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One challenge for the simulation and optimization of real gas pipe networks is the treatment of compressors. Their behavior
is usually described by characteristic diagrams reflecting the connection of the volumetric flow and the enthalpy change or
shaft torque. Such models are commonly used for an optimal control of compressors and compressor stations [4, 7] using
stationary models for the gas flow through the pipes. For transient simulations of gas networks, simplified compressor models
have been studied in [1–3]. Here, we present a transient simulation of gas pipe networks with characteristic diagram models
of compressors using a stable network formulation as (partial) differential-algebraic system.
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1 Modeling

1.1 Network Topology

Let G = (V,E) a directed graph with vertices V = V+ ∪ V− and edges E = EP ∪EC where V− and V+ are the nodes where
gas can enter and exit the network respectively andEP andEC being the set of pipes and compressors respectively. In addition
we define the sets δ−(u) and δ+(u) as the set of edges that are directed towards and away from node u ∈ V respectively.

Theorem 1.1 Let G = (V,E) be a connected, directed graph that describes a gas network with pipes and compressors
and let G fullfill V+ 6= ∅, @e ∈ E such that e ∈ δ−(V+) ∩ δ+(V+) and |δ−(u) ∩ EC | ≤ 1 ∀u ∈ V . Then it holds, that the
pipes can be directed in a way that

∀u ∈ V+ :δ−(u) = ∅ and ∀u ∈ V− : δ−(u) 6= ∅ and ∀u ∈ V− : δ−(u) ∩ EP = ∅ if δ−(u) ∩ EC 6= ∅.

1.2 Pipe Modeling

We model pipes by a simplification of the isothermal Euler equations [2]
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on [0, T ] × [0, `e] where p and q are the pressure and mass flow along pipe e, ae is the cross-sectional area, De the diameter,
λe the friction factor, g the gravitational acceleration, h′e the elevation of the pipe, c is the speed of sound, `e the length of the
pipe. Also we identify the point x = 0 with the position at the node u and x = `e with node v for e = (u, v). Such a modeling
is known to describe the gas flow through a pipe sufficiently well if the velocity of the gas is much less than the speed of sound
which is usually the case for real gas transport networks.

1.3 Compressor Modeling

For the compressor model we consider the characteristic diagram model for turbo-compressors describing the relation between
the adiabatic enthalpy and the volumetric flow rate [4, 7].
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, He = Ψe(Qe, ne), Qe = c2
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, pv = pce, e = (u, v) ∈ EC . (2)

Here He is the adiabatic enthalpy, Q the volumetric flow rate, qe the massflow and ne the speed. Ψe(Q,n) = Q̄Te Aen̄e with
Ae ∈ R3×3 Q̄>e = (1, Qe, Q

2
e) and n̄>e = (1, ne, n

2
e)
>. The fourth equation of (2) determines the control of the compressor.

We model the entry-nodes as a boundary condition for the pressure, leading to pe(t, 0) = pΓu (t) for e ∈ δ+(u), u ∈ V+. For
the nodes u ∈ V− we model the coupling by balance equations for the massflows∑

eP∈δ−(u)

qeP (t, `eP )−
∑

eP∈δ+(u)

qeP (t, 0) +
∑

eC∈δ−(u)

qeC (t)−
∑

eC∈δ+(u)

qeC (t) = qΓu (t) (3)
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and a mapping of pressures

peP (t, `eP ) = pv(t) peP (t, 0) = pu(t) eP = (u, v) ∈ EP (4)

The coupled system (1)-(4) represents a partial differential-algebraic system (PDAE) including a hyperbolic partial differential
equation system for the gas pipes.

2 Spatial Discretization of the PDAE System

The following spatial discretization (1) leads to a well-posed differential-algebraic system (DAE)
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Together with Equations (2) - (4) we get a semi-linear DAE

A(Dy)′ + b(y, t) = 0 with y = (p+, p−, qP(·, 0), qP(·, `), qC , H,Q, n)

where p+ and p− correspond to the pressures at the entry and exit-nodes respectively. The flows, adiabatic enthalpies, the
volumetric flow rates and the speeds of all compressors are collected in qC , H , Q and n. In comparison with well-established
discretization schemes as the implicit box scheme which lead to DAEs of index 2 [1,6] the discretization here has the advantage
that it leads to DAE system of index 1 if the assumptions of Theorem 1.1 are satisfied, the pipes are directed as described in
Theorem 1.1 and the pipe arcs always direct from the spatial position 0 to the spatial position `e [5].

3 Simulation Results
We present the simulation results for a simple benchmark (see network below) with constant pressure of 80 bar at u and zero
demand at nodes v1-v3. The control at v3 and the demands at nodes v4 and v5 can be taken from the figures below. Note that
qeP1

(t, `1) = qC(t).
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