4. Examples. In all of our numerical tests we use Ω = (0, 1) × (0, 1). We
discretize Ω by a uniform grid with mesh size h = 2−7 providing a partition into
triangles, and the time step k = T/N is chosen differently for each example. Here, we
have β := β̃(h) ≈ 9 × 105. Note, that for each value of γ, the system matrix of the
linear problems in step 4 of Algorithm 1 is fixed. We exploit this property and solve
the linear problems by a Cholesky factorization of the system matrix which has to be
computed once for each value of γ. The update of this parameter uses γ0 = 1, βγ = 4
and γmax = 106 unless otherwise stated. The termination criterion of Algorithm 1 in
(65) utilizes TOL = 10−6, and in all of the following examples u0 ≡ 0 is chosen. In
addition to studying the behaviour of the solution to the QVI, we further investigate
the active set A defined by

A(t) := {x ∈ Ω : |∇u(t, x)| = Φ(t, u(x))}.

As the case A 6≡ 0 appears more common in the literature, we consider A = −∆ only
in the first example and focus on A ≡ 0 in the following three.
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Fig. 1. The state u at final time T = 10−3.

6.4.1. Example 1. For the first ex-
ample we consider the dissipative case in
the setting of (P1) for a final time T =
10−3 and time step k = 10−4.

We utilize f ≡ 1,Θ ≡ 0 and A = −∆.
Further, the gradient bound is given by
Φ(t, u) = β1|u|L2(Ω) + β2 with β1 = 0.03
and β2 = 0.001. Since f is constant, and
the bound on the gradient constraint is not
spatially dependent, the problem is equiv-
alent to a parabolic QVI of the double obstacle-type.

Figure 1 depicts the final state u(T ), and the active set A(T ) comprises essentially
the entire domain Ω.

6.4.2. Example 2: Growth of large sandpiles. The growth of sandpiles
over a flat surface Ω where the sand is removed instantaneously on ∂Ω and where the
intensity of material being poured per unit of time is given by f can be described
by a variational inequality with a constant gradient constraint (see, e.g. [40, 43]).
Specifically, the solution u to (P0) for Θ = 0 and Φ ≡ tan(θ) for θ the angle of
repose of the material being poured onto the pile, represents the height of the surface
determined by the outermost layer of the pile. It has recently been discovered that
the angle of repose θ is actually a gravity dependent quantity (see [31]) and hence it
should be taken as an increasing function of the height of the pile. This entails that
the overall formulation of the problem, for piles which are relatively high, amounts to
a quasi-variational inequality of class (P0).

(a) (b) (c)

(d) (e)

Fig. 2. The state u(t) at time t = 5× 10−5 is depicted in figures 2(a), 2(a) and at t = 10−3 in
2(d) and 2(e). The active set A(t) at t = 5× 10−5 is given in 2(c)
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In order to model the above type of behaviour we consider Φ(u) = β1u+ β2 with
parameters β1 = 5, β2 = 10−4. The choice of the parameters is made in order to
capture interesting features of the behaviour of the problem: In particular, to observe
large regions of the domain where |∇u| = β1u + β2. We assume that material is
allocated uniformly everywhere on the domain so that f ≡ 1 and further, we consider
Θ ≡ 0, T = 0.001, and k = 10−5. In Figures 2(a) and 2(d) we have depicted the state
at t = 5 · 10−5 and t = T , respectively. Lateral views on these graphs are shown in
Figures 2(b) and 2(e) where the dependence of the gradient on the state is evident in
regions of activity. The active sets at t = 5 × 10−5 is given in Figure 2(c), and the
one at t = T essentially comprises the entire Ω.

6.4.3. Example 3: Nonzero Θ and finite time blow-up. If α > 1 with
|Θ(t, v)|L2(Ω) = LΘ|v|αL2(Ω), then Theorem 4 and Theorem 9 only ensure the exis-

tence of a solution u up to a certain time T ∗ which depends on α > 0, |u0|L2(Ω)

and |f |L2(0,T∗;L2(Ω)). This example is chosen to study the behavior of the numerical
approximation of the solution in a case of finite time blow-up. We consider (P0) with
a piece-wise constant forcing term f which is independent of t and defined by

f(x) =

{ √
133
10 , if x2 ≥ 1

12 + 2
3x1 and x2 ≤ − 1

8 + 3
2x1;√

13
100 , else.

Moreover, we set Θ(t, u) := 2 ·1012|u|L2(Ω)u and Φ(t, u) := β1u+β2 for β1 = 100, β2 =
10−8. In this case, according to Theorem 4, solutions are guaranteed to exist until a
time T with

T < (2× 1012|f |L2(Ω))
−1/2 = 10−6 =: T ∗.

In our tests, we set the time step to k = 10−8.
In Figures 3(a),3(b) and 3(c) we depict the solution at times t = 10−7, t = 5 ·10−7

and t = T ∗, while Figures 3(d), 3(e) and 3(f) show the corresponding active sets. The
behaviour of t 7→ |u(t)|H1

0 (Ω) for t > T ∗ is also studied and it is observed that the

solutions seems to blow up for t > T ∗, at t ' 1.78 · 10−6 (see Figure 4).

6.4.4. Example 4: Magnetization of a superconductor. The evolution of a
magnetic field u(t) inside a type-II-superconductor under the influence of an external
magnetic field be(t) can be described by a quasivariational inequality (see [3] and the
references therein) of the type (P0) where f(t) = ∂tbe(t) and Θ ≡ 0. Here the function
characterizing the gradient bound is given by Φ(t, u) := a(a+ |u+ be(t)|)−1, as it can
be found in Bean’s critical state model. Note that the function Φ(t, u) does not meet
the assumptions from section 4 since it fails to be increasing with respect to u, in
fact, it is decreasing. However, we use the methodology presented in this section and
solve the problem for a final time T = 0.08 and a time step k = 8× 10−4. As in [3],
we choose a = 0.02 and be(t) = t.

It is remarkable that in this example, even for very small values of γmax, we obtain
results that correspond to the real solution of the problem (see [3]). In fact, there
seem to be no significant changes in the solution for γmax > 10: In Figures 5(a) and
5(c) we depict final states for γmax = 10 and γmax = 100 and in Figures 5(b) and 5(d)
their corresponding active sets depicted, respectively.

7. Conclusions. We have provided a general theoretical and numerical frame-
work to deal with certain types of time-evolution quasi-variational inequalities, given
by problems (P0) and (P1). A sequence of approximations is built from problems
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The state u(t) at times t = 10−7, 5 · 10−7, 10−6 is depicted in Figures 3(a), 3(b) and
3(c), respectively. The corresponding active sets A(t) at those same times are given in 3(d), 3(e)
and 3(f), respectively.

Fig. 4. Plot of t 7→ |u(t)|H1
0 (Ω) where the x-axis represents t× 10−6 units.

(PN0 ) and (PN1 ), which reduce to compute solutions to N convex optimization prob-
lems. This sequence of approximations is shown useful to provide an existence result,
to extend the regularity and to prove the non-decreasing property of solutions. Fur-
ther, the problems (PN0 ) and (PN1 ) are suitable for computer implementation and a
simple algorithm involving a splitting method is shown to provide reasonable numer-
ical approximations to solutions of (P0) and (P1).

Appendix A. Lower Solutions for VIs.
The following result is due (to the best of our knowledge) to Bensoussan and is

included for the sake of completeness.

Proposition 11. Let A : H1
0 (Ω) → H−1(Ω) be linear, bounded and uniformly



30 M. HINTERMÜLLER, C. N. RAUTENBERG, AND N. STROGIES

(a) (b)

(c) (d)

Fig. 5. The final state and active set for γ = 10 are depicted in figures 5(a) and 5(b), respec-
tively, and for γ = 100 in 5(c) and 5(d), respectively.

monotone. Additionally, suppose that if v ∈ H1
0 (Ω), then 〈Av−, v+〉 ≤ 0. Let ϕi ∈

L∞(Ω) with i = 1, 2 be such 0 ≤ ϕ1 ≤ ϕ2 a.e.,

K(ϕi) := {v ∈ H1
0 (Ω) : v ≤ ϕi a.e. },

and suppose that fi ∈ L2(Ω) with i = 1, 2 and f1 ≤ f2 a.e.. Then, y1 ≤ y2 a.e., where
yi = S(A, fi,K(ϕi)).

Further, let ϕ ∈ L∞+ (Ω) and f ∈ L2(Ω). If z ∈ K(ϕ) satisfies

(66) 〈Az − f, φ〉 ≤ 0, ∀φ ∈ H1
0 (Ω) : φ ≥ 0 a.e.,

we say z is a lower solution for the triple (A, f,K(ϕ)). For any lower solution z, we
have that z ≤ S(A, f,K(ϕ)).

Proof. Since yi ∈ K(ϕi) for i = 1, 2, then 0 ≤ v1 := min(y1, y2) = y1−(y1−y2)+ ≤
ψ1 and 0 ≤ v2 := max(y1, y2) = y2+(y1−y2)+ ≤ ψ2. Hence, from 〈Ayi−fi, vi−yi〉 ≥ 0
for i = 1, 2, we obtain

〈Ay1 − f1,−(y1 − y2)+〉 ≥ 0, and 〈Ay2 − f2,−(y1 − y2)+〉 ≤ 0.(67)

Subtracting the second inequality from the first one, we observe

〈A(y1 − y2), (y1 − y2)+〉 ≤ (f1 − f2, (y1 − y2)+) ≤ 0,

since f1−f2 ≤ 0. Since A is uniformly monotone and 〈Av−, v+〉 ≤ 0, for all v ∈ H1
0 (Ω),

we obtain the following chain of inequalities:

c|(y1 − y2)+|2H1
0 (Ω) ≤ 〈A(y1 − y2)+, (y1 − y2)+〉

≤ 〈A(y1 − y2)+, (y1 − y2)+〉 − 〈A(y1 − y2)−, (y1 − y2)+〉
= 〈A(y1 − y2), (y1 − y2)+〉 ≤ 0.
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Therefore, (y1 − y2)+ = 0 a.e., that is, y1 ≤ y2 a.e. in Ω.
Let y = S(A, f, ϕ), so y ∈ K(ϕ) and

(68) 〈Ay − f, v − y〉 ≥ 0, ∀y ∈ K(ϕ).

Replacing v = y − φ with φ ∈ H1
0 (Ω) and φ ≥ 0 a.e. in Ω, we observe that y =

S(A, f,K(ϕ)) is a lower solution for the triple (A, f,K(ϕ)). Now we prove that if z is
an arbitrary lower solution, the z ≤ y a.e. in Ω. Let φ = (z−y)+ and v = max(y, z) =
y + (z − y)+ on (66) and (68), respectively, then

〈Az − f,−(z − y)+〉 ≥ 0 and 〈Ay − f,−(z − y)+〉 ≤ 0.

These are exactly the same inequalities as in (67). Therefore, we have that (z−y)+ =
0, i.e., z ≤ y a.e. in Ω.

Appendix B. Proof of Lemma 7.

Proof. Consider first a and i = 1. Let w ∈ K (Ψ) and note that the condition
“wN (t) ∈ K(Φ(tNn−1, u

N
n−1)) with t ∈ [tNn−1, t

N
n )” is equivalent to

(69) |∇wN (τ)| ≤
N∑
m=1

Φ(tNm−1, u
N
− (τ))χ[tNm−1,t

N
m)(τ) =: Φ̂(τ, uN− (τ)), τ ∈ [0, T ].

Denote by {ũN} the convergent subsequence obtained in Theorem 6, i.e., ũN → u∗

in C([0, T ];L2(Ω)). Then, by the inequality in (19) we also have that

lim
N→∞

|uN− − u∗|L∞(0,T ;L2(Ω)) = lim
N→∞

sup
t∈[0,T ]

|uN− (t)− u∗(t)|L2(Ω) = 0.

By Assumption 1, we have that Φ : [0, T ]×L2(Ω)→ L∞(Ω) is uniformly continuous,
i.e., for any ε > 0, there exists δ(ε) > 0 such that

|t1 − t2|+ |y1 − y2|L2(Ω) < δ(ε) =⇒ |Φ(t1, y1)− Φ(t2, y2)|L∞(Ω) < ε.

Therefore, for sufficiently large N we have that

1

N
+ |uN− −u∗|C([0,T ];L2(Ω)) < δ(ε) =⇒ |Φ̂(τ, uN− (τ))−Φ(τ, u∗(τ))|L∞(Ω) < ε, ∀τ ∈ [0, T ].

Recall that by assumption we have that the mapping Φ satisfies: 1) Φ(t, v) ≥
ν > 0 a.e. in Ω, for a.e. t ∈ [0, T ] and all v ∈ L2(Ω). 2) It is non-decreasing in
both variables. 3) T 7→ Φ(T, v) maps bounded sets in L2(Ω) into bounded sets in
L∞(Ω). Then, we define ϕN (t, x) := Φ̂(t, uN− (t))(x) and ϕ(t, x) := Φ(t, u∗(t))(x) with
(t, x) ∈ Q := [0, T ]× Ω. It follows that ϕN , ϕ ∈ L∞(Q) and also

(70) ϕN , ϕ ≥ ν > 0 : ϕN → ϕ in L∞(Q), as N →∞.

Now, we prove that for any η ∈ (0, 1), there is an N(η) such that

0 ≤ ηϕ(z) ≤ ϕN (z) a.e. z ∈ Q,

for N ≥ N(η) . In fact, let η ∈ (0, 1) be arbitrary, and consider the sets

QN := {z ∈ Q : ηϕ(z) > ϕN (z) a.e.}.
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Then, for almost all z ∈ QN , we have

|ϕ− ϕN |L∞(Q) ≥ ϕ(z)− ϕN (z) > (1− η)ϕ(z) ≥ (1− η)ν > 0.

But since |ϕ − ϕN |L∞(Q) → 0, there exists N(η) ∈ N, such that |QN | = 0 for all
N ≥ N(η).

Let {ηj} be a monotonically increasing sequence in (0, 1) such that limj→∞ ηj = 1.
Let w ∈ L2(0, T ;H1

0 (Ω)) satisfy |∇w(t)(x)| ≤ ϕ(t, x). Then, wj := ηjw fulfils

|∇wj(t)(x)| ≤ ηj |∇w(t)(x)| ≤ ηiϕ(t, x) ≤ ϕN(ηj)(t, x),

for almost all (t, x) ∈ Q. Finally, |wj − w|L2(0,T ;H1
0 (Ω)) = (1 − ηj)|w|L2(0,T ;H1

0 (Ω)) ≤
(1− ηj)|ϕ|L∞(Q) → 0 as j →∞. This proves the statement concerning w ∈ K (Ψ).

Next, we focus on a and i = 2. For the same sequence {ηj} as before, suppose
w ∈ L2(0, T ;H1

0 (Ω)) is arbitrary and such that w ∈ K ±(Ψ). Then wj(t) = ηjw(t)
belongs to K±(ϕN(ηj)(t, ·)), i.e.,

−ϕN(ηj)dist(x, ∂Ω) ≤ −ηjϕdist(x, ∂Ω) ≤ ηjw ≤ ηjϕdist(x, ∂Ω) ≤ ϕN(ηj)dist(x, ∂Ω),

(where we have omitted “(t, x)” for the sake of brevity) for a.e. t ∈ (0, T ), x ∈ Ω.
Further, it follows that |wj−w|L2(0,T ;H1

0 (Ω)) = (1−ηj)|w|L2(0,T ;H1
0 (Ω)) → 0 as j →∞,

and hence proves this case i = 2 for the a statement and an analogous argument can
be used to prove i = 3.

We now consider b. Since τ ∈ [tNn−1, t
N
n ) is constant, limN→∞ tNn−1 = τ and

φN = Φ(tNn−1, u
N
n−1) = Φ(tNn−1, ũ

N (tNn−1)). By (22) we have φN → φ in L∞(Ω) and
in addition φN , φ ≥ ν > 0 a.e. in Ω. These are the conditions in (70) (with Q
exchanged by Ω), and using the same argument we can prove that given a monoton-
ically increasing sequence {ηj} in (0, 1) with limj→∞ ηj = 1, then wj = ηjw satisfies
wj ∈ K(φN(ηj)), provided that w ∈ K(φ), and wj → w in H1

0 (Ω). This proves
the i = 1 case and analogous modifications of the argument in a. proves the cases
concerning i = 2 and i = 3.
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