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DECIDING ROBUST FEASIBILITY AND INFEASIBILITY USING A
SET CONTAINMENT APPROACH:
AN APPLICATION TO STATIONARY PASSIVE GAS NETWORK
OPERATIONS*

DENIS ASMANN', FRAUKE LIERS', MICHAEL STINGL', AND JUAN VERA?

Abstract. In this paper we study feasibility and infeasibility of nonlinear two-stage fully ad-
justable robust feasibility problems with an empty first stage. This is equivalent to deciding whether
the uncertainty set is contained within the projection of the feasible region onto the uncertainty-
space. Moreover, the considered sets are assumed to be described by polynomials. For answering
this question, two very general approaches using methods from polynomial optimization are pre-
sented — one for showing feasibility and one for showing infeasibility. The developed methods are
approximated through sum of squares polynomials and solved using semidefinite programs.
Deciding robust feasibility and infeasibility is important for gas network operations, which is a non-
convex feasibility problem where the feasible set is described by a composition of polynomials with
the absolute value function. Concerning the gas network problem, different topologies are consid-
ered. It is shown that a tree structured network can be decided exactly using linear programming.
Furthermore, a method is presented to reduce a tree network with one additional arc to a single cycle
network. In this case, the problem can be decided by eliminating the absolute value functions and
solving the resulting linearly many polynomial optimization problems.

Lastly, the effectivity of the methods is tested on a variety of small cyclic networks. It turns out that
for instances where robust feasibility or infeasibility can be decided successfully, level 2 or level 3 of
the Lasserre relaxation hierarchy typically is sufficient.
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AMS subject classifications. 90C22, 90C30, 90C34, 90C99

1. Introduction. In this paper we study feasibility and infeasibility of nonlinear
two-stage fully adjustable robust feasibility problems with an empty first stage. We
further assume that the considered sets, i.e., the uncertainty set and the set of feasible
solutions, are described by polynomials. The overall goal of the considered uncertain
problem is to answer the question whether for all possible realizations of the data
u €U C R™ | there is always a solution z(u) € R"2 (ny,ny € IN). If this question can
be answered positively, we call the problem “robust feasible” and “robust infeasible”
otherwise. Given some vector-valued polynomial constraint functions f: R™ xR"* —
R* and g: R™ x R — R*2, the feasibility question can be formulated as

(1) Yu € U Jx € R™ such that f(u,z) =0, g(u,z) <O0.

This question can be answered by checking whether

U < Proj, ({(u,2) | f(u,z) =0, g(u,z) <0}).

Since set containment implies that each value of u € U is associated with at least
one feasible solution z(u), the expression in (1) holds. Compared to set containment
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problems where the constraint-wise description of each set is known, the description
of the projection is typically not available or too expensive to compute. We address
this additional challenge in our methods without an explicit construction of the pro-
jection. Solving this type of problem is a first step towards more complex two-stage
robust optimization tasks with non-empty first stage and polynomial second stage.
Due to the polynomial structure of the uncertain problem, this leads to polynomial
optimization problems. There are several approaches in the literature on how to con-
struct relaxations of general polynomial problems [14, 19, 21, 26]. Given a concrete
instance, we use the well known Lasserre SDP relaxation hierarchy [14, 21] and solve
the resulting semidefinite problems to global optimality. Since the feasibility question
is tackled using a relaxation approach, the constructed problems can’t generally give
reliable answers for both feasibility and infeasibility at the same time. For example,
due to the relaxation a problem might give a negative answer although the problem
is in fact feasible and vice versa. This makes it necessary to develop two approaches:
one for deciding feasibility and one for deciding infeasibility.

Our contribution towards solving this problem is twofold:

First, Lemma 3.6 shows how the problem can still be solved even if an algebraic
description of the projected set is not known. This leads to a series of polynomial
optimization problems which can be solved approximately using the Lasserre SDP
relaxation hierarchy [14]. We call this the feasibility approach.

Second, we develop another polynomial optimization problem to certify infeasibility of
the set containment problem in Lemma 3.2. Again, this so called infeasibility approach
works without the algebraic description the projected set.

Our methods are inspired by a gas network problem under uncertainty which is a
non-convex feasibility problem where the feasible set is described by a composition of
polynomials with the absolute value function. The studied gas network problem can
be interpreted as a linear network flow problem with additional variables modelling
the nodal pressure and constraints linking the pressure difference of two adjacent
nodes with the flow over the connecting arc. For an overview on the problems arising
in the operation of gas networks, the reader is referred to [24]. A special property of
the considered type of gas network problems is that the feasible flows are uniquely
determined by a piecewise polynomial equation system. As a consequence, any fixed
uncertainty u leads to a unique flow solution z(u) of the problem (which might still
be violated by the constraints). Exploting this property enables us to circumvent an
explicit construction of the projected set.

The methods we develop can be applied to two-stage nonlinear robust optimiza-
tion problems with an empty first stage and polynomial second stage. In the case of
gas network operation, possible first stage variables can model the decisions of the
network operator concerning for example the state of the gas compressor machines.
For deciding robust feasibility, we additionally assume that the solutions x depend
uniquely on the uncertain data u. For several reasons, the application of standard
robust optimization techniques is difficult in this case. While there are some concepts
for solving nonlinear robust optimization tasks [2], they typically require convex non-
linear functions for an exact tractable reformulation. The canonical way to deal with
second stage (“adjustable”) variables is by replacing them with a decision rule of
predetermined structure [3] which may result in conservative solutions. If the prob-
lem has random recourse, i.e., there are products of uncertain parameters and second
stage variables, even the introduction of simple affine linear decision rules can only
be done approximately [3]. Another challenge is posed by the assumption that solu-
tions & depend uniquely on the uncertain data. Thus, this functions x(u) is the only
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89 feasible decision rule for the second stage variables. We therefore use the projection
90 idea to avoid constructing the correct decision rule explicitly. Regarding the general
91 computation complexity of set containment problems with convex sets, we refer to
92 [9]. A more practical treatment for polyhedra and special convex sets is given by [17].
93  Furthermore, a treatment of set containment regarding polytopes and spectahedra
94 can be found in [13]. This work is further extended in [12] to encompass projections
95 of polytopes and spectahedra.

96 Concerning the problem of set containment between basic semialgebraic sets, the gen-
97 eral purpose doubly-exponential cylindrical algebraic decomposition algorithm [4] can
98 be used to eliminate quantifiers from polynomial systems. It therefore could be used
99 for the combination of projection and set containment.

100 Optimal control is another field where the problem of set containment of basic semial-
I gebraic sets occurs. It can be treated through relaxations of the real Positivstellensatz
2 [11]. This approach is in some sense similar to the techniques in this paper but cannot
3 be applied to the projected problem.

4 This work is structured as follows: In section 2, a general introduction to the
5 problem setting is given. In order to showcase the issue at hand and the solution
6 ideas of this work, a linear network flow problem under uncertainty is presented in
7 subsection 2.1. Next, our solution approaches for the set containment problem are laid
8 out in section 3. Our main ideas, the infeasibility and feasibility approach for deciding
109 set containment, are presented in subsection 3.1 and subsection 3.2, respectively.
110 Section 4 shows a practical application of the developed methods to the uncertain gas
111 transport problem. The problem together with some important results concerning the
112 nominal case are presented in subsection 4.1. Next, the robust problem is solved for
113 the special case of tree structured networks in subsection 4.2. The application part
114 concludes in subsection 4.3 with a list of techniques to remove absolute value functions
115 arising in the gas context. After converting the problem to a purely polynomial
116 formulation, the developed set containment methods can be applied. The practical
117 feasibility of the ideas is demonstrated in section 5 through a series of numerical
118 results using a number of small network problems. This work closes with a summary
119 in section 6.

120 2. Problem Description and the Setting Studied Here. A class of pa-
121 rameterized nonlinear feasibility problems is studied. Let f: R™ x R™ — R*' and
122 g: R™ x R" — R*2 (ny, ng, ki, k2 € IN) be some (possibly nonlinear) constraint
123 functions. For the solution approaches presented in this paper, these functions are
124 assumed to be polynomial. The first argument of each function is assumed to be a
125 parameter u which is shared by both f and g. This parameter is often called the
126 uncertainty or uncertain data of the problem which is an element of an priori given
127 uncertainty set U C R™. Our goal is to answer the question whether for all possible
128 realizations u € U there is always a feasible solution z € R™? of the problem:

129 (2) Vu € U Jx € R™ such that f(u,z) =0, g(u,z) <O0.

130 Let B = {(u,z) € R™ x R"2 | f(u,z) = 0, g(u,z) < 0} be the set of all feasible
131 pairs of uncertain data u and problem solution z. Question (2) can be answered by
132 checking whether the set containment condition

133 U C Proj,(B)

134 holds. Since set containment implies that each value of u € U is associated with at

135 least one feasible solution z(u), the expression in (2) is satisfied.
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In the next subsection, the set containment idea is further explored on the example
of a simple linear network flow problem over a tree.

2.1. Introductory Example: Linear Flow Problem over a Tree. We want
to further illustrate the problem and its possible solution approaches by means of a
simple example. Let a linear flow problem be given over a tree with lower and upper
edge capacities and uncertain demands. The data appears as an uncertain right hand
side of the flow balance equations. We assume that the demand u of all nodes except
some fixed root node fluctuates within a hypercube ¢/. The model can then be stated
as

Ax = u,
Yu €U Jx: o
rx<x<7Z

for some non-singular matrix A, see subsection 4.1 for details. After substituting
2 = A~ u, the problem is equivalent to

VUGL{:QSAAUST,
or
(3)  UC{ulz< A w<T} =Proj, () | Av=u, z <o < T))

when stated as a set containment problem. Since both sets are polyhedral, the ques-
tion can be decided by optimizing over the remaining constraint functions: if

rilea&((A_lu)i <7z; and ffleill}(A_lu)i >
hold for all 4 = 1,...,n;, so does the set containment condition. By using linear
duality, these inequalities can be checked with one linear optimization problem, see
Lemma 4.4.

In this example, we were able to exploit the simple structure to directly construct
the projected set in equation (3). For more complicated linear or nonlinear constraints,
this may not always be possible or computationally too expensive. For treating the
arising problems, we will use ideas from polynomial optimization.

2.2. Polynomial Optimization. Let R[z] := R[z1,...,z,] denote the set of
polynomials in n variables with real coefficients. A polynomial p € R|x] is defined as
p(x) = ZaelNg Pax® with coefficients p, € R and monomials z* = (z{*,...,2%") for
a € Nf. With [2%| = ), a;, define the degree of p as deg(p) := max{|z®| | po # 0}.
Let P[S] = {p € Rlz] | p(z) > 0,Vz € S} (resp. P = P[R"]) denote the set of
nonnegative polynomials on a subset S C R™ (resp. on R™).

Polynomial optimization is the problem of optimizing a polynomial over a basic
semi-algebraic set S = {x € R" : g1(x) > 0,...,¢n(z) > 0}. Every polynomial opti-
mization problem can be written as optimizing a linear function over the cone P[S] of
nonnegative polynomials on S. Optimizing over P[S] is NP-hard for most (interest-
ing) choices of S. Hierarchies of tractable approximations of the cone P[S] are typi-
cally constructed through sum of squares (SOS) relaxations ([14]), which correspond
to semidefinite liftings of subsets of P[S] into higher dimensions. The construction is
motivated by results related to representations of non-negative polynomials as SOS
and the dual theory of moments. The convergence of Lasserre’s method is based on
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177 the assumption that {qi,...,¢n}, the given description of S, allows the application
178 of Putinar’s Theorem [23]. In particular, it assumes S is compact.
179 To construct Lasserre’s hierarchy, the truncated quadratic module of level d is

180 defined as

i 00, 0; is sum of squares
@) MaS) = {aom + Lo | o' 2, o) < d} .
182 This set can be expressed as the feasible region of m + 1 semidefinite constraints with
183 linear equalities over the coefficients of o¢ and o;¢; [26]. Furthermore, as My[S] C
184 Mg11[S] C€ P[S] holds, this set can be used as an approximation for P[S]. Notice that
185 by increasing d, a sequence of semidefinite relaxations of increasing size is obtained.
186 Lasserre shows [14] that under mild conditions, the optimal objective value over
187  these relaxations converges to the optimal value over P[S]. Proposition 2.1 states the
188 result using our notation.

189 PROPOSITION 2.1. Let qo,q1,---,qm € Rlx] be given. Let S = {x € R" : q1(z) >
190 0,...,qm(x) > 0}. Consider the optimization problem p = inf{qlp : p € P[S]} and
191 the sequence of relazations pg = inf{glp : p € My[S]}. Assume there exists a real-
192 valued polynomial u(z) = oo + Y ;v gio; where o; is SOS for all i and such that
193 {z :u(x) > 0} is compact.

194 Then (Putinar [25])

195 Mi[S]C Ms[S] C--- C My[S] C--- CP[S]

196 and {p € R[z] : p(s) >0Vs € S} C U M,4[S]
197 >0

198 and therefore (Lasserre [1}])

199 pl<p?<-o<pd<- <pandpy” — pasd— .

200 In other words, using Lasserre’s hierarchy for general polynomial optimization prob-
201 lems one may approximate the global optimal value u as closely as desired by solving
202 a sequence of semidefinite problems with increasing size of the semidefinite matrices
203 and number of constraints.

204 3. Deciding Robust Feasibility and Infeasibility for the General Case.

205 In this section, the two approaches for deciding robustness are developed. We present

206 a method for certifying infeasibility in subsection 3.1 as well as a method for proving
0

207 feasibility in subsection 3.2.

208 3.1. A Set Containment Approach for Certifying Infeasibility. A robust
209 optimization problem said to be infeasible if a scenario 4 € U exists whose correspond-
210 ing problem is infeasible. We first introduce an abstract model involving arbitrary
211 functions for solving this problem. The model is then adapted to the considered case
212 of polynomial functions. With this approach, negative certificates for set contain-
213 ment of two basic semi-algebraic sets can be found. Recall that a set S is called basic
214 semi-algebraic, if it is of the form

215 S={z|pi(x) >0, i=1,...,n}.

216 where p;(z) € Rlz] for ¢ = 1,...,n (n € IN) are polynomials. For any set S, let
217 F[S] :={f: R" = R| f(z) > 0 for x € S} be the set of all nonnegative functions on

This manuscript is for review purposes only.



218
219
220

226

229

231

232
233
234

236
237
238

239

240
241

243
244

6 D. ABMANN, F. LIERS, M. STINGL AND J. VERA

S. The set F[S] is nonempty since it always contains h(x) = 0, regardless of the
particular choice of S.
Let 81, S be any subsets of R™. It is clear that

(5) 81,@82<:>E|$6515$¢82<:>81\8275®.

Using this definition, (5) can be extended to

S\ S #0 < I f e F[S2] and z € §; such that f(z) < 0.

The last expression can be rewritten using an optimization problem. Let the abstract
separation problem (ASep) be defined as

inf f(x),
(ASep) T € Sy,
f S ]:[52]

We employ the usual definition of infx f(z) = 400 if X = (. For the optimal value
of (ASep) it holds that

+oo, S =0
inf = i -
wESLI?EJ:[Sz] f(x) 0, %f S # 0 and S; C S,
—00, S #Pand S €Ss.

Combining the first two cases yields

6 S1 €S — inf
() 1 g 2 1651,1}16.7:[82]

In order to tackle this optimization task in practice, the abstract problem is
approximated by a polynomial optimization problem. We first replace the set of
functions F[Sz] by the set

P[S2] :={p € R[z] | p(z) > 0 for = € S}

of polynomials that are nonnegative on Sy. Since both p and x are variables, p(z)
cannot be cast directly as part of a polynomial optimization problem. Therefore,
instead of minimizing p(x), the integral of p over &; is minimized:

it [ ple)du
P St

pE P[SQ]

Using the definition p(x) = Y pax®, the objective can be rewritten in terms of the
moments of yu:

inf | pdu =inf pa/ % du

pE ’P[SQ}

(PolySep)

Since the moments | s T dp can be calculated in advance, the objective of (PolySep)
is a linear function in p.
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245 We call this problem the polynomial separation problem. If there exists p, such
246 that the integral over S; is negative, there must be some point z € S with p(x) < 0.
247 Then, by definition of p, it holds that = ¢ S,.

248 The integration is a weaker test for the existence of an z € S§; with p(z) < 0
249 than just evaluating p(x) (see Lemma 3.1). For practical applications, the moments
250 | 5 % dp need to available. With respect to the presented robust gas network prob-
251 lem, this is no limitation since §; = U is a hypercube.

252 The next lemma identifies conditions for Si, S for which a polynomial p € P[S,]
253 exists with fsl p(z) dp < 0. This means that under these conditions, problems (ASep)
254 and (PolySep) are equivalent.

255 LEMMA 3.1. Let 81,82 C R™ be two bounded sets with S \ S # 0. Suppose that
256 81\ S2 contains an open subset.

257 Then there exists a polynomial p € P[S3] with fs x)du < 0.

258 Proof. Since S; \ Sz contains an open subset, there exists ©9 € R™ and r > 0

259 such that S1\S2 D B, (z9) =: {x € R™ |||z — 20|| < r}. Without loss of generality, we
260 assume that o = 0. This can always be guaranteed by applying a simple translation
261 to &1 and S;. Due to both sets being bounded, there exists an R > r such that
262 S2,81 C Bgr(0).

263 We prove this lemma by constructing a polynomial p: R® — R that is non-
264 negative on Bgr(0) \ B,(0) 2 Sy and satisfies fBR(O)pdu < 0. If such a p exists, it
265 holds that '

266 / pdu :/ pdu—i—/ pdu
S1 S51\B.-(0) B..(0)
267 §/ pd,u—i—/ pd,u:/ pdu < 0.
268 Br(0)\B(0) B (0) Br(0)
269 In order to construct p, let
270 q(t) = [e1(t — c2)]?
271 be a univariate polynomial with constants ¢; := ﬁ, co 1= #. By construction,
272 the following holds:
273 (Ta) q(e2) =0
274 (7b) q(t?) = 1iff. t € {r, R},
275 (7c) q(t*) > 1 for t € [0,7],
376 (7d) 0<q(t*) <1fortel[rR].

278 Taking the I-th (I € IN) power of ¢ preserves properties (7a)—(7d). Furthermore, the
279 polynomial

280 pu(t) :==1—¢'(t)

281 satisfies

282 pi(ez) =1

283 p(t?) = 0iff. t € {r, R},
284 p(t?) <0 for t € [0,7],
388 0<p(t?) <1fortel[rR].
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We now show that there exists [ € IN such that the radial symmetric polynomial
pi(||x]|?) is non-negative on Bg(0) \ B,.(0) 2 Sy and satisfies fBR(O) pi(||z]]?) dp < 0:

/ pz(HIIIQ)du=/ pl<||x|\2>du+/ i
Br(0) Br(0)\B-(0) B..(0)

r

g/ 1du+/ 1 (2] ?) d
Br(0)\B-(0) B.,.(0)

=/ 1du—/ ¢ (1] ?) d.
BRr(0) B,-(0)

2| ) dpe

.

In order to complete the proof, we show that lim;_, [ ©) ¢'(]|z||?) dp = oo. Using

a substitution of variables and exploiting the radial symmetry, the integral over the
n-dimensional ball can be transformed to a univariate integral:

=:a>0

T
[ dtelan=n [ van [ gt
B.-(0) B1(0) 0

Now we calculate the difference between two integrals in the sequence while omitting
the positive coefficient a:

/ ql+1(t2)tn71 dtf/ ql(tz)t”’l dt
0 0

>1 >0 >0

T NN AN/
:/ ¢ ()t (q(t?) — 1) dt

0
z/ortnl (qt*)—1) dt=c>0

Since the difference between two consecutive elements of the series is bounded from
below by a strictly positive constant ¢, the series diverges to +o0o. This implies the
existence of some [ € IN such that fBR(O) pr(||z||?) dp < 0. d

Using p(u) = Y, pau®, the corresponding optimization problem to certify infea-
sibility of the robust problem is

inf » pa [ u®dp,
o

(PolySepProj) ,
p € P[Proj,(B)].

Without explicit knowledge of the projection Proj,(B), it is unclear how the set
P[Proj, (B)] can be expressed as part of a polynomial optimization problem. We
present an equivalent model which expresses this constraint by introduction of addi-
tional linear constraints over the coeflicients of the unknown polynomial.

LEMMA 3.2. Consider the two polynomial optimization problems

inf » pa “du,
ianpa/uadu, 1% za:p /uu a

(1 » 73 u and (2)
Pa,p = 0 VB 7& 07

p € P[Proj,(B)], p € P[B].

This manuscript is for review purposes only.
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316 Any feasible point p* of (1) can be extended to a feasible point p* of (2) and vice versa.
317 Furthermore, the feasible points p* and p* have the same objective values.

318 Proof. “=7: Let p* be any feasible point of (1) with objective value z* =
319 3, ph J,,u® du. Consider the inclusion map from R[u] to R[u,z], which maps p*
320 to p* where p*(u,z) =, 5 ;ﬁzﬂuamﬁ where

321 (8) Do i= Por p=0
: 0, ifB£0.

22 By construction, for any u € Proj,(B) and z € RI™N!, we have 5*(u, ) = p*(u) > 0.
23 Therefore p* € P[Proj, (B) x RIN] C P[B]. That is p* is feasible for (2).
324 “«&”: Let p* be any feasible point of (2). Since all coefficients Dy 5 With 8 # 0 are zero,

325 p* is independent of z and it holds that p* € P[Proj, (B)xRNI]. Let p*(u) = 3", piu®
326 be the remaining polynomial in u. Together with 5* € P[Proj, (B) x RIM], this implies
327 p* € P[Proj,(B)]. O
328 For the remainder of this section, we assume that the problem is robust infeasible,

329 ie. X :=U\Proj,(B) is non-empty. In order to apply Lemma 3.1, X has to contain an
330 open subset. The next proposition shows that for the given sets, this is no restriction
331 since such a subset always exists. Given a set S C R"™, we denote with cl(S), int(S),
332 08, and S€ the closure, interior, boundary, and complement of S, respectively. For
333 this paper, the uncertainty set I/ is assumed to be a full-dimensional hypercube or
334 full-dimensional polyhedron. Therefore, U = cl(int(U)) always holds for our choices

335 of U.

336 PROPOSITION 3.3. LetUd C R™ be a set withU = cl(int(U)). Let B C R™ x R™
337 be a compact set and let X =U \ Proj,,(B) # 0. Then X contains an open subset.
338 Proof. We need to show that int(X) = int(i/) N (Proj,(B))° # 0. Since B is
339 compact, Proj, (B) is closed and thus (Proju(B))C is an open set.

340 Pick any = € X = U N (Proj,(B))C. If z € int(U), then = € int(X) holds as well

341 since (Proju(B))C is an open set.

312 Otherwise, assume that = € 9. With z € (Proj,(B))°, there exists ¢ > 0 such
313 that B.(z) C (Proj,(B))C. Since U = cl(int(U)), there exists y € int(U) N Be(z) C
314 (Proj,(B))C. Therefore, y € int(X).

345 This concludes that for the given sets, X' always contains an open subset if X" is
346 non-empty. o
347 With Proposition 3.3 and Lemma 3.1, the separation problem (PolySep) can

348 certify infeasibility if the assumptions of Proposition 3.3 are satisfied. In practice, this
349 optimization problem is then approximated by some finite relaxation of the Lasserre
350 hierarchy. The question remains whether for sufficiently large levels of the hierarchy,
351 the separation polynomial as given by Lemma 3.1 can always be found. After all, not

352 all positive polynomials can be expressed by sum of square polynomials. This is no
353 restriction as the following proposition shows:

354 PROPOSITION 3.4. There is some finite level of the Lasserre hierarchy for which
355 the corresponding SDP approzimation of (PolySep) yields a negative objective if X #
356 0.

357 Proof. By Proposition 3.3, X # () implies the existence of some open subset in
58 X. Then Lemma 3.1 guarantees the existence of a polynomial p with strictly negative
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10 D. ABMANN, F. LIERS, M. STINGL AND J. VERA

objective value for the abstract polynomial optimization problem.

Consider then the SDP approximation of (PolySep). Since SOS-polynomials are dense
(see [15]) in the set of non-negative polynomials and by the continuity of the integral,
there is always a SOS-polynomial close to the p with a negative objective value. 0O

3.2. A Set Containment Approach for Certifying Feasibility. For certi-
fying robust feasibility, we need the following assumption:

ASSUMPTION 3.5. Assume that there is a function g: U — R™ such that G =
{u,z|uvel,z=gu)}.
In general, the task that has to be solved in order to decide robust feasibility is to
check whether

U C Proj,(B).

Since an explicit description of Proj d)(B) is typically not available, a different approach
is used in this section. The basic idea is to replace the original set containment problem
with an equivalent set containment problem

gl/{gHa

where H = {z € R | hi(x) >0, ..., hp(x) > 0} is constructed by (possibly nonlinear)
functions h;. This set containment problem can then be decided using the optimiza-
tion problems
(MinCons) inf hi(x) i=1,...,m.

rE€Gy
The optimal solution of all m optimization problems exists and is the objective value
is non-negative if and only if Gy C H. In cases where global optimality cannot be
obtained easily, the criterion can be weakened by replacing the optimization problems
(MinCons) with relaxations: non-negative objective values of the relaxations imply
non-negative objective values of the original problems. However, this is only a suf-
ficient criterion since G C H might hold but at the same time some optimization
problems might obtain negative objective values only due to the relaxation.

LEMMA 3.6. Let Y C R"™. Let g: U — R"™ be a function such that Assump-
tion 3.5 is satisfied and let h;: R™ x R™ — R (ny, no € N) fori =1,...,m be
functions. Let

Gy = {(u,a&) c R™ x R™2 | ueEU, x = g(u)},
H .= {(Uﬂ?) c R™ x R™2 | hi(%x) >0,i= 1’_._7m}
with
B:=GyNH.
Then

U C Proj,(B) < Gy CH.

Proof. “=": Suppose U C Proj, (B). Pick any (u,x) € Gy. Due to the projection,
there exists ' with (u,2’) € B = GyNH. As Assumption 3.5 is satisfied, z is uniquely
determined for any v € Y. Therefore z = 2’ = g(u) holds and thus (u,z) € H.

“<”: Suppose Gy C H. Pick any u € U and let = g(u). Then (u,z) € Gy CH
and thus (u,z) € B. This implies u € Proj,,(B). d
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100 This lemma can be applied to all problems where a subset of the constraints defines
401 a unique solution for each possible realization of the data. Even if g is only given
402 implicitly by the solution of some (in-)equality system, the lemma is still applicable.
403 The next lemma shows how the set containment question can still be decided if
404  the considered sets are partitioned into subsets. This will be important later when
105  eliminating the absolute values of the gas transport problem.

406 LEMMA 3.7. Let U C R™ and let Ay, B C R™ x R"™ with Ay = {(u,z) €
107 R™ xR™ |z = g(u), uw € U} for an arbitrary function g: R™ — R™. Let S; (i€ 1)
408 be a collection of sets with S; C R™ x R™ such that |J,.; S; = R™ x R"2. Then

iel
409 U = Proj,(Au) C Proj,(Au N B)
410 =
413 Proj,(Ay N S;) C Proj,(AuNS;,NB) Yiel
Proof.
413 U = Proj, (Ay) C Proj,(Ay N B)
414 bea 304, C B —= AyNnS;CBNS; (Vie I
116 Let U] := Proj,(Au N S;). Rewriting Ay N S; yields
a7 Aun S, ={(u,z) |z =g(u), uelU, (u,z) € S;}
418 ={(w,2) [z =g(u), u €U, (u,g(u)) € S}
119 — {(w,2) |7 = g(w), u € {u|u €U, (ug(v)) € Si}}
420 ={(u,z) |z = g(u), u € Proj,(Au N S;)}
43} = Aproj, (Auns:) = Au:-
423  Then
424 AunSi =4y CBNS; (Viel)
438 Ll = Proj, (Aw) C Proj, (A4 N B) = Proj,(AyNBNS;) (Yiel). O

427 For a practical application, the optimization problems (MinCons) need to be
428 solved to global optimality. As mentioned earlier, if global optimality cannot be
429 ensured, a relaxation of the given problem can also suffice. The structure of the opti-
430 mization problems depends on the defining functions of G;;, H. For the gas network
131 problem, these typically are polynomials or piecewise polynomials. Using the ideas
432 of subsection 4.3, the piecewise polynomial functions can be reformulation in terms
433 of pure polynomials. Instead of solving the resulting polynomial optimization prob-
434 lems (MinCons), sum of squares or moment relaxation of these problems are used
135 instead. These relaxations form a hierarchy of semidefinite programs, see [21] and
136 [14], respectively.

437 4. Deciding Robustness for the Passive Gas Network Problem. In this
438 section, the passive gas network problem under uncertainty is introduced. It also
439  contains crucial properties of the problem class as well as techniques for reduction of
440  variables and procedures to eliminate the occurring absolute value functions. Com-
141 bined, these ideas allow a compact problem formulation as a polynomial feasibility
142 system which will can be tackled using methods from section 3.
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4.1. The Passive Gas Network Problem. We consider a stationary passive
gas network with horizontal pipes. Gas can be inserted or withdrawn at each node of
the network. The goal is to decide whether a given set of demands can be satisfied
by the network. Even in the absence of uncertainties, this problem is challenging to
solve since the resulting feasibility problem is in general nonlinear, non-smooth and
non-convex.

4.1.1. Modeling the Nominal Passive Gas Network Feasibility Problem.
The network’s topology is given by a weakly connected digraph G = (VT, A) with
[V*] = |{0,...,n+ 1}| = n + 1 nodes and |A] = m > n arcs. The physical state
of the network is represented by the (non-negative) pressure p, € R>o at each node
v € V and the flow ¢, € R along each arc a € A. Concerning the flow, a positive
sign of ¢, indicates flow in edge direction, a negative sign the reverse. Since the
pressure only occurs in squared form, we introduce variables p? = 7, € R>q for the
squared pressures, see (10). Due to physical, technical and legal reasons, the squared
pressures are bounded: m, € [m,,7,], v € V. For a more comprehensive treatment
of the gas transport problem, see e.g. [1]. A general survey on the problems arising
in gas network operations is given in [24].

Gas networks share a basic property with linear flow networks: at each node, flow
conservation must hold. Similar to the linear case, gas may be inserted or withdrawn
at each node of the network. This so called demand or nomination is encoded in the
vector (q,°™)yev+ which has to be balanced: » .+ ¢,°™ = 0. Insertion is indicated
by a positive sign, withdrawal by a negative sign of ¢;°™. Flow conservation can then
be stated as

(9) Y o= Y = eVt

a=(v,w)EA a=(w,w)EA

So far, the model is identical to a regular linear network flow problem. More com-
plexity in the form of nonlinear constraints is introduced once the physical laws of gas
transport are considered.

According to the Weymouth Equation (10) (see [29]), when gas flows through a
pipe, its pressure decreases. The difference of the squared pressures at both ends of
the pipe is proportional to the signed squared flow along the pipe. The magnitude of
the pressure drop is influenced by the pipe’s pressure loss factor ¢,, which (amongst
other factors) depends upon the length, diameter and roughness of the pipe. A more
in depth look at the different modeling approaches for the pressure loss factor can be
found in [1] and [22].

By defining f(x) := x|z|, the pressure loss relation can be expressed as

(10) Ty = Tw = PalGal da = ¢af(qa), Va=(v,w) € A.

Let A+ € RV XAl be the node-arc-incidence matrix of @, that is (A+)a, = +1
and (A1) = —1 for a = (v,w) € A. With A", the flow conservation (9) can be
stated in a more compact manner:

(11) AT g =gt

By defining ®(¢) = diag(61, ., ¢a) and F(q) i= ((F(ar)s-- -, f(ga))"s the pres-
sure loss constraints (10) can be combined to

(12) At
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186 With (11) and (12), the feasibility problem can be stated as a potential driven network
487 problem
A+q — qnom+
)
T
AT = —2(¢)F(q),
T € [m, 7,

qE]R'A‘.

488 (PotN)

489 4.1.2. Reduction of Variables. By a result of [8], all pressure variables and
490 [V T|—1 of the flow variables can be eliminated from the system. It is well known that
491 for connected graphs, AT has rank |V*| — 1 and an arbitrary row can be removed
492 while preserving the set of solutions of (9). For ease of notation, we discard the row
193 corresponding to node 0 and obtain A from A" in this way. The set V =V T\ {0} =
194 {1,...,n} of nodes and the demand vector ¢"°™* are adjusted accordingly.

495 THEOREM 4.1 ([8]). Let A be the node-arc-incidence-matriz of a graph G as de-
196 scribed above and let A = (Ap, An) be partition into basis and non basis submatrices
107 of A. Let (Pp(¢), PN (), (FB, Fn), and (g5, gn) be the corresponding partitions
1908 of ®(¢), F, and q, respectively. Define

499 g: R‘Al X R'Nl — R‘Vl, g(¢B, qN) = (.Ag)_l (I)B((b)FB (.Agl (qnom — .ANqN)) .

500 Then the model (PotN) is equivalent to the following reduced model in variables
501 qN:
AX9(¢,an) = O (0)Fn(an)

mo < i:qlinn [Ti + gi(#, qn)]

502 (RPotN) Mg 2 max [mi + 9i(d, an)]
min [T+ gi(é,qn)] > max [ + gi(d, qn)]

gN € R‘N‘a
503  where my, To are the squared pressure bounds at the root node, respectively.
504 If a feasible qn for (RPotN) exists, the remaining variables qg, ™ can be recovered
505  through qp = A]_gl (¢™™ — Angn) and m; = 79 — gi(d,qn) (i =1,...,n). The value
5

06 of mo is an arbitrary given element of

507 4711118)( [Ez + gz(¢’ qN)L i:I{liIl n[ﬁl + 9 (¢7 qN)}

i=1,..., n s

508  Conwersely, a vector qn that was extracted from a solution ¢*, 7* of (PotN) is feasible
509 for (RPotN).

510 Depending on the situation, it can be beneficial to consider the reduced problem
511  (RPotN) or the original problem (PotN). For that purpose, let

512 q]R‘lN‘*)]RIA"

513 (qn) = (Ag' (™™ — Angqn)),, ifa€B,
51 T Law), ifaeN.

515 This affine linear function maps cycle flow values to flows on all arcs of the graph. For
516 graphs with a single cycle, ¢ can be simplified to ¢,(gn) = gn — B4 for some 5, € R.
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517 4.1.3. Uniqueness of Flow. Another important result in this context concerns
518 the structure of the feasible set of (PotN). As shown in [5, 25], the feasible flow of a
519 given demand scenario for a network without pressure bounds is uniquely determined.

520 THEOREM 4.2 ([5]). Consider (PotN) without pressure bounds. Then for fized
521 ¢ € IR|>AO|, the solution space has the following properties:

522 1. The projection on the flow variable q contains a single point, i.e. the flow is
523 UNLQUE.

524 2. The projection on the squared pressure variable ™ has the form

525 {w*+77(1,...,1)T‘77€IR}.

526 In case of pressure bounds, the variable 1 is constrained:

7l ith = v — T d 7:=min(7, — 7).
n €7 with n:=max(z, —m) and 7:=min(m, -,

[S1Re
N DN
o

As a simple consequence, if the pressure of a feasible problem is fixed at any node,
the pressure values at the remaining network nodes are also uniquely determined.

ot Ut
W N
el

4.1.4. The Passive Gas Network Problem Under Uncertainty. Based on
this nominal setting (PotN) and (RPotN), uncertainty is introduced into the prob-
lem. Disregarding any combinatorial uncertainties (e.g. random failing of arcs), two
possible sources of uncertainty are present in the given model: fluctuations in the
demand ¢)°™ and variations of the pressure loss factor ¢,. In this paper, we focus
on uncertainties in the pressure loss coefficient. The value of ¢, is influenced by spe-
cific chemical properties of the gas as well as physical parameters of the pipe like e.g.
its length, diameter and roughness. In particular, the roughness value of the pipe’s
wall changes during the network’s operation due to aging effects and accumulation
of dirt. It is difficult to measure this parameter after the network begins operation.
Since the roughness values can only be estimated, a robust treatment of the prob-
lem is reasonable. The goal of robust optimization is to immunize solutions of an
optimization problem against a set of parameters which can be realized from a given
uncertainty set. The problem is required to be solvable for all possible realization of
the uncertainty.

It is assumed that the pressure loss factor of each pipe is strictly positive and lies
within some a-priori known interval

—

w N

~N O Ot e

W W w w w w w ww
oo ot

=~
o ©

T W N =

=
(=]

o Ot Ot Ut Ot Ot Ot Ot Ot Ot Ot Ut Ot gt Ot Ot Ot

N
IS

548 (,ba S [Qbaa&a] g IIE{>O Va € A

549 with 0 < ¢ < ¢q. Furthermore, possible correlation between different pipes is
550 ignored. The resulting uncertainty set U is therefore given by the hyperrectangle

E%é U = xaEA[@aaaa}

553 By Theorem 4.2, a problem without pressure bounds always admits a uniquely
554 determined flow that satisfies the given demand. Parameterizing this result by the
555 pressure loss factors motivates the following corollary:

556 COROLLARY 4.3. For networks without pressure bounds, there exists a function
557 g: R4 — RV

558 ¢ q(o)
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560  that solves
561 Ax9(8,4(¢)) = ®n(8)Fn(a(9))
562 for all ¢ € R
563 4.1.5. Deciding Robustness of the Gas Network Problem. Using model
564 (RPotN), let
A
565 G:= {(Wm) e R x RV AL g(¢, qn) — @n () Flan) = 0} ,
566 Gu ={(p,qn) €G|p U}
568 and
*EO+?’L+91(¢B7qN)207 16{177’”}
” (6.an) To —m — gi(¢Ban) >0, i€ {l,...,n}
569 = , _ .
- 7T2+9’L(¢Ban)_Ej_gj(¢B7qN)207 7’736{13"'7,”}
A
570 (,qn) € R x RIV

571  Theset G (resp. Gyy) contains all feasible combinations ¢, gy (resp. with ¢ € U) arising
572 from the cycle flow equations. Due to Corollary 4.3, this set can be stated equivalently
573 as the graph of ¢(¢). On the other hand, H can be seen as all combinations ¢, gnx
574 that are feasible for the given pressure bounds.

575 Combining both G and H, let

76 BZ:gﬁH

577 be the set of all feasible uncertainty/solution pairs of the given gas transport problem.
578 The task is now to decide whether the network allows a feasible flow for all ¢ € U.
579 Let Proj,(B) be the projection of the feasible pairs of pressure loss coefficients and
580 flows onto the space of the uncertainty set. This set contains all pressure loss coef-
581 ficients which admit a feasible flow in the corresponding problem. In this context,
582 deciding robustness with respect to U/ is equivalent to checking whether the uncer-
5

583 tainty set U is contained in the projection Proj,(B):
584 U C Projy(B) ={¢[Jqn: (¢,qn) € B}.
585 4.2. Deciding Robust Feasibility on Tree Networks. Consider a network

586 whose underlying topology is a tree, i.e. a connected, cycle-free graph. Since there are
587 mno cycles and therefore N = (), the description of the feasible set B does not contain
588 any cycle flow variables ¢n. Since there are no flow variables, the function g(¢, gx)
589 as defined in Theorem 4.1 is reduced to a function of the form

-1 _
590 9(¢) = (AL)  @p(8)Fp(Az'q™™).
591  From this description, we can see that g(¢) is a linear function of ¢. Note that
592 Fp(AgR'q"™) is a constant expression that can be calculated in advance.
593 With N = 0, the set

mo < min [T + gi(¢)]

i=1,...,n

504 (13) B=1{¢¢cRx|A To = max [ + 9:()]

min [T+ gi(¢)] > max [m; + gi()]

gaeny youe
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16 D. ABMANN, F. LIERS, M. STINGL AND J. VERA

is polyhedral since all g;(¢) are linear and the min / max expressions can be replaced
by a finite number of linear constraints.

In this case, checking robust feasibility with respect to a given polyhedral uncer-
tainty set U is equivalent to deciding the set containment problem

for two polyhedra ¢ and B. As the following lemma by [17] shows, this can be done
efficiently with LP duality:

LEMMA 4.4 ([17]). Let the set Sy := {z | Sx > s} and let Sy := {a | Tz < t},
where S € R™*™, T € R**™ and let T be nonempty. Then the following are equiva-
lent:

1. 82 Q 81, that is:

Tr <t — Sx>s.
2. Fori=1,...,m, the m linear programs are solvable and satisfy:

min{(Sz); | Tz <t} > s;.

3. There exists a matrizx W € R™** such that:
S+WT =0,s+Wt<0, W=>0.

Proof. See [17]. d

COROLLARY 4.5. Let U = {¢|To <t} be a polyhedral uncertainty set. Let B =
{d]S¢ > s} be the polyhedral set of feasible pressure loss factors ¢ for a gas transport
problem over a tree-shaped network.

Then robustness with respect to U can be decided by solving a linear program.

4.2.1. Robust Feasibility of Tree Networks as a Function of a Node’s
Pressure. Corollary 4.5 allows us to characterize robustness of a tree network in
terms of the pressure at an arbitrary chosen node. Let G = (V, A) be the graph of a
tree network. Without loss of generality, we select the tree’s root node 0 as basis of our
considerations. Suppose the pressure value at this node is fixed, i.e. my := wg = 7.
Our aim is to specify all 7y such that the gas network problem is robust feasible.

As can be inferred from (13), the pressure bounds only appear as constants in the
linear inequality constraints. With the conventions of the previous corollary, the set
of feasible pressure loss coefficients can thus be expressed in terms of the root node’s
pressure Tg:

B(mo) = {¢|S¢ > s(mo)} -

The right hand side s of the linear inequality system is a linear function s: R — R4l
of mp. Applying Lemma 4.4 to the set containment question U C B(mg) yields

U={¢|T¢ <t} C{¢]5¢ = s(mo)} = B(mo)

S+WT =0
* }74@.

— X(mp) := {W € RIF* s(m0) + Wt <0
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632 LEMMA 4.6. Given a tree network G = (V, A) with an arbitrary root node 0 and
633 a polyhedral uncertainty set U. Then the network is robust feasible if and only if the
634 root node’s squared pressure satisfies

635 T € (75, Tp)
636 with w§, T, being optimal values of the linear programs
637 (14a) gy = min mo s.t. W € X(mp),
0,
638 (14b) T, = max mg s.t. W € X(mp).
639 ™0, W
640
641 Proof. The set {(mg, W)|W € X(m)} is polyhedral and thus convex. Therefore,
642 the set of all feasible 7 is the interval
643 (75, )
644 whose endpoints are the optimal values of the linear programs (14a) and (14a). 0O
645 4.3. Eliminating the Absolute Value Functions. In order to apply tools

646 from polynomial optimization to the gas network problem, the constraining functions
647 of B have to be converted to a polynomial representation. Currently, the pressure
648 drop equations

649 Ty — Tw = Ofa |qa| = ¢f(Qa)

650 introduce absolute values in the problem. After elimination of the absolute values, B
651 is transformed from a piecewise polynomial representation to an equivalent but purely
652  polynomial description. Depending on the topology of a given instance, it may be
653 possible to eliminate a lot of absolute values in advance since all arcs which are not
654 part of a cycle have fixed flow direction. For example, in the case of tree networks, all
655 directions are known in advance. Apart from that, the flow direction can be fixed by
656 other preprocessing algorithms, e.g., flow/pressure propagation or bound tightening
657 methods. Further discussion on that topic can be found in [7].

658 This chapter presents three different methods for the elimination of absolute val-
659 ues. First, a technique from mixed-integer optimization is employed to model absolute
660 values using binary variables. With this method, both the feasibility and the infeasi-
661  bility method can be used. Next, the implications of straight forward case distinction
662 are discussed. In general, this technique can only be used for the feasibility method
663 as will be later explained. Finally, the case distinction idea is further investigated
664 for networks which contain a single cycle. In this setting, the absolute values can be
665 eliminated by restricting the uncertainty set to polyhedral subsets. It is shown how
666 the overall problem can be decomposed into linearly many subproblems which can be
667 decided with both methods.

668 4.3.1. Elimination by Auxiliary Binary Variables. By introducing addi-
669 tional binary variables, the absolute value functions can be eliminated. This technique
670 is very similar to what is typically done in mixed-integer optimization. We demon-
671 strate the idea using the example of |z|x. Assume that |x| is bounded: |z| < M. This
672 is a natural assumption since the flows within the network cannot become arbitrary
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large. With the introduction of a new binary variable b, the signed-square expression
y = |z|z can be stated equivalently using polynomials via

y= (2b - 1).’172,
(=1 +b)M <x < bM,
b= b

Applying this construction to each absolute value function on each arc a € A yields a
purely polynomial description of B that can be used in the feasibility and infeasibility
methods.

4.3.2. Elimination by Case Distinction: the General Case. Using the
original problem definition (PotN), each pipe a € A introduces an absolute value
with its pressure loss equation. In general, one might expect that by eliminating each
absolute value function, the problem is split into 2/4! cases. This paragraph shows
how the number of cases mainly depends on the amount of fundamental cycles in the
graph and thus can be much smaller than 2/4/. We remark that the following results
identify the feasible flow directions in a linear network flow model instead of the gas
transport problem. However, this is no restriction since adding constraints concerning
the gas physics reduces the number of possible cases even further.

Due to Lemma 3.7, the overall set containment problem can be decided by split-
ting the problem into a series of subproblems. Each subproblem arises by restricting
the original problem to certain subsets, e.g., to orthants of RI“! for the absolute value
case distinction. Let Oy, ..., Oq4 = {R>0, R<o}/4! be the set of orthants in RI4l. Tn
the original model (PotN), the additional constraint ¢ € O; restricts the flow to a spe-
cific orthant and allows the elimination of all absolute value functions. In the reduced
model, the variables qp are replaced by ¢ = Agl (¢™™ — Angn). The transformed

case distinction is
(QB> _ <A31 (g™ — ANQN)) c O,
— ;.
qN qn

By considering the reduced model, the next proposition shows that the number of
case distinctions mainly depends on the amount of fundamental cycles in the graph.

PROPOSITION 4.7. Let G be a connected digraph with |A| arcs and |N| funda-

mental cycles. Then there can be at most Zg(l) (I’?‘) € O(|AIN) many feasible flow
directions in the network. The corresponding subproblems can be constructed in run
time O(|A|IN).

Proof. The problem of finding all feasible flow directions can be reduced to a
problem concerning the arrangement of hyperplanes. For ease of exposition, con-
sider the nonnegative orthant Ot = IR‘;‘O‘. Using the flow function ¢(-) as defined in
subsection 4.1.2, fixing the flow direction to this orthant amounts to the constraint
q(qn) € O, i.e., q(qn) > O. Each entry of ¢(-) defines a hyperplane in RI™N!. Consider
the regions that can arise by segmenting RIN! using the hyperplanes in q(+). For all
a € A, each region is a subset of either g,(qn) < 0 or g,(qn) > 0. Therefore, the
flow direction on all arcs in the graph is constant on each region. The total num-
ber of regions that can be constructed in RIN! using |A| hyperplanes is bounded by
ZL]:V(') ("?‘) € O(|A|'1) ([30]). Furthermore, constructing all regions can be achieved
in run time O(|A|N1) using the algorithm of [6]. d
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However, there is an issue arising with this approach as the subproblems are of
the type (see Lemma 3.7)

Proj, (Gu N O;) C Proj,,(Gy N HNO;).

The feasibility method can be employed as-is since optimizing over a projection set
poses no restriction. On the other hand, the infeasibility method can not be applied
as easily since it requires the moments over the uncertainty set. In case of the given
subproblems, this is the set Proj,, (G, NO;). In general, it is unclear how the moments
can be obtained without explicitly constructing the projection. Nevertheless, this
is possible for networks with one cycle. The next section gives the description of
Proj, (Gu N O;) for this case. In this setting, the infeasibility method can be applied
since the projected set is polyhedral.

4.3.3. Elimination by Case Distinction: a Shortcut for Networks with
One Cycle. On networks with only one cycle, a considerable simplification can be
applied. The absolute values can be eliminated by restricting the problem to certain
subsets of the uncertainty set. In contrast, the previous case distinction method relied
on restricting the flow variables. The advantage of using subsets of the uncertainty
set for this purpose is that the infeasibility method can be applied as well since it
requires explicit knowledge of the uncertainty set.

For the purpose of this chapter, we assume a directed cyclic graph where each arc
points to a different node:

ASSUMPTION 4.8. Let G = (V, A) be a directed cyclic graph with V. ={0,...,n},
A={(0,1),(1,2),...,(n—1,n),(n,0)}, and nonzero demand ¢"*™+ € RIVI.

Due to the cyclic structure, the arcs can be uniquely identified by their first node.
We assume the last edge to be part of the nonbasis, thus there is only one problem
variable ¢, € R with gy = ¢,,. Employing a very similar construction as [8, Chapter
6.1], we obtain the set G of feasible (¢, g, )-combinations and the associated cycle flow
equation:

PROPOSITION 4.9. Let Assumption 4.8 be satisfied.
Then G = {q’) eRA ¢, eR ‘ Wb, qn) = 0} with

Wy qn) ==Y faa) == flan

acA a€A

and B, € R fora € A. The constraint h(¢, q,,) = 0 is the so-called cycle flow equation.

Using h, a characterization of the set of all pressure loss coefficients ¢ which lead to
the flow ¢, being bounded in some interval can be found:

LEMMA 4.10. Let Assumption 4.8 be satified. Let qn, Gn € R, ¢ € IR|>AO| and let h
be as in Proposition 4.9. Then

{|h(d,qn) =0 for some ¢y € [qn, Tn)} = {0 h(),Tn) <0, h(h,qn) > 0}.

Proof. For constant ¢ € RLAol, the function h(¢, g,) is monotonically decreasing
in g, since
(@, qn) = Z@ (gn —Bi) ==Y _ ¢i2lan — Bi| 0.

=0
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Furthermore, limg, 400 h(®, ¢n) = Fo0.

Let A:={¢ € R [ h(4,40) = 0, ¢ < ¢u} and B := {¢ € R | h(¢,q,) > 0}
We show A = B first:

“=7: Pick ¢ € A. By definiton of A, there is ¢, < ¢, with h(¢,q,) = 0. Since
h(¢,-) is monotonically decreasing, h(, q,) > h(é, qn) = 0. Therfore ¢ € B.

“<”: Pick ¢ € B. Since h is continuous, h(¢,q,) > 0, and limg, 00 (¢, qn) =
—o0, the intermediate value theorem implies a h(qS:qn) = 0. Therefore ¢ € A.

This shows A = B. There is a similar result where the inequalities in the defini-
tions of A, B are flipped. Together, both results prove that

O

{0 € R h(6.02) = 0, 4u € g, @l } = {0 € RYY | 0(0,30) <0, h(6,00) = 0}

With this lemma, restricting ¢, to a given interval can be expressed equivalently by
restricting the considered pressure loss coefficients ¢. Furthermore, the constraints
for ¢ are hyperplanes in R4l as h(¢, ¢,) is linear in ¢.

We adapt a procedure from [8, Proposition 5] to our setting in order to identify
intervals for the flow ¢, that guarantee constant flow direction on all arcs of the
network. Once the possible subsets are identified, we apply Lemma 4.10 to relate the
obtained flow intervals to subsets in the space of the uncertainty.

The absolute value functions only occur in the form ¢|q,|(¢,). From Proposition 4.9,
the flow ¢, along an arc a € A is given by

qa(Qn) =dqn — ﬂau

Therefore, the absolute value |¢,(gn)| can be eliminated by restricting the flow g,
to either g, > B, or ¢, < B4. Next, reorder fBo,f1,..., By such that 3;, < §;; <
... < Bi, . With this in mind, taking any consecutive pair 3;,, 8;,,, yields an interval
for ¢, such that the flow over the whole network is constant. Due to [8] and the
nonzero demand from Assumption 4.8, the solutions of h(¢,q,) = 0 can only be
within [3;,, 8, ] for any fixed ¢. Therefore, the absolute values can be eliminated by
restricting g, to the intervals

[Bim ﬁh]» [ﬂilv Biz]v cee [/37;71717 ﬂln]

Applying Lemma 4.10 to these intervals yields an equivalent condition for constant
flow directions in the space of the uncertainty.

PROPOSITION 4.11. Let Assumption 4.8 be satisfied and let
Uy i=Un {6 € RA | (9, 8i,.0) S0, h(@,5,) 2 0) for j=0,...n 1.

Then the set containment question U C Proj,(B) = Proj(Gy N'H) can be decided by
solving the subproblems

U; CProjy(Gu, NH) forj=0,...n—1.

We remark that if ¢/ is polyhedral then U; is polyhedral as well.

5. Numerical Experiments. In this section, some practical results of the feasi-
bility and infeasibility approaches on a set of small gas networks under uncertainty are
presented. Instead of considering arbitrary gas networks, we focus on highlighting our
methods’ performance on the core problem: deciding a single cycle under uncertainty.
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797 Using Lemma 4.6, the feasibility of any subtree in a given network can be reduced if
798 the pressure at the root node is contained in a pre-calculated interval. This allows
799 us to remove any subtree by updating the pressure bounds at the intersecting node
00 with the remaining network. Assuming there is only one remaining cycle, Lemma 4.10
801 is then used to split the problem into subproblems on subsets of the uncertainty set
02  while eliminating all absolute values. Since this just increases the number of problems
803 to consider but does not fundamentally change their nature, we start with a single
804 cycle and uncertainty sets that guarantee constant flow direction on all arcs.
805 The example networks are cyclic with nodes V' = {1,2,...,n} forn € {2,...,7}
806 and arcs A = {(1,2),(2,3),...,(n — 1,n),(n,1)}. A family of uncertainty sets is
807 considered:

808 U(c) = Xaeall,c], c€[2,4].

809 Furthermore, define two special uncertainty sets,

810 Ufeas = U(2) and L{mfeas = Z/[(4),

811 which we want to investigate with respect to feasibility and infeasibility, respectively.
812 Table 1 shows the parameters of the considered instances. The columns denote
813 the nodes within the network.x Each row denotes the specific instance with n nodes.
814  Within each row, the demand and bounds of the squared pressure 7 at each node is
815 displayed in the first and second lines, respectively.

TABLE 1
Demand and squared pressure bounds 7 per node v for each test network.

nodev eV
1 2 3 4 5 6 7
n=2 demand -10 10
m-bounds | [0, 200]  [140, 200]
n=3 demand -10 2 8
m-bounds | [0,200]  [0,200]  [130, 200]
n=4 demand -10 2 6 2
mbounds | [0,200]  [0,200]  [115,200] [0, 200]
n=5 demand -10 1 1 6 2
m-bounds | [0,200] [0, 200] [0, 200] [100, 200] [0, 200]
n=6 demand -10 1 1 6 1 1
m-bounds | [0,200] [0, 200] [0,200]  [70,200] [0, 200] [0, 200]
n=7 demand -10 1 1 1 4 2 1
m-bounds | [0,200] [0, 200] [0,200]  [0,200] [50,200] [0,200] [0, 200]
816 Every network’s H-set (see Subsection 4.1.5) is made up of n(n — 1) inequalities

817 h; (i € I). Each inequality is checked for feasibility using (MinCons); all inequalities
818 are checked at once for infeasibility using (PolySepProj). Both optimization tasks are
819 solved using SDP relaxations of the problems. We remark that (PolySepProj) could
820 be applied to all constraints individually. However, experiments show that solving
821 the problem for a single constraint individually is only marginally faster than solving
822 the problem for all constraints at once. Therefore, we solve the infeasibility problem
823 once with all constraints combined rather than up to || subproblems by considering
824 each constraint on its own.
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TABLE 2
Objectives of the feasibility method solving (MinCons) and infeasibility method solving (Pol-
ySepProj) for the three node instance over Uinfeqs- Each row in the feasibility group denotes the
subproblem with objective function h;.

feasibility infeasibility
i level 2 level 3 level 2 level 3
1 216.89 217.39
2 53.09 -
3 228.63 228.63
4 116.79 ] 0.00 unbnd
5 201.67 -
6 -35.99 20.34

All experiments were carried out on a notebook with four Intel i7-4810MQ cores
running at 2.80GHz each and 16 GB of RAM. The methods were implemented using
MATLAB R2016b. GloptiPoly 3.8 [10] was used for the feasibility models since it
provides a straight forward interface for solving polynomial optimization problems.
Since the infeasibility method exceeds the capabilities of GloptiPoly, this approach
was implemented using the SOS-module of YALMIP R20160930 [16]. The resulting
SDP problems were solved with MOSEK 8 [18] using 4 threads.

Some problems were not solvable with the desired precision. This happened al-
though we evaluated the problems on a variety of solvers including SeDuMi [27] and
SDPTS3 [28] as well as on a third modeling tool, SOSTOOLS [20]. The chosen com-
bination of MOSEK with GloptiPoly and YALMIP offered the most robust behavior
amongst all considered possibilities.

5.1. Effectiveness of the Methods. The effectiveness of both methods can be
measured in the typical running times of the semidefinite subproblems as well as in
hierarchy level at which set containment can be decided.

First, the results of both methods on a fixed network are presented. Table 2 shows
the outcome of both methods for the n = 3 instance over Uipfeas. The columns are sep-
arated into groups concerning the feasibility method (MinCons) and the infeasibility
method (PolySepProj) with a further distinction into the employed hierarchy level.
The rows in the feasibility part denote the constraint h; which is minimized. Since
the infeasibility method is applied to all constraints at once, there is only one row of
results in the infeasibility part of the table. Cells marked by “-” indicate numerical
difficulties, i.e., we were unable to solve the specific problem to the desired precision.
The feasibility approach has a positive objective for five out of six subproblems, thus
confirming set containment for those constraints. Out of these five problems, four were
decided on the second hierarchy level while one required a level 3 solution. When ap-
plying the infeasibility approach, the level 3 model is unbounded, thereby refuting set
containment. Over all, the instance therefore isn’t robust feasible.

Next, the required levels of the relaxation hierarchy are evaluated. For this pur-
pose, each constraint of each instance is considered for set containment while gradually
increasing the hierarchy level from two to four. Once a subproblem is solved success-
fully, the corresponding number of solved problems on this specific level is incremented
in the table.

Table 3 contains the feasibility methods’ results for all instances on the smaller
uncertainty set Useas. Each row denotes the considered instance with n nodes and a
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TABLE 3
For a given instance with n nodes, count how many subproblems out of I were solved successfully
using the feasibility method. Positive outcomes of each subproblem are counted only once on the
smallest level. All instances were solved over the Upe,s uncertainty set.

n || H level 2 level 3 level 4

2 2 1 1 0
3 6 5 1 0
4 12 11 1 0
5 20 19 1 0
6 30 29 1 0
7 42 42 0 0

860 total of |I| subproblems. The columns indicate how many of the feasibility problems
861 were solved successfully on the respective level. For any subproblem, only the first
862 success is counted, thus the sum of each row can be at most |I|. If the row-wise sum
863 is less then |I], this implies that some problems were not solvable with the desired
864  precision.

865 It can be observed that the feasibility approach almost exclusively confirms set
866 containment at the second level. At most one subproblem per instance required
867 solving of a level 3 problem. As suspected, all instances are robust feasibly with this
868 uncertainty region.

869 Using the larger uncertainty set Uinfeas, both the feasibility and the infeasibility
870 method were applied to all instances. Table 4 summarizes all results. Each row de-
871 mnotes the considered instance with n nodes. The columns are separated into groups
872 according to the employed method with further distinction for the used hierarchy level.
873  Each column in the feasibility group indicates how many of the feasibility problems
874  were solved successfully. For any subproblem, only the first success is counted, there-
875 fore the sum of each row in the feasibility group can be at most |I|. The columns in
876 the infeasibility group denote the status of the corresponding problem. Cells marked
877 with“zero obj.” indicate global optimality of the considered problem but an objective
878  value of zero, which is insufficient to show certify infeasibility. Cells marked with a
879 checkmark (v') represent an unbounded objective and thus a negative answer to the
880 set containment question. As usual, “-” marks numerical difficulties.

881 Many feasibility problems were solved successfully at the second hierarchy level. Set
882 containment of some constraints could not be confirmed with the feasibility method
883 using the given levels. This is either due to numerical problems or negative objective
884 values. However, for almost all instances, the infeasibility method was able to provide
885 a certificate against set containment using the third hierarchy level relaxation. This
886 shows that Uingeas 1S robust infeasible for the n = 2, ..., 6 instances.

887 To conclude this set of test runs, Tables 5 and 6 show the characteristic run
888 times where each row denotes the n-node instance. For the feasibility approach, the
889 columns show mean run time and standard deviation using the specific relaxation
890 hierarchy level. All values are aggregated over all subproblems of the given instance
891 and hierarchy level. Since the infeasibility approach is a single problem when instance
892 and hierarchy level are fixed, no aggregation is possible and we show the run time
893 as-is. It can be observed that the run times are quiet small for the level 2 problems
894  but increase quickly for higher levels and larger instances.
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TABLE 4
For a given instance with n nodes, count how many subproblems of I were solved successfully
using the feasibility method. For each subproblem, a positive outcome is counted only once on the
smallest level. The results of the infeasibility method are displayed in the right column group. All
instances were solved over the Unfeqs uncertainty set.

feasibility infeasibility
n || || ‘ level 2 level 3 level 4 level 2 level 3 level 4
2 2 1 0 0 zero obj. v v
3 6 4 1 0 zero obj. v v
4 | 12 9 1 0 zero obj. v v
51| 20 16 1 0 z€ero obj. v v
6 | 30 25 1 0 zero obj. v v
7 42 36 2 0 zero obj. - -
TABLE 5

Mean and standard deviation of the feasibility method’s run time on Useqs. Each row shows the
aggregated values for all subproblems of the n-node instance per hierarchy level.

level 2 level 3 level 4
mean std mean std mean std

0.032s 0.019s 0.042s 0.014s 0.111s 0.021s
0.040s 0.010s 0.111s 0.070s 0.605 s 0.083s
0.048s 0.015s 0.324s 0.030s 3.899s 0.187s
0.083s 0.024s 1.229s 0.185s 26.679s 3.040s
0.147s 0.047s 4.533s 0.894s | 148.397s 9.500s
0.241s 0.061s 15.721s 2.328s | 809.944s 71.564 s

N O U N B

5.2. Evaluation of the Gap Between Methods. The proposed methods are
based on semidefinite relaxations of polynomial problems (see subsection 2.2). Since
the objective values of relaxed problems are smaller or equal than the non-relaxed
optimal values (for minimization problems), it is expected that the feasibility and
infeasibility approach can decide a smaller number of problems than their non-relaxed
counterparts. The aim of this section is to investigate how large the “gap” between
feasibility and infeasibility approach is. After fixing a hierarchy level, all problems
which cannot be decided by either feasibility or infeasibility approach are said to fall
into this relaxation gap. In order to compare both methods, we need to apply the
infeasibility approach to the same constraint as the feasibility method. This is different
to all previous tests where the infeasibility method was solved for all constraints at
once.

Consider the parameterized uncertainty set U(c) for increasing ¢ € [2,4]. From
Table 3, it can be derived that all subproblems are feasible for Ugeas = U(2). On the
other hand, as Table 4 shows, all instances are infeasible for the larger Uinfeas = U (4).
This implies that there is always at least one violated constraint h; when using U/ (4).

For this test set, we select one subproblem per instance that is infeasible for the
larger uncertainty set. Then, the feasibility and infeasibility approaches are solved
for the selected subproblems over all twenty uncertainty sets U(c) for ¢ = 2 + il—lo,
i =0,...,20. Figure 1 shows the results in more detail for the four node instance.
We consider the subproblem that is marked as infeasible in Table 4. The objective
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TABLE 6
Runtime of the infeasibility method on Ui,feqs where each row denotes the n-node instance and
each column the respective level.

H level 2 level 3 level 4

0.415s 0.564 s 0.504 s
0.435s 0.501s 0.849s
0.433s 0.771s 3.909s
0.390s 1.854s 20.203 s
0.432s 4.915s  134.531s
0.643s 10.281s  975.161s

N OOtk W B

Fia. 1. Objective values of the two methods for varied ¢ € {2.0,2.1,...,4} on the four node

instance.
| | | | | | | | | |
20 -
01 © ©¢ © o © o o e o o o -
-20{ * I
“ A
—40 | “ - -
: level 3 “gap” —————o e o o ¢ o o
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—80 A -
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einfeasibility (level 3) L
—120 | einfeasibility (level 4) S
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916 values of the feasibility problem (MinCons) are marked with blue (level 2) and orange
917 (level 3) triangles in the figure. Additionally, the values of solving (PolySepProj) are
918 marked using red (level 3) and purple (level 4) circles. We remark that the outcome
919  of the infeasibility method for level 2 is omitted since as all subproblems were feasible
920 but had objective value of zero. Unbounded subproblems of the infeasibility method
921 are marked with an objective value of fifteen times their level. Missing data points
922 can be attributed to numerical difficulties of the SDP solver.

923 As can be observed, no instance can be decided on the second hierarchy level
924 since all solutions of the feasibility method have negative objective values and all
925 solutions of the infeasibility method have objective value zero (not shown in the
926 figure). On the third hierarchy level, the feasibility approach confirms set containment
927 for ¢ € {2.0,2.1,...,2.5} as these problems have positive objective value. With the
928 same level, the infeasibility approach finds certificates against set containment for
929 ¢ € {3.4,...,4.0}. For the problems with ¢ € {2.6,...,3.3}, neither of the methods
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TABLE 7
Extreme values for ¢ where the feasibility (cfeqs) and infeasibility (Cingeas) methods can solve the
problem.

level 3 level 4

n Cfeas Cinfeas gap Cfeas Cinfeas gap
2 2.4 3.3 0.9 2.4 2.9 0.5
3 2.4 3.2 0.8 2.4 3.1 0.7
4 2.5 3.4 0.9 2.5 3.2 0.7
5 2.4 3.4 1.0 24 3.3 0.9
6 2.6 3.7 1.1 3.1 3.6 0.5
7 3.0 3.3

was able to decide set containment successfully (disregarding numerical difficulties).
In this range, the feasibility method only returns negative objective values and all
objective values of the infeasibility method were zero.

Increasing the hierarchy level to four leads to numerical problems for all feasibility
models, but also increases the number of successfully solved infeasibility models by
two (¢ = 3.2 and ¢ = 3.3). This confirms the expectation that increasing the hierarchy
level can lead to more certificates for non-set containment.

The results over all instances is summarized in Table 7. For each hierarchy level, it
shows both he largest value for ¢ (indicated by cfeas) such that the feasibility approach
confirms set containment and the smallest value for ¢ (indicated by cinfeas) Where
a certificate for infeasibility could be obtained. Note that these bounds on ¢ take
all smaller hierarchy levels into account as well. The gap column is the difference
Cinfeas —Cfeas and indicates the range of problems which could not be solved successfully
with either feasibility and infeasibility approach. Again it can be observed that the
gap is reduced after increasing the hierarchy level as this leads to a tighter relaxation
for the feasibility approach and admits a richer set of polynomials for the infeasibility
certificate.

6. Concluding Remarks. In this paper, we study feasibility and infeasibility
of nonlinear two-stage fully adjustable robust feasibility problems with an empty first
stage. We propose to solve this problem by deciding whether the given uncertainty set
is a subset of the projection of all feasible (uncertainty, solution)-pairs. A particular
challenge with this approach is given by the projected set whose defining constraints
are typically not available. Compared to typical methods from robust optimization,
our approach requires no additional restrictions such as like convexity of the prob-
lem or the uncertainty set. Furthermore, it can decide the fully adjustable problem
without using (possible approximative) decision rules for the second stage variables.
We develop two approaches towards solving this problem, one for deciding feasibility
and one for deciding infeasibility. As we solve relaxations of the proposed methods
in practice, two distinct methods are necessary since a single method cannot be ex-
pected to solve both sides of the question. The first approach for deciding infeasibility
uses a separation argument to find polynomial that certifies violation of the set con-
tainment question. The second approach is based the assumption that part of the
problem constraints define a unique solution for a fixed element of the uncertainty
set. Exploiting this fact allows a reformulation as a set containment question over two
regular (non-projected) sets. Set containment can then be confirmed by minimizing
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965 the constraint functions of the superset over the subset. In our setting, both methods
966 lead to polynomial optimization problems. For solving the polynomial problems in
967 practice, we fall back onto the Lasserre SDP relaxation hierarchy.

968 The proposed models are then applied to an uncertain gas transport problem.
969 This is a non-convex quadratic problem with absolute value functions. First, we show
970 how this problem can be decided exactly on tree structured using LP duality to decide
971  set containment of polyhedra. Next, this result is used to preprocess larger problems
972 so that only cycles remain. Lastly, we present different ideas how to remove the
973 absolute values functions from the problem formulation. By removing the absolute
974 values, the problem is transformed to a purely polynomial description to which the
975 proposed methods can be applied.

976 Both approaches are then solved on a set of cyclic test networks. For problems
977  where deciding robustness was possible, we observe that typically level 2 or level 3
978 of the Lasserre hierarchy were sufficient. We further investigate the strength of the
979 relaxation by searching for uncertainty sets where neither feasibility nor infeasibility
980 can be decided for a given instance and hierarchy level. As can be expected, increasing
981 the level yields tighter relaxations which translates into a more effective method.

982 As an outlook, the developed ideas could be applied to similar potential driven
983 network flow problems such as e.g., the DC optimal power problem flow or water
984 mnetwork problems. Concerning the application to gas networks, extending the relation
985 between subsets of the uncertainty set and flow directions to networks with multiple
986 intermeshed cycles is another relevant question. Lastly, using the feasibility methods
0987 as part of a larger two-stage robust optimization task with non empty first stage
988  provides another possible extension of the studied problem. In case of gas, first stage
989 variables model decisions of the network operator e.g., the compressor machines’ power
990 level.
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