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We consider optimal switching of hybrid abstract evolution equations. The
framework includes switching semilinear partial differential equations of para-
bolic or hyperbolic type, discontinuous state resets, switching costs and allows
switching of the principle parts of the equations. We present adjoint-based
formulae for the gradient of the cost functional with respect to position and
number of switching time points that lead to first order necessary conditions.
Moreover, we discuss an alternate-direction approach for implementing de-
scent methods. As an application we consider optimal open/close-switching
of valves and on/off-switching control of compressors in a gas network mod-
elled by a graph with simplified euler equations on edges and suitable coupling
conditions at nodes.

We present a framework for the optimal switching on a set of abstract differential
equations. For each element jn in a given finite set of modesM, we define a continuous
evolution by a generator Ajn of a C0-semigroup and a nonlinear perturbation f jn . More-
over, we allow for state transitions given by maps gjm,jn for jm, jn ∈ M each time the
mode changes. Each sequence j = (j1, . . . , jN ) ⊆M along with a sequence of switching
times τ = (τ0, . . . , τN ) then defines a hybrid system

ż(t) = Ajnz(t) + f jn(t, z(t)), n ∈ {0, . . . , N}, t ∈ (τn, τn+1),

z(τn) = gjn−1,jn(z−(τn)), n ∈ {1, . . . , N},
z(τ0) = z0.

(1)

Under fairly mild regularity assumptions on the given operators, we can prove the ex-
istence of a unique classical solution z to (1) on a time interval [0, T ] uniform in (j, τ).

∗e-mail: fabian.rueffler@fau.de, phone: +49 9131 85-67142, fax: +49 9131 85-67134
†e-mail: falk.hante@fau.de, phone: +49 9131 85-67128, fax: +49 9131 85-67134

1

mailto:fabian.rueffler@fau.de
mailto:falk.hante@fau.de


For certain running costs l and switching costs ljn−1,jn , we now can ask for an optimal
choice for j and τ in order to solve the minimization problem

min
j,τ

J(j, τ, z) =

∫ T

0
l(t, z(t)) dt+

N∑
n=1

ljn−1,jn(τn, z
−(τn))

s.t. z solves (1), j ⊆M, τ ∈ T (0, T ),

(2)

where T (0, T ) = {τ = (τ0, . . . , τ+1) | 0 = τ0 ≤ τ1 ≤ . . . τN ≤ τN+1 = T} is an ordering
cone. Formal arguments of Lagrange calculus used to find necessary optimality conditions
lead us to the adjoint system

ṗ(t) = −(Ajn)∗p(t)− [f jnz (t, z(t))]∗p(t) + lz(t, z(t)), t ∈ (τn, τn+1), n ∈ {0, . . . , N},
p(τn) = [gjn−1,jn

z (z−(τn))]∗p+(τn)− ljn−1,jn
z (τn, z

−(τn)), n ∈ {1, . . . , N},
p(T ) = 0.

(3)

In contrast to the solution z to the original problem, only a mild solution p can be ex-
pected for system (3). Nevertheless, the reduced cost functional Φ(j, τ) = J(j, τ, z(j, τ))
can then shown to be continuously differentiable with respect to the switching time τk
and the switching time gradient is given by

∂Φ(j, τ)

∂τk
= l(τk, z

−(τk))− l(τk, z(τk)) + l
jk−1,jk
τ (τk, z

−(τk))−
〈
p+(τk), ż(τk)

〉
Z
∗
, Z
. (4)

This formulation allows us to calculate gradients for all switching times by solving for
z and p once. Moreover, setting a(τ, n) = min{m ∈ {0, . . . , n} | τm = τn} and b(τ, n) =
max{m ∈ {n, . . . , N + 1} | τm = τn}, the following necessary optimality condition holds
for fixed j: if τ is a local minimum of Φ, then

k∑
l=a(τ,k)

∂Φ

∂τl
(τ) ≤ 0 and

b(τ,k)∑
l=k

∂Φ

∂τl
(τ) ≥ 0 for all k ∈ {1, . . . , N}. (5)

In fact, it turns out that a similar gradient can be found for the introduction of new
switching time points: suppose a new mode jm is added to the mode sequence together
with two new switching time points τ ′ = τ ′′ = t at the same time point t, one switching
to the new mode and the other immediately switching back. Then formula (4) applies
for τ ′′ and, by its sign, determines whether the newly added mode interval should be
expanded or discarded. This thus leads to a mode insertion gradient for each mode at
each time point

∂Φ(j, τ, t)

∂jm
= l(t, z(t))− l(t, gj(t),jm(z(t))) + (lj(t),jmτ (t, z(t))

+

〈
p(t), gj(t),jmz (z(t))

(
Aj(t)z(t) + f j(t)(t, z(t))

)
−
(
Ajmgj(t),jm(z(t)) + f jm(t, gj(t),jm(z(t)))

)〉
.

(6)
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The gradients (4) and (6) for the number and position of mode transitions can be in-
corporated in a numerical descent method for optimization. In detail, an alternate-
direction-type approach can be used where, in each iteration, first the current switching
time positions are optimized by a projected-gradient method and then a new mode is
added at a time point determined by the mode insertion gradient. In [2], a detailed
description along with a convergence analysis to points satisfying (5) with (6) being non-
negative can be found that, though formulated for a hybrid system of ODEs, translates
straightforward to our case.
Conceivable applications are, for instance, hybrid systems of ordinary, delay or partial

differential equations. Specifically, here we examine the optimization of switching signals
for valves and compressors in gas networks. We model the density % and flow q of gas in
a pipe by the 1D semilinear simplification of the isothermal Euler equations

∂%
∂t (t, x) + ∂q

∂x(t, x) = 0,

∂q
∂t (t, x) + c2 ∂%∂x(t, x) = − λ

2D
q(t,x)|q(t,x)|

%(t,x) ,

that includes the conservation of mass and a balance law for the flow including a friction
term on the right-hand side. Here, c ∼ 340 m

s denotes the speed of sound, D ∼ 1m the
pipe diameter and λ ∼ 0.01 the pipe roughness. The system is supplemented by coupling
conditions in each node v of the network: the gas density has to be continuous across
nodes and the net flow of in- and outgoing edges has to coincide with a given node inflow
qv, i.e.

%v(t) =

{
%e(t, Le), if e ∈ δ+v,
%e(t, 0), if e ∈ δ−v,

and
∑
e∈δ+v

qe(t, Le)−
∑
e∈δ−v

qe(t, 0) = qv(t),

for an appropriate choice of %v : [0, T ]→ R, where Le denotes the length of pipe e and δ±v
denotes the set of ingoing/outgoing edges at v. Valves behave like normal nodes if open
and impose a zero-flux boundary condition on each incident edge if closed. Compressors
are nodes with one ingoing and one outgoing edge, behave like normal nodes if inactive
and amplify the ingoing density by a given factor if active. Similar problems appear in
the control of fresh and waste water, see [3] for details.
The example shown in Fig. 1 represents a tree network with 10 pipes of length 10 km, 2

valves and a compressor observed over a time of 30 minutes. Gas is supplied at node (A)
with constant inflow and could be extracted at several customer nodes (B)-(E). In the
particular simulation, gas is initially distributed uniformly over the network, nodes (B)
and (C) are inactive and a gas demand emerges at (D) and (E). Valves and compressor are
initially open/inactive. The width of the bars in Fig. 2 and Fig. 3 represents the density,
the color represents the flow. Without any action, not enough gas can be transported to
these nodes and the simulation shows the violation of lower pressure bounds, marked red
in the final state shown in Fig. 2. However, the transport can be optimized by defining a
cost functional penalizing negative values for the density and introducing switching time
points for closing the valves, thereby cutting off the inactive branches of the network,
and activating the compressor. Fig. 3 shows the final state after applying the algorithm
for the optimization of the switching sequence.
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Fig. 1. Topology of the
network

Fig. 2. Final state without
action

Fig. 3. Final state after op-
timization
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