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Abstract. We consider the discretization and subsequent model reduction of a system of par-
tial differential-algebraic equations describing the propagation of pressure waves in a pipeline
network. Important properties like conservation of mass, dissipation of energy, passivity, ex-
istence of steady states, and exponential stability can be preserved by an appropriate semi-
discretization in space via a mixed finite element method and also during the further dimension
reduction by structure preserving Galerkin projection which is the main focus of this paper.
Krylov subspace methods are employed for the construciton of the reduced models and we dis-
cuss modifications needed to satisfy certain algebraic compatibility conditions; these are required
to ensure the well-posedness of the reduced models and the preservation of the key properties.
Our analysis is based on the underlying infinite dimensional problem and its Galerkin approxi-
mations. The proposed algorithms therefore have a direct interpretation in function spaces; in
principle, they are even applicable directly to the original system of partial differential-algebraic
equations while the intermediate discretization by finite elements is only required for the actual
computations. The performance of the proposed methods is illustrated with numerical tests
and the necessity for the compatibility conditions is demonstrated by examples.
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1. Introduction

We study a system of partial differential-algebraic equations modeling the propagation of
pressure waves in a pipeline network. The basic features of this problem are conservation of mass
and dissipation of energy by friction which in turn yields passivity and exponential stability of the
system and the convergence to unique steady states. All these properties can be preserved for an
appropriate semi-discretization in space by mixed finite elements resulting in a finite dimensional
differential-algebraic system with a port-Hamiltonian structure [17]. In this paper, we consider a
further dimension reduction of these high dimensional models by structure-preserving Galerkin
projection with the aim to obtain reduced models of smaller dimension which can be used for
online simulation and control. These models should also yield a good approximation of the
overall behavior and preserve the port-Hamiltonian structure and further relevant properties.

The model reduction of structured linear time-invariant systems has attracted significant
interest in the literature, see e.g. [4, 20, 33, 35, 36, 41] and the references given there. Related
results for second order systems have been obtained in [5, 6, 13, 38, 34], and the reduction of
differential-algebraic equations has, for instance, been addressed in [3, 32]. Let us refer to [1, 9]
for a general introduction to reduced order modeling and further references.

It is well-known that the port-Hamiltonian structure and thus passivity of the underlying sys-
tem are inherited automatically by reduced models obtained via structure-preserving Galerkin
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2 MODEL REDUCTION FOR WAVE PROPAGATION IN TRANSPORT NETWORKS

projection [24, 37, 39]. The preservation of further properties, like conservation of mass or uni-
form exponential stability, however, requires the bases of the reduced models to satisfy additional
compatibility conditions which have to be guaranteed explicitly.

The reduction of infinite dimensional systems described by partial differential or partial
differential-algebraic equations has been considered, e.g., in [14, 26, 27], and in [23] the re-
duction of models arising in gas transport networks has been discussed. For such problems,
or discretizations thereof, the bases for the reduced models have to be generated by some it-
erative process. Krylov subspace methods [2, 19, 22, 37] and proper orthogonal decomposition
[14, 26, 27] are frequently employed for this purpose, and their analysis in a function space
setting allows to obtain mesh independent results.

In this paper we consider a structure-preserving model reduction for large scale differential-
algebraic systems obtained by discretization of a partial differential-algebraic model. We utilize
Krylov subspace methods for the basis construction together with a structure-preserving space
splitting and discuss appropriate modifications in order to satisfy some compatibility conditions
required for the proof of mass conservation, uniform exponential stability, and the existence of
steady states. While our algorithms are formulated in an algebraic setting, they also have an
interpretation in function spaces. This is used already for the formulation of our algorithms and
allows a complete analysis of the reduced models. Our methods therefore turn out to be almost
independent of the intermediate finite element approximation used in computations and they
are applicable, in principle, even directly to the underlying partial differential-algebraic system.

The outline of the paper is as follows: In the following section, we introduce the model problem
under consideration and discuss the basic steps and arguments of our approach. The remainder
of the manuscript is then split into three major parts: Part I is concerned with an outline and a
partial analysis of the model reduction approach and Part II provides numerical illustration of
these results. Part III contains the full analysis of the reduced order models obtained with our
approach which requires us to consider the infinite dimensional problem and its approximation
by mixed finite elements. The corresponding results mostly follow from those in [17] and they
are therefore presented in the appendix for completeness and convenience of the reader.

2. Model problem and outline of the approach

The purpose of this section is to introduce in detail the problem under consideration and to
give a rough idea of our approach and of the mutual relations between the underlying infinite
dimensional system, the large scale finite dimensional systems arising after discretization in
space, and the reduced models we are looking for.

2.1. Model problem. We consider the propagation of pressure waves in a one-dimensional
network of pipes whose geometry shall be given as finite directed and connected graph G = (V, E)
with vertices v ∈ V and edges e ∈ E . On every pipe e, the conservation of mass and the balance
of momentum are described by

ae∂tp
e + ∂xq

e = 0 on e ∈ E , t > 0, (2.1)

be∂tq
e + ∂xp

e + deqe = 0 on e ∈ E , t > 0. (2.2)

Here pe, qe denote the pressure and mass flux which are functions of space and time, the
coefficients ae, be encode properties of the fluid and the pipe, and de models the damping
due to friction at the pipe walls. The coefficients are assumed to be positive and, for ease of
presentation, constant on every pipe e. At every inner vertex v ∈ V0 of the graph, corresponding
to a junction of several pipes e ∈ E(v), we require that∑

e∈E(v)
ne(v)qe(v) = 0 for all v ∈ V0, t > 0, (2.3)

pe(v) = pe
′
(v) for all e, e′ ∈ E(v), v ∈ V0, t > 0. (2.4)
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Here ne(v) = ∓1, depending on whether the pipe e starts or ends at the vertex v; see Figure 2.1.
Furthermore, me(v), pe(v) denote the respective functions evaluated at the vertex v but still
depending on time. These coupling conditions model the conservation of mass and momentum

v1 v2

v3

v4

e1

e2

e3

Figure 2.1. Graph G = (V, E) with vertices V = {v1, v2, v3, v4} and edges
E = {e1, e2, e3} defined by e1 = (v1, v2), e2 = (v2, v3), and e3 = (v2, v4).
Consequently V0 = {v2}, V∂ = {v1, v3, v4}, E(v2) = {e1, e2, e3}, and moreover
ne1(v1) = ne2(v2) = ne3(v2) = −1 and ne1(v2) = ne2(v3) = ne3(v4) = 1.

at the junctions. At the boundary vertices v ∈ V∂ = V \ V0, which correspond to the the ports
of the network, we set

pe(v) = uv for v ∈ V∂ , e ∈ E(v), t > 0 (2.5)

with values uv denoting the given input at the port v ∈ V∂ . As corresponding output of the
system, we consider the mass flux via the ports, given by

yv = −ne(v)qe(v), v ∈ V∂ , e ∈ E(v), t > 0. (2.6)

Other input and output configurations could be considered without difficulty as well. The
specification of the model is completed by assuming knowledge of the initial conditions

p(0) = p0, q(0) = q0 on E . (2.7)

The system (2.1)–(2.7) models the propagation of pressure waves in a gas network on the
acoustic time scale [12]. For sufficiently smooth initial data p0, q0, and appropriate compatible
input functions (uv)v∈V∂ , existence of a unique classical solution can be established [17].

2.2. Basic properties. The partial differential-algebraic system (2.1)–(2.5) encodes several
interesting properties which are directly related to the underlying physical principles:

(P1) global conservation of mass, which here can be expressed as

d

dt
m =

d

dt

∑
e∈E

∫
e
aepedx

= −
∑

e∈E

∫
e
∂xq

edx = −
∑

v∈V∂
qe(v)ne(v) =

∑
v∈V∂

yv.

The total mass of the gas contained in the system can thus only be altered by flow of gas into
or out of the system via the ports of the network.

(P2) a port-Hamiltonian structure, leading to energy dissipation and passivity, i.e.,

d

dt
E =

d

dt

1

2

∑
e∈E

∫
e
ae|pe|2 + be|qe|2dx

= −
∑

e∈E

∫
e
de|qe|2dx+

∑
v∈V∂

yvuv.

The total energy in the system only changes by dissipation through damping and injection or
extraction via the system ports. Apart from these basic properties, the system further admits
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(P3) exponential stability and convergence to equilibrium for input u ≡ 0; more precisely,

E(t) ≤ Ce−γ(t−s)E(s), t ≥ s,

with constants C and γ that are independent of the particular solution. For constant input
u(t) ≡ const, one can thus observe exponential convergence to

(P4) unique steady states for the corresponding stationary problem.

For a proof of these properties, let us refer to the appendix and to [17]. Systems of similar struc-
ture and with similar properties also model networks of electric transmission lines, vibrations of
elastic multi-structures, or more general wave phenomena on multiply connected domains. Our
arguments therefore may be useful in a wider context; see [9, 23, 30, 40] for further applications.

2.3. Full order model. An appropriate discretization of the partial differential-algebraic sys-
tem in space by mixed finite elements leads to a differential-algebraic system

M1ẋ1 + Gx2 = 0, (2.8)

M2ẋ2 − G>x1 + Dx2 − N>x3 = B2u, (2.9)

Nx2 = 0, (2.10)

which we will call the full order model in the sequel. In the context of reduced basis methods,
the notion truth approximation is sometimes used instead. The vectors x1 and x2 are the
algebraic representations of the states p and q after discretization, and x3 resembles the Lagrange
multiplier for the constraint (2.3). The output of the system is then given by

y = B>2 x2. (2.11)

If an appropriate discretization is used, the system matrices can be shown to have some basic
structural properties. For ease of presentation, we formulate them here as assumptions:

(A0) M1, M2, D are symmetric and positive definite and [G>, N>] has trivial null-space.

The latter condition is equivalent to requiring that G and the restriction of N to the nullspace
of G define surjective linear operators.

Remark 2.1 (Notation). Throughout the paper, we identify matrices with corresponding linear
operators. We call a matrix A injective or surjective, if the operator has the respective property,
and we write R(A) and N (A) for the range and the kernel of the corresponding operator.
Furthermore AV denotes the image of the space V under the map induced by A.

Remark 2.2. The differential-algebraic system (2.8)–(2.10) can be shown to formally have
differentiation-index two [10, 29]. The condition that N> is injective, and hence that N is sur-
jective, however, allows to eliminate the Lagrange multiplier by purely algebraic manipulations
and hence to reduce the system to an ordinary differential equation; see Section 6.2 and also
refer to [8, 18, 25] for more general situations. Let us emphasize that the number of constraints
amounts to the number of junctions in the network and thus is finite here.

Remark 2.3. The system (2.8)–(2.10) can be written as linear time-invariant descriptor system

Eẋ+Ax = Bu, y = B>x. (2.12)

From the particular form of the matrices E and A one can directly deduce the port-Hamiltonian
structure, i.e., E is symmetric and positive semi-definite and A = J + R can be decomposed
into an skew-symmetric part J and a symmetric positive semi-definite part R. This immediately
guarantees the passivity of the system and further useful properties [42, 43].

The mass and the energy of the semi-discrete system (2.8)–(2.10) can be expressed as

mh = o>1 M1x1 and Eh =
1

2

(
x>1 M1x1 + x>2 M2x2

)
, (2.13)
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where o1 is the vector representing the constant one function on the network. The basic prop-
erties (P1)–(P4) can then be shown to hold almost verbatim also for the semi-discrete problem
which may therefore serve as a replacement for the infinite dimensional partial differential-
algebraic problem under investigation.

2.4. Structure preserving model reduction. The main focus of the current paper is a fur-
ther dimension reduction of the differential-algebraic model (2.8)–(2.10) by structure-preserving
Galerkin projection of the following form: Given projection matrices V1, V2 of appropriate size

and full rank, we set M̂i = V >i MiVi, D̂ = V >2 DV2, B̂2 = V >2 B2, Ĝ = V >2 GV1, and N̂ = NV2.
The reduced model is then defined as

M̂1ż1 + Ĝx2 = 0, (2.14)

M̂2ż2 − Ĝ>z1 + D̂z2 − N̂>z3 = B̂2u, (2.15)

N̂z2 = 0. (2.16)

The tuple (V1z1, V2z2, z3) is the approximation for the exact solution (x1, x2, x3) of the full order

model and ŷ = B̂>2 z2 serves as approximation for the output y = B>2 x2 of the full system.

Remark 2.4. Note that the dimension of the space for the Lagrange multiplier x3 has not been
reduced in the above construction; the network topology is thus completely maintained. The
reduced model can again be written in the form of a descriptor system

Êż + Âz = B̂u, ŷ = B̂>ẑ. (2.17)

It is well-known [24, 37, 39] and easy to see for the system considered here that the port-
Hamiltonian structure and thus passivity are inherited automatically by this kind of Galerkin
projection. Additional conditions will, however, be required to establish the well-posedness of
the resulting reduced differential-algebraic system and to characterize its index; see Section 3.3.

Similar as before, we will denote by

m̂h = ô>1 M̂1z1 and Êh =
1

2

(
z>1 M̂1z1 + z>2 M̂2z2

)
(2.18)

the mass and energy of the reduced problem (2.14)–(2.16). An appropriate vector ô1 representing
the constant one function on the network will be needed and additional compatibility conditions
will be required to ensure well-posedness of the reduced system and the validity of (P1)–(P4).

2.5. Algebraic compatibility conditions. As we will demonstrate by explicit examples be-
low, the validity of some of the properties (P1)–(P4) and even the well-posedness of the reduced
models can in general not be guaranteed, unless additional assumptions on the projection ma-
trices Vi are satisfied. We will therefore require that

(A1) o1 ∈ R(V1);

(A2) R(M1V1) = R(GV2);

(A3) N (G) ⊂ R(V2) and NN (G) = R(I3).

Recall that R(A) and N (A) denote the range and the nullspace of the linear operator induced
by a matrix A and AV is the the image of the space V under mapping induced by A. Further, I3
here denotes the identity matrix for the third component and o1 is the vector used to describe
the total mass mh = o>1 M1x1 of the full order system (2.8)–(2.10).

Remark 2.5. Assumption (A1) will allow us to prove the conservation of mass also for the
reduced models. The conditions (A2)–(A3), on the other hand, allow us to show that

(Â0) M̂1, M̂2, and D̂ are symmetric and positive definite and [Ĝ>, N̂>] has trivial nullspace;
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see Lemma 3.4 for details. The reduced system thus has the same algebraic properties as the full
order model (2.8)–(2.10). The well-posedness of the reduced system (2.14)–(2.16) can therefore
be obtained with similar arguments as that of the full order model. The differentiation-index of
the reduced model is again two and, by elimination of the Lagrange multiplier, we can obtain a
regular system of ordinary differential equations; see Section 6.2 for details.

2.6. Basis construction. For the actual construction of the projection matrices Vi, we consider
an extension of the approach proposed in [20] together with some modifications in order to satisfy
the compatibility conditions (A1)–(A3). The main steps can be sketched as follows:

• Krylov iteration: construct finite dimensional subspaces WL with good approximation
properties by a Krylov iteration applied to the full order model (2.8)–(2.10).
• Splitting: Decompose WL as WL = (WL

1 , 0, 0) + (0,WL
2 , 0) + (0, 0,WL

3 ) according to the
components of the state x = (x1, x2, x3).
• Modification: choose appropriate subspaces Z1 and Z2 and define

V1 = WL
1 + Z1, V2 = WL

2 + Z2, and V3 = R(I3),

such that the properties (A1)–(A3) can be verified for any choice of Vi, i = 1, 2, 3, whose
columns form bases for the corresponding subspaces.

With similar arguments as in [20], the reduced models (2.14)–(2.16) can be shown to match
certain moments of the transfer function and thus to have good approximation properties. By
construction, the projection matrices also satisfy the compatibility conditions (A1)–(A3). This
will allow us to show that the reduced models are well-posed and that they inherit the structural
properties (P1)–(P4) from the full order model.

2.7. Overview. The derivation of the properties (A0) for the system matrices of the full order
model and of the algebraic compatibility conditions (A1)–(A3), as well as the complete analysis
of the resulting reduced order models require us to consider in detail the connection between

• the underlying partial differential-algebraic equations;

• their discretization by Galerkin approximations in a function space setting; and

• the corresponding linear time-invariant systems in algebraic form.

A sketch of these different viewpoints is depicted in Figure 2.2. The close relation of the
differential-algebraic systems to the problem on the continuous level will allow us to estab-
lish properties of the reduced order models that are uniform and almost independent of the
intermediate full order model which is only required for the actual computations.

PDAE FEM reduced FEM

DAE reduced DAE

(A1h)–(A3h)

Sec. A1,A2

(A1H)–(A3H)

Sec. A2.6

(A
1
’ h

)–
(A

3’
h
)

S
ec

.
A

3

(A
1’
H

)–
(A

3
’ H

)

S
ec

.
A

3.
5

(A1)–(A3)

Sec. 3,4,A3

Figure 2.2. Relation between models considered in the manuscript. The top
row represents the problems in function spaces and the bottom row the corre-
sponding algebraic models. The properties (A1h)–(A3h) and so on correspond to
the compatibility conditions (A1)–(A3) on different levels of our analysis.
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Apart from these analytical considerations, we also investigate in detail the algorithms for
the actual subspace construction on the algebraic level and we address the following issues:

• The splitting step in the subspace construction turns out to be sensitive to numerical
errors. To overcome this, we utilize a cosine-sine decomposition in the final algorithm.

• Round-off errors affect the validity of (A2) after the modification step outlined above.
We therefore take special care in the basis construction to satisfy (A2) explicitly.

In order to reflect the functional analytic setting of the underlying infinite dimensional problem,
we will utilize appropriate scalar products in the formulation of our algorithms on the algebraic
level; see [27, 28] for similar approaches. As a consequence, the vectors obtained in the basis
construction process can be interpreted as functions on the continuous level which allows for a
further evaluation and interpretation of the numerical results.

Part I: Model reduction

In the following two sections, we present our model reduction approach on the algebraic level.
We discuss in detail the construction of the reduced models and investigate their approximation
properties. Futhermore, we address some algorithmic details.

3. Structure preserving model reduction

Let us first recall some basic facts about model order reduction and then informally discuss the
algebraic compatibility conditions which are at the core of our model reduction approach. The
basis construction algorithms on the algebraic level will then be presented in the next section.

3.1. Model reduction basics. Consider a general linear time-invariant descriptor system

Eẋ+Ax = Bu, y = B>x, (3.1)

where E, A, B are given matrices, E symmetric and positive semi-definite, and sE +A defines
a regular matrix pencil, i.e., sE + A is regular for almost every s ∈ R; see [10, 15, 29, 31] for
details. A formal expansion of the transfer function of the system [1, 9] leads to

H(s) := B>(sE +A)−1B =
∑∞

l=0
ml(s0 − s)l; (3.2)

here s0 ∈ C is some given shift parameter. It is not difficult to see that the generalized moments
ml can be written as ml = B>rl with vectors rl that can be computed recursively by

(s0E +A)r0 = B, (3.3)

(s0E +A)rl = Erl−1, l ≥ 1. (3.4)

Let us denote by WL = span{r0, . . . , rL−1} the Lth Krylov subspace generated by this iteration.
For any given projection matrix V of appropriate dimension and maximal rank, we define

Ê = V >EV , Â = V >AV , and B̂ = V >B, and consider the reduced system

Êż + Âz = B̂u, ŷ = B̂>z, (3.5)

resulting from Galerkin projection of (3.1) onto the range of the matrix V . The transfer function
of this reduced model may again be expanded as

Ĥ(s) = B̂>(sÊ + Â)−1B̂ =
∑∞

l=0
m̂l(s0 − s)l, (3.6)

and the relation between the full and the reduced order model can be characterized as follows.

Lemma 3.1 (Moment matching). Let WL ⊂ R(V ). Then m̂l = ml for l = 0, . . . , 2L− 1.

A proof of this assertion and further results can be found in [1, 9, 22]. The lemma can be
interpreted as an abstract approximation result and may therefore serve as a quality indicator.
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3.2. Basic properties of the full order model. The system (2.8)–(2.10) can be written in
the compact form (3.1) with state vector x = (x1, x2, x3) and with system matrices defined by

E =

M1 0 0
0 M2 0
0 0 0

 , A =

 0 G 0
−G> D −N>

0 N 0

 , B =

 0
B2

0

 , (3.7)

and under basic structural assumptions, the system (3.1) can be shown to be well-posed.

Lemma 3.2. Let (A0) hold and let E and A be defined as above. Then sE+A defines a regular
matrix pencil. Moreover, sE +A is regular for any s ≥ 0 and, in particular, A is regular.

Proof. First consider the case s > 0 and set x = (x1, x2, x3). We show that 0 = y = (sE + A)x
implies x = 0. Multiplication with x> from the left yields

0 = x>(sE +A)x = s(x>1 M1x1 + x>2 M2x2) + x>2 Dx2.

Since Mi and D are positive definite, this implies that x1 = 0 and x2 = 0. But then

0 = y2 = sM2x2 −G>x1 +Dx2 −N>x3 = −N>x3.

From the assumptions on G and N , we can deduce the injectivity of N>, and hence x3 = 0.
Now consider the case s = 0: By simple rearrangement of the blocks of the matrix A, we obtain

Ã =

A22 A21 A23

A12 A11 A13

A32 A31 A33

 =

D −G> −N>
G 0 0
N 0 0

 .
Such a system is regular, if, and only if, D is regular and [G>, N>] has trivial nullspace; see [11]
for the corresponding result in infinite dimensions. These properties are guaranteed by assump-
tion (A0), which yields the invertibility of Ã and hence also of A. �

Remark 3.3. Only the injectivity of N>, or equivalently, the surjectivity of N is required to
obtain a regular matrix pencil sE+A for s > 0 and thus to establish well-posedness for the time-
dependent problem. The stronger condition that [G>, N>] is injective is, however, necessary to
obtain regularity of the matrix A and thus to ensure existence of unique steady states.

3.3. Properties of the reduced problem. The reduced descriptor system (3.5), representing
the reduced order model (2.14)–(2.16), can be obtained by Galerkin projection of the descriptor
system (3.1), which represents (2.8)–(2.10), with a projection matrix V of the form

V =

V1 0 0
0 V2 0
0 0 V3

 and V3 = I3. (3.8)

Recall that I3 is the identity matrix for the space of Lagrange multipliers and note again that
we did not reduce the number of constraints here. For a projection matrix V of this form,
the particular algebraic structure of the full order model is directly passed on to the reduced
order model. The compatibility conditions (A2)–(A3) further allow us to establish the structural
properties corresponding to (A0) also for the system matrices of the reduced model.

Lemma 3.4. Let (A0) and (A2)–(A3) hold and let V1, V2 be injective. Then (Â0) holds.

Proof. The conditions on M̂i and D̂ are clearly satisfied, if (A0) is valid and the columns of the
projection matrices Vi are linearly independent. Due to assumption (A2), we can find for any
vector z1 a corresponding vector z2 such that GV2z2 = M1V1z1. With this choice, we obtain

(Ĝ>z1)
>z2 = z>1 Ĝz2 = z>1 V

>
1 GV2z2 = z>1 V

>
1 M1V1z1 = z>1 M̂1z1.
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Since M̂i is symmetric positive definite, we obtain z>1 M̂1z1 > 0 whenever z1 6= 0, and conse-

quently Ĝ> is injective, or equivalently, Ĝ is surjective. Using assumptions (A0) and (A3), we
can further find for any x3 = z3 a vector x2 ∈ N(G) and a vector z2 such that

x3 = Nx2 = NV2z2 and 0 = Gx2 = GV2z2.

This shows that the restriction of N̂ to the nullspace of Ĝ is surjective. Together with Ĝ being

surjective this is equivalent to [Ĝ>, N̂>] being injective. �

With the same reasoning as in Lemma 3.2, we now obtain

Lemma 3.5. Let (A0) and (A2)–(A3) hold and V1, V2 be injective. Then the matrix pencil of

the reduced problem is regular. In particular, sÊ + Â is regular for s ≥ 0 and thus Â is regular.

Remark 3.6. As a consequence of Lemma 3.5, we see that the system (2.14)–(2.16) representing
the reduced problem is well-posed and possesses unique steady states. By construction, the
system also inherits the port-Hamiltonian structure and passivity. Furthermore, the reduced
differential-algebraic system again has differentiation-index two, and due to injectivity of N>,
the constraints can be eliminated algebraically and the reduced system can thus again be reduced
to an ordinary differential equation.

4. Subspace and basis construction

It is well understood [1, 9] that the model reduction approach outlined above amounts to a
Galerkin projection of the full order system onto subspaces Vi = R(Vi) generated by the columns
of the projection matrices Vi, i = 1, 2, 3. In the following, we will change between the algebraic
viewpoint and that of function spaces viewpoint as convenient.

We consider a construction of the subspaces Vi in the form

V1 = W1 + Z1, V2 = W2 + Z2, and V3 = R(I3). (4.1)

A Krylov iteration [20] together with an appropriate splitting is used for generation of the
spaces W1, W2, which by Lemma 3.1 automatically ensures good approximation properties of
the resulting reduced model. The spaces Z1, Z2, on the other hand, will be chosen in order to
guarantee the compatibility conditions (A1)–(A3). After definition of the subspaces V1 and V2,
we also present the algorithms for the actual computation of the projection matrices V1 and V2.

4.1. Construction of the spaces W1 and W2. We start with applying the Krylov subspace
iteration (3.3)–(3.4) to the particular system (2.8)–(2.10). The first step now reads

s0M1x
0
1 + Gx02 = 0, (4.2)

s0M2x
0
2 − G>x01 + Dx02 + N>x03 = B2, (4.3)

Nx02 = 0, (4.4)

and for l ≥ 1 the further iterations are defined accordingly by

s0M1x
l
1 + Gxl2 = M1x

l−1
1 , (4.5)

s0M2x
l
2 − G>xl1 + Dxl2 + N>xl3 = M2x

l−1
2 , (4.6)

Nxl2 = 0. (4.7)

As a direct consequence of Lemma 3.2, we obtain

Lemma 4.1 (Krylov subspace iteration). Let the assumption (A0) be valid. Then the iterative
scheme (4.2)–(4.7) is well-defined for any s0 ≥ 0 and all l ≥ 0.

Let us denote the subspaces spanned by the iterates xli generated by (4.2)–(4.7) with

WL
i = span{x0i , . . . , xL−1i }, i = 1, 2. (4.8)

The special structure of the iteration allows us to show the following result.
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Lemma 4.2 (Properties of subspaces). Let s0 > 0, then M1WL
1 = GWL

2 , while for s = 0 we

have M1WL
1 = GWL+1

2 . Moreover, Nx2 = 0 for any x2 ∈WL
2 and any choice of s0 ≥ 0.

Proof. First consider s0 > 0: Then from (4.2), we see that M1x
0
1 = −Gx02, and thus the first

assertion holds true for L = 0. By (4.5) and induction, we obtain M1WL
1 = GWL

2 for all L ≥ 1.
Now consider the case s0 = 0: Then from (4.2), one can deduce that x02 ∈ N (G). Using (4.5)
with L = 1, we further see that M1x

0
1 = Gx12, and hence M1W1

1 = GW2
2. By (4.5) and induction,

we finally obtain the result for all L ≥ 1 again. �

4.2. Construction of the spaces Z1 and Z2. The structural assumption (A0) particularly
implies that G is surjective which allows us to ensure the following property.

Lemma 4.3. Let assumption (A0) hold. Then for any choice of g1 and g3, the system

Gx2 = g1 and Nx2 = g3

has at least one solution x2. We denote by x†2 the unique solution that also minimizes x>2 M2x2.

This minimum-norm solution x†2 can be expressed as

x†2 =

[
G
N

]† [
g1
g3

]
with

[
G
N

]†
= M−12

[
G> N>

]([G
N

]
M−12

[
G> N>

])−1
denoting the pseudo-inverse with respect to the scalar product induced by M2.

We can now define o2 as the minimum-norm solution of Go2 = M1o1 and No2 = 0 and set

Z1 = span{o1} and Z2 = span{o2}+N (G) for s0 > 0. (4.9)

If s0 = 0, then we choose Z2 = span{o2}+N (G) + span{xL2 } instead. As a consequence of this
construction and the observations made in Lemma 3.1 and 4.2, we obtain the following result.

Lemma 4.4 (Compatibility). Define V1 = WL
1 + Z1 and V2 = WL

2 + Z2, and let Vi denote
matrices whose columns form bases for Vi, i = 1, 2, orthogonal with respect to the scalar products
induced by the matrices Mi, respectively. Then the assumptions (A1)–(A3) are satisfied and the
reduced model (2.14)–(2.16) satisfies the moment matching conditions of Lemma 3.1.

The assertions follow directly from the construction. Let us finally mention an equivalent rep-
resentation for the space V2 which will be used in our basis construction algorithm in Section 5.

Lemma 4.5. Let Vi and Vi, i = 1, 2 be defined as in Lemma 4.4. Then

V2 = R(V2) = R

([
G
N

]† [
M1V1

0

])
+N (G).

Proof. The assertion follows by construction of the space V2 and Lemmas 4.2 and 4.3. �

5. Algorithms for the basis construction

Following the above considerations, we can now formulate algorithms for the explicit con-
struction of the projection matrices Vi. We will use Matlab notation throughout this section.
Let us start with the construction of the Krylov subspaces, for which we use an Arnoldi method.

Algorithm 5.1 (Krylov iteration).

% function W=krylov(E,A,B,s0,L,tol)

r = (s0*E + A)\B;

r = ortho(r,[],E,tol);

W = r;

for l=1:L-1

r = (s0*E + A)\(E*r);

r = ortho(r,W,E,tol);

W = [W,r];

end
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The orthogonalization can be realized efficiently via a modified Gram-Schmidt process with one
re-orthogonalization step [21]. Note that orthogonality is understood with respect to the bilinear
form induced by the matrix E here, which also appears in the definition of the energy of the
system. The corresponding algorithm reads

Algorithm 5.2 (Orthogonalization).

% function V=ortho(V,W,E,tol)

for k = 1:size(V,2)

% orthogonalize to Wj

for r=1:2 % use reorthonormalization

for j = 1:size(W,2)

hk1j = W(:, j)’ * E * V(:, k);

V(:, k) = V(:, k) - W(:, j) * hk1j;

end

end

% orthogonalize to previous Vj

for r=1:2

for j = 1:k-1

if d(j)<tol, continue; end

hk1j = V(:, j)’ * E * V(:, k);

V(:, k) = V(:, k) - V(:, j) * hk1j;

end

end

% normalize

d(k) = sqrt(V(:,k)’ * E * V(:,k));

if d(k)>=tol,

V(:, k) = V(:, k) / d(k);

end

end

% only keep relevant vectors

V = V(:,find(d>tol));

The next step consists in the splitting of the matrix W = [W1;W2;W3] corresponding to the
solution components x = [x1;x2;x3]. Note that even if the columns of W are orthogonal, this
will in general no longer be true for the columns of Wi and thus some re-orthogonalization is
required. For reasons of numerical stability, we here employ the cosine-sine decomposition[

W1

W2

]
=

[
U1 0
0 U2

] [
C 0
0 S

]
X>,

where U1, U2, and X are orthogonal and C, S are diagonal with entries C2
ii + S2

ii = 1; this
explains the name of the decomposition. Note that the cosine-sine decomposition and the
related generalized singular value decomposition can be computed efficiently and stably [21, 44].
The following algorithm additionally takes into account non-standard scalar products.

Algorithm 5.3 (Stable splitting via cosine-sine decomposition).

% function [W1,W2]=split(W1,W2,M1,M2,tol)

% compute cholesky factorizations Mi=Ri*Ri’

R1 = chol(M1); R2 = chol(M2);

% compute generalized svd

[U1,U2,X,C,S] = gsvd(R1*W1,R2*W2);

% eliminate dependent columns

kc = find(diag(C)>tol); ks = find(diag(S)>tol);

W1 = R1\U1(:,kc); W2 = R2\U2(:,ks);
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For the problems under investigation, the splitting via the cosine-sine decomposition does not
cause a substantial computational overhead but significantly improves the stability compared to
the simple splitting W = [W1;W2] with subsequent re-orthogonalization; see Section 7.2 for an
illustration by numerical tests.

As a final step in the basis construction process, we now apply the modifications to ensure the
algebraic compatibility conditions (A1)–(A3) which finally allow us to guarantee the properties
(P1)–(P4) also for the reduced models. For this purpose, we use the following implementation.

Algorithm 5.4 (Modifications).

% function [V1,V2]=modify(W1,W2,M1,M2,o1,nullG,tol)

V1 = ortho([W1,o1],[],M1,tol);

V2 = M2\([G’,N’]*(([G;N]*(M2\[G’,N’]))\[M1*W1;zeros(size(N,1),size(V1,2))]));

V2 = ortho([nullG,V2],[],M2,tol);

Note that the matrix V2 was defined here following the considerations of Lemma 4.5. This
again does not significantly increase the overall complexity but substantially improves validity
of the compatibility condition (A2) in the presence of round-off errors.

Summary. The previous considerations allow us to draw the following important conclusions
which describe the basic properties of our model reduction approach.

Theorem 5.5. Let (A0)–(A3) be valid and let the projection matrices Vi be defined with the
Algorithms 5.1–5.4. Then the reduced order model (2.14)–(2.16) is well-posed, conserves mass,
dissipates energy, and has exponentially stable steady states, i.e., it satisfies (P1)–(P4).

Proof. Well-posedness and the existence of unique steady states and thus property (P4) follow
from Lemma 3.5. Validity of (P2) is a consequence of the structure-preserving Galerkin projec-
tion. The proof of (P1) follows by construction and (P3) can be deduced from (P2) and (P4).
The proof of uniform exponential stability (P3) and its independence of the intermediate full
order model, however, requires a detailed analysis of the underlying partial differential-algebraic
model and its Galerkin approximations which will be presented in the appendix. �

Part II: Numerical illustration

In the following two sections, we first demonstrate the importance of the algebraic compati-
bility conditions and then illustrate our main results with some numerical tests.

6. Comparison of reduced models

In all our experiments, the full order model (2.8)–(2.10) is obtained by the mixed finite element
discretization of the system (2.1)–(2.6), as discussed in Section A2 and, therefore, the conditions
(A0) are valid. Implicit Runge-Kutta methods are used for integration in time, and the time
step τ is chosen sufficiently small in order to minimize the errors due to the time discretization.
Quantities xk will denote the approximations for x(tk) at time tk = kτ .

6.1. Test problems. We start with some considerations for the most simple networks consisting
of a single pipe of unit length and the same pipe split into two parts. The model parameters are
set to ae = be = de = 1. These test cases are already sufficient to illustrate the necessity of the

v1 v2
e1

v1 v2v3
e1 e2

Figure 6.1. Network topologies for the single pipe (TP1) and the double pipe (TP2).

compatibility conditions (A1)-(A3) for the well-posedness of the reduced models and the validity
of properties (P1)–(P4). We will compare the reduced models based on Krylov subspaces with
and without modifications and refer to these as
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• the standard (reduced) model: V1 = WL
1 , V2 = WL

2 ; and

• the improved (reduced) model: V1 = WL
1 + Z1, V2 = WL

2 + Z2;

respectively. If not stated otherwise, we always set the shift parameter to s0 = 0. Moreover, we
only utilize one single input for the subspace construction at the boundary vertex v1 on the left
side of the pipe. In this case B2 consists of a single column.

6.2. Reduction to an ordinary differential equation. For the test case (TP1) of a single
pipe, the coupling matrix N and the Lagrange parameter x3 have zero dimension. Therefore,
the model (2.8)–(2.10) is just a system of ordinary differential equations and the reduced model
(2.14)–(2.15) is well-posed for any choice of projection matrices V1 and V2 having full rank.

This is, however, no longer true for the case (TP2) of two pipes, where N and x3 have one
row. Well-posedness of the full-order system (2.8)–(2.10) and of the improved reduced model
based on subspaces Vi = Wi + Zi is still ensured by Lemmas 4.1 and 4.4. For the standard
reduced model based on subspaces Vi = Wi, on the other hand, we deduce from Lemma 4.2

that N̂ = NV2 = 0. Hence (A3) does not hold if dimV3 6= 0, and the matrix pencil sÊ + Â for
the reduced model is singular. Consequently, the linear system (2.14)–(2.16) is not well-posed.
The condition NV2 = 0 can, however, be used to eliminate the Lagrange multiplier z3 and to
obtain the smaller system of ordinary differential equations

M̂1ż1 + Ĝx2 = 0, (6.1)

M̂2ż2 − Ĝ>z1 + D̂z2 = B̂2u. (6.2)

Whenever the standard reduced model is used in the following, we will tacitly eliminate the

Lagrange multiplier and the constraints in this way. Since the matrices M̂i are regular, this
problem is clearly well-posed. Note, however, that the Lagrange multiplier z3 cannot be recov-
ered uniquely unless assumption (A3) is satisfied. Also, a potential input in the third equation
(2.16), which might occur in more general situations, cannot be handled appropriately unless
this compatibility condition is valid.

6.3. Choice of initial conditions. Let us briefly discuss the choice of initial conditions for
the reduced models. By projection with respect to the energy scalar products, we obtain

z1 = M̂−11 V >1 M1x1 and z2 = M̂−12 V >2 M2x2.

This choice provides the best approximation of the initial conditions with respect to the energy
of the problem, and the discrete energy Eh = 1

2

(
x>1 M1x1 + x>2 M2x2

)
at initial time is approxi-

mated as good as possible by the energy of the reduced model, which is obtained by replacing
xi = Vizi. Moreover, the initial energy is not increased by the projection step. The total mass
of the full order system is defined as mh = o>1 M1x1, and that of the reduced models is obtained
by replacing x1 = V1z1 again.

With the above choice of initial conditions, the improved reduced model will exactly reproduce
the initial mass. For the standard reduced model, we can in general not assume that o1 ∈ V1,
which may lead to a rather large defect in the initial mass. As a remedy, one may enforce the
correct representation of the initial mass by a constraint which, however, leads to a potential
increase in the initial energy. In Table 6.1, we display the values for the total mass obtained for
initial values p0 = 1 and q0 = 0 with the reduced models using these two strategies.

For the standard reduced model based on spaces Vi = WL
i , we observe a substantial miss-

specification of the total mass at initial time if the initial conditions are chosen by the energy
projection. Exact representation of the total mass via the constraint, on the other hand, leads to
an artificial increase of the initial energy. The size of both defects can be reduced by increasing
the approximation order L which allows to approximate the initial conditions better and better.
The improved reduced model, on the other hand, satisfies (A1) by construction and therefore
leads to the exact representation of the mass and a good approximation of the energy at the
same time. For the problem under investigation, the energy can even be represented exactly.
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exact Vi = WL
i Vi = WL

i + Zi
L 1 3 10 1 3 10

projection mh 1.000 0.750 0.902 0.949 1.000 1.000 1.000
Eh 0.500 0.375 0.451 0.475 0.500 0.500 0.500

mass constraint mh 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Eh 0.500 0.667 0.554 0.527 0.500 0.500 0.500

Table 6.1. Initial values of mh(0) and Eh(0) for the mass and energy for full
and the reduced order models obtained by projection in the energy norm with
and without additional mass constraint. Only the left input u1 at vertex v1 was
used in the Krylov iteration and the shift parameter was set to s0 = 0.

6.4. Conservation of energy. The port-Hamiltonian structure of the reduced order system
(2.8)–(2.10) automatically leads to exact conservation of the sum of total and dissipated energy

Eh(t) +

∫ t

0
Dh(s)ds = Eh(0) +

∫ t

0
yh(s)>u(s)ds.

Here Eh = 1
2(x>1 M1x1 + x>2 M2x2) is the total energy and Dh = x>2 Dx2 the dissipation term.

This holds true for the standard and the improved reduced model. An additional numerical
dissipation term arises if a stable implicit Runge-Kutta scheme is used for integration in time. If
the time step size τ is chosen sufficiently small, the effect of this artificial numerical dissipation
can however be mad arbitrarily small and thus be neglected; more details will be given below.

6.5. Exponential stability. We next consider the influence of the basis construction on the
exponential stability of the reduced models. We again set p0 = 1 and q0 = 0 and choose the
inputs in the boundary conditions as u1 = 0 and u0 = 1 for t > 0. In Table 6.2, we display the
values of the energy for the full order and the reduced models for a sequence of time steps.

exact Vi = WL
i Vi = WL

i + Zi
t \ L 1 3 10 1 3 10
0 0.5000 0.3750 0.4512 0.4745 0.5000 0.5000 0.5000
1 0.1528 0.3750 0.1665 0.1514 0.1876 0.1552 0.1527
2 0.0512 0.3750 0.0708 0.0509 0.0690 0.0511 0.0511
3 0.0174 0.3750 0.0384 0.0173 0.0245 0.0173 0.0174
4 0.0059 0.3750 0.0273 0.0059 0.0084 0.0059 0.0059

Table 6.2. Energy decay Eh(t) for the full order model, the standared reduced
model Wi = Vi, and the improved reduced model Wi = Vi + Zi. Only the left
input u1 and a shift parameter s0 = 0 is used for the Krylov iteration.

The improved reduced model yields uniform exponential decay of the energy in all cases.
Already for L = 3, the energy is predicted accurately over the whole time interval. The standard
reduced model, on the other hand, underestimates the initial energy and does not provide the
correct decay rate for small L. For the smallest model with L = 1, we do not even observe any
decay in energy at all. As we will see next, this defect may occur for any number of moments.

6.6. Existence of steady states. Consider the standard reduced model: As shown in Sec-

tion 3.3, the unique solvability of the stationary problem requires [Ĝ>, N̂>] to be injective. For
the case (TP1) of a single pipe, the matrix N has dimension zero since no inner vertex exists.

Even in this case, according to Lemma 4.2, surjectivity of Ĝ and thus injectivity of Ĝ> can in
general only be guaranteed for shift parameter s0 > 0. For s0 = 0, we expect to observe a rank
deficiency in the standard reduced model and thus irregularity of the stationary problem.
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To see this, we take s0 = 0 and let the initial values for the reduced problem be given by

z0 = (z01 , z
0
2 , 0) with z0 ∈ N (Â) and Â denoting the system matrix of the reduced model. Then

the solution of the reduced system reads z(t) = z0 for all t ≥ 0, i.e., the damping is completely
ineffective and no energy decay takes place. This can already be observed in Table 6.2 for L = 1.
Note that a shift parameter s0 = 0 is the typical choice if one is interested in the long term
behavior. The standard reduced model is therefore not exponentially stable for this important
case and existence of unique steady states cannot be guaranteed.

7. Numerical tests for the improved reduced model

We now illustrate in more detail the stability and approximation properties of the improved
reduced models obtained with the algorithms proposed in the previous sections.

7.1. Mesh independence. As a first example, we consider again the single pipe (TP1). The
reduced models are generated for a single input u1 at the left vertex v1 and we set s0 = 0. In
Figure 7.1, we display the basis functions obtained for L = 4 Krylov iterations.

Figure 7.1. Bases for the subspaces V1 = W1 +Z1 and V2 = W2 +Z2 obtained
by L = 4 Krylov iterations and the modifications outlined above. The resulting
dimensions are dim(V1) = 5 and dim(V2) = 6 here.

As explained in detail in Appendix A2, the columns of the matrices V1 and V2 form orthogonal
bases for the subspaces V1 and V2 which can be interpreted as functions on the interval [0, 1].
In fact, any single Krylov iteration corresponds to the solution of an elliptic boundary value
problem which explains why the basis functions are smooth. Also note that the functions look
similar to a sequence of orthogonal polynomials of increasing degree. This indicates that the
projection onto the Krylov subspaces leads to some sort of higher order approximation.

In the formulation of our algorithms, we payed special attention to a construction that re-
spects the underlying function space setting. As a consequence, the subspaces Vi and even the
corresponding bases turn out to be almost independent of the underlying full order model. To
illustrate this fact, we display in Figure 7.2 one of the basis functions for velocity and pressure
computed with full order models resulting from discretization on different meshes.

Note that the basis functions for different levels coincide almost perfectly, up to discretiza-
tion errors. This clearly demonstrates the mesh independence of the proposed algorithms. As
mentioned before, all algorithms could even be formulated directly for the infinite dimensional
problem and the basis functions depicted in Figure 7.2 thus correspond to approximations for the
corresponding functions that would be obtained by the Krylov iteration in infinite dimensions.

7.2. Stability of the splitting step. In our basis construction algorithms, we used the cosine-
sine decomposition in order to improve the numerical stability of the splitting W = [W1;W2]. A
simple splitting with re-orthogonalization of W1 and W2, on the other hand, could be realized
as follows.
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Figure 7.2. Basis functions for pressure and velocity computed with the same
Krylov iteration but using different full order models obtained by finite element
discretization with mesh sizes h = 1

20 , 1
40 , and 1

80 .

% function [W1,W2]=simplesplit(W1,W2,M1,M2,tol)

W1 = ortho(W1,[],M1,tol);

W2 = ortho(W2,[],M1,tol);

In Figure 7.3, we compare the results obtained by splitting the Krylov bases by this simple
strategy with those obtained by means of the cosine-sine decomposition.

Figure 7.3. Basis functions for the pressure space WL
1 obtained after L = 10

Krylov iterations and splitting with the cosine-sine decomposition (left) respec-
tively the simple splitting and re-orthogonalization (right).

Due to the possibility of interpreting the basis vectors as functions on the interval [0, 1], one
can easily conclude that, already for relatively small dimensions, the standard splitting suffers
from severe numerical instabilities. Let us emphasize that this is caused only by the instability
of the splitting step and not by the Arnoldi iteration defining the Krylov spaces. The splitting
via cosine-sine decomposition, on the other hand, does not suffer from these instabilities and
should therefore always be preferred in practice.

7.3. Approximation of the input-output behavior. By Lemma 3.1, we know that the
reduced models obtained with our algorithms exactly match the first few moments of the trans-
fer function. This leads to a good overall approximation of the input-output behavior in the
frequency domain. With the following tests, we would like to take a closer look also at the
approximation in the time domain. For this purpose, we repeat the computations for a single
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pipe with input functions now given by

u1(t) =


t, 0 ≤ t < 1,

2− t, 1 ≤ t < 2,

0, t ≥ 2,

and u2(t) = 0. (7.1)

The initial values are set to p0 = 0 and q0 = 0 and we now use the inputs u1 and u2 at both
pipe ends to construct the reduced models. The shift parameter is again set to s0 = 0. For
integration of the system in time, we utilize a θ-scheme with uniform time step τ . For θ = 1 we
obtain the implicit Euler method and for θ = 1

2 + τ , the scheme is second order in time. In both
cases, the exponential decay is preserved [16].

Figure 7.4. Mass-flux q(v2)n(v2) = −y2 at the right boundary for the single
pipe (TP1) with input (7.1). Results are displayed for the full order model (blue)
and reduced order models (red) with L = 2, 5, 10 (left to right) and for damping
parameters d = 0.1, 1, 5 (top to bottom).

As can be seen from Figure 7.4, an approximation with only a few moments already leads to
a very accurate representation of the input-output behavior in time domain. The oscillations in
the initial phase of the output are due to a Gibbs phenomenon. This effect, however, becomes
negligible when increasing the dimension of the reduced models. The correct propagation speed
and damping of the signal are obtained for all models with L ≥ 5. For the reduced model
with L = 10 Krylov iterations, which corresponds to dim(V1) = 14 and dim(V2) = 15 here, the
prediction of the output is almost perfect. The plots displayed in Figure 7.4 also illustrate the
exponential decay of the output which becomes faster when the damping is increased.
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7.4. Results for a small network. As a final test case, let us now demonstrate that very
similar results can also be obtained on more complicated situations. For this purpose we repeat
the previous tests for the network depicted in Figure 7.5. All pipes are chosen to be of unit

v1 v3

v4

v5

v6 v2
e1

e2

e3

e
4

e5

e6

e7

Figure 7.5. Topology used for numerical tests on a network. The thickness of
the edges corresponds to diameter of pipes. As before, input and output of the
system occurs via the vertices v1, v2 which denote the ports of the systems.

length le = 1 and the model parameters are set constant along every pipe with values

a =
[
4 4 1 1 1 4 4

]
, b =

[
1/4 1/4 1 1 1 1/4 1/4

]
and d = d0 ·

[
1/8 1/8 1 1 1 1/8 1/8

]
.

Here d0 is some positive constant that allows us to vary the damping in the whole system by a
single factor. These parameters correspond to pipes of different cross-sections; cf. Figure 7.5.

We now repeat the test of the previous section with input defined by (7.1). Since the overall
system is substantially larger here, we increase the time horizon by a factor four. As before, we
specify a pressure profile at the vertex v1 as input and consider as output the resulting mass
flux at vertex v2 where the pressure is kept at zero. The results are depicted in Figure 7.6.

In comparison to the example with a single pipe, the output function now has a much more
complicated structure which is due to multiple pathways through the network and possible
reflections at the junctions. Again we observe some Gibbs phenomena for approximations with
only a few moments. For L = 20, which here corresponds to dim(V1) = 40 and dim(V2) = 47,
we already observe an almost perfect prediction of the input-output behavior. Note that this
reduced model amounts to only about 6 and 7 degrees of freedom per pipe for pressure and
velocity, respectively, which is in good agreement with the experiments for the single pipe.

8. Discussion

Let us briefly summarize the observations made in this paper. Structure-preserving model
reduction, as considered for instance in [7, 20, 24, 32, 36], is in principle well suited for the sys-
tematic approximation of system of differential-algebraic equations that arise by discretizations
of partial differential-algebraic systems modeling of wave propagation phenomena on networks.
A proper discretization and subsequent projection onto subspaces allows to preserve the un-
derlying port-Hamiltonian structure and to guarantee passivity of the reduced models. Other
important properties, like conservation of mass or exponential stability, are however not inherited
automatically. In order to preserve also these properties, some problem specific modifications
are required in the subspace construction process. The formulation of appropriate modifications
may require a detailed analysis of the underlying mathematical models in infinite dimensions
and a detailed understanding of the overall discretization process which in general problem de-
pendent. Therefore, future work has to be devoted to a consideration of further applications,
e.g., in elastodynamics or electromagnetics. Another aspect that has to be addressed in future
research are nonlinearities in the underlying system.
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Figure 7.6. Mass-flux q(v2)n(v2) = −y2 over the right boundary for the network
test problem. Results are displayed for the full order model (blue) and the
reduced order models (red) with L = 5, 10, 20 (left to right) and for damping
parameters d0 = 0.1, 0.5, 1 (top to bottom).
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Appendix

Part III. Functional analytic background

The purpose of this appendix is to show rigorously that the algorithms presented in the
previous sections lead to reduced models that satisfy properties (P1)–(P4) uniformly. Most of
the following results can in principle be obtained by generalization of those in [17]. To give
a complete presentation, we repeat the most important results required for our analysis and
provide short proofs where they yield further insight.

Appendix A1. The infinite dimensional problem

Let us start with introducing the relevant notation. We denote by

L2(E) = {p : p|e = pe ∈ L2(e) ∀e ∈ E}
the space of square integrable functions over the network with norm

‖p‖L2(E) = (p, p)
1/2
E and (p, p̃)E =

∑
e
(pe, p̃e)L2(e).

For convenience of notation, we will sometimes use the symbols ‖ · ‖L2 and ‖ · ‖ instead. In
addition to this basic function space, we will make use of the broken Sobolev space

H1(E) = {q : qe ∈ H1(e) ∀e ∈ E}
consisting of functions that are continuous along edges but may be discontinuous at interior
vertices v ∈ V0. The broken derivative of a function q ∈ H1(E) is denoted by ∂′xq defined by

(∂′xq)|e = ∂x(q|e) for all e ∈ E .

This allows us to write H1(E) = {q ∈ L2(E) : ∂′xq ∈ L2(E)} with natural norm defined by

‖q‖2H1(E) = ‖q‖2L2(E) + ‖∂′xq‖2L2(E).

For a piecewise smooth function q ∈ H1(E), we define at every interior vertex v ∈ V0 the value

[nq](v) =
∑

e∈E(v)
ne(v)qe(v),

which amounts to the imbalance in the coupling condition (2.3). For a junction of only two
pipes, the value [nq] amounts to the jump of q across the junction and the symbol [nq] is the one
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usually employ in the analysis of discontinuous Galerkin methods. These values of the jumps
can be understood as a vector in RV0 and as the scalar product on RV0 , we use

(λ, µ)V0 =
∑

v∈V0
λvµv.

In a similar way, we will denote by (λ, µ)V∂ the corresponding scalar product for RV∂ . We now
have the following variational characterization of solutions to our model problem.

Lemma A1.1. Let (p, q) denote a smooth solution of (2.1)–(2.6) and set λv(t) = pv(t). Then

(a∂tp(t), p̃)E + (∂′xq(t), p̃)E = 0, (A1.1)

(b∂tq(t), q̃)E − (p(t), ∂′xq̃)E + (dq(t), q̃)E + (λ(t), [nq̃])V0 = −(u(t), nq̃)V∂ , (A1.2)

([nq(t)], λ̃)V0 = 0, (A1.3)

for all test functions p̃ ∈ L2(E), q̃ ∈ H1(E), λ̃ ∈ RV0, and all t ≥ 0.

Proof. The proof follows with similar arguments as in [17]. We therefore only sketch the required
modifications: The validity of (A1.1) and (A1.3) follows directly from (2.1) and (2.3). Using
integration-by-parts on one single edge e = (ve1, v

e
2), we get

(∂xp
e, q̃e)e = −(pe, ∂xq̃

e)e + ne(ve1)q̃e(ve1)pe(ve1) + ne(ve2)q̃e(ve2)pe(ve2).

Summing over all edges, this yields terms at the inner vertices that can be reordered as∑
e∈E

ne(ve1)q̃e(ve1)pe(ve1) + ne(ve2)q̃e(ve2)pe(ve2)

=
∑

v∈V0

∑
e∈E(v)

ne(v)q̃e(v)pe(v) +
∑

v∈V∂
ne(v)q̃e(v)pe(v).

Using that pe(v) = λv for v ∈ V0 and pe(v) = uv for v ∈ V∂ and the definition of [nq̃], this shows
the validity of (A1.2) and completes the proof of the lemma. �

Remark A1.2 (Well-posedness). Together with the initial conditions (2.5), the variational
problem (A1.1)–(A1.3) can be shown to admit a unique solution which, for sufficiently regular
inputs and initial data, corresponds to the classical solution of (2.1)–(2.6). The variational
formulation is thus equivalent to the initial boundary value problem; see [17] for details.

We now proceed by establishing the properties (P1)–(P4) on the continuous level. The results
again follow with a slight modification of the arguments given in [17].

A1.1. Conservation of mass. The mass of the fluid contained in a single pipe is given by

me(t) =

∫
e
aepe(t)dx.

Using the balance equation (2.1) and the conservation condition (2.3), we obtain

Lemma A1.3 (Conservation of mass).
Let m(t) =

∑
e∈E m

e(t) denote the total mass contained in the network. Then

d

dt
m(t) =

∑
v∈V∂

yv(t),

i.e., the change of mass is caused only by flux across the boundary of the network.

Proof. Using (2.1), the fundamental theorem of calculus, and (2.4), we get

d

dt

∑
e∈E

me =
∑

e∈E

∫
e
ae∂tp

edx =
∑

e∈E

∫
e
−∂xqedx =

∑
e∈E
−ne(ve1)qe(ve1)− ne(ve2)qe(ve2)

=
∑

v∈V

∑
e∈E(v)

−ne(v)qe(v) =
∑

v∈V∂
−ne(v)qe(v).

The result then follows by using the special form of the output yv given in (2.7). �
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A1.2. Energy dissipation. Let us first prove property (P1) by deriving an explicit energy
dissipation relation. The total acoustic energy contained in a single pipe is given by

Ee(t) =
1

2

∫
e
ae|pe(t)|2 + be|qe(t)|2dx.

From the differential equations (2.1)–(2.2) and the algebraic continuity conditions (2.3)–(2.4),
we can now deduce the following energy dissipation relation.

Lemma A1.4 (Energy dissipation and port-Hamiltonian structure).
Let E(t) =

∑
eE

e(t) denote the total acoustic energy contained in the network. Then

d

dt
E(t) = −

∑
e∈E

∫
e
de|qe(t)|2dx+

∑
v∈V∂

uv(t)yv(t),

i.e., the change of total energy is caused by power dissipated through the damping mechanism
and supplied or drained at the system ports.

Proof. By elementary calculations and the partial differential equations (2.1)–(2.2), we get

d

dt

1

2

∫
e
ae|pe|2 + be|qe|2dx =

∫
e
ae∂tp

epe + be∂tq
eqedx

=

∫
e
(−∂xqe)pe + (−∂xpe − deqe)qedx.

Integration-by-parts of the second term in the last equation on e = (ve1, v
e
2) gives∫

e
(−∂xpe)qedx =

∫
e
pe∂xq

edx− ne(ve1)qe(ve1)pe(ve1)− ne(ve2)qe(ve2)pe(ve2).

Summing over all edges e, using the definition of the total energy, and (2.3)–(2.4) leads to

d

dt
E(t) = −

∑
e∈E

∫
e
de|qe|2dx−

∑
v∈V∂

ne(v)qe(v)pe(v).

The result now follows from definition of the in- and output. �

A1.3. Exponential stability. Due to linearity of the problem, it suffices to consider the homo-
geneous case. The energy balance then reveals that kinetic energy is dissipated by the damping
mechanism. This, however, also leads to a reduction of the total energy resulting in the expo-
nential stability of the system stated as property (P4).

Lemma A1.5 (Exponential stability).
Let u(t) ≡ 0 for 0 ≤ t1 ≤ t ≤ t2, and E(t) be the total energy of the system. Then

E(t) ≤ Ce−γ(t−s)E(s) for all t1 ≤ s ≤ t ≤ t2,

with positive constants C, γ > 0 that are independent of t1, t2, s, and t.

Proof. The proof is based on energy estimates, some graph theoretic results, and a generalized
Poincaré inequality; we refer to [17] for details. �

A1.4. Steady states. From the previous result, we obtain convergence to zero steady state
in case of homogeneous input u ≡ 0. Due to the linearity of the problem, this yields also the
existence of unique and stable steady states in the general case.

Lemma A1.6 (Steady states). Let u(t) ≡ const for all t ≥ t1. Then (p(t), q(t)) converges to a
steady state (p̄, q̄), which is the unique solution of the corresponding stationary problem.

Proof. The existence of a unique steady state has been established in [17]. The difference to
steady state (p(t) − p̄, q(t) − q̄) solves (2.1)–(2.5) with u ≡ 0 and convergence to steady state
thus follows by the exponential stability estimate given in the previous lemma. �
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Appendix A2. Galerkin approximation

We now extend the discretization strategy proposed in [17] to our setting and review the
basic results about the stability of these full order models. Let Ph ⊂ L2(E) and Qh ⊂ H1(E) be
finite dimensional spaces and set Λh = RV0 . Let T > 0 and consider the following conforming
Galerkin approximations of the variational principle (A1.1)–(A1.3) as space discretization.

Problem A2.1 (Galerkin approximation and discrete variational problem).
Find ph ∈ H1(0, T ;Ph), qh ∈ H1(0, T ;Qh), and λh ∈ L2(0, T ; Λh) such that

(ph(0), p̃h)E = (p0, p̃h)E and (qh(0), q̃h)E = (q0, q̃h)E

for all p̃h ∈ Ph and q̃h ∈ Qh, and such that the discrete variational equations

(a∂tph(t), p̃h)E + (∂′xqh(t), p̃h)E = 0, (A2.1)

(b∂tqh(t), q̃h)E − (ph(t), ∂′xq̃h)E + (dqh(t), q̃h)E + (λh(t), [nq̃h])V0 = (u(t), nq̃h)V∂ , (A2.2)

([nqh(t)], λ̃h)V0 = 0 (A2.3)

hold for all test functions p̃h ∈ Ph, q̃h ∈ Qh, λ̃h ∈ Λh, and all 0 ≤ t ≤ T .

A simple compatibility condition allows to deduce the well-posedness of this problem.

Lemma A2.2 (Discrete well-posedness).
Assume that {1e : e ∈ Eh} ⊂ Qh, where 1e denotes the function in L2(E) which is constant one
on the edge e and zero otherwise. Then Problem A2.1 has a unique solution.

Proof. The condition {1e : e ∈ E} ⊂ Qh allows to eliminate the constraint and the Lagrange
multiplier λ from the system; compare with Section 6.2. By choosing bases for the spaces Ph
and Qh, we may thus obtain linear system of ordinary differential equations. Existence and
uniqueness then follow from the Picard-Lindelöf theorem. �

Remark A2.3. Once the solution of the discretized problem is found, we can define the corre-
sponding output of the discrete system by yh(v) = −ne(v)qeh(v) for v ∈ V∂ and e ∈ E(v). Let us
note that elimination of the constraints (A2.3) yields the problem originally considered in [17].
All results obtained in that paper therefore carry over to the problem considered here, if the
condition of the previous Lemma is satisfied, which is called assumption (A3h) below.

We next establish the properties (P1)–(P4) for the Galerkin approximations introduced above.
The results again follow with similar arguments as used in [17]. Let us emphasize that additional
conditions on the approximation spaces Ph and Qh are required for some of the results.

A2.1. Conservation of mass. Mass conservation on the continuous level follows by testing
(A1.1) with the function p̃ ≡ 1 and some elementary manipulations. A discrete equivalent of
this result can be obtained, if p̃h ≡ 1 is contained in the test space.

Lemma A2.4 (Discrete mass conservation).
Let mh(t) =

∑
e∈E
∫
e aph(t)dx denote the total mass of the discrete system, and let

(A1h) 1 ∈ Ph.

Then the total mass changes only due to flux across the boundary, i.e.,

d

dt
mh(t) =

∑
v∈V∂

−n(v)qh(v) =
∑

v∈V∂
yh(v).

Proof. The assertion follows in the same manner as that of Lemma A1.3. �
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A2.2. Energy balance. Mimicking the notation used on the continuous level, we may define
for every pipe e ∈ E the total (discrete) energy content of the pipe by

Eeh(t) =
1

2

∫
e
ae|ph(t)|2 + be|qh(t)|2.

With the same arguments as on the continuous level, we then obtain

Lemma A2.5 (Discrete energy balance and port-Hamiltonian structure).
Let Eh(t) =

∑
e∈E E

e
h(t) denote the total discrete energy. Then

d

dt
Eh(t) = −

∑
e∈E

∫
e
ae|qh(t)|2dx+

∑
v∈V∂

yh(t)u(t), (A2.4)

i.e., the energy changes by dissipation and supply or drain via the ports of the network.

Note that no extra condition for the approximation spaces is required for the proof of property
(P1) for the Galerkin approximations of the variational formulation (A1.1)–(A1.3).

A2.3. Exponential stability. For input u ≡ 0, the energy balance (A2.4) already guarantees
that the total energy of the discrete system is non-increasing. Under additional compatibility
conditions on the approximation spaces, one can even show the uniform exponential decay.

Lemma A2.6 (Uniform discrete exponential stability). Assume that

(A2h) ∂′xQh = Ph;

(A3h) 1e ∈ Qh for all e ∈ E.

Then for u ≡ 0, the discrete energy Eh(t) defined in Lemma A2.5 satisfies

Eh(t) ≤ Ce−γ(t−s)Eh(s), t ≥ s ≥ 0.

Moreover, the constants C, γ can be chosen the same as on the continuous level.

Proof. Following Remark A2.3, the proof can be deduced from the results of [17]. �

A2.4. Steady states. Under the assumptions of the previous lemma, one can also guarantee
property (P4), i.e., the existence and uniqueness of discrete steady states.

Lemma A2.7 (Discrete steady states).
Let u(t) ≡ const for t ≥ t0 and assume that (A2h)–(A3h) hold. Then for t → ∞, the discrete
solution (ph(t), qh(t)) converges to a discrete equilibrium (p̄h, q̄h) which is the unique solution of
the corresponding stationary problem.

Proof. The existence of a unique discrete steady state is established in [17]. Convergence to
equilibrium then follows from the energy decay estimate like in Lemma A1.6. �

A2.5. A mixed finite element approximation. As a particular Galerkin approximation
satisfying the above assumptions, let us briefly discuss the mixed finite element method that is
used in our numerical tests. Let [0, le] be the interval represented by the edge e and denote by
Th(e) = {T} a uniform mesh of e with subintervals T of length he. The global mesh is then
defined as Th(E) = {Th(e) : e ∈ E}, and the global mesh size is denoted by h = maxe h

e. We
denote the spaces of piecewise polynomials on Th(E) by

Pk(Th(E)) = {v ∈ L2(E) : v|e ∈ Pk(Th(e)), e ∈ E},

where Pk(Th(e)) = {v ∈ L2(e) : v|T ∈ Pk(T ), T ∈ Th(e)} and Pk(T ) is the space of polynomials
of degree ≤ k on the subinterval T . Note that Pk(Th(E)) ⊂ L2(E), which is easy to see, but in
general Pk(Th(E)) 6⊂ H1(E). As spaces Vh and Qh for the Galerkin approximation presented in
the previous sections, we now consider

Vh = P1(Th(E)) ∩H(div) and Qh = P0(Th(E)). (A2.5)

This choice of spaces satisfies the compatibility conditions (A1h)–(A3h); see [17] for details.
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A2.6. Structure preserving model reduction. As final result of this section, we now give
an interpretation of the model reduction approach on the level of function spaces. The sys-
tem obtained by Galerkin projection onto Ph, Qh will again be called full order model. The
reduced models are obtained by projection onto smaller subspaces PH ⊂ Ph and QH ⊂ Qh. The
compatibility conditions for these coarse subspaces read

(A1H) 1 ∈ PH ;

(A2H) ∂′xQH = PH ;

(A3H) 1e ∈ QH for all e ∈ E .

Note that by construction PH ⊂ Ph ⊂ L2(E) and QH ⊂ Qh ⊂ H1(E). From the previous results
about general Galerkin approximations, we therefore directly deduce the following result.

Lemma A2.8 (Structure preserving model reduction).
Let PH ⊂ Ph and QH ⊂ Qh and assume that (A1H)–(A3H) hold. Then the reduced system
satisfies (P1)–(P4) and the assertions of Lemma A2.5–A2.7 hold accordingly.

Remark A2.9. Since the reduced model can be viewed as Galerkin approximation of the infinite
dimensional problem (A1.1)–(A1.3), it is clear that the solution (pH(t), qH(t)) only depends on
the choice of the approximation spaces PH and QH but not on the spaces Ph and Qh used for
the generation of the full order model which is only required for computational purposes and
has no effect on the quality of the reduced model.

Appendix A3. Reformulation on the algebraic level

We now translate the results of the previous section to the algebraic level. By choosing
appropriate bases for the subspaces Ph and Qh defining the discrete variational problem (A2.1)–
(A2.3), the resulting full order model can be written in algebraic form as follows.

Lemma A3.1 (Equivalent algebraic system).
Let {φi} and {ψj} be bases for Ph and Qh. Then the problem (A2.1)–(A2.3) is equivalent
to the system (2.8)–(2.10) with matrices defined by M1(i, j) = (aφj , φi)E , M2(i, j) = (bψj , ψi)E ,
G(i, j) = (∂′xψj , φi)E , D(i, j) = (dψj , ψi)E , N(i, j) = [nψj ](vi0), and B2(i, j) = −δj∂ ,in(vj)ψi(vj).

Here (a, b)E =
∑

e

∫
e a(x)b(x)dx is the scalar product of L2(E), and 1 ≤ i0 ≤ |V0| and

1 ≤ i∂ ≤ |V∂ | denote the appropriate renumbering of inner and boundary vertices. From the
definition of the matrices, we also obtain the following properties.

Lemma A3.2. Let ae, be, and de be positive for all e ∈ E. Then M1, M2, D are symmetric and
positive definite. If (A2h)–(A3h) hold, then [G>, N>] is injective and N is surjective on N (G).

These properties allow us to establish the well-posedness of the linear time-invariant system
(2.8)–(2.10) and, following our discussion in Section 3.3, also the unique solvability of the cor-
responding stationary problem. As a next step, we can now provide an interpretation of the
properties (P1)–(P4) on the algebraic level.

A3.1. Conservation of mass. The condition 1 ∈ Ph is equivalent to

(A1′h) ∃o1 ∈ Rk1 :
∑k1

i=1 o1,iφi = 1 on E .

Here o1 ∈ Rk1 is the coordinate vector representing the function 1 ∈ Ph in the basis {φi} of the
space Ph. This allows us to express the conservation of mass on the algebraic level as follows.

Lemma A3.3 (Mass conservation). Let ph(·, t) =
∑k1

i=1 x1,i(t)φi(·) ⊂ Ph and further define

qh(·, t) =
∑k2

j=1 x2,j(t)ψj(·) ⊂ Qh. Then the mass of the discrete system can be expressed as

mh(t) =
∑

e∈E

∫
e
aepehdx = o>1 M1x1(t).
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With ô ∈ RV∂ denoting the constant one vector and y = B>2 x2 the output, we have

d

dt
mh(t) = −ô>y.

Proof. The definition of the total mass and (2.8) lead to

d

dt
mh = o>1 M1ẋ1 = −o>1 Gx2.

The fact that o>1 Gx2 = ô>Bx2 = ô>y can be deduced from the equivalent formulation of the
Galerkin approximation in function spaces; cf. Lemma A2.4. �

Again, the definition of the total mass and the proof of the mass conservation requires aware-
ness of the underlying problem in function spaces.

A3.2. Energy balance. The energy of the discrete system can be expressed as

Eh(t) =
1

2

∑
e∈E

(
ae‖peh(t)‖2E + be‖qeh(t)‖2E

)
=

1

2

(
x1(t)

>M1x1(t) + x2(t)
>M2x2(t)

)
,

where (x1(t), x2(t), x3(t)) is a solution of (2.8)–(2.10) and ph(·, t) =
∑k1

i=1 x1,i(t)φi(·) ⊂ Ph,

qh(·, t) =
∑k2

j=1 x2,j(t)φj(·), and λh(t) = x3(t) define the corresponding functions making up the
solution of of Problem A2.1. The discrete energy balance of Lemma A2.5 can now be rephrased
as

Lemma A3.4 (Energy dissipation and port-Hamiltonian structure).
Let (x1, x2, x3) denote a solution of the linear system (2.8)–(2.10). Then

d

dt
Eh(t) = −x2(t)>Dx2(t) + y(t)>u(t),

with output defined as y(t) = B>x2(t). In particular, property (P1) is valid.

Proof. Let us give a direct derivation of this assertion on the algebraic level. Using the definition
of the energy, the symmetry of Mi, and the algebraic equations, we obtain

d

dt
Eh = x>1 M1ẋ1 + x>2 M2ẋ2

= x>1 (−Gx2) + x>2 (G>x1 −Dx2 +Bu) = −x>2 Dx2 + y>u.

In the last step, we utilized that x>2 Bu = (B>x2)
>u and the definition of the output. �

Remark A3.5. As can be seen from the proof, the scalar product and norm induced by the
matrices M1 and M2 are directly associated with the energy of the system and they are the
natural ones for the analysis and numerical treatment of the discrete problem in algebraic form.

As shown above, the property (P1) follows directly from the particular form of the algebraic
system. As will become clear below, the validity of the remaining properties (P2)–(P4) however
requires awareness of the underlying infinite dimensional problem.

A3.3. Exponential stability. In order to translate the assertions of Lemma A2.6 to the alge-
braic level, we have to describe the meaning of the conditions (A2h)–(A3h).

Lemma A3.6. The compatibility conditions (A2)–(A3) are equivalent to

(A2′h) for all x1 ∈ Rk1 there exists x2 ∈ Rk2 such that
∑k1

i=1 x1,iφi =
∑k2

j=1 x2,jψj;

(A3′h) for all e ∈ E there exists oe2 ∈ Rk2 such that
∑k2

j=1 o
e
2,jψj = 1e ∈ Qh.

As a direct consequence of this characterization, Lemma A2.6, and the equivalence of the
algebraic system to the Galerkin approximation, we obtain the following lemma.
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Lemma A3.7 (Exponential stability).
Let (A2′h)–(A3′h) hold and let (x1(t), x2(t), x3(t)) be a solution of (2.8)–(2.10). Then

d

dt
Eh(t) ≤ Ce−γ(t−s)Eh(s),

with constants C, γ > 0 that can be chosen as in Lemma A1.5 and A2.6.

The derivation of the conditions (A2′h)–(A3′h) and the proof of the stability estimate can thus
be deduced from the underlying Galerkin approximation and the analysis in function spaces.

A3.4. Steady states. The assertion about steady states can finally be translated as follows.

Lemma A3.8 (Steady states). Let (A2′h)–(A3′h) hold. Then for u(t) ≡ const, the solutions
(x1(t), x2(t), x3(t)) of the system (2.8)–(2.10) converge to a steady state (x̄1, x̄2, x̄3) which is the
unique solution of the corresponding stationary problem.

Proof. The result follows again by equivalence to the Galerkin approximation (A2.1)–(A2.3) and
the corresponding result stated in Lemma A2.7. �

A3.5. Structure preserving model reduction. As a final step of our analysis, we can now
provide a proof for Theorem 5.5 by translating the results of Section A2.6 to the algebraic level:
Let {φi} and {ψj} denote bases for Ph and Qh, and let V1 ∈ Rk1×K1 and V2 ∈ Rk2×K2 be given
matrices with linearly independent columns. For k = 1, . . . ,K1 and l = 1, . . . ,K2, we define

Φk =
∑k1

i=1
V1,kiφi, and Ψl =

∑k2

j=1
V2,ljψj ,

which serve as basis functions for low dimensional approximation spaces PH and QH . As a
direct consequence of this construction and the previous considerations, we obtain

Lemma A3.9 (Reduced algebraic system). Let us define

PH = span{Φk : k = 1, . . . ,K1} and QH = span{Ψl : l = 1, . . . ,K2}.
Then PH ⊂ Ph and QH ⊂ Qh, and the corresponding discrete variational problem is equivalent
to the reduced order system (2.14)–(2.16) with matrices as defined in Section 2.4.

The property (P1) for the reduced system (2.14)–(2.16) again follows directly from the special
algebraic form of the reduced problem. In order to guarantee (P2)–(P4), we require additional
compatibility conditions. The following characterization clarifies the picture.

Lemma A3.10 (Algebraic compatibility conditions).
Let (A1′h)–(A3′h) hold and assume that the algebraic compatibility conditions (A1)–(A3) are
valid. Then PH ⊂ Ph and QH ⊂ Qh satisfy the compatibility conditions (A1H)–(A3H).

As a direct consequence of the previous considerations, we now obtain the following result.

Lemma A3.11 (Structure preserving model reduction).
Let (A1′h)–(A3′h) hold for the system (2.8)–(2.10) and assume that the algebraic conditions (A1)–
(A3) are valid. Then the reduced system (2.14)–(2.16) satisfies (P1)–(P4).

This lemma yields a correct statement of Theorem 5.5 and completes the proof of our assertions.
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