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Optimal control problems subject to a nonlinear scalar conservation law, the state system, are studied.
Such problems are challenging both at the continuous and discrete level since the control-to-state oper-
ator poses difficulties such as non-differentiability. Therefore discretization of the control problem has
to be designed with care to provide stability and convergence. Here, the discretize-then-optimize ap-
proach is pursued and the state is removed by the solution of the underlying state system, thus providing
a reduced control problem. An adjoint calculus is then applied for computing the reduced gradient in
a gradient-related descent scheme for solving the optimization problem. The time discretization of the
underlying state system relies on total variation diminishing Runge-Kutta (TVD-RK) schemes, which
guarantee stability, best possible order and convergence of the discrete adjoint to its continuous coun-
terpart. While interesting in its own right, it also influences the quality and accuracy of the numerical
reduced gradient, and thus the accuracy of the numerical solution. In view of these demands, it is proven
that providing a state scheme which is a strongly stable TVD-RK method is enough to ensure stability of
the discrete adjoint state. It is also shown that requiring strong stability for both, the discrete state and
adjoint, is too strong, confining one to a first-order method regardless of the number of stages employed
in the TVD-RK scheme. Given such a discretization, we further study order conditions for the discrete
adjoint such that the numerical approximation is of the best possible order. Also, convergence of the
discrete adjoint state towards its continuous counterpart is studied. In particular, it is shown that such
a convergence result hinges on a regularity assumption at final time for a tracking-type objective in the
control problem. Finally, numerical experiments validate our theoretical findings.
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1. Introduction

We are considering an optimal control problem of type

min
u∈Uad

∫

R
G(y(x,T ))dx,

subject to (s.t.) a scalar conservation law, i.e.,

yt + f (y)x = 0 in R×R+,
y(x,0) = u(x) in R.

Here Uad is called the admissible set and it is assumed to be non-empty, convex and closed. the state,
y(x, t), is considered to be the entropic (weak) solution of the scalar conservation law and u(x), the
control, is the initial data of the partial differential equation (PDE).

Although the definition of the optimal control problem seems simple, the PDE constraint (conser-
vation law) poses severe difficulties for the analysis of such problems, both at the continuous and at
the discrete level. The major problem is the possible formation of a shock in the state y(x, t) at finite
time even for very smooth initial data u(x), when the flux function f (·) is non-linear. Moreover it is
easy to show through examples that the control-to-state map is not Gâteaux differentiable when shocks
are present. This poses a significant problem for obtaining the derivative of the cost functional of a
(control) reduced version of the underlying optimal control problem. Luckily a generalized definition of
the derivative, called “shift derivative”, for the control-to-state map has been derived by Ulbrich (2001,
2002) which implies Fréchet differentiability of the cost functional. Such differentiability results enable
us to compute the derivative of the cost functional using an adjoint approach. In Section 2, we state
the underlying optimal control in a rigorous context by recalling weak and entropic solutions of scalar
conservation laws and their properties as well as the concept of shift differentiability.

The difficulties that arise from the nature of the PDE is also reflected at the discrete level, i.e., one
should discretize the problem with care. Monotone schemes, that we recall in Section 3, are among
successful discretizations for conservation laws and their theory is well-understood. We use monotone
discretizations in space to obtain a semi-discrete formulation and then we discretize in time using a
total variation diminishing (TVD) Runge-Kutta (RK) scheme. TVD-RK methods are a class of RK
methods that guarantee, under quite mild assumption, that the discrete solution is total variation stable
(also called “ stability preserving (SSP)” methods). We then obtain the fully discrete optimal control
problem by discretizing the objective functional.

Similar to the continuous level, one can obtain the derivative of the cost functional using the adjoint
calculus. The properties of the discrete adjoint are intimately related to the discretization of the discrete
state. The TVD-RK method for the discrete state can be characterized by two sets of coefficients {αi j}
and {βi j}. We show that the corresponding discrete adjoint is also obtained by a TVD-RK method where
the coefficients are “conjugates” of {αi j} and {βi j}. Therefore we will study in Section 4 stability and
approximation of the discrete adjoint. In particular we discover the following properties:

• Proposition 4.4: Imposing on both, discrete state and discrete adjoint, is too strong and it results
in a first-order time-discretization.

• Theorem 4.5: Imposing on the discrete state is enough to give stability of the discrete adjoint.

• Theorem 4.6 and Theorem 4.7: Any two-stage second-order TVD-RK method for the discrete
state results in a second-order adjoint approximation. Any three-stage third-order TVD-RK
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method for the discrete state results in a second-order adjoint approximation. Hager (2000)
showed that for certain third-order RK methods, the resulting discrete adjoint is only second-
order. Theorem 4.7 shows that this is the case for the class of TVD-RK methods.

The study of the differentiability of the control-to-state map when shocks are present was started by
Bressan & Guerra (1997). In that paper it was shown that this map is in general not differentiable. A
similar problem formulated in terms of a minimization task was studied by James & Sepúlveda (1999)
where the derivative of the objective functional was obtained when the state is smooth and does not
contain shocks. Later Ulbrich (2001, 2002) analyzed the shift-differentiability of the so-called control-
to-state operator and showed Fréchet differentiability of the reduced objective functional in the presence
of shocks. Moreover, an adjoint procedure to compute the mentioned derivative was introduced and
analyzed.

For the nonlinear conservation law (2.1), it has been observed that not all RK methods can ensure
TVD properties of the approximation, i.e., oscillations occur near discontinuities; see the example in
(Gottlieb & Shu, 1998, Section 2). Shu & Osher (1988) constructed a class of RK methods that ensures
the approximation to be TVD; the so-called TVD-RK methods. The main idea is to use convex combi-
nations of the forward Euler method to construct a high-order approximation. If the Euler step is stable
in some (semi-)norm, then under some mild conditions the convex combination of the Euler steps is
stable, too. Order conditions are also derived by Shu & Osher (1988) for second and third orders with
two and three stages, respectively. We should also remark that the derivation of such conditions remains
formal as often the solution of the hyperbolic problem does not possess the required regularity. It is
proven by Gottlieb & Shu (1998) that a fourth-order method with four stages does not exist. However, a
fourth-order five-stage method was discovered by Spiteri & Ruuth (2002). Ruuth & Spiteri (2002) also
showed that methods beyond fourth order of any number of stages do not exist.

For the numerical treatment of such optimization problems and for a particular objective functional,
Giles (2003) showed that the classical Lax-Friedrichs scheme leads to a discrete adjoint which con-
verges to a wrong solution. Later M. Giles and S. Ulbrich showed in Giles & Ulbrich (2010a,b); Ulbrich
(2001) under a restrictive time-step that the classical Lax-Friedrichs scheme yields a convergent discrete
adjoint. Higher-order discretizations based on relaxation of the conservation law was also introduced
and studied by Banda & Herty (2012). We finish this brief review of the literature by recalling an alter-
nating descent method introduced by Castro et al. (2008) as a solution technique for such optimization
problems.

2. Optimal control of scalar conservation laws

An abstract optimal control problem can be formulated as

min J(y) subject to S(u) = y, u ∈Uad, (P)

where y is called the state variable and u is the control variable, with the latter belonging to an admissible
set Uad. The objective functional is denoted by J(·) and it is assumed to be differentiable. The control
and state variables are related through a control-to-state map S(·) which can be regarded as a solution
operator of the underlying PDE. Obviously, the control-to-state S(·) influences existence and uniqueness
of the optimal control problem as well as optimality conditions which characterize the optimal solution.

In this work, we consider S(·) to be the solution operator of the following one-dimensional scalar
conservation law (Cauchy problem):

yt + f (y)x = 0 in R×R+,
y(x,0) = u(x) in R, (2.1)
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where u ∈ L∞(R) is the initial data with compact support in a bounded interval K ⊂ R and y(x, t) is the
conserved variable. This motivates to define the admissible set Uad by

Uad :=
{

u ∈ L∞(R) : supp(u)⊂K,‖u‖BV(R) 6C
}
, (2.2)

where C > 0 is a constant, supp(·) denotes the support of a function, i.e., supp(u) = {x ∈R : u(x) 6= 0},
and L∞(R) is the Lebesgue space of essentially bounded functions on R with norm ‖·‖L∞(R). In this
paper we assume that the so-called flux function f (·) is in C2(R) and satisfies f ′′ > 0. A particular
example is f (y) = 1

2 y2 which gives rise to the inviscid Burgers equation. Concerning the objective
functional we study the so-called tracking type functional, i.e.,

J(y) :=
∫

R
G(y(x,T ))dx, (2.3)

where T > 0 is a final time. A common example is G(y(x,T )) := |y(x,T )− yobs(x)|2 with yobs ∈ L2(R)
given.

Classical solutions of (2.1) can be constructed by the method of characteristics. However, due to the
possible non-linearity of the flux function f , classical solutions break down in finite time even for very
smooth initial data. Therefore we consider generalized (weak) solutions of (2.1) in integral form: The
function y ∈ L∞(R×R+) is called a weak solution of (2.1) if it satisfies

∫

R×R+

yϕt + f (y)ϕx dxdt +
∫

R
u(x)ϕ(x,0)dx = 0 ∀ϕ ∈ C∞

c (R×R+), (2.4)

where C∞
c (R×R+) represents the space of infinitely differentiable functions with compact supports in

R×R+, with R+ = [0,+∞). There might be more than one weak solution for given initial data. For
instance, consider the following example: Let f (y) = 1

2 y2, and u(x) = 0 for x < 0 and u(x) = 1 for x> 0
which yields a discontinuous initial data. Then, the following two weak solutions are known:

y1(x, t) =

{
0 x < 1

2 t,
1 x> 1

2 t,
and y2(x, t) =





0 x < 0,
x/t 06 x < t,
1 t 6 x.

The lack of uniqueness can be overcome by picking the physically relevant or entropy solution.
Therefore we impose an extra constraint on the weak solution: A function y ∈ L∞(R×R+) is called an
entropy solution (in the sense of Kružkov (1970)) if it satisfies

∫

R×R+

η(y)ϕt +q(y)ϕx dxdt +
∫

R
η(u(x))ϕ(x,0)dx> 0 ∀ϕ ∈ C∞

c (R×R+), ϕ > 0, (2.5)

where η(y) := |y−k| and q(y) = sign(y−k)( f (y)− f (k)) for all k ∈R. One can show that if y satisfies
(2.5) then it is also a weak solution in the sense of (2.4); see for instance (Chechkin & Goritsky, 2009,
Section 5.5). Kružkov then shows that such an entropy solution is indeed unique. For the following
result we introduce BV(R), the space of the functions of bounded variations on R, i.e., u ∈ BV(R) iff
u ∈ L1(R) and TV(u) := sup{∫R u p′ dx : p ∈ C1

c(R), |p| 6 1 a.e. in R}. Here “a.e.” stands for “almost
everywhere”. Endowed with ‖u‖BV(R) = ‖u‖L1(R)+TV(u), it is a Banach space.

The following theorem is due to Kružkov; see Kružkov (1970). We refer the reader to (Evans, 2010,
Section 11.4.3) for a proof.
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THEOREM 2.1 Let u∈ L∞(R) in (2.5), then there exists a unique entropy solution y of (2.5) that satisfies
‖y(·, t)‖L∞(R) 6 ‖u‖L∞(R) for all t > 0. Moreover let, y1 and y2 be two entropy solutions corresponding
to initial data u1,u2 ∈ L∞(R)∩L1(R), respectively. Then we have

‖y1(·, t)− y2(·, t)‖L1(R) 6 ‖u1−u2‖L1(R) ∀t > 0.

Finally if u ∈ BV(R) then TV(y(·, t))6 TV(u) for all t > 0.

The notion of entropy solutions enables us to state our optimal control problem in a meaningful
way. Therefore, our optimal control problem (P) is completed by setting the solution operator S(·) to
be the entropy solution of the conservation law at time T . We will see in Section 2.1 that S(·) is not
Gâteaux differentiable when discontinuity (shocks) appear in the state y. Therefore a different approach
in defining a derivative of the control-to-state map, called shift derivative, is derived which leads to
Fréchet differentiability of the objective functional.

Using this setting, existence of a minimizer can be shown for the underlying problem; see Appendix.
We also refer to Castro et al. (2008); Ulbrich (1999) for a more general case. Uniqueness is, however,
not guaranteed since we can construct control examples that lead to the same state which minimizes the
objective functional: Indeed, consider the following controls

u1 =





1 −26 x < 0,
−1 06 x6 2,
0 otherwise,

u2 =





1 −26 x <−1,
−x −16 x6 1,
−1 16 x6 2,
0 otherwise,

for , i.e., f (y) = 1
2 y2. We fix the final time T = 2. One can construct the corresponding entropy solution

for each initial data. A direct calculation by the method of characteristics shows that at time t > T both
initial data give

y(x, t) =





1
t (x+2) −26 x6 0,
1
t (−x+2) 0 < x6 2,
0 otherwise.

Setting yobs := y(x,T ), we then have J(S(u1)) = J(S(u2)) = 0, i.e., two optimal controls for (P).

REMARK 2.1 (flux identification problem) A different, yet similar optimal control problem of conser-
vation laws can be formulated in which the control variable is the flux function and the initial data is
fixed. More precisely we look for a flux function f ∈Fad, where Fad is the admissible set, minimizing
a given objective functional. For instance f may have a closed analytical form, perhaps transforming
the optimal control problem into Rn. In this case the solution operator is, i.e., defined as y = S( f ). The
existence of the minimum can be proven by a continuity result due to Lucier (1986)

‖S( f )(·, t)−S(g)(·, t)‖L1(R) 6 t‖ f −g‖Lip ‖u‖BV,

and an assumption on the compactness of Fad; see (James & Sepúlveda, 1999, Section 2.2) for details.
Uniqueness is again not guaranteed in general; see the discussion in James & Sepúlveda (1999).

2.1 Shift differentiability and adjoint calculus

As we have seen, the control-to-state operator is a delicate object and needs special care for the forward
problem (2.1) to be well-posed. We have also seen that although the optimal control problem (P) admits
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a minimizer, uniqueness cannot be expected in general. We now turn our attention on characterizing
such a minimum. For the numerical treatment, first-order characterizations of such minimizers are of
importance. This is our next subject of study.

A first step in deriving optimal conditions for the problem is investigating differentiability of the
objective functional. Note that the objective functional defined by (2.3) is well behaved, in the sense
that G is sufficiently smooth and allows existence of a solution and only the solution operator S(·) may
cause problems. Thus, using the chain rule, we must investigate differentiability of S(·). It turns out that
in the presence of shocks, S(·) is not Gâteaux differentiable as we illustrate in the following example
borrowed from Bressan & Guerra (1997).

EXAMPLE 2.2 Suppose the initial data is uε = (1+ ε)x ·1[0,1](x) where ε ∈ R and 1[0,1](x) denotes the
indicator function of the interval [0,1]. Consider the . We can construct the entropy solution by the
method of characteristics:

yε(x, t) =
(1+ ε)x

1+(1+ ε)t
·1

[0,
√

1+(1+ε)t](x).

Note that the shock position now depends on the perturbation, that is, xs(t) =
√

1+(1+ ε)t, and at time
t = 0 the derivative exists

v(x) = lim
ε→0

ε
−1(uε −u0) = x ·1[0,1](x).

However at time t > 0 there is no such derivative v(x) ∈ L1(R). In fact ε−1(yε(·, t)− y0(·, t)) converges
as ε → 0 in the sense of distributions to

x
(1+ t)2 ·1[0,√1+t]+

t
2(t +1)

δ√1+t , (2.6)

where δx is the Dirac delta function located at x.

Note that in the previous example, the distributional derivative has a continuous part and a singular
part due to a shift in the shock location. Moreover the perturbed shock location, xs(t) =

√
1+(1+ ε)t,

is differentiable with respect to the perturbation and the solution, yε(x, t), vary differentiably in the left
and right of the shock. This motivates a first order approximation of (2.6) introduced in Ulbrich (2001,
2002).

Let u ∈U ⊂U where U is an open set and U a Banach space. Moreover u is such that yu := S(u)
has bounded variation and its support is in K ⊂ R. For the sake of presentation, suppose for instance
that u has compact support, contains a shock at xs(0) and is a C1 function on either side of the shock.
Suppose the shock remains in the solution up to time T and its position is given by xs(t). We perturb u by
δu∈U such that yu+δu := S(u+δu)∈ L∞(R)∩BV(R). Then we can define a first order approximation
of yu+δu− yu by the shift variation

δS(δy,s) := δy+ sign(s)[[y(xs(T ),T )]]1[xs(T ),xs(T )+s] ∈ L1(K),

where [[y(xs(T ),T )]] = y(x−s (T ),T )−y(x+s (T ),T ) and (δy,s)∈L1(K)×R depends linearly on δu. Here
δy corresponds to the variation of the solution in the continuous part and s is a linear approximation of
the shock shift (e.g., in Example 2.2, xs(t) is differentiable with respect to ε). More precisely we suppose
that there exists a bounded linear operator

T (u) ∈L (U ,Lr(K)×R) r ∈ (1,∞],
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such that (δy,s) := T (u) ·δu. We say yu is shift differentiable at u if

lim
δu→0

‖δu‖−1
U · ‖yu+δu− yu−δS(T (u) ·δu)‖L1(K)

= 0.

It is proven that shift differentiability implies Fréchet differentiability of the objective functional, see
for instance (Ulbrich, 2001, Section 3.2.2). Moreover it is shown in (Ulbrich, 2001, Theorem 3.3.2) that,
under some technical assumptions, entropy solutions are continuously shift-differentiable and therefore
the objective functional is Fréchet differentiable.

Although the shift differentiability result is a useful tool in proving differentiability of the objective
functional using sensitivities, it is often more convenient to obtain the objective functional’s derivative
using an adjoint calculus. For the conservation laws with smooth solution, F. James and M. Sepúlveda
derived such an adjoint based derivative; see (James & Sepúlveda, 1999, Section 2.4) and the reference
therein. Later S. Ulbrich generalized the adjoint calculus to the case where the solution contains shocks.
Here we only state the result and refer the interested reader to Ulbrich (2001, 2002) for details. For a
formal derivation see Giles & Ulbrich (2010a).

Suppose the perturbation δu has the same structure as u, i.e., it contains a shock discontinuity at
xs(0) and is piecewise C1 on either side of the shock. Then the derivative of J (u) := J(S(u)) in the
direction of the δu (perturbation in the initial data) is given by

J ′(u)δu =
∫

R
p(x,0)δu(x)dx, (2.7)

where p(x, t) is the adjoint variable that satisfies the following backward equation with final-time con-
dition

pt + f ′(y)px = 0 in R× (0,T ),
p(x,T ) = G′(y(x,T )) in R. (2.8)

In case y(x, t) contains a shock which travels along xs(t), we need to impose an interior boundary
condition for the adjoint along xs(t):

p(xs(t), t) =
[[G(y)]]
[[y]]

∣∣∣
(xs(T ),T )

∀t ∈ [0,T ]. (2.9)

The adjoint equation (2.8) is backward in time and is a non-conservative hyperbolic PDE with final
datum and has been studied by many authors, see for instance James & Sepúlveda (1999) and Ul-
brich (2003). Let us first consider the case when p(x,T ) ∈ Liploc(R), e.g., shocks at the final time are
smoothed in the objective functional. A one-sided Lipschitz-continuity condition (OSLC) on f ′(y), i.e.,

esssup
x 6=z

( f ′(y(x, t))− f ′(y(z, t))
x− z

)+
6 m(t),

where m(t)∈ L1(0,T ), guarantees that the generalized backward characteristics starting from time T do
not intersect. Then existence of at least one Lipschitz continuous solution can be guaranteed. However,
uniqueness is not ensured; see Conway (1967). Uniqueness can be proved for the so-called reversible
solutions which we briefly recall. Let us define the set E as the set of exceptional solutions, i.e., Lipschitz
continuous solutions of (2.8) where p(x,T ) = 0. Then the support of the exceptional solutions is defined
as

Ve :=
{
(x, t) ∈ R× (0,T ) : ∃p ∈ E , p(x, t) 6= 0

}
.
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A reversible solution is then a Lipschitz continuous solution of (2.8) which is locally constant in Ve; see
(Bouchut & James, 1998, Definition 4.1.4).

We should mention that reversible solutions can be also defined for discontinuous Borel functions
as end data p(x,T ) that are pointwise everywhere the limit of a bounded sequence (pT

n ) ∈ C0,1(R),
i.e., bounded in C(R)∩W 1,1

loc (R); see Ulbrich (2003). In this case, reversible solutions can be defined as
broad solutions along the generalized backward characteristics, which automatically ensures the internal
boundary condition (2.9), if the end date (2.9) are used at (xs(T ),T ).

The following theorem states properties of the reversible solution and is proved in (Ulbrich, 2003,
Theorem 14) for the general case of hyperbolic balance laws. For simplicity of the presentation, we
adapt the result in (Ulbrich, 2003, Theorem 14) to our setting (see also Bouchut & James (1998)). For
the case of a discontinuous end data, we refer the reader to (Ulbrich, 2003, Corollary 15).

THEOREM 2.3 Let f ′(y(x, t)) ∈ L∞(R× (0,T )) and satisfies OSLC. Then the following holds: For all
p(x,T ) ∈ C0,1(R) there exists a unique reversible solution p of (2.8). Moreover, p ∈ C0,1(R× [0,T ])
and solves (2.8) a.e. on R× (0,T ). Finally, for all t ∈ [0,T ], z1 < z2 and 06 s < ŝ6 T with

I := [z1,z2], I ŝ
s := [s, ŝ]× I,

J :=
[
z1− (T − t)‖ f ′(y)‖L∞(R×(0,T )),z2 +(T − t)‖ f ′(y)‖L∞(R×(0,T ))

]
,

JT
t := [t,T ]× J,

the following estimates hold:

‖p(·, t)‖B(I) 6 ‖p(·,T )‖B(J),

‖px(·, t)‖L1(I) 6 ‖px(·,T )‖L1(J),

‖pt‖L1(I ŝ
s )
6 (ŝ− s)‖ f ′(y)‖L∞(I ŝ

s )
‖px‖L∞(s,ŝ;L1(I)),

where B(I) is the Banach space of the bounded functions equipped with the sup-norm.

We now demonstrate the use of the adjoint calculus by the following example.

EXAMPLE 2.4 Consider , i.e., f (y) := 1
2 y2, on the domain Ω = (−1,1), and the initial data is set to be

u(x) :=

{
1 −16 x < 0,
−1 0 < x6 1,

with a shock discontinuity at x = 0. For the boundary conditions we set y(−1, t) = 1 and y(1, t) = −1
for t > 0. It is easy to see that the entropic solution equals the initial data, i.e., y(x, t) = u(x) for all t > 0.
Hence the shock position remains at x = 0, i.e., xs(t) = 0 for t > 0. We now compute the adjoint state
using (2.8) and (2.9). For this purpose, let G(y) := 1

2 |y|2. Then we have [[G(y)]]|t=T = 0 and G′(y) = y.
Then for the final-time condition of the adjoint equation, we obtain

p(x,T ) :=

{
1 −16 x < 0,
−1 0 < x6 1,

and p(0,T ) = 0.

and for the “interior” boundary condition we have p(0, t) = 0 for t ∈ [0,T ]. We fix T = 1
2 .
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T = 1
2

11
2− 1

2−1
x

t

p(x,T )=1︷ ︸︸ ︷ p(x,T )=−1︷ ︸︸ ︷

0

FIG. 1. Construction of the adjoint using the method of characteristics in space-time domain. Note that the adjoint has a constant
value in the gray area due to the discontinuity of the state at time T .

By the method of characteristics we can construct p(x, t) for t < T . More precisely, along all straight
lines x(t) with the derivative ẋ(t) = y(x(t), t), the adjoint state is constant. This implies that, at t = 0, we
have

p(x,0) =





1 −1 < x <− 1
2 ,

0 − 1
2 6 x6 1

2 ,

−1 − 1
2 < x < 1.

See also Figure 1.

3. Numerical methods

In this section we describe how we discretize the optimal control problem (P). In this paper we follow the
discretize-then-differentiate approach, that is, we first fully discretize the optimization problem and then
derive the optimality conditions for the resulting finite dimensional optimization problem. In particular
we should consider in detail the discretization of the conservation law (2.1). It is important that one
makes sure that the discretization of the forward problem converges to the unique entropy solution as
well as the inherited adjoint discretization to the continuous adjoint state. We refer the reader to LeVeque
(1990) for an introduction to numerical methods for such PDEs.

Since we are interested in studying how time discretization, using TVD-RK methods, influences
quality of the overall scheme, we first discretize the conservation law in space and then in time by a
TVD-RK method.

3.1 Spatial discretization

Let us first partition the domain, say R with non-overlapping intervals, I j := (x j−1/2,x j+1/2], where
x j−1/2 < x j+1/2 for all j ∈ Z. The so-called mesh size is denoted by h j := x j+1/2− x j−1/2. We denote
the semi-discrete approximation at time t by

yyy(t) := (. . . ,y j−1(t),y j(t),y j+1(t), . . .) ∈ `∞(Z).

More precisely, y j(t) ∈ R is an approximation to the cell-average of the true solution, i.e.,

y j(t)≈
1
h j

∫ x j+1/2

x j−1/2

y(x, t)dx.
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We then discretize in space using a conservative scheme, by choosing a numerical flux function f̂ (y j(t),y j+1(t))
that approximates f (y(x j+1/2, t)). Then the semi-discrete numerical scheme is obtained by solving the
following ordinary differential equation (ODE) in time:

d
dt

y j(t)+
1
h j

(
f̂ (y j(t),y j+1(t))− f̂ (y j−1(t),y j(t))

)
= 0 ∀ j ∈ Z. (3.1)

The simplest time discretization for (3.1) is given by the forward Euler scheme. For this purpose, we
partition the time direction into time slabs tn for n ∈ Z+, where tn < tn+1. For simplicity we assume a
uniform time-step, i.e., tn+1− tn = k for all n ∈ Z+ and similarly a uniform mesh-size, i.e., h j = h for
all j ∈ Z. Then the fully discrete system using the forward Euler discretization reads

yn+1
j = yn

j −
k
h

(
f̂ (yn

j ,y
n
j+1)− f̂ (yn

j−1,y
n
j)
)
∀ j ∈ Z,n ∈ Z+, (3.2)

where yyyn := (. . . ,yn
j−1,y

n
j ,y

n
j+1, . . .) is an approximation to yyy(tn). Later, in Section 4, we discretize (3.1)

by a high-order TVD-RK method.
The choice of the numerical flux f̂ (·, ·) is crucial since it convergence properties of the method.

Note that not only are we interested in convergence to a weak solution but, also we require convergence
to the entropy solution. Hence we require that the method satisfy a discrete version of (2.5) as well as
other properties like L1-contraction, total variation diminishing etc. In fact, monotone schemes satisfy
such requirements and converge to the entropy solution; see for instance (LeVeque, 1990, Chapter 15).
We, however, need yet another condition: the numerical scheme should be differentiable. This enables
us to derive optimality conditions at the discrete level.

Motivated by the differentiability issue addressed above, the following numerical fluxes are used in
this paper:

f̂LF(a,b) := 1
2 ( f (a)+ f (b))− γ

2
h
k (b−a) Lax-Friedrichs (LF),

f̂EO(a,b) := f (0)+
∫ a

0 f ′(s)+ ds+
∫ b

0 f ′(s)− ds Engquist-Osher (EO),
(3.3)

where γ ∈ (0,1) and we define f ′(s)+ := max(0, f ′(s)) and f ′(s)− := min(0, f ′(s)). We note that the
classical Lax-Friedrichs method uses γ = 1. However, due to the stability requirements for the discrete
adjoint we impose γ < 1; see Section 3.3. The Lax-Friedrichs scheme is monotone provided that the
time-step satisfies the CFL condition

k
h

sup
|y|6M

| f ′(y)|6 γ, (3.4)

where M = maxx |u(x)|. We define the total variation semi-norm for yyy by

|yyy|TV :=
∞

∑
j=−∞

|y j+1− y j|.

It is well-known that monotone schemes are also TVD; see (LeVeque, 1990, Chapter 15.7). Therefore
we have

∣∣yyyn+1
∣∣
TV 6 |yyyn|TV. Giles & Ulbrich (2010a,b) proved that for the Lax-Friedrichs method,

provided k 6 γ · h2−q for 0 < q < 1, both forward and adjoint approximations converge to the their
respective continuous counterparts. This is due to adding more grid points near the shock position as
the mesh is refined. This, however, results in a very restrictive time-step requirement.
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Since the support of the initial data is assumed to be in a bounded set, recall (2.2), and it is known
that the solution of the conservation law has a finite speed of propagation, we can consider the problem
on a bounded domain, denoted by Ω only. Therefore, the discretization can be written using finite
dimensional operators. Let us suppose that Ω = (a,b) is partitioned into N elements, I j for j = 1, . . . ,N,
with x1/2 = a and xN+1/2 = b. Then we can define a finite dimensional space Vh :=RN as approximation
space, and we denote the approximation at time tn by yyyn

h = (yn
1,y

n
2, . . . ,y

n
N)∈Vh. This allows us to express

the underlying scheme using a non-linear discrete operator, Fh : Vh→Vh, which is defined by
[
Fh(www)

]
j := f̂ (w j,w j+1)− f̂ (w j−1,w j) ∀ j = 1, . . . ,N, www ∈Vh. (3.5)

The fully discrete version of (3.2) with forward Euler time integration can then be written as

yyyn+1
h = yyyn

h−
k
h

Fh(yyyn
h), yyy0

h = uuuh. (3.6)

Differentiability properties of Fh(·) will be exploited later in Section 3.2 for deriving an adjoint dis-
cretization. Now we state Lax-Friedrichs and Engquist-Osher differentiability in the following proposi-
tion whose proof we defer to the appendix.

PROPOSITION 3.1 Let the flux function be f (·) ∈ C2. Then the respective Fh(www) for the Lax-Friedrichs
and Engquist-Osher schemes at www ∈Vh is Fréchet differentiable, i.e., there exists a linear bounded oper-
ator F ′h(www) : Vh→Vh such that in direction vvv ∈Vh we have [F ′h(www)vvv] j = g j, j+1−g j−1, j with

gLF
j, j+1 := 1

2

[
f ′(w j+1)v j+1 + f ′(w j)v j

]
− γ

2
h
k (v j+1− v j) (LF),

gEO
j, j+1 := 1

2

[
f ′(w j+1)v j+1 + f ′(w j)v j

]
− 1

2 (| f ′(w j+1)|v j+1−| f ′(w j)|v j) (EO),

for i = j, . . . ,N. Moreover, for their transposes we have
[
F ′h(www)

>vvv
]

j = γ
h
k v j− 1

2

(
γ

h
k + f ′(w j)

)
v j+1− 1

2

(
γ

h
k − f ′(w j)

)
v j−1 (LF),

[
F ′h(www)

>vvv
]

j = | f ′(w j)|v j− 1
2

(
| f ′(w j)|+ f ′(w j)

)
v j+1− 1

2

(
| f ′(w j)|− f ′(w j)

)
v j−1 (EO).

We will see in Section 3.2 how properties of Fh(·) influence the discrete adjoint variable. In particular
we are interested in total variation diminishing properties of the discrete adjoint.

3.2 Discrete optimal control problem and adjoint calculus

In this section we state the discrete optimization problem, derive the discrete adjoint and study its proper-
ties when a forward Euler time integration is employed together with the spatial discretization discussed
in Section 3.1.

As before, we denote the final time by T . For simplicity, we partition the time direction in a way
that there exists nT such that T = nT · k. In order to ease the notation, we concatenate approximations
yyyn

h at different times n = 1, . . . ,nT to obtain yyyh ∈ (Vh)
nT+1:

yyyh := (yyy0
h,yyy

1
h,yyy

2
h, . . . ,yyy

nT
h )>. (3.7)

The discretized objective functional is then given by

Jh(yyyh) :=
N

∑
j=1

hG(ynT
j ),
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where yyyh is obtained by (3.6). We then consider the following finite dimensional optimal control problem

minJh(yyyh) subject to Sh(uuuh) = yyynT
h , uuuh ∈Vh∩Uad, (DP)

where Sh(·) is the discrete control-to-state operator which is defined by successive (nT times) application
of (3.6) to uuuh.

For deriving the discrete adjoint, it is more convenient to consider (3.6) as constraint instead of Sh(·).
For this purpose, we define the equality constraint at time tn by Ln

h : (Vh)
nT+1→Vh with

Ln
h(yyyh) :=−yyyn

h + yyyn−1
h − k

h
Fh(yyyn−1

h ) for n = 1, . . . ,nT ,

and L0
h(yyyh,uuuh) =−yyy0

h +uuuh. We then collect all time-step contributions and state the discrete constraint
as Lh(yyyh,uuuh) = 0 where Lh : (Vh)

nT+1×Vh→ (Vh)
nT+1 with

Lh(yyyh,uuuh) =
(

L0
h(yyyh,uuuh),L

1
h(yyyh),L

2
h(yyyh), · · · ,LnT

h (yyyh)
)>

.

Then we define the Lagrangian for the finite dimensional problem (DP) by

L (yyyh, ppph,uuuh) := Jh(yyyh)+h ppp>h ·Lh(yyyh,uuuh),

where ppph ∈ (Vh)
nT+1 is enumerated like yyyh in (3.7).

Recall that from Proposition 3.1 we know that Fh(·) is differentiable when Lax-Friedrichs and
Engquist-Osher schemes are used. Differentiability of Fh(·) implies differentiability of Lh(·, ·) with
respect to the first argument. More precisely, a direct calculation shows that this derivative, denoted by
L′yyyh

(·, ·), has a lower triangular structure:

L′yyyh
(yyyh,uuuh) =




−I
I− k

h F ′h(yyy
1
h) −I

. . . . . .
I− k

h F ′h(yyy
nT−1
h ) −I

I− k
h F ′h(yyy

nT
h ) −I



,

and therefore L′yyyh
(·, ·) is invertible. As a consequence, the constraint Ln

h(yyyh) = 0 satisfies the linear
independence constraint qualification (LICQ) at any feasible point of (DP). Hence, at a solution pair
(yh,uh) there exists a Lagrange multiplier (adjoint state) ph.

Now, we can compute the discrete derivative of the objective functional using a discrete adjoint
calculus. The concatenated discrete adjoint equation is given

∇Jh(yyyh)+hL′yyyh
(yyyh,uuuh)

>ppph = 0. (3.8)

Note that L′yyyh
(yyyh,uuuh)

> is upper triangular, and for a fixed yyyh one can solve (3.8) successively from pppnT
h to

ppp0
h, i.e., backward in time similar to the continuous adjoint; see (2.8). From the definition of the discrete

objective function we get

∇Jh(yyyh) =
(
000,000, · · · ,000,hG′(yyynT

h )
)>

,
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and therefore pppnT
h = G′(yyynT

h ) which is the discrete counterpart for the final-time condition in (2.8). For
n = nT , . . . ,0 we have

pppnT
h = G′(yyynT

h ), pppn
h =

[
I− k

h
F ′h(yyy

n+1
h )>

]
pppn+1

h for n = (nT −1), . . . ,0. (3.9)

which is the discrete counterpart of the adjoint PDE (2.8). The gradient of the discrete reduced objective
function in the direction of δuuuh ∈Vh is obtained by

∇Jh(uuuh)
>

δuuuh = h
N

∑
j=1

p0
j δu j. (3.10)

REMARK 3.1 (Convergence of the discrete adjoint) Note, however, that at the discrete level, the interior
boundary condition (2.9) does not appear. Hence a natural question is to ask whether the discrete adjoint
converges to the continuous one or not. It is shown in Giles (2003) through a numerical experiments that
the adjoint obtained from Lax-Friedrichs scheme converges to a wrong solution as the mesh is refined.
It is also observed that if numerical diffusion is chosen such that the shock in yyynT

h spreads into more
cells, then the discrete adjoint converges. This is proven by Giles & Ulbrich (2010a,b).

We are not aware of a similar result for the Engquist-Osher scheme. However, it has been shown by
Ulbrich (2001) that for the case where the end data is Lipschitz continuous, e.g., by using a smoothed end
state in the tracking functional, the discrete adjoint converges to the continuous adjoint. This motivates
the use of two separate solvers for the discrete forward and adjoint problems, e.g., by using a TVDRK-
MUSCL scheme, when the end data is smoothed. We should mention that this approach results in an
inexact discrete adjoint.

3.3 Stability of the discrete adjoint

We would like to examine monotonicity of the discrete adjoint by checking whether or not it is TVD.
The discrete adjoint, satisfying (3.9), can be written in a simplified form for analysis as

pn
j = A j,0 pn+1

j +A j,1 pn+1
j+1 +A j,−1 pn+1

j−1 , (3.11)

where

ALF
j,l :=





γ

2 − k
2h f ′(w j) for l =−1,

1− γ for l = 0,
γ

2 +
k

2h f ′(w j) for l = 1,
AEO

j,l :=





k
2h

(
| f ′(w j)|− f ′(w j)

)
for l =−1,

1− k
h | f ′(w j)| for l = 0,

k
2h

(
| f ′(w j)|+ f ′(w j)

)
for l = 1.

Note that, provided the CFL condition (3.4) is satisfied, we have ALF
j,l > 0 and AEO

j,l > 0. Moreover,
observe that by construction we have

1

∑
l=−1

A j,l = 1.

Taking absolute values on both sides in (3.11) and using the above properties, we obtain

|pn
j |6 A j,0|pn+1

j |+A j,1|pn+1
j+1 |+A j,−1|pn+1

j−1 |6 max
l=−1,0,1

|pn+1
j+l |6 ‖pppn+1

h ‖∞,
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which implies L∞ stability. We now show that the discrete adjoint scheme with a forward Euler time
discretization is also TVD. We first rewrite (3.11) in the following form

pn
j = pn+1

j +B j,0(pn+1
j − pn+1

j−1)+B j,1(pn+1
j+1− pn+1

j ), (3.12)

with

BLF
j,l :=

{
− γ

2 +
k

2h f ′(w j) for l = 0,
γ

2 +
k

2h f ′(w j) for l = 1,
BEO

j,l :=

{
− k

2h | f ′(w j)|+ k
2h f ′(w j) for l = 0,

k
2h | f ′(w j)|+ k

2h f ′(w j) for l = 1.

Then, Harten’s Lemma (see Harten (1983)) guarantees TVD properties of the discrete adjoint scheme.

LEMMA 3.1 (Harten’s Lemma) Suppose a finite difference scheme can be written as

w j = v j +B j,0 · (v j− v j−1)+B j,1 · (v j+1− v j),

where B j,0 and B j,1 are arbitrary nonlinear functions of v j,v j+1,v j−1 and satisfy

B j,0 6 0, B j,1 > 0, B j,1−B j+1,0 6 1.

Then we have |wwwh|TV 6 |vvvh|TV.

Observe that in our case, the above conditions on B j,0 and B j,1 are satisfied provided a (1− γ)-CFL
condition for Lax-Friedrichs and a 1

2 -CFL condition for Engquist-Osher are satisfied, respectively, i.e.,

kLF

h
sup
|y|6M

| f ′(y)|6 (1− γ),
kEO

h
sup
|y|6M

| f ′(y)|6 1
2
. (3.13)

This is the reason for the choice of γ ∈ (0,1) in the Lax-Friedrichs scheme. Obviously the optimal CFL
condition is

CFL∗ = max
γ∈(0,1)

min{γ,1− γ}= 1
2

Lemma 3.1 now guarantees that the discrete adjoint obtained from forward Euler time discretization is
TVD, i.e., ∣∣pppn

h

∣∣
TV 6

∣∣pppn+1
h

∣∣
TV. (3.14)

Note that this property is shared by the continuous adjoint in Theorem 2.3.

4. Strong stability preserving time discretizations

In this section, we examine the effect of using RK methods for discretizing the underlying problem
instead of using the forward Euler method.

A TVD-RK method is defined by convex combinations of forward Euler steps which are parametrized
by two sets of coefficients: {αi j} and {βi j} for i = 1, ...,s and j = 0, ...,(s−1) where s is the number of
RK stages. A TVD-RK time stepping is then defined as follows:

1. Set the initial stage: www(0) = yyyn
h,

2. Compute for each stage i = 1, . . . ,s:

www(i) =
i−1

∑
j=0

αi jwww( j)− k
h

βi jFh(www( j)), (4.1)
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3. Set the next time-step approximation: yyyn+1
h = www(s).

Moreover, we impose the following constraints over {αi j} and {βi j}:

αi j,βi j > 0,
i−1

∑
j=0

αi j = 1,
(
βi j 6= 0 =⇒ αi j 6= 0

)
. (4.2)

The following result is due to Shu & Osher (1988) and shows that the TVD-RK method is stable if the
forward Euler (3.6) is stable. We call such methods strong stability preserving (SSP) since we have
stability with respect to stage variables, too.

PROPOSITION 4.1 Suppose the time-step k is chosen such that the forward Euler discretization is stable,
i.e.,

‖www− k
h

βi j

αi j
Fh(www)‖6 ‖www‖ ∀www ∈Vh, (4.3)

for all i = 1, . . . ,s, j = 0, . . . ,(s− 1) and αi j 6= 0. Here, ‖·‖ is a non-negative homogeneous convex
function, e.g., a norm or a semi-norm. Moreover assume that the conditions in (4.2) are satisfied. Then
for the TVD-RK method we have

‖www(i)‖6 max
j=0,...,(i−1)

‖www( j)‖ for i = 1, . . . ,s,

and consequently ‖yyyn+1‖6 ‖yyyn‖.
In order to highlight the technical differences between the proof technique of Shu & Osher (1988),

which relies on ∑
i−1
j=0 αi j = 1, the property not available for the discrete adjoint in Section 4.1, we display

the short proof. Proof. First observe that if αi j = 0 then the contribution of w( j) is zero. So we can
rewrite (4.1) by

www(i) = ∑
{ j:αi j 6=0}

αi j

(
www( j)− k

h
βi j

αi j
Fh(www( j))

)
∀i = 1, . . . ,s.

We then take ‖·‖ from both sides and use convexity as well as our assumption on the stability of the
Euler step: for all i = 1, . . . ,s we have

‖www(i)‖6 ∑
{ j:αi j 6=0}

αi j‖www( j)‖6
(

max
j=0,...,(i−1)

‖www( j)‖
)(

∑
{ j:αi j 6=0}

αi j

)
= max

j=0,...,(i−1)
‖www( j)‖,

where we also used positivity of αi j,βi j and ∑
i−1
j=0 αi j = 1. The proof is completed by induction. �

Let us denote the forward Euler time-step by kFE. Then the stable TVD-RK time-step is bounded by

k 6
(

min
αi j ,βi j 6=0

αi j

βi j

)
kFE. (4.4)

Therefore one can optimize the coefficients αi j and βi j to maximize the constant minαi j ,βi j 6=0
αi j
βi j

. In
Table 1, we show such optimal TVD-RK methods of two and three stages.

We now rewrite our discrete optimization problem (DP) using a TVD-RK time discretization. First
we redefine yyyn

h to be suitable for the TVD-RK method: the collection of all stage approximations at
time-slab tn is given by

yyyn
h := (yyyn,0

h ,yyyn,1
h , . . . ,yyyn,s

h )> ∈Wh := (Vh)
s+1,
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Table 1. Table of coefficients for TVD-RK methods of order two and three.
order αi j βi j minαi j/βi j

2 1 1 1
1/2 1/2 0 1/2

3 1 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

where yyyn,l
h is the approximation at time tn, at stage l = 0, . . . ,s. Then we concatenate contributions from

all time-steps to get
yyyh := (yyy0

h,yyy
1
h, . . . ,yyy

nT
h )> ∈ (Wh)

nT+1.

Let us denote the forward Euler operator by Hi j : Vh→Vh with

Hi j(vvvh) :=

{
vvvh− k

h
βi j
αi j

Fh(vvvh) if αi j > 0,

0 if αi j = 0.

for all vvvh ∈Vh which is differentiable with derivative in direction of uuuh ∈Vh given by

H ′i j(vvvh)uuuh :=

{[
I− k

h
βi j
αi j

F ′h(vvvh)
]
uuuh if αi j > 0,

0 if αi j = 0.

Then the equality constraint generated by TVD-RK scheme at time tn and stage l is denoted by Ln,l
h :

(Wh)
nT+1→Wh with

L0,0
h (yyyh,uuuh) :=−yyy0,0

h +uuuh,

Ln,0
h (yyyh) :=−yyyn,0

h + yyyn−1,s
h ,

Ln,l
h (yyyh) :=−yyyn,l

h +∑
l−1
j=0 αl jHl j(yyy

n, j
h ) for n = 1, . . . ,nT , and l = 1, . . . ,s.

The fully discrete scheme, i.e., spatial discretization with the TVD-RK method, can be expressed as
Lh(yyyh,uuuh) = 0 where

Lh(yyyh,uuuh) =
(

L0,0
h (yyyh,uuuh),L

0,1
h (yyyh), · · · ,L0,s

h (yyyh), . . . ,L
nT ,s
h (yyyh)

)>
∈ (Wh)

nT+1.

As before we define the Lagrangian function by

L (yyyh, ppph,uuuh) := Jh(yyyh)+h ppp>h ·Lh(yyyh,uuuh),

where ppph ∈W nT+1
h has the same structure as yyyh. Note that since Hi j(·) is differentiable we can conclude

that Lh(·, ·) is also differentiable with respect to the first argument. Moreover, similar to the case with
forward Euler step, it has again a lower triangular structure:

L′yyyh
(yyyh,uuuh) =




G(yyy0
h)

K G(yyy1
h)

. . . . . .
K G(yyynT−1

h )
K G(yyynT

h )



,
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where G(·) is the linearized contribution of the TVD-RK scheme, i.e.,

G(yyyn
h) :=




−I
α10H ′10(yyy

n,0
h ) −I

α20H ′20(yyy
n,0
h ) α21H ′21(yyy

n,1
h ) −I

...
. . .

αs,0H ′s,0(yyy
n,0
h ) αs,s−1H ′s,s−1(yyy

n,s−1
h ) −I



, (4.5)

and K links the approximation from the previous time-step to the current one:

K :=




O · · · O I
O · · · O O
...

...
...

O · · · O O


 . (4.6)

As before, the discrete adjoint satisfies,

∇Jh(yyyh)+hLyyyh(yyyh,uuuh)
>ppph = 0,

which is again backward in time. As before, the above constraint satisfies LICQ. Let us illustrate the
above adjoint equation with an example.

EXAMPLE 4.2 (case s = 2) Consider the discrete adjoint for a TVD-RK discretization with two stages.
Let n < nT . Then the discrete adjoint satisfies the following backward in time linear system:

pppn,0
h −α10H ′10(yyy

n,0
h )>pppn,1

h −α20H ′20(yyy
n,0
h )>pppn,2

h = 000,
pppn,1

h −α21H ′21(yyy
n,1
h )>pppn,2

h = 000,
pppn,2

h = pppn+1,0
h ,

which is a TVD-RK scheme with coefficients α?
i j and β ?

i j. In fact, the TVD-RK coefficients for the
discrete adjoint equation are related to the TVD-RK of the discrete state as follows

α∗10 = α21,
α∗20 = α20, α∗21 = α10,

β ∗10 = β21,
β ∗20 = β20, β ∗21 = β10.

Observe the way how the coefficients of the TVD-RK scheme are transformed by this conjugation
process. We refer to the coefficients of the adjoint TVD-RK scheme as conjugate coefficients. This
transformation in the table of adjoint TVD-RK coefficients might pose some restrictions on the choice
of the TVD-RK method in the first place. We conclude this section by the following proposition.

PROPOSITION 4.3 Suppose we discretize-then-optimize the problem (P) and a TVD-RK time dis-
cretization is used for the discrete state variable with coefficients αi j and βi j. Then the discrete adjoint
is also obtained by a TVD-RK method with coefficients α∗i j and β ∗i j such that

α
∗
i j = αs− j,s−i, β

∗
i j = βs− j,s−i for i = 1, . . . ,s, and j = 0, . . . ,(s−1). (4.7)



18 S. HAJIAN, M. HINTERMÜLLER, S. ULBRICH

4.1 Stability of the discrete adjoint

Given the result of Proposition 4.3, our first idea is to impose on both the discrete state and the adjoint
variables, i.e., imposing (4.2) on {αi j,βi j} and {α∗i j,β

∗
i j}. In other words, the following conditions on

{αi j,βi j} should hold:

αi j,βi j > 0,
i−1

∑
j=0

αi j = 1,
s

∑
i= j+1

αi j = 1,
(
βi j 6= 0 =⇒ αi j 6= 0

)
. (4.8)

This however turns out to be too strong as the following proposition clarifies.

PROPOSITION 4.4 Suppose we discretize-then-optimize the problem (P) with a TVD-RK method. If
we require for both discrete state and discrete adjoint, then the TVD-RK method is at most first-order.
More precisely, the TVD-RK coefficients are

αi, j =

{
1 if j = i−1,
0 otherwise, βi, j =

{
βi,i−1 if j = i−1,
0 otherwise,

which gives a concatenation of forward Euler steps.

Proof. We need to identify sets of {αi j} and {βi j} that satisfy (4.8). Thus, all coefficients need to be
non-negative. Let i = 1, then α10 = 1. Now let j = 0 and observe that ∑

s
i= j+1 αi j = 1. This implies

αi,0 = 0 for all i = 2, . . . ,s since all αi j > 0 and α10 = 1. Now let i = 2 and observe that ∑
i−1
j=0 αi j = 1.

However we just showed that α20 = 0 which implies α21 = 1. We now repeat the same process by letting
j = 1 and consider the constraint ∑

s
i= j+1 αi j = 1. Continuing, we conclude that αi,i−1 = 1 and the other

coefficients are zero. Since αi, j = 0 for j < i− 1 we conclude from the last requirement of (4.8) that
βi j = 0 for j < i−1. Therefore the only free parameters are βi,i−1. However, such a TVD-RK scheme
is equivalent to the concatenation of Euler steps, instead of a combination. Finally, the concatenation of
Euler steps yields a first-order method. �

As we shall see next, imposing (4.8) is not necessary. Let us consider a two-stage TVD-RK that
ensures only for the state discretization. That is, TVD-RK satisfies only (4.2). Moreover suppose that
the time-step k is chosen such that adjoint stability of the forward Euler step for discrete adjoint holds.
For instance, for the discrete adjoint from Example 4.2 we have

‖pppn,1‖ 6 α21‖pppn,2‖,
‖pppn,0‖ 6 α20‖pppn,2‖+α10‖pppn,1‖,

where ‖·‖ is a non-negative homogeneous convex function, e.g., a semi-norm or a norm.
For of the TVD-RK scheme we would take the maximum of (semi-)norms up to the (i−1)st stage

and use the assumption that the sum of the coefficients in each stage equals one. However here we do
not have that α20 +α10 = 1. Instead, we can substitute the first inequality into the second and obtain

‖pppn,0‖6 (α20 +α21 α10)‖pppn,2‖= ‖pppn,2‖,

which holds true since α10 = 1 and α20 +α21 = 1. This shows that for two-stage TVD-RK methods we
have stability at each time-step which is weaker than stability at each stage; observe that in Proposition
4.1 stability is achieved at each stage and therefore at each time-step. We can generalize this observation
to an arbitrary s-stage TVD-RK method.
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THEOREM 4.5 Suppose the state equation is discretized with an SSP TVD-RK method. Moreover
suppose that k is chosen such that it ensures forward Euler stability for both the discrete state and
adjoint. Then the discrete adjoint is stable in each time-step for an arbitrary s-stage method., i.e.,

‖pppn,0‖6 ‖pppn,s‖,

where ‖·‖ is a non-negative homogeneous convex function, e.g., a semi-norm or a norm.

Proof. Since we require Euler step stability, we have for each stage

‖pppn,`‖6
s

∑
i=`+1

αi` ‖pppn,i‖ for `= 0, . . . ,s−1.

Let `= 0 and recall that α10 = 1. Then, using the above inequality we have

‖pppn,0‖6
s

∑
i=1

αi0 ‖pppn,i‖= ‖pppn,1‖+
s

∑
i=2

αi0‖pppn,i‖6
s

∑
i=2

(αi1 +αi0)‖pppn,i‖.

Now isolating the term with i = 2 and noting that α21 +α20 = 1 we have

‖pppn,0‖6 ‖pppn,2‖+
s

∑
i=3

(αi1 +αi0)‖pppn,i‖6
s

∑
i=3

(αi2 +αi1 +αi0)‖pppn,i‖.

We repeat this procedure to obtain ‖pppn,0‖6∑
s
i=`′
(

∑
`′−1
j=0 αi j

)
‖pppn,i‖ for all `′ = 1, . . . ,s. We then choose

`′ = s and obtain ‖pppn,0‖6 (∑s−1
j=0 αs j)‖pppn,s‖= ‖pppn,s‖ which completes the proof. �

Theorem 4.5 shows that any s-stage TVD-RK method for the discrete state yields a stable TVD-RK
method for the discrete adjoint. However the discrete adjoint is proved to be stable at each time-step
instead of each stage.

4.2 Order conditions for the discrete adjoint

In this section we study approximation properties of the scheme for the discrete adjoint. We focus on
deriving order conditions for the discrete adjoint scheme. For this purpose, extra conditions on the
TVD-RK method applied to the state discretization are needed to ensure high-accuracy of the adjoint
scheme. We also check which methods provide optimal CFL constants. For simplicity of the notation
we consider TVD-RK methods with a conjugate coefficient table as in Proposition 4.3 for the following
linear problem

ṗpp(t)+R(t)ppp(t) = 0, ppp(T ) = pppT ∈Vh. (4.9)

Here R(t) is a linear operator and defined as

R(t) :=−1
h

F ′h(yyy(t))
>, (4.10)

where yyy(t) is the solution of the semi-discrete problem (3.1), i.e., ẏyy(t) =− 1
h Fh(yyy(t)). For completeness

we state derivatives of R(·):

Ṙ(t) = 1
h2 F ′′h (yyy(t))

>Fh(yyy(t)),
R̈(t) = − 1

h3

[
F ′′h (yyy(t))

>F ′h(yyy(t))
>Fh(yyy(t))+F ′′′h (yyy(t))>Fh(yyy(t))2

]
.

(4.11)
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Observe that R(t) at `th stage is approximated by −1
h F ′h(yyy

n,`
h ), see for instance Example 4.2 and the

definition of H ′i`(yyy
n,`
h ). Since we consider the local error of the TVD-RK method in the time interval

[tn, tn+1], we let yyyn,0
h = yyy(tn). For the analysis of the TVD-RK method we need approximation properties

of −1
h F ′h(yyy

n,`
h ). A direct calculation gives

− 1
h F ′h(yyy

n,0
h )> = R(tn+1)− kṘ(tn+1)+

1
2 k2R̈(tn+1)+O(k3), (4.12)

− 1
h F ′h(yyy

n,1
h )> = R(tn+1)− (1−β10)kṘ(tn+1)

− 1
2

k2

h3 (1−β10)
2F ′′′h (yyy(tn+1))

>F2
h (yyy(tn+1))

− 1
2

k2

h3 (1−2β10)F ′′h (yyy(tn+1))
>F ′h(yyy(tn+1))

>Fh(yyy(tn+1))+O(k3),

(4.13)

and

− 1
h F ′h(yyy

n,2
h )> = R(tn+1)− (1−ψ)kṘ(tn+1)

− 1
2

k2

h3 (1−ψ)2F ′′′h (yyy(tn+1))
>F2

h (yyy(tn+1))

− 1
2

k2

h3 (1−2ψ +2β21β10)F ′′h (yyy(tn+1))
>F ′h(yyy(tn+1))

>Fh(yyy(tn+1))

+O(k3),

(4.14)

where
ψ := β20 +β21 +α21β10. (4.15)

Note that since the inner stages of the RK are low order, we have first order approximation of R(·) in
(4.13) and (4.14).

A Taylor expansion of the solution of (4.9) at time tn+1 with the time-step (−k) yields

ppp(tn) = ppp(tn+1)+ kR(tn+1)ppp(tn+1)+
k2

2

[
R2(tn+1)− Ṙ(tn+1)

]
ppp(tn+1)

− k3

6

[
2Ṙ(tn+1)R(tn+1)+R(tn+1)Ṙ(tn+1)−R3(tn+1)− R̈(tn+1)

]
ppp(tn+1)

+O(k4),

(4.16)

We will compare the TVD-RK method with conjugate coefficients against the Taylor expansion in
(4.16).

4.2.1 Two stage methods. We now study the approximation properties of a two stage scheme. In this
vein, Shu & Osher (1988) derived order conditions for TVD-RK methods with two stages. As before,
let {αi j},{βi j} be the coefficients of a TVD-RK scheme for the state equation. Then the method is
second-order if it satisfies (4.2) and the following order conditions

α21β10 +α10β21 +β20 = 1,
β10β21 = 1

2 .
(4.17)

We need to find extra conditions on {αi j} and {βi j} to obtain a second-order approximation for the
discrete adjoint too. For the TVD-RK method with a conjugate coefficient table applied to (4.9) we have
(see Example 4.2):

pppn,0
h =

[
α10 + kβ10R(tn)

]
pppn,1

h +
[
α20 + kβ20R(tn)

]
pppn,2

h ,

pppn,1
h =

[
α21 + kβ21R(tn+1)− k2β21(1−β10)Ṙ(tn+1)

]
pppn,2

h +O(k3).
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Eliminating pppn,1
h , we simplify the above equations and obtain

pppn,0
h = (α20 +α10α21)pppn,2

h +(α10β21 +α21β10 +β20)kR(tn+1)pppn,2
h

+
[
β10β21R2(tn+1)− (β20 +α21β10 +α10β21(1−β10))Ṙ(tn+1)

]
k2 pppn,2

h +O(k3).

(4.18)
Recall that α10 = 1 and α20 +α21 = 1. Then using these facts in the above expansion we get

pppn,0
h = pppn,2

h +(α10β21 +α21β10 +β20)kR(tn+1)pppn,2
h

+
[
β10β21R2(tn+1)− (β20 +α21β10 +α10β21(1−β10))Ṙ(tn+1)

]
k2 pppn,2

h +O(k3).
(4.19)

We compare (4.19) to the Taylor expansion of the exact solution (4.16) and require the following con-
ditions on the coefficients:

α21β10 +α10β21 +β20 = 1,
β10β21 = 1

2 ,
β20 +α21β10 +α10β21(1−β10) = 1

2 .
(4.20)

Note that the first and second conditions are satisfied due to (4.17). Moreover, the first two conditions
imply that the third condition is automatically satisfied. Therefore any second order TVD-RK method
applied to the forward problem results in a second order approximation of the discrete adjoint. The
above arguments prove the following theorem.

THEOREM 4.6 Suppose a second-order two-stage TVD-RK method is used to discretize the state equa-
tion. Then the corresponding TVD-RK method for the adjoint equation is consistent and is second-order.
Moreover, The optimal CFL constant is one.

4.2.2 Three stage methods. In this section we analyze approximation properties of the third-order
three stages TVD-RK methods. The following conditions should be satisfied to ensure a third-order
discrete state:

α32 = 1−α31−α30, (4.21)

β32 =
3β10−2

6ψ(β10−ψ)
, (4.22)

β21 =
1

6β10β32
, (4.23)

β31 =
1
2 −α32β10β21−ψβ32

β10
, (4.24)

β30 = 1−α31β10−α32ψ−β31−β32, (4.25)
β20 = ψ−α21β10−β21. (4.26)

The free parameters are α21,α30,α31,β10 and ψ; see the discussion in Shu & Osher (1988) for details.
The same analysis as in Section 4.2.1, and employing inner stages approximation properties (4.12)-
(4.14) and comparing with coefficients of the Taylor expansion in (4.16), yields that the following con-
ditions must be satisfied for the discrete adjoint:

α31β10 +α21α32β10 +α32(β20 +β21)+β30 +β31 +β32 = 1 (first order), (4.27)
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α32β10β21 +β10β31 +α21α32β10 +β32(β20 +β21) = 1
2 (for R2)

α31β10 +α21α32β10 +α32β20 +β30 +β32(1−ψ)
+(α32β21 +β31)(1−β10) = 1

2 (for Ṙ)





(second order), (4.28)

β10β21β32 = 1
6 (for R3)

β20β32 +β10β31 +(1−β10)β21β32 +β10β21α32 +β10β32α21 = 1
3 (for ṘR)

(1−ψ)
(
β32β20 +β10α21β32 +β32β21

)

+(1−β10)
(
β21β10α32 +β10β31

)
= 1

6 (for RṘ)

α31β10 +α21α32β10 +α32β20 +(α32β21 +β31)(1−β10)
2

+β30 +β32(1−ψ)2 = 1
3 (for F ′′′F2)

α31β10 +α21α32β10 +α32β20 +(α32β21 +β31)(1−2β10)
+β30 +β32(1−2ψ +2β21β10) = 1

3 (for F ′′F ′F)





(third order).

(4.29)

One can show that if conditions (4.21)-(4.26) are satisfied then (4.27)-(4.29) are automatically sat-
isfied except for the term associated to RṘ: Let us define A := (1−ψ)

(
β32β20 +β10α21β32 +β32β21

)
+

(1−β10)
(
β21β10α32 +β10β31

)
. Then we have

A = (1−ψ)ψβ32 +(1−β10)
(1

2
−ψβ32

)
=

1
2
+ψ(ψ−β10)β32−

1
2

β10 =
1
2
+

1
2

β10−
1
6
− 1

2
β10 =

1
3
,

which cannot be equal to 1
6 for any choice of parameters. Therefore the discrete adjoint TVD-RK

method is at most second order. The above arguments prove the following theorem.

THEOREM 4.7 Suppose a third-order three-stage TVD-RK method is used to discretize the state equa-
tion. Then the corresponding TVD-RK method for the adjoint equation is consistent and is at most
second-order. Moreover, the optimal CFL constant is one.

4.2.3 Fifth stage (fourth-order) method. We have already mentioned that a fourth-order TVD-RK
method with four stages does not exist, see Gottlieb & Shu (1998); Ruuth & Spiteri (2002). Using
a non-linear programming computer code, a fourth-order with five stages TVD-RK method has been
found in (Spiteri & Ruuth, 2002, Appendix B). It has been shown in (Hager, 2000, Proposition 6.1)
that when a general four stage fourth-order RK method is applied to the forward problem of an optimal
control problem of ODEs, then the corresponding discrete adjoint is also automatically fourth-order.
Inspired by this result we would like to check whether or not the fourth-order with five stage TVD-RK
method of Ruuth & Spiteri (2002) generates a fourth-order discrete adjoint too.

In order to check the order conditions for this particular TVD-RK method, we use the Butcher’s
table of the mentioned TVD-RK method and check if the order conditions in (Hager, 2000, Table 1) are
satisfied. A direct calculation shows that the discrete adjoint is only second order. This is however not
surprising since the TVD-RK method is obtained by a non-linear programming (with order conditions
for the forward problem as constraints).
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4.3 Convergence of the TVD-RK method

In this section we discuss convergence of the discrete adjoint obtained from a TVD-RK method. We
follow the framework established in (Ulbrich, 2001, Chapter 6.4). We consider the case when the
end data of the continuous adjoint is smooth, e.g., p(x,T ) ∈ Liploc(R), and the space discretization is
either Lax-Friedrichs or Engquist-Osher method which yields a monotone scheme when combined with
forward Euler method in time; see for instance (LeVeque, 1990, Chapter 15.7).

Consider the TVD-RK schemes with either Lax-Friedrichs or Engquist-Osher discretization and
suppose the time-step k is chosen such that the forward Euler discretizations (4.3) are monotone and
their corresponding discrete adjoint scheme is TVD, see (3.13), (4.4). The first ingredient for the proof
is to show that the TVD-RK scheme is again a monotone scheme for the forward problem, i.e., given
any initial data yn

j ,w
n
j , at time tn we have

yn
j > wn

j ∀ j =⇒ yn+1
j > wn+1

j ∀ j.

Suppose that until `-th stage we have yn,i
j > wn,i

j for all i = 1, . . . , `. Since yn,`+1
j is equal to a convex

combination of forward Euler methods and each forward Euler method is a monotone scheme, we can
conclude that yn,`+1

j > wn,`+1
j .

The second ingredient is to show that after eliminating the inner stages we have a conservative
scheme. Let us demonstrate this for a two-stage method: observe that the application of an Euler step at
the first stage can be written as

yn,1
j = H (yn,0

j−1,y
n,0
j ,yn,0

j+1) := α10yn,0
j −β10

k
h

[
f̂ (yn,0

j ,yn,0
j+1)− f̂ (yn,0

j−1,y
n,0
j )
]
. (4.30)

Then the second stage can be written in the conservative form

yn+1
j = yn

j −
k
h

[
f̃ (yn

j−1,y
n
j ,y

n
j+1,y

n
j+2)− f̃ (yn

j−2,y
n
j−1,y

n
j ,y

n
j+1)

]
, (4.31)

where the numerical flux is defined, after eliminating the inner stage, by

f̃ (y j−1,y j,y j+1,y j+2) := (α21β10 +β20) f̂ (y j,y j+1)+α10β21 f̂ (H (y j−1,y j,y j+1),H (y j,y j+1,y j+2)).

We state the convergence result in the following proposition.

PROPOSITION 4.8 Suppose the final end data of the continuous adjoint satisfies p(x,T ) ∈ C0,1(R).
Moreover, suppose that the space discretization is either the Lax-Friedrichs or Engquist-Osher method
and that the time is discretized using a TVD-RK method. Let the time-step k = ch be chosen such that
the forward Euler discretizations (4.3) are monotone and their corresponding discrete adjoint scheme
is TVD, see (3.13), (4.4). Then the discrete adjoint is convergent to the unique reversible solution as
k = ch→ 0, i.e.,

ph→ p in B([0,T ];Lr(I)),

where B([0,T ];Lr(I)) is the space of bounded functions equipped with the sup-norm and with values in
Lr(I) for r ∈ [1,∞) and I := (−R,R) for all R > 0.

Proof. We give the main steps of the proof from (Ulbrich, 2001, Chapter 6.4). First, we eliminate the
inner stages and write the TVD-RK method in a conservative form (see (4.31) for the two stage method):

yn+1
j = yn

j −
k
h

[
f̃ n

j+1/2− f̃ n
j−1/2

]
, f̃ n

j+1/2 := f̃ (yn
j−K+1, . . . ,y

n
j+K).
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Therefore it is of the form (Ulbrich, 2001, Equation (6.9)). Then the discrete adjoint can be written as

pn
j = pn+1

j +
k
h

K

∑
i=1−K

an
j−i+1/2,i (pn+1

j−i+1− pn+1
j−i ), (4.32)

where an
j−i+1/2,i = ∂yi f̃ n

j−i+1/2. For the L∞-stability, it is more convenient to write the discrete adjoint
scheme in the following form:

pn
j =

K

∑
i=−K

Bn
j,i p

n+1
j−i ,

where Bn
j,−K = k

h an
j+K− 1

2 ,1−K
, Bn

j,K =− k
h an

j−K+ 1
2 ,K

and

Bn
j,i = δ0,i +

k
h
(an

j−i− 1
2 ,i+1
−an

j−i+ 1
2 ,i
), −K < i < K,

where δ0,i is the Kronecker delta. For the stability of the total variation, however, it is more convenient
to write the discrete adjoint scheme in the form

(pn
j+1− pn

j) =
K

∑
i=−K

Cn
j,i(pn+1

j−i+1− pn+1
j−i ), (4.33)

where Cn
j,−K = k

h an
j+K+ 1

2 ,1−K
, Cn

j,K =− k
h an

j−K+ 1
2 ,K

and

Cn
j,i = δ0,i +

k
h
(an

j−i+ 1
2 ,i+1
−an

j−i+ 1
2 ,i
), −K < i < K.

Monotonicity of the TVD-RK method applied to the forward problem ensures that Bn
j,i> 0 (see (Ulbrich,

2001, Lemma 6.4.2)). Moreover, the TVD-RK adjoint scheme is TVD by Theorem 4.5 and maps by
(4.32) constant values pn+1

j−K = . . .= pn+1
j+K = c to the same value pn

j = c. Hence, (Harten, 1983, Theorem
2.1) yields that the TVD-RK adjoint scheme is monotonicity perserving and thus (4.33) implies Cn

j,i > 0.
This shows that condition (1) in (Ulbrich, 2001, Chapter 6.4.1) is satisfied.

It remain to show that assumptions (D1), (D2) and (D3) of (Ulbrich, 2001, Chapter 6.4.1) hold. (D1)
is consistency of the numerical flux which holds in our case; observe for instance that f̃ (y,y,y,y) = f (y)
in (4.30) since α21β10 +α10β21 +β20 = 1. (D2) is the convergence of the discrete state to the entropy
solution of the state which holds as our discretization is TVD. (D3) is an OSLC condition which holds
for Lax-Friedrichs and Engquist-Osher discretization (see (Ulbrich, 2001, Lemma 6.5.2 and Lemma
6.5.5) for details). Then we can apply Theorem 6.4.4 and Theorem 6.4.6 in Ulbrich (2001) to show
convergence of the discrete adjoint to the unique reversible solution. �

5. Numerical experiments

In this section we perform numerical experiments on TVD-RK methods for computing the discrete ad-
joint state. We show through numerical experiments that the adjoint scheme obtained from discretization
of the forward problem using a TVD-RK method is stable.

Let us consider the configuration of Example 2.4. The domain is set to be Ω = (−1,1), the flux
function f (y) := 1

2 y2 and u(x) = 1 for x ∈ [−1,0) and u(x) = −1 for x ∈ [0,1]. We set the function
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FIG. 2. Discrete adjoint computed using Engquist-Osher and Lax-Friedrichs schemes with two-stage TVD-RK method.

G(y(x,T )) := 1
2 |y(x,T )|2. For the boundary condition we choose y(−1, t) = 1 and y(1, t) = −1. We

then use the Lax-Friedrichs and Engquist-Osher schemes to compute {yyyn
h}

nT
n=1 with the time-step

k =
1
2

(
min

αi j ,βi j 6=0

αi j

βi j

)
γ h,

where γ = 1
2 is the optimal CFL constant for both the forward and adjoint discretization as discussed

in Section 3.3. Here, as before, h is the mesh parameter and is inversely proportional to the number
of cells N. We use the TVD-RK methods of Table 1. As shown in Theorem 4.5 the discrete adjoint is
also stable provided the TVD-RK method for the forward problem is SSP. Moreover we expect that the
discrete adjoint approximates the continuous adjoint at t = 0,

p(x,0) =





1 −1 < x <− 1
2 ,

0 − 1
2 6 x6 1

2 ,

−1 − 1
2 < x < 1,

even though the discrete adjoint scheme does not impose the “interior” boundary condition (2.9).
In Figure 2, we observe that for both the Engquist-Osher and Lax-Friedrichs methods with a two-

stage TVD-RK method, we obtain a stable TVD discrete adjoint. Note that in the interval x ∈ (− 1
2 ,

1
2 ),

the discrete adjoint has the correct value, i.e., p(x,0) = 0, and the shock location is correct as well.
Moreover, the discrete adjoint converges as we refine the mesh. Identical results are obtained using a
three-stage TVD-RK method. The reason for this is that the Lax-Friedrichs and Engquist-Osher methods
are low order methods while the time discretization is high order and the leading error is due to the spatial
discretization.

In Figure 3, we observe that the total variation of the discrete adjoint at any time t < T deviates from
the final time discrete adjoint, i.e., pppnT

h , only up to machine precision. This implies that the TVD-RK
method for the discrete adjoint is TV stable, even though it is not SSP.
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0

−3× 10−15

−2× 10−15

−1× 10−15

1× 10−15

2× 10−15

3× 10−15

0 50 100 150 200 250 300 350 400

T
V
(p

n h
)
−

T
V
(p

n
T

h
)

n

FIG. 3. The difference between total variation of the discrete adjoint at time tn and total variation of the final time discrete adjoint.

5.1 Giles’ test case

In this section we perform numerical experiments on an optimal control problem which was first pro-
posed by Giles (2003). Let us choose the setting of the problem of the previous section except for
the objective functional which we now choose to be G(y) := y5− y. Note that since y(x,T ) = 1 for
x ∈ [−1,0) and y(x,T ) =−1 for x ∈ (0,1] we have G′(y(x,T )) = 4 for x ∈ [−1,1]\{0}. Moreover since
there is a shock in the solution at time T at x = 0 we should impose an “interior” boundary condition
for the adjoint state. Since [[G(y(x,T ))]] = 0, we should set the “interior” boundary condition to

p(0, t) = 0 ∀t ∈ [0,T ].

Therefore the adjoint state at time t = 0 reads

p(x,0) =





4 −1 < x <− 1
2 ,

0 − 1
2 6 x6 1

2 ,

4 − 1
2 < x < 1.

If we choose the discretize-then-optimize approach, we do not impose such an “interior” boundary
condition for the discrete adjoint. It has been first observed in Giles (2003) that the Lax-Friedrichs
scheme provides a discrete adjoint that converges to a wrong adjoint; see Remark 3.1. We perform
the numerical experiment for the Engquist-Osher scheme with a two-stage TVD-RK method and the
number of cells N = 800. In Figure 4, we observe that discrete adjoint has the correct value for x ∈
[−1,− 1

2 )∪ ( 1
2 ,1] but it has a wrong value for x ∈ [− 1

2 ,
1
2 ], i.e., ph(x,0) = 0.25 for x ∈ [− 1

2 ,
1
2 ]. The

wrong value in this region does not improve under refinement and the approximation converges to the
value 0.25 in this region. Note that the final-time condition ph(0,T ) has a Dirac delta shape at x = 0 due
to the non-linearity of the objective functional with the value of 0.25. This is precisely the value that is
transported backward in time.

It is shown by Giles & Ulbrich (2010a,b) that the Lax-Friedrichs scheme converges to the correct
adjoint provided a restrictive time-step of type k = O(h2−q), for 0 < q < 1; see Figure 4 (right). Observe
that in Figure 5 that Lax-Friedrichs method converges in the shock funnel with k = O(h1.2).

Such a time-step increases diffusion in the scheme and allows more grid points to enter the shock
and hence it leads to convergence of the discrete adjoint to the correct solution. This, however, is not
possible with the classical definition of the Engquist-Osher scheme as such a diffusion is not present.
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FIG. 6. The difference between total variation of the discrete adjoint at time tn and total variation of the final time discrete adjoint
for Giles’ test case.

In Figure 6, we plot the deviation of the total variation of the discrete adjoint from the total variation
of ph(x,T ). Observe that we have ph(x, t)6 ph(x,T ) for t ∈ [0,T ] up to machine precision which agrees
with the theoretical stability result for TVD-RK methods.

5.2 Convergence of the discrete adjoint

We now validate the convergence result of Proposition 4.8 where we use mollification in order to guar-
antee that p(x,T ) ∈ Liploc(R). For mollifying the end data we use the following smoothing kernel

ϕ(x) =

{
1
Z exp(− 1

1−x2 ) −1 < x < 1,
0 otherwise,

where Z ∈ R+ \ {0} is a normalization constant such that
∫
R ϕ(x)dx = 1. Given a positive constant ε ,

we then denote the mollified final state by yϕ,ε(x,T ) and define it by

yϕ,ε(x,T ) :=
∫

R

1
ε

ϕ

( z
ε

)
y(x− z,T )dz.

The objective functional is given as before by J(y) :=
∫
R G(yϕ,ε(x,T ))dx with G(y) = y5− y, and we

consider Burgers equation with prescribed boundary and initial conditions as in the previous section.
Since yϕ,ε is smooth, we conclude that p(x,T ) = G′(yϕ,ε(x,T )) ∈ Liploc(R). Therefore, in the shock
funnel we should obtain p(x, t) = G′(yϕ,ε(0,T )) = −1 since yϕ,ε(0,T ) = 0. This yields that for the
continuous adjoint at t = 0, we have

p(x,0) =−1 for x ∈ [−1
2
,

1
2
]

for any given ε . We discretize the mollification function by averaging on the mesh, i.e., ϕ :=(ϕ1, · · · ,ϕN)
where

ϕ j :=
1
h j

∫ x j+1/2

x j−1/2

1
ε

ϕ

( x
ε

)
dx ∀ j ∈ Z,

and the discrete mollified state is given by

ynT
j,ϕ,ε = ∑

j′
h j ϕ jy

nT
j− j′ ∀ j ∈ Z.
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For the numerical experiment, we choose, as before, the Engquist-Osher scheme and a two-stage
TVD-RK method for the forward problem with N = 800 and the time-step is chosen as k = 0.25h. In
Figure 7 (left), we plot the discrete adjoint obtained from the Engquist-Osher scheme with smoothed
end data. As we observe, in the shock funnel at t = 0 we recover the correct discrete adjoint. In Figure 7
(right) we plot the convergence of the discrete adjoint in the shock funnel. Note that due to the smoothing
effect of the mollifier, we recover convergence of the discrete adjoint in the shock funnel. This validates
numerically the result of Proposition 4.8. Since we use a first-order scheme in space (for theoretical
reasons), we do not expect to obtain an overall convergence rate of more than one. However, in Figure
7 (right) we observe a slight improvement in the convergence rate due to the TVD-RK method.

5.3 A numerical optimal control problem

In this section we solve an optimization task using the gradient information obtained from a discrete
adjoint.

We set the objective functional to

J(y) :=
1
2

∫ 1

−1
|y(x,T )− yobs(x)|2dx,

with the final time T = 1
2 ,

yobs(x) :=

{
2x− 1

2
1
4 6 x6 3

4 ,

0 otherwise,

and Burgers flux function f (y) = 1
2 y2. Given the current control u j (at iteration j) we compute the

discrete adjoint at time T = 0, i.e., p j(x,0) and choose δu =−η j p j(x,0) where η j ∈R+ is a parameter
to ensure J(yh(u j+1))< J(yh(u j)). Then the updated control at iteration j+1 reads

u j+1(x) = u j(x)−η j p j(x,0). (5.1)
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FIG. 8. The state variable yh(x,T ) obtained from optimization algorithm with tol= 10−2 and tol= 10−4.

We choose η j by checking Armijo’s condition and a back-tracking procedure, i.e.,

J(yh(u j+1))6 J(yh(u j))− coptη j‖p j(x,0)‖2
L2(−1,1), (5.2)

where copt ∈ (0,1) is the Armijo’s constant. If the above Armijo’s condition is not satisfied we choose a
smaller α by

αnew := ρ αold,

where 0 < ρ < 1 and recheck (5.2). In this numerical experiment, we choose ρ = 0.95, copt = 0.5 and
the initial α = 0.5. As initial guess we fix

u0(x) :=

{
( 3

4 + x)( 1
2 − x) − 3

4 6 x6 1
2 ,

0 otherwise.

We choose the Engquist-Osher method for spatial discretization and Heun’s second order TVD-RK
method. The time step is chosen as k = 0.25h and the stopping criteria is taken to be ‖∇Jh(uh)‖L2(Ω) =

‖p j(x,0)‖L2(Ω) 6 tol. In our experiments we set tol= 10−2 and 10−4.
In Figure 8, we observe that the numerical algorithm seems to converge to the true solution. That is,

it captures correctly the shock location at x = 3
4 and also the rare-faction. There are numerical artifacts

at x = 3
4 which vanish as we reduce the tolerance tol. The corresponding initial guess for the control

variable and the final control variable are plotted in Figure 9.

6. Conclusion

In this paper we studied TVD-RK methods for the numerical treatment of the optimal control prob-
lems in a discretize-then-optimize approach. We have shown that a TVD-RK discretization of the state
equation yields a TVD-RK method for the discrete adjoint with a conjugate coefficient table. We then
showed that requiring for both discrete state and adjoint is too strong and results in a first order method.
Luckily, imposing SSP for the discrete state is sufficient to obtain stability of the discrete adjoint. This
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FIG. 9. The control variable u(x) obtained from optimization algorithm with tol= 10−2 and tol= 10−4.

result holds for an arbitrary s-stage TVD-RK method. Moreover, thanks to the linearity of the adjoint
equation, the TVD-RK method for the discrete adjoint is consistent. We also studied the approximation
properties of the discrete adjoint and showed that for a second order two-stage method applied to the
forward problem, we obtain a second order discrete adjoint too. However for the third order three-stage
method applied, we only obtain a second order discrete adjoint. inner stages of the Our theoretical
results were finally illustrated by numerical experiments.

We would like to finish this conclusion by mentioning that the convergence of the discrete adjoint to
the continuous adjoint is an interesting question of its own.
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A. Existence of a minimizer

PROPOSITION A.1 Let G(y) = 1
2 |y(x,T )− yobs(x)|2. Then the optimal control problem subject to the

conservation law (2.1) has a solution in the admissible set Uad.

Proof. We begin with the continuity of the objective functional. Suppose y(x, t) and w(x, t) are the
entropic solution of (2.1) with the initial data u(x) ∈Uad and v(x) ∈Uad, respectively. Then we have

|J(y)− J(w)|= 1
2

∣∣∣
∫

R
(y−w)(y+w−2yobs)

∣∣∣6 ‖y−w‖L1(R)‖y+w−2yobs‖L∞(R).

Then by L1-contraction of the entropic solutions we have

|J(y)− J(w)| 6 ‖y(·,T )−w(·,T )‖L1(R)(‖y(·,T )‖L∞(R)+‖w(·,T )‖L∞(R)+ c)
6 ‖u− v‖L1(R)(‖u‖L∞(R)+‖v‖L∞(R)+ c)
6 C‖u− v‖L1(R),

where in the last step we used the L∞ stability of the entropic solutions and the fact that u and v are in
Uad and therefore we have a uniform bound on the L∞-norm.

Observe that J(y) > 0 and therefore a minimizing sequence denoted by {ui} exists. Since Uad is a
compact set in L1, one can obtain a subsequence denoted by {ui j} that converges strongly in L1(R) to
u? ∈Uad as j→ ∞. Then using continuity of the objective functional we have

inf
u∈Uad

J(y) = lim
j→∞

J(y(ui j)) = J(y(u?)) for u? ∈Uad,

which shows existence of the minimizer. �
We would like to mention also that for a more general admissible set, e.g.,

Uad :=
{

u ∈ L∞(R) : supp(u) ∈ K,‖u‖L∞(R) 6C
}
, (A.1)

and an assumption on the uniform convexity of the flux function f (·), one can also obtain an existence
result. We refer the reader to Castro et al. (2008) for the proof.

B. Proof of Proposition 3.1

Proof. Since f (·) is C2 we have f (w+ v) = f (w) + f ′(w)v+ 1
2 f ′′(z)v2 for w,v ∈ R and some z ∈

(w,w+ v). For the Lax-Friedrichs flux, a direct calculation shows

f̂ (w j + v j,w j+1 + v j+1) = f̂ (w j,w j+1)+gLF
i+1,i +O(v2

j)+O(v2
j+1)+O(v2

j−1).

For Engquist-Osher we have

f̂ (w j + v j,w j+1 + v j+1) = f̂ (w j,w j+1)+
∫ w j+v j

w j

f ′(s)+ ds+
∫ w j+1+v j+1

w j+1

f ′(s)− ds.

Note that we can write f ′(x)+ = 1
2 ( f ′(x)+ | f ′(x)|) and f ′(x)− = 1

2 ( f ′(x)−| f ′(x)|). Recall the definition
of gEO

j, j+1 in the proposition and define the residual r(www,vvv) : Vh×Vh→Vh by [r(www,vvv)] j := [Fh(www+vvv)] j−
[Fh(www)] j− [F ′h(www)vvv] j. Then we have [r(www,vvv)] j = q j, j+1−q j−1, j where

q j, j+1 =
∫ w j+v j

w j

f ′(s)+− f ′(w j)
+ ds+

∫ w j+1+v j+1

w j+1

f ′(s)−− f ′(w j+1)
− ds.
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For the first term on the right-hand side we have

∣∣∣
∫ w j+v j

w j

f ′(s)+− f ′(w j)
+ ds

∣∣∣6 max
z∈(w j ,w j+v j)

| f ′(z)+− f ′(w j)
+| · |v j|6C v2

j ,

since f ′(x)+ is Lipschitz continuous. The proof for the second term of q j, j+1 is similar.
Hence we showed that for both Lax-Friedrichs and Engquist-Osher fluxes we have [r(www,vvv)] j =

O(v2
j)+O(v2

j+1)+O(v2
j−1), respectively. Taking the `1-norm of r(www,vvv) one obtains

‖r(www,vvv)‖`1 6C‖vvv‖2
`2 6C‖vvv‖2

`1 ,

where C is independent of the mesh parameter. Multiplying both sides by h gives

‖r(w,v)‖L1(Ω) 6C‖v‖L1(Ω) ‖vvv‖`1 ,

which shows that ‖r(w,v)‖L1(Ω)/‖v‖L1(Ω)→ 0 uniformly when vvv converges to zero. This completes the
proof for the derivative. A direct calculation yields the formula for the transpose. �


