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Abstract. In this paper we study feasibility and infeasibility of nonlinear two-stage fully ad-6
justable robust feasibility problems with an empty first stage. This is equivalent to deciding whether7
the uncertainty set is contained within the projection of the feasible region onto the uncertainty-8
space. Moreover, the considered sets are assumed to be described by polynomials. For answering9
this question, two very general approaches using methods from polynomial optimization are pre-10
sented — one for showing feasibility and one for showing infeasibility. The developed methods are11
approximated through sum of squares polynomials and solved using semidefinite programs.12
Deciding robust feasibility and infeasibility is important for gas network operations, which is a non-13
convex feasibility problem where the feasible set is described by a composition of polynomials with14
the absolute value function. Concerning the gas network problem, different topologies are consid-15
ered. It is shown that a tree structured network can be decided exactly using linear programming.16
Furthermore, a method is presented to reduce a tree network with one additional arc to a single cycle17
network. In this case, the problem can be decided by eliminating the absolute value functions and18
solving the resulting linearly many polynomial optimization problems.19
Lastly, the effectivity of the methods is tested on a variety of small cyclic networks. It turns out that20
for instances where robust feasibility or infeasibility can be decided successfully, level 2 or level 3 of21
the Lasserre relaxation hierarchy typically is sufficient.22
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1. Introduction. In this paper we study feasibility and infeasibility of nonlinear25

two-stage fully adjustable robust feasibility problems with an empty first stage. We26

further assume that the considered sets, i.e., the uncertainty set and the set of feasible27

solutions, are described by polynomials. The overall goal of the considered uncertain28

problem is to answer the question whether for all possible realizations of the data29

u ∈ U ⊆ Rn1 , there is always a solution x(u) ∈ Rn2 (n1, n2 ∈ N). If this question can30

be answered positively, we call the problem “robust feasible” and “robust infeasible”31

otherwise. Given some vector-valued polynomial constraint functions f : Rn1×Rn2 →32

Rk1 and g : Rn1 ×Rn2 → Rk2 , the feasibility question can be formulated as33

(1) ∀u ∈ U ∃x ∈ Rn2 such that f(u, x) = 0, g(u, x) ≤ 0.34

This question can be answered by checking whether35

U ⊆ Proju({(u, x) | f(u, x) = 0, g(u, x) ≤ 0}).36

Since set containment implies that each value of u ∈ U is associated with at least37

one feasible solution x(u), the expression in (1) holds. Compared to set containment38

∗Submitted to the editors DATE.
Funding: The authors thank the DFG for their support within Project B06 in CRC TRR 154.

This work was supported by a STSM Grant from COST Action TD1207. Furthermore, the authors
would like to acknowledge the support of the ZISC.
†Lehrstuhl für Wirtschaftsmathematik, Department Mathematik, Friedrich-Alexander-

Universität Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany (denis.assmann@fau.de,
frauke.liers@fau.de, michael.stingl@fau.de).
‡Department of Econometrics and Operations Research, Tilburg University, 5000 LE Tilburg,

The Netherlands (j.c.veralizcano@uvt.nl).

1

This manuscript is for review purposes only.

mailto:denis.assmann@fau.de
mailto:frauke.liers@fau.de
mailto:michael.stingl@fau.de
mailto:j.c.veralizcano@uvt.nl


2 D. AßMANN, F. LIERS, M. STINGL AND J. VERA

problems where the constraint-wise description of each set is known, the description39

of the projection is typically not available or too expensive to compute. We address40

this additional challenge in our methods without an explicit construction of the pro-41

jection. Solving this type of problem is a first step towards more complex two-stage42

robust optimization tasks with non-empty first stage and polynomial second stage.43

Due to the polynomial structure of the uncertain problem, this leads to polynomial44

optimization problems. There are several approaches in the literature on how to con-45

struct relaxations of general polynomial problems [14, 19, 21, 26]. Given a concrete46

instance, we use the well known Lasserre SDP relaxation hierarchy [14, 21] and solve47

the resulting semidefinite problems to global optimality. Since the feasibility question48

is tackled using a relaxation approach, the constructed problems can’t generally give49

reliable answers for both feasibility and infeasibility at the same time. For example,50

due to the relaxation a problem might give a negative answer although the problem51

is in fact feasible and vice versa. This makes it necessary to develop two approaches:52

one for deciding feasibility and one for deciding infeasibility.53

Our contribution towards solving this problem is twofold:54

First, Lemma 3.6 shows how the problem can still be solved even if an algebraic55

description of the projected set is not known. This leads to a series of polynomial56

optimization problems which can be solved approximately using the Lasserre SDP57

relaxation hierarchy [14]. We call this the feasibility approach.58

Second, we develop another polynomial optimization problem to certify infeasibility of59

the set containment problem in Lemma 3.2. Again, this so called infeasibility approach60

works without the algebraic description the projected set.61

Our methods are inspired by a gas network problem under uncertainty which is a62

non-convex feasibility problem where the feasible set is described by a composition of63

polynomials with the absolute value function. The studied gas network problem can64

be interpreted as a linear network flow problem with additional variables modelling65

the nodal pressure and constraints linking the pressure difference of two adjacent66

nodes with the flow over the connecting arc. For an overview on the problems arising67

in the operation of gas networks, the reader is referred to [24]. A special property of68

the considered type of gas network problems is that the feasible flows are uniquely69

determined by a piecewise polynomial equation system. As a consequence, any fixed70

uncertainty u leads to a unique flow solution x(u) of the problem (which might still71

be violated by the constraints). Exploting this property enables us to circumvent an72

explicit construction of the projected set.73

The methods we develop can be applied to two-stage nonlinear robust optimiza-74

tion problems with an empty first stage and polynomial second stage. In the case of75

gas network operation, possible first stage variables can model the decisions of the76

network operator concerning for example the state of the gas compressor machines.77

For deciding robust feasibility, we additionally assume that the solutions x depend78

uniquely on the uncertain data u. For several reasons, the application of standard79

robust optimization techniques is difficult in this case. While there are some concepts80

for solving nonlinear robust optimization tasks [2], they typically require convex non-81

linear functions for an exact tractable reformulation. The canonical way to deal with82

second stage (“adjustable”) variables is by replacing them with a decision rule of83

predetermined structure [3] which may result in conservative solutions. If the prob-84

lem has random recourse, i.e., there are products of uncertain parameters and second85

stage variables, even the introduction of simple affine linear decision rules can only86

be done approximately [3]. Another challenge is posed by the assumption that solu-87

tions x depend uniquely on the uncertain data. Thus, this functions x(u) is the only88
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feasible decision rule for the second stage variables. We therefore use the projection89

idea to avoid constructing the correct decision rule explicitly. Regarding the general90

computation complexity of set containment problems with convex sets, we refer to91

[9]. A more practical treatment for polyhedra and special convex sets is given by [17].92

Furthermore, a treatment of set containment regarding polytopes and spectahedra93

can be found in [13]. This work is further extended in [12] to encompass projections94

of polytopes and spectahedra.95

Concerning the problem of set containment between basic semialgebraic sets, the gen-96

eral purpose doubly-exponential cylindrical algebraic decomposition algorithm [4] can97

be used to eliminate quantifiers from polynomial systems. It therefore could be used98

for the combination of projection and set containment.99

Optimal control is another field where the problem of set containment of basic semial-100

gebraic sets occurs. It can be treated through relaxations of the real Positivstellensatz101

[11]. This approach is in some sense similar to the techniques in this paper but cannot102

be applied to the projected problem.103

This work is structured as follows: In section 2, a general introduction to the104

problem setting is given. In order to showcase the issue at hand and the solution105

ideas of this work, a linear network flow problem under uncertainty is presented in106

subsection 2.1. Next, our solution approaches for the set containment problem are laid107

out in section 3. Our main ideas, the infeasibility and feasibility approach for deciding108

set containment, are presented in subsection 3.1 and subsection 3.2, respectively.109

Section 4 shows a practical application of the developed methods to the uncertain gas110

transport problem. The problem together with some important results concerning the111

nominal case are presented in subsection 4.1. Next, the robust problem is solved for112

the special case of tree structured networks in subsection 4.2. The application part113

concludes in subsection 4.3 with a list of techniques to remove absolute value functions114

arising in the gas context. After converting the problem to a purely polynomial115

formulation, the developed set containment methods can be applied. The practical116

feasibility of the ideas is demonstrated in section 5 through a series of numerical117

results using a number of small network problems. This work closes with a summary118

in section 6.119

2. Problem Description and the Setting Studied Here. A class of pa-120

rameterized nonlinear feasibility problems is studied. Let f : Rn1 × Rn2 → Rk1 and121

g : Rn1 × Rn2 → Rk2 (n1, n2, k1, k2 ∈ N) be some (possibly nonlinear) constraint122

functions. For the solution approaches presented in this paper, these functions are123

assumed to be polynomial. The first argument of each function is assumed to be a124

parameter u which is shared by both f and g. This parameter is often called the125

uncertainty or uncertain data of the problem which is an element of an priori given126

uncertainty set U ⊆ Rn1 . Our goal is to answer the question whether for all possible127

realizations u ∈ U there is always a feasible solution x ∈ Rn2 of the problem:128

(2) ∀u ∈ U ∃x ∈ Rn2 such that f(u, x) = 0, g(u, x) ≤ 0.129

Let B = {(u, x) ∈ Rn1 × Rn2 | f(u, x) = 0, g(u, x) ≤ 0} be the set of all feasible130

pairs of uncertain data u and problem solution x. Question (2) can be answered by131

checking whether the set containment condition132

U ⊆ Proju(B)133

holds. Since set containment implies that each value of u ∈ U is associated with at134

least one feasible solution x(u), the expression in (2) is satisfied.135

This manuscript is for review purposes only.
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In the next subsection, the set containment idea is further explored on the example136

of a simple linear network flow problem over a tree.137

2.1. Introductory Example: Linear Flow Problem over a Tree. We want138

to further illustrate the problem and its possible solution approaches by means of a139

simple example. Let a linear flow problem be given over a tree with lower and upper140

edge capacities and uncertain demands. The data appears as an uncertain right hand141

side of the flow balance equations. We assume that the demand u of all nodes except142

some fixed root node fluctuates within a hypercube U . The model can then be stated143

as144

∀u ∈ U ∃x :

{
Ax = u,

x ≤x ≤ x
145

for some non-singular matrix A, see subsection 4.1 for details. After substituting146

x = A−1u, the problem is equivalent to147

∀u ∈ U : x ≤ A−1u ≤ x,148

or149

(3) U ⊆ {u | x ≤ A−1u ≤ x} = Proju ({(u, x) | Ax = u, x ≤ x ≤ x})150

when stated as a set containment problem. Since both sets are polyhedral, the ques-151

tion can be decided by optimizing over the remaining constraint functions: if152

max
u∈U

(A−1u)i ≤ xi and min
u∈U

(A−1u)i ≥ xi153
154

hold for all i = 1, . . . , n1, so does the set containment condition. By using linear155

duality, these inequalities can be checked with one linear optimization problem, see156

Lemma 4.4.157

In this example, we were able to exploit the simple structure to directly construct158

the projected set in equation (3). For more complicated linear or nonlinear constraints,159

this may not always be possible or computationally too expensive. For treating the160

arising problems, we will use ideas from polynomial optimization.161

2.2. Polynomial Optimization. Let R[x] := R[x1, . . . , xn] denote the set of162

polynomials in n variables with real coefficients. A polynomial p ∈ R[x] is defined as163

p(x) =
∑
α∈Nn

0
pαx

α with coefficients pα ∈ R and monomials xα = (xα1
1 , . . . , xαn

n ) for164

α ∈ Nn0 . With |xα| =
∑
i αi, define the degree of p as deg(p) := max{|xα| | pα 6= 0}.165

Let P[S] = {p ∈ R[x] | p(x) ≥ 0, ∀x ∈ S} (resp. P = P[Rn]) denote the set of166

nonnegative polynomials on a subset S ⊆ Rn (resp. on Rn).167

Polynomial optimization is the problem of optimizing a polynomial over a basic168

semi-algebraic set S = {x ∈ Rn : q1(x) ≥ 0, . . . , qm(x) ≥ 0}. Every polynomial opti-169

mization problem can be written as optimizing a linear function over the cone P[S] of170

nonnegative polynomials on S. Optimizing over P[S] is NP-hard for most (interest-171

ing) choices of S. Hierarchies of tractable approximations of the cone P[S] are typi-172

cally constructed through sum of squares (SOS) relaxations ([14]), which correspond173

to semidefinite liftings of subsets of P[S] into higher dimensions. The construction is174

motivated by results related to representations of non-negative polynomials as SOS175

and the dual theory of moments. The convergence of Lasserre’s method is based on176
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the assumption that {q1, . . . , qm}, the given description of S, allows the application177

of Putinar’s Theorem [23]. In particular, it assumes S is compact.178

To construct Lasserre’s hierarchy, the truncated quadratic module of level d is179

defined as180

(4) Md[S] =

{
σ0(x) +

m∑
i=1

σi(x)qi(x)

∣∣∣∣∣ σ0, σi is sum of squares

deg(σ0) ≤ 2d, deg(σiqi) ≤ 2d

}
.181

This set can be expressed as the feasible region of m+ 1 semidefinite constraints with182

linear equalities over the coefficients of σ0 and σiqi [26]. Furthermore, as Md[S] ⊆183

Md+1[S] ⊆ P[S] holds, this set can be used as an approximation for P[S]. Notice that184

by increasing d, a sequence of semidefinite relaxations of increasing size is obtained.185

Lasserre shows [14] that under mild conditions, the optimal objective value over186

these relaxations converges to the optimal value over P[S]. Proposition 2.1 states the187

result using our notation.188

Proposition 2.1. Let q0, q1, . . . , qm ∈ R[x] be given. Let S = {x ∈ Rn : q1(x) ≥189

0, . . . , qm(x) ≥ 0}. Consider the optimization problem µ = inf{qT0 p : p ∈ P[S]} and190

the sequence of relaxations µd = inf{qT0 p : p ∈ Md[S]}. Assume there exists a real-191

valued polynomial u(x) = σ0 +
∑m
i=1 giσi where σi is SOS for all i and such that192

{x : u(x) ≥ 0} is compact.193

Then (Putinar [23])194

M1[S] ⊆M2[S] ⊆ · · · ⊆Md[S] ⊆ · · · ⊆ P[S]195

and {p ∈ R[x] : p(s) > 0 ∀s ∈ S} ⊆
⋃
d>0

Md[S]196

197

and therefore (Lasserre [14])198

µ1 ≤ µ2 ≤ · · · ≤ µd ≤ · · · ≤ µ and µr → µ as d→∞.199

In other words, using Lasserre’s hierarchy for general polynomial optimization prob-200

lems one may approximate the global optimal value µ as closely as desired by solving201

a sequence of semidefinite problems with increasing size of the semidefinite matrices202

and number of constraints.203

3. Deciding Robust Feasibility and Infeasibility for the General Case.204

In this section, the two approaches for deciding robustness are developed. We present205

a method for certifying infeasibility in subsection 3.1 as well as a method for proving206

feasibility in subsection 3.2.207

3.1. A Set Containment Approach for Certifying Infeasibility. A robust208

optimization problem said to be infeasible if a scenario û ∈ U exists whose correspond-209

ing problem is infeasible. We first introduce an abstract model involving arbitrary210

functions for solving this problem. The model is then adapted to the considered case211

of polynomial functions. With this approach, negative certificates for set contain-212

ment of two basic semi-algebraic sets can be found. Recall that a set S is called basic213

semi-algebraic, if it is of the form214

S = {x | pi(x) ≥ 0, i = 1, . . . , n} .215

where pi(x) ∈ R[x] for i = 1, . . . , n (n ∈ N) are polynomials. For any set S, let216

F [S] := {f : Rn → R | f(x) ≥ 0 for x ∈ S} be the set of all nonnegative functions on217
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S. The set F [S] is nonempty since it always contains h(x) ≡ 0, regardless of the218

particular choice of S.219

Let S1,S2 be any subsets of Rn. It is clear that220

(5) S1 6⊆ S2 ⇐⇒ ∃x ∈ S1 : x 6∈ S2 ⇐⇒ S1 \ S2 6= ∅.221

Using this definition, (5) can be extended to222

S1 \ S2 6= ∅ ⇐⇒ ∃ f ∈ F [S2] and x ∈ S1 such that f(x) < 0.223

The last expression can be rewritten using an optimization problem. Let the abstract224

separation problem (ASep) be defined as225

(ASep)

inf f(x),

x ∈ S1,
f ∈ F [S2].

226

We employ the usual definition of infX f(x) = +∞ if X = ∅. For the optimal value227

of (ASep) it holds that228

inf
x∈S1,f∈F [S2]

f(x) =


+∞, if S1 = ∅
0, if S1 6= ∅ and S1 ⊆ S2,
−∞, if S1 6= ∅ and S1 6⊆ S2.

229

Combining the first two cases yields230

(6) S1 6⊆ S2 ⇐⇒ inf
x∈S1,f∈F [S2]

f(x) = −∞.231

In order to tackle this optimization task in practice, the abstract problem is232

approximated by a polynomial optimization problem. We first replace the set of233

functions F [S2] by the set234

P[S2] := {p ∈ R[x] | p(x) ≥ 0 for x ∈ S2}235

of polynomials that are nonnegative on S2. Since both p and x are variables, p(x)236

cannot be cast directly as part of a polynomial optimization problem. Therefore,237

instead of minimizing p(x), the integral of p over S1 is minimized:238

inf
p

∫
S1
p(x) dµ,

p ∈ P[S2].

239

Using the definition p(x) =
∑
α pαx

α, the objective can be rewritten in terms of the240

moments of µ:241

(PolySep)
inf
p

∫
S1
pdµ = inf

p

∑
α

pα

∫
S1
xα dµ

p ∈ P[S2].

242

Since the moments
∫
S1 x

α dµ can be calculated in advance, the objective of (PolySep)243

is a linear function in p.244
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We call this problem the polynomial separation problem. If there exists p, such245

that the integral over S1 is negative, there must be some point x ∈ S1 with p(x) < 0.246

Then, by definition of p, it holds that x 6∈ S2.247

The integration is a weaker test for the existence of an x ∈ S1 with p(x) < 0248

than just evaluating p(x) (see Lemma 3.1). For practical applications, the moments249 ∫
S1 x

α dµ need to available. With respect to the presented robust gas network prob-250

lem, this is no limitation since S1 = U is a hypercube.251

The next lemma identifies conditions for S1, S2 for which a polynomial p ∈ P[S2]252

exists with
∫
S1 p(x) dµ < 0. This means that under these conditions, problems (ASep)253

and (PolySep) are equivalent.254

Lemma 3.1. Let S1,S2 ⊆ Rn be two bounded sets with S1 \ S2 6= ∅. Suppose that255

S1 \ S2 contains an open subset.256

Then there exists a polynomial p ∈ P[S2] with
∫
S1 p(x) dµ < 0.257

Proof. Since S1 \ S2 contains an open subset, there exists x0 ∈ Rn and r > 0258

such that S1 \S2 ⊇ Br(x0) =: {x ∈ Rn | ‖x− x0‖ < r}. Without loss of generality, we259

assume that x0 = 0. This can always be guaranteed by applying a simple translation260

to S1 and S2. Due to both sets being bounded, there exists an R > r such that261

S2,S1 ⊆ BR(0).262

We prove this lemma by constructing a polynomial p : Rn → R that is non-263

negative on BR(0) \ Br(0) ⊇ S2 and satisfies
∫
BR(0)

p dµ < 0. If such a p exists, it264

holds that265 ∫
S1
p dµ =

∫
S1\Br(0)

p dµ+

∫
Br(0)

pdµ266

≤
∫
BR(0)\Br(0)

p dµ+

∫
Br(0)

p dµ =

∫
BR(0)

p dµ < 0.267

268

In order to construct p, let269

q(t) := [c1(t− c2)]2270

be a univariate polynomial with constants c1 := 2
R2−r2 , c2 := R2+r2

2 . By construction,271

the following holds:272

q(c2) = 0(7a)273

q(t2) = 1 iff. t ∈ {r,R},(7b)274

q(t2) ≥ 1 for t ∈ [0, r],(7c)275

0 ≤ q(t2) ≤ 1 for t ∈ [r,R].(7d)276277

Taking the l-th (l ∈ N) power of q preserves properties (7a)–(7d). Furthermore, the278

polynomial279

pl(t) := 1− ql(t)280

satisfies281

pl(c2) = 1282

pl(t
2) = 0 iff. t ∈ {r,R},283

pl(t
2) ≤ 0 for t ∈ [0, r],284

0 ≤ pl(t2) ≤ 1 for t ∈ [r,R].285286
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We now show that there exists l ∈ N such that the radial symmetric polynomial287

pl(‖x‖2) is non-negative on BR(0) \Br(0) ⊇ S2 and satisfies
∫
BR(0)

pl(‖x‖2) dµ < 0:288 ∫
BR(0)

pl(‖x‖ 2) dµ =

∫
BR(0)\Br(0)

pl(‖x‖ 2) dµ+

∫
Br(0)

pl(‖x‖ 2) dµ289

≤
∫
BR(0)\Br(0)

1 dµ+

∫
Br(0)

1− ql(‖x‖ 2) dµ290

=

∫
BR(0)

1 dµ−
∫
Br(0)

ql(‖x‖ 2) dµ.291

292

In order to complete the proof, we show that liml→∞
∫
Br(0)

ql(‖x‖2) dµ = ∞. Using293

a substitution of variables and exploiting the radial symmetry, the integral over the294

n-dimensional ball can be transformed to a univariate integral:295

∫
Br(0)

ql(‖x‖ 2) dµ =

=:α>0︷ ︸︸ ︷
n

∫
B1(0)

1 dµ

∫ r

0

ql(t2)tn−1 dt296

Now we calculate the difference between two integrals in the sequence while omitting297

the positive coefficient α:298 ∫ r

0

ql+1(t2)tn−1 dt−
∫ r

0

ql(t2)tn−1 dt299

=

∫ r

0

≥1︷ ︸︸ ︷
ql(t2)

≥0︷︸︸︷
tn−1

≥0︷ ︸︸ ︷(
q(t2)− 1

)
dt300

≥
∫ r

0

tn−1
(
q(t2)− 1

)
dt = c > 0301

302

Since the difference between two consecutive elements of the series is bounded from303

below by a strictly positive constant c, the series diverges to +∞. This implies the304

existence of some l ∈ N such that
∫
BR(0)

pk(‖x‖2) dµ < 0.305

Using p(u) =
∑
α pαu

α, the corresponding optimization problem to certify infea-306

sibility of the robust problem is307

(PolySepProj)
inf
p

∑
α

pα

∫
U
uα dµ,

p ∈ P[Proju(B)].

308

Without explicit knowledge of the projection Proju(B), it is unclear how the set309

P[Proju(B)] can be expressed as part of a polynomial optimization problem. We310

present an equivalent model which expresses this constraint by introduction of addi-311

tional linear constraints over the coefficients of the unknown polynomial.312

Lemma 3.2. Consider the two polynomial optimization problems313

(1)
inf
p

∑
α

pα

∫
U
uα dµ,

p ∈ P[Proju(B)],

and (2)

inf
p̃

∑
α

p̃α

∫
U
uα dµ,

p̃α,β = 0 ∀β 6= 0,

p̃ ∈ P[B].

314

315
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Any feasible point p∗ of (1) can be extended to a feasible point p̃∗ of (2) and vice versa.316

Furthermore, the feasible points p∗ and p̃∗ have the same objective values.317

Proof. “⇒”: Let p∗ be any feasible point of (1) with objective value z∗ =318 ∑
α p
∗
α

∫
U u

α dµ. Consider the inclusion map from R[u] to R[u, x], which maps p∗319

to p̃∗ where p̃∗(u, x) =
∑
α,β p̃

∗
α,βu

αxβ where320

(8) p̃∗α,β :=

{
p∗α, if β = 0,

0, if β 6= 0.
321

By construction, for any u ∈ Proju(B) and x ∈ R|N |, we have p̃∗(u, x) = p∗(u) ≥ 0.322

Therefore p̃∗ ∈ P[Proju(B)×R|N |] ⊆ P[B]. That is p̃∗ is feasible for (2).323

“⇐”: Let p̃∗ be any feasible point of (2). Since all coefficients p̃∗α,β with β 6= 0 are zero,324

p̃∗ is independent of x and it holds that p̃∗ ∈ P[Proju(B)×R|N |]. Let p∗(u) =
∑
α p
∗
αu

α325

be the remaining polynomial in u. Together with p̃∗ ∈ P[Proju(B)×R|N |], this implies326

p∗ ∈ P[Proju(B)].327

For the remainder of this section, we assume that the problem is robust infeasible,328

i.e. X := U\Proju(B) is non-empty. In order to apply Lemma 3.1, X has to contain an329

open subset. The next proposition shows that for the given sets, this is no restriction330

since such a subset always exists. Given a set S ⊆ Rn, we denote with cl(S), int(S),331

∂ S, and SC the closure, interior, boundary, and complement of S, respectively. For332

this paper, the uncertainty set U is assumed to be a full-dimensional hypercube or333

full-dimensional polyhedron. Therefore, U = cl(int(U)) always holds for our choices334

of U .335

Proposition 3.3. Let U ⊆ Rn1 be a set with U = cl(int(U)). Let B ⊆ Rn1 ×Rn2336

be a compact set and let X = U \ Proju(B) 6= ∅. Then X contains an open subset.337

Proof. We need to show that int(X ) = int(U) ∩ (Proju(B))
C 6= ∅. Since B is338

compact, Proju(B) is closed and thus (Proju(B))
C

is an open set.339

Pick any x ∈ X = U ∩ (Proju(B))
C

. If x ∈ int(U), then x ∈ int(X ) holds as well340

since (Proju(B))
C

is an open set.341

Otherwise, assume that x ∈ ∂U . With x ∈ (Proju(B))
C

, there exists ε > 0 such342

that Bε(x) ⊆ (Proju(B))
C

. Since U = cl(int(U)), there exists y ∈ int(U) ∩ Bε(x) ⊆343

(Proju(B))
C

. Therefore, y ∈ int(X ).344

This concludes that for the given sets, X always contains an open subset if X is345

non-empty.346

With Proposition 3.3 and Lemma 3.1, the separation problem (PolySep) can347

certify infeasibility if the assumptions of Proposition 3.3 are satisfied. In practice, this348

optimization problem is then approximated by some finite relaxation of the Lasserre349

hierarchy. The question remains whether for sufficiently large levels of the hierarchy,350

the separation polynomial as given by Lemma 3.1 can always be found. After all, not351

all positive polynomials can be expressed by sum of square polynomials. This is no352

restriction as the following proposition shows:353

Proposition 3.4. There is some finite level of the Lasserre hierarchy for which354

the corresponding SDP approximation of (PolySep) yields a negative objective if X 6=355

∅.356

Proof. By Proposition 3.3, X 6= ∅ implies the existence of some open subset in357

X . Then Lemma 3.1 guarantees the existence of a polynomial p with strictly negative358
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objective value for the abstract polynomial optimization problem.359

Consider then the SDP approximation of (PolySep). Since SOS-polynomials are dense360

(see [15]) in the set of non-negative polynomials and by the continuity of the integral,361

there is always a SOS-polynomial close to the p with a negative objective value.362

3.2. A Set Containment Approach for Certifying Feasibility. For certi-363

fying robust feasibility, we need the following assumption:364

Assumption 3.5. Assume that there is a function g : U → Rn2 such that GU =365

{u, x | u ∈ U , x = g(u)}.366

In general, the task that has to be solved in order to decide robust feasibility is to367

check whether368

U ⊆ Projφ(B).369

Since an explicit description of Projφ(B) is typically not available, a different approach370

is used in this section. The basic idea is to replace the original set containment problem371

with an equivalent set containment problem372

GU ⊆ H,373

whereH = {x ∈ Rn |h1(x) ≥ 0, . . . , hm(x) ≥ 0} is constructed by (possibly nonlinear)374

functions hi. This set containment problem can then be decided using the optimiza-375

tion problems376

(MinCons) inf
x∈GU

hi(x) i = 1, . . . ,m.377

The optimal solution of all m optimization problems exists and is the objective value378

is non-negative if and only if GU ⊆ H. In cases where global optimality cannot be379

obtained easily, the criterion can be weakened by replacing the optimization problems380

(MinCons) with relaxations: non-negative objective values of the relaxations imply381

non-negative objective values of the original problems. However, this is only a suf-382

ficient criterion since G ⊆ H might hold but at the same time some optimization383

problems might obtain negative objective values only due to the relaxation.384

Lemma 3.6. Let U ⊆ Rn1 . Let g : U → Rn2 be a function such that Assump-385

tion 3.5 is satisfied and let hi : R
n1 × Rn2 → R (n1, n2 ∈ N) for i = 1, . . . ,m be386

functions. Let387

GU := {(u, x) ∈ Rn1 ×Rn2 | u ∈ U , x = g(u)},388

H := {(u, x) ∈ Rn1 ×Rn2 | hi(u, x) ≥ 0, i = 1, . . . ,m}389390

with391

B := GU ∩H.392

Then393

U ⊆ Proju(B) ⇐⇒ GU ⊆ H.394

Proof. “⇒”: Suppose U ⊆ Proju(B). Pick any (u, x) ∈ GU . Due to the projection,395

there exists x′ with (u, x′) ∈ B = GU ∩H. As Assumption 3.5 is satisfied, x is uniquely396

determined for any u ∈ U . Therefore x = x′ = g(u) holds and thus (u, x) ∈ H.397

“⇐”: Suppose GU ⊆ H. Pick any u ∈ U and let x = g(u). Then (u, x) ∈ GU ⊆ H398

and thus (u, x) ∈ B. This implies u ∈ Proju(B).399
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This lemma can be applied to all problems where a subset of the constraints defines400

a unique solution for each possible realization of the data. Even if g is only given401

implicitly by the solution of some (in-)equality system, the lemma is still applicable.402

The next lemma shows how the set containment question can still be decided if403

the considered sets are partitioned into subsets. This will be important later when404

eliminating the absolute values of the gas transport problem.405

Lemma 3.7. Let U ⊆ Rn1 and let AU , B ⊆ Rn1 × Rn2 with AU = {(u, x) ∈406

Rn1 ×Rn2 | x = g(u), u ∈ U} for an arbitrary function g : Rn1 → Rn2 . Let Si (i ∈ I)407

be a collection of sets with Si ⊆ Rn1 ×Rn2 such that
⋃
i∈I Si = Rn1 ×Rn2 . Then408

U = Proju(AU ) ⊆ Proju(AU ∩B)409

⇐⇒410

Proju(AU ∩ Si) ⊆ Proju(AU ∩ Si ∩B) ∀i ∈ I411412

Proof.

U = Proju(AU ) ⊆ Proju(AU ∩B)413

Lemma 3.6⇐⇒ AU ⊆ B ⇐⇒ AU ∩ Si ⊆ B ∩ Si (∀i ∈ I)414415

Let U ′i := Proju(AU ∩ Si). Rewriting AU ∩ Si yields416

AU ∩ Si = {(u, x) |x = g(u), u ∈ U , (u, x) ∈ Si}417

= {(u, x) |x = g(u), u ∈ U , (u, g(u)) ∈ Si}418

= {(u, x) |x = g(u), u ∈ {u |u ∈ U , (u, g(u)) ∈ Si}}419

= {(u, x) |x = g(u), u ∈ Proju(AU ∩ Si)}420

= AProju(AU∩Si) = AU ′i .421
422

Then423

AU ∩ Si = AU ′i ⊆ B ∩ Si (∀i ∈ I)424

Lemma 3.6⇐⇒ U ′i = Proju(AU ′i ) ⊆ Proju(AU ′i ∩B) = Proju(AU ∩B ∩ Si) (∀i ∈ I).425
426

For a practical application, the optimization problems (MinCons) need to be427

solved to global optimality. As mentioned earlier, if global optimality cannot be428

ensured, a relaxation of the given problem can also suffice. The structure of the opti-429

mization problems depends on the defining functions of GU , H. For the gas network430

problem, these typically are polynomials or piecewise polynomials. Using the ideas431

of subsection 4.3, the piecewise polynomial functions can be reformulation in terms432

of pure polynomials. Instead of solving the resulting polynomial optimization prob-433

lems (MinCons), sum of squares or moment relaxation of these problems are used434

instead. These relaxations form a hierarchy of semidefinite programs, see [21] and435

[14], respectively.436

4. Deciding Robustness for the Passive Gas Network Problem. In this437

section, the passive gas network problem under uncertainty is introduced. It also438

contains crucial properties of the problem class as well as techniques for reduction of439

variables and procedures to eliminate the occurring absolute value functions. Com-440

bined, these ideas allow a compact problem formulation as a polynomial feasibility441

system which will can be tackled using methods from section 3.442
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4.1. The Passive Gas Network Problem. We consider a stationary passive443

gas network with horizontal pipes. Gas can be inserted or withdrawn at each node of444

the network. The goal is to decide whether a given set of demands can be satisfied445

by the network. Even in the absence of uncertainties, this problem is challenging to446

solve since the resulting feasibility problem is in general nonlinear, non-smooth and447

non-convex.448

4.1.1. Modeling the Nominal Passive Gas Network Feasibility Problem.449

The network’s topology is given by a weakly connected digraph G = (V +, A) with450

|V +| = |{0, . . . , n + 1}| = n + 1 nodes and |A| = m ≥ n arcs. The physical state451

of the network is represented by the (non-negative) pressure pv ∈ R≥0 at each node452

v ∈ V and the flow qa ∈ R along each arc a ∈ A. Concerning the flow, a positive453

sign of qa indicates flow in edge direction, a negative sign the reverse. Since the454

pressure only occurs in squared form, we introduce variables p2v = πv ∈ R≥0 for the455

squared pressures, see (10). Due to physical, technical and legal reasons, the squared456

pressures are bounded: πv ∈ [πv, πv], v ∈ V +. For a more comprehensive treatment457

of the gas transport problem, see e.g. [1]. A general survey on the problems arising458

in gas network operations is given in [24].459

Gas networks share a basic property with linear flow networks: at each node, flow460

conservation must hold. Similar to the linear case, gas may be inserted or withdrawn461

at each node of the network. This so called demand or nomination is encoded in the462

vector (qnomv )v∈V + which has to be balanced:
∑
v∈V + qnomv = 0. Insertion is indicated463

by a positive sign, withdrawal by a negative sign of qnomv . Flow conservation can then464

be stated as465

(9)
∑

a=(v,w)∈A

qa −
∑

a=(w,v)∈A

qa = qnomv , ∀v ∈ V +.466

So far, the model is identical to a regular linear network flow problem. More com-467

plexity in the form of nonlinear constraints is introduced once the physical laws of gas468

transport are considered.469

According to the Weymouth Equation (10) (see [29]), when gas flows through a470

pipe, its pressure decreases. The difference of the squared pressures at both ends of471

the pipe is proportional to the signed squared flow along the pipe. The magnitude of472

the pressure drop is influenced by the pipe’s pressure loss factor φa, which (amongst473

other factors) depends upon the length, diameter and roughness of the pipe. A more474

in depth look at the different modeling approaches for the pressure loss factor can be475

found in [1] and [22].476

By defining f(x) := x|x|, the pressure loss relation can be expressed as477

(10) πv − πw = φa |qa| qa = φaf(qa), ∀a = (v, w) ∈ A.478

Let A+ ∈ R|V +|×|A| be the node-arc-incidence matrix of G, that is (A+)av = +1479

and (A+)aw = −1 for a = (v, w) ∈ A. With A+, the flow conservation (9) can be480

stated in a more compact manner:481

(11) A+q = qnom+.482

By defining Φ(φ) := diag(φ1, . . . , φ|A|) and F (q) := ((f(q1), . . . , f(q|A|))
T

, the pres-483

sure loss constraints (10) can be combined to484

(12) A+Tπ = −Φ(φ)F (q).485
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With (11) and (12), the feasibility problem can be stated as a potential driven network486

problem487

(PotN)

A+q = qnom+,

A+Tπ = −Φ(φ)F (q),

π ∈ [π, π],

q ∈ R|A|.

488

4.1.2. Reduction of Variables. By a result of [8], all pressure variables and489

|V +|−1 of the flow variables can be eliminated from the system. It is well known that490

for connected graphs, A+ has rank |V +| − 1 and an arbitrary row can be removed491

while preserving the set of solutions of (9). For ease of notation, we discard the row492

corresponding to node 0 and obtain A from A+ in this way. The set V = V + \ {0} =493

{1, . . . , n} of nodes and the demand vector qnom+ are adjusted accordingly.494

Theorem 4.1 ([8]). Let A be the node-arc-incidence-matrix of a graph G as de-495

scribed above and let A = (AB ,AN ) be partition into basis and non basis submatrices496

of A. Let (ΦB(φ), ΦN (φ)), (FB, FN ), and (qB, qN ) be the corresponding partitions497

of Φ(φ), F , and q, respectively. Define498

g : R|A| ×R|N | → R|V |, g(φB , qN ) :=
(
ATB
)−1

ΦB(φ)FB
(
A−1B (qnom −ANqN )

)
.499

Then the model (PotN) is equivalent to the following reduced model in variables500

qN :501

(RPotN)

ATNg(φ, qN ) = ΦN (φ)FN (qN )

π0 ≤ min
i=1,...,n

[πi + gi(φ, qN )]

π0 ≥ max
i=1,...,n

[πi + gi(φ, qN )]

min
i=1,...,n

[πi + gi(φ, qN )] ≥ max
i=1,...,n

[πi + gi(φ, qN )]

qN ∈ R|N |,

502

where π0, π0 are the squared pressure bounds at the root node, respectively.503

If a feasible qN for (RPotN) exists, the remaining variables qB , π can be recovered504

through qB = A−1B (qnom −ANqN ) and πi = π0 − gi(φ, qN ) (i = 1, . . . , n). The value505

of π0 is an arbitrary given element of506 [
max

i=1,...,n
[πi + gi(φ, qN )], min

i=1,...,n
[πi + gi(φ, qN )]

]
.507

Conversely, a vector qN that was extracted from a solution q∗, π∗ of (PotN) is feasible508

for (RPotN).509

Depending on the situation, it can be beneficial to consider the reduced problem510

(RPotN) or the original problem (PotN). For that purpose, let511

q : R|N | → R|A|,512

qa(qN ) :=

{(
A−1B (qnom −ANqN )

)
a
, if a ∈ B,

(qN )a , if a ∈ N.
513

514

This affine linear function maps cycle flow values to flows on all arcs of the graph. For515

graphs with a single cycle, q can be simplified to qa(qN ) = qN − βa for some βa ∈ R.516
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4.1.3. Uniqueness of Flow. Another important result in this context concerns517

the structure of the feasible set of (PotN). As shown in [5, 25], the feasible flow of a518

given demand scenario for a network without pressure bounds is uniquely determined.519

Theorem 4.2 ([5]). Consider (PotN) without pressure bounds. Then for fixed520

φ ∈ R|A|>0 , the solution space has the following properties:521

1. The projection on the flow variable q contains a single point, i.e. the flow is522

unique.523

2. The projection on the squared pressure variable π has the form524 {
π∗ + η(1, . . . , 1)

T
∣∣∣ η ∈ R} .525

In case of pressure bounds, the variable η is constrained:526

η ∈ [η, η] with η := max
v∈V

(πv − π∗v) and η := min
v∈V

(πv − π∗v).527
528

As a simple consequence, if the pressure of a feasible problem is fixed at any node,529

the pressure values at the remaining network nodes are also uniquely determined.530

4.1.4. The Passive Gas Network Problem Under Uncertainty. Based on531

this nominal setting (PotN) and (RPotN), uncertainty is introduced into the prob-532

lem. Disregarding any combinatorial uncertainties (e.g. random failing of arcs), two533

possible sources of uncertainty are present in the given model: fluctuations in the534

demand qnomv and variations of the pressure loss factor φa. In this paper, we focus535

on uncertainties in the pressure loss coefficient. The value of φa is influenced by spe-536

cific chemical properties of the gas as well as physical parameters of the pipe like e.g.537

its length, diameter and roughness. In particular, the roughness value of the pipe’s538

wall changes during the network’s operation due to aging effects and accumulation539

of dirt. It is difficult to measure this parameter after the network begins operation.540

Since the roughness values can only be estimated, a robust treatment of the prob-541

lem is reasonable. The goal of robust optimization is to immunize solutions of an542

optimization problem against a set of parameters which can be realized from a given543

uncertainty set. The problem is required to be solvable for all possible realization of544

the uncertainty.545

It is assumed that the pressure loss factor of each pipe is strictly positive and lies546

within some a-priori known interval547

φa ∈ [φa, φa] ⊆ R>0 ∀a ∈ A548

with 0 < φa ≤ φa. Furthermore, possible correlation between different pipes is549

ignored. The resulting uncertainty set U is therefore given by the hyperrectangle550

U := ×a∈A[φa, φa].551552

By Theorem 4.2, a problem without pressure bounds always admits a uniquely553

determined flow that satisfies the given demand. Parameterizing this result by the554

pressure loss factors motivates the following corollary:555

Corollary 4.3. For networks without pressure bounds, there exists a function556

q̃ : R
|A|
>0 → R|N |557

φ 7→ q̃(φ)558559
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that solves560

ATNg(φ, q̃(φ)) = ΦN (φ)FN (q̃(φ))561

for all φ ∈ R|A|>0 .562

4.1.5. Deciding Robustness of the Gas Network Problem. Using model563

(RPotN), let564

G :=
{

(φ, qN ) ∈ R|A|>0 ×R|N |
∣∣∣ATNg(φ, qN )− ΦN (φ)F (qN ) = 0

}
,565

GU := {(φ, qN ) ∈ G |φ ∈ U}566567

and568

H :=

(φ, qN )

∣∣∣∣∣∣∣∣∣∣
−π0 + πi + gi(φB , qN ) ≥ 0, i ∈ {1, . . . , n}
π0 − πi − gi(φB , qN ) ≥ 0, i ∈ {1, . . . , n}

πi + gi(φB , qN )− πj − gj(φB , qN ) ≥ 0, i, j ∈ {1, . . . , n}

(φ, qN ) ∈ R|A|>0 ×R|N |

 .569

570

The set G (resp. GU ) contains all feasible combinations φ, qN (resp. with φ ∈ U) arising571

from the cycle flow equations. Due to Corollary 4.3, this set can be stated equivalently572

as the graph of q(φ). On the other hand, H can be seen as all combinations φ, qN573

that are feasible for the given pressure bounds.574

Combining both G and H, let575

B := G ∩ H576

be the set of all feasible uncertainty/solution pairs of the given gas transport problem.577

The task is now to decide whether the network allows a feasible flow for all φ ∈ U .578

Let Projφ(B) be the projection of the feasible pairs of pressure loss coefficients and579

flows onto the space of the uncertainty set. This set contains all pressure loss coef-580

ficients which admit a feasible flow in the corresponding problem. In this context,581

deciding robustness with respect to U is equivalent to checking whether the uncer-582

tainty set U is contained in the projection Projφ(B):583

U ⊆ Projφ(B) = {φ | ∃ qN : (φ, qN ) ∈ B} .584

4.2. Deciding Robust Feasibility on Tree Networks. Consider a network585

whose underlying topology is a tree, i.e. a connected, cycle-free graph. Since there are586

no cycles and therefore N = ∅, the description of the feasible set B does not contain587

any cycle flow variables qN . Since there are no flow variables, the function g(φ, qN )588

as defined in Theorem 4.1 is reduced to a function of the form589

g(φ) =
(
ATB
)−1

ΦB(φ)FB(A−1B qnom).590

From this description, we can see that g(φ) is a linear function of φ. Note that591

FB(A−1B qnom) is a constant expression that can be calculated in advance.592

With N = ∅, the set593

(13) B =

φ ∈ R≥0|A|
∣∣∣∣∣∣∣∣∣∣

π0 ≤ min
i=1,...,n

[πi + gi(φ)]

π0 ≥ max
i=1,...,n

[πi + gi(φ)]

min
i=1,...,n

[πi + gi(φ)] ≥ max
i=1,...,n

[πi + gi(φ)]

594
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is polyhedral since all gi(φ) are linear and the min / max expressions can be replaced595

by a finite number of linear constraints.596

In this case, checking robust feasibility with respect to a given polyhedral uncer-597

tainty set U is equivalent to deciding the set containment problem598

U ⊆ Projφ(B) = B599

for two polyhedra U and B. As the following lemma by [17] shows, this can be done600

efficiently with LP duality:601

Lemma 4.4 ([17]). Let the set S1 := {x | Sx ≥ s} and let S2 := {x | Tx ≤ t},602

where S ∈ Rm×n, T ∈ Rk×n and let T be nonempty. Then the following are equiva-603

lent:604

1. S2 ⊆ S1, that is:605

Tx ≤ t =⇒ Sx ≥ s.606

2. For i = 1, . . . ,m, the m linear programs are solvable and satisfy:607

min
x
{(Sx)i | Tx ≤ t} ≥ si.608

3. There exists a matrix W ∈ Rm×k such that:609

S +WT = 0, s+Wt ≤ 0, W ≥ 0.610

Proof. See [17].611

Corollary 4.5. Let U = {φ |Tφ ≤ t} be a polyhedral uncertainty set. Let B =612

{φ |Sφ ≥ s} be the polyhedral set of feasible pressure loss factors φ for a gas transport613

problem over a tree-shaped network.614

Then robustness with respect to U can be decided by solving a linear program.615

4.2.1. Robust Feasibility of Tree Networks as a Function of a Node’s616

Pressure. Corollary 4.5 allows us to characterize robustness of a tree network in617

terms of the pressure at an arbitrary chosen node. Let G = (V,A) be the graph of a618

tree network. Without loss of generality, we select the tree’s root node 0 as basis of our619

considerations. Suppose the pressure value at this node is fixed, i.e. π0 := π0 = π0.620

Our aim is to specify all π0 such that the gas network problem is robust feasible.621

As can be inferred from (13), the pressure bounds only appear as constants in the622

linear inequality constraints. With the conventions of the previous corollary, the set623

of feasible pressure loss coefficients can thus be expressed in terms of the root node’s624

pressure π0:625

B(π0) = {φ |Sφ ≥ s(π0)} .626

The right hand side s of the linear inequality system is a linear function s : R→ R|A|627

of π0. Applying Lemma 4.4 to the set containment question U ⊆ B(π0) yields628

U = {φ |Tφ ≤ t} ⊆ {φ |Sφ ≥ s(π0)} = B(π0)629

⇐⇒ X (π0) :=

{
W ∈ Rm×k≥0

∣∣∣∣∣ S +WT = 0

s(π0) +Wt ≤ 0

}
6= ∅.630

631
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Lemma 4.6. Given a tree network G = (V,A) with an arbitrary root node 0 and632

a polyhedral uncertainty set U . Then the network is robust feasible if and only if the633

root node’s squared pressure satisfies634

π0 ∈ [π∗0, π
∗
0]635

with π∗0, π∗0 being optimal values of the linear programs636

π∗0 := min
π0,W

π0 s.t. W ∈ X (π0),(14a)637

π∗0 := max
π0,W

π0 s.t. W ∈ X (π0).(14b)638
639

640

Proof. The set {(π0,W ) |W ∈ X (π0)} is polyhedral and thus convex. Therefore,641

the set of all feasible π0 is the interval642

[π∗0, π
∗
0]643

whose endpoints are the optimal values of the linear programs (14a) and (14a).644

4.3. Eliminating the Absolute Value Functions. In order to apply tools645

from polynomial optimization to the gas network problem, the constraining functions646

of B have to be converted to a polynomial representation. Currently, the pressure647

drop equations648

πv − πw = φqa |qa| = φf(qa)649

introduce absolute values in the problem. After elimination of the absolute values, B650

is transformed from a piecewise polynomial representation to an equivalent but purely651

polynomial description. Depending on the topology of a given instance, it may be652

possible to eliminate a lot of absolute values in advance since all arcs which are not653

part of a cycle have fixed flow direction. For example, in the case of tree networks, all654

directions are known in advance. Apart from that, the flow direction can be fixed by655

other preprocessing algorithms, e.g., flow/pressure propagation or bound tightening656

methods. Further discussion on that topic can be found in [7].657

This chapter presents three different methods for the elimination of absolute val-658

ues. First, a technique from mixed-integer optimization is employed to model absolute659

values using binary variables. With this method, both the feasibility and the infeasi-660

bility method can be used. Next, the implications of straight forward case distinction661

are discussed. In general, this technique can only be used for the feasibility method662

as will be later explained. Finally, the case distinction idea is further investigated663

for networks which contain a single cycle. In this setting, the absolute values can be664

eliminated by restricting the uncertainty set to polyhedral subsets. It is shown how665

the overall problem can be decomposed into linearly many subproblems which can be666

decided with both methods.667

4.3.1. Elimination by Auxiliary Binary Variables. By introducing addi-668

tional binary variables, the absolute value functions can be eliminated. This technique669

is very similar to what is typically done in mixed-integer optimization. We demon-670

strate the idea using the example of |x|x. Assume that |x| is bounded: |x| ≤M . This671

is a natural assumption since the flows within the network cannot become arbitrary672
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large. With the introduction of a new binary variable b, the signed-square expression673

y = |x|x can be stated equivalently using polynomials via674

y = (2b− 1)x2,675

(−1 + b)M ≤x ≤ bM,676

b = b2.677678

Applying this construction to each absolute value function on each arc a ∈ A yields a679

purely polynomial description of B that can be used in the feasibility and infeasibility680

methods.681

4.3.2. Elimination by Case Distinction: the General Case. Using the682

original problem definition (PotN), each pipe a ∈ A introduces an absolute value683

with its pressure loss equation. In general, one might expect that by eliminating each684

absolute value function, the problem is split into 2|A| cases. This paragraph shows685

how the number of cases mainly depends on the amount of fundamental cycles in the686

graph and thus can be much smaller than 2|A|. We remark that the following results687

identify the feasible flow directions in a linear network flow model instead of the gas688

transport problem. However, this is no restriction since adding constraints concerning689

the gas physics reduces the number of possible cases even further.690

Due to Lemma 3.7, the overall set containment problem can be decided by split-691

ting the problem into a series of subproblems. Each subproblem arises by restricting692

the original problem to certain subsets, e.g., to orthants of R|A| for the absolute value693

case distinction. Let O1, . . . , O2|A| = {R≥0,R≤0}|A| be the set of orthants in R|A|. In694

the original model (PotN), the additional constraint q ∈ Oi restricts the flow to a spe-695

cific orthant and allows the elimination of all absolute value functions. In the reduced696

model, the variables qB are replaced by qB = A−1B (qnom −ANqN ). The transformed697

case distinction is698 (
qB
qN

)
=

(
A−1B (qnom −ANqN )

qN

)
∈ Oi.699

By considering the reduced model, the next proposition shows that the number of700

case distinctions mainly depends on the amount of fundamental cycles in the graph.701

Proposition 4.7. Let G be a connected digraph with |A| arcs and |N | funda-702

mental cycles. Then there can be at most
∑|N |
i=0

(|A|
i

)
∈ O(|A||N |) many feasible flow703

directions in the network. The corresponding subproblems can be constructed in run704

time O(|A||N |).705

Proof. The problem of finding all feasible flow directions can be reduced to a706

problem concerning the arrangement of hyperplanes. For ease of exposition, con-707

sider the nonnegative orthant O+ = R
|A|
≥0 . Using the flow function q(·) as defined in708

subsection 4.1.2, fixing the flow direction to this orthant amounts to the constraint709

q(qN ) ∈ O, i.e., q(qN ) ≥ O. Each entry of q(·) defines a hyperplane in R|N |. Consider710

the regions that can arise by segmenting R|N | using the hyperplanes in q(·). For all711

a ∈ A, each region is a subset of either qa(qN ) < 0 or qa(qN ) > 0. Therefore, the712

flow direction on all arcs in the graph is constant on each region. The total num-713

ber of regions that can be constructed in R|N | using |A| hyperplanes is bounded by714 ∑|N |
i=0

(|A|
i

)
∈ O(|A||N |) ([30]). Furthermore, constructing all regions can be achieved715

in run time O(|A||N |) using the algorithm of [6].716
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However, there is an issue arising with this approach as the subproblems are of717

the type (see Lemma 3.7)718

Proju(GU ∩Oi) ⊆ Proju(GU ∩H ∩Oi).719

The feasibility method can be employed as-is since optimizing over a projection set720

poses no restriction. On the other hand, the infeasibility method can not be applied721

as easily since it requires the moments over the uncertainty set. In case of the given722

subproblems, this is the set Proju(GU ∩Oi). In general, it is unclear how the moments723

can be obtained without explicitly constructing the projection. Nevertheless, this724

is possible for networks with one cycle. The next section gives the description of725

Proju(GU ∩ Oi) for this case. In this setting, the infeasibility method can be applied726

since the projected set is polyhedral.727

4.3.3. Elimination by Case Distinction: a Shortcut for Networks with728

One Cycle. On networks with only one cycle, a considerable simplification can be729

applied. The absolute values can be eliminated by restricting the problem to certain730

subsets of the uncertainty set. In contrast, the previous case distinction method relied731

on restricting the flow variables. The advantage of using subsets of the uncertainty732

set for this purpose is that the infeasibility method can be applied as well since it733

requires explicit knowledge of the uncertainty set.734

For the purpose of this chapter, we assume a directed cyclic graph where each arc735

points to a different node:736

Assumption 4.8. Let G = (V,A) be a directed cyclic graph with V = {0, . . . , n},737

A = {(0, 1), (1, 2), . . . , (n− 1, n), (n, 0)}, and nonzero demand qnom+ ∈ R|V |.738

Due to the cyclic structure, the arcs can be uniquely identified by their first node.739

We assume the last edge to be part of the nonbasis, thus there is only one problem740

variable qn ∈ R with qN ≡ qn. Employing a very similar construction as [8, Chapter741

6.1], we obtain the set G of feasible (φ, qn)-combinations and the associated cycle flow742

equation:743

Proposition 4.9. Let Assumption 4.8 be satisfied.744

Then G =
{
φ ∈ R|A|>0 , qn ∈ R

∣∣∣h(φ, qn) = 0
}

with745

h(φ, qn) := −
∑
a∈A

f(qa) = −
∑
a∈A

f(qn − βa)746

and βa ∈ R for a ∈ A. The constraint h(φ, qn) = 0 is the so-called cycle flow equation.747

Using h, a characterization of the set of all pressure loss coefficients φ which lead to748

the flow qn being bounded in some interval can be found:749

Lemma 4.10. Let Assumption 4.8 be satified. Let qn, qn ∈ R, φ ∈ R|A|>0 and let h750

be as in Proposition 4.9. Then751

{φ |h(φ, qn) = 0 for some qn ∈ [qn, qn]} = {φ |h(φ, qn) ≤ 0, h(φ, qn) ≥ 0} .752

Proof. For constant φ ∈ R|A|>0 , the function h(φ, qn) is monotonically decreasing753

in qn since754

d

dqn
h(φ, qn) = −

n∑
i=0

φi
d

dqn
f(qn − βi) = −

n∑
i=0

φi2 |qn − βi| ≤ 0.755
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Furthermore, limqn→±∞ h(φ, qn) = ∓∞.756

Let A := {φ ∈ R|A|>0 | h(φ, qn) = 0, qn ≤ qn} and B := {φ ∈ R|A|>0 | h(φ, qn) ≥ 0}.757

We show A = B first:758

“⇒”: Pick φ ∈ A. By definiton of A, there is qn ≤ qn with h(φ, qn) = 0. Since759

h(φ, ·) is monotonically decreasing, h(φ, qn) ≥ h(φ, qn) = 0. Therfore φ ∈ B.760

“⇐”: Pick φ ∈ B. Since h is continuous, h(φ, qn) ≥ 0, and limqn→∞ h(φ, qn) =761

−∞, the intermediate value theorem implies a h(φ, qn) = 0. Therefore φ ∈ A.762

This shows A = B. There is a similar result where the inequalities in the defini-763

tions of A, B are flipped. Together, both results prove that764 {
φ ∈ R|A|>0

∣∣∣h(φ, qn) = 0, qn ∈ [qn, qn]
}

=
{
φ ∈ R|A|>0

∣∣∣h(φ, qn) ≤ 0, h(φ, qn) ≥ 0
}
.765

With this lemma, restricting qn to a given interval can be expressed equivalently by766

restricting the considered pressure loss coefficients φ. Furthermore, the constraints767

for φ are hyperplanes in R|A| as h(φ, qn) is linear in φ.768

We adapt a procedure from [8, Proposition 5] to our setting in order to identify769

intervals for the flow qn that guarantee constant flow direction on all arcs of the770

network. Once the possible subsets are identified, we apply Lemma 4.10 to relate the771

obtained flow intervals to subsets in the space of the uncertainty.772

The absolute value functions only occur in the form φ|qa|(qa). From Proposition 4.9,773

the flow qa along an arc a ∈ A is given by774

qa(qn) = qn − βa.775

Therefore, the absolute value |qa(qn)| can be eliminated by restricting the flow qn776

to either qn ≥ βa or qn ≤ βa. Next, reorder β0, β1, . . . , βn such that βi0 ≤ βi1 ≤777

. . . ≤ βin . With this in mind, taking any consecutive pair βij , βij+1
yields an interval778

for qn such that the flow over the whole network is constant. Due to [8] and the779

nonzero demand from Assumption 4.8, the solutions of h(φ, qn) = 0 can only be780

within [βi0 , βin ] for any fixed φ. Therefore, the absolute values can be eliminated by781

restricting qn to the intervals782

[βi0 , βi1 ], [βi1 , βi2 ], . . . [βin−1 , βin ].783784

Applying Lemma 4.10 to these intervals yields an equivalent condition for constant785

flow directions in the space of the uncertainty.786

Proposition 4.11. Let Assumption 4.8 be satisfied and let787

Uj := U ∩
{
φ ∈ R|A|>0

∣∣∣h(φ, βij+1
) ≤ 0, h(φ, βij ) ≥ 0

}
for j = 0, . . . n− 1.788

Then the set containment question U ⊆ Projφ(B) = Projφ(GU ∩H) can be decided by789

solving the subproblems790

Uj ⊆ Projφ(GUj ∩H) for j = 0, . . . n− 1.791

We remark that if U is polyhedral then Uj is polyhedral as well.792

5. Numerical Experiments. In this section, some practical results of the feasi-793

bility and infeasibility approaches on a set of small gas networks under uncertainty are794

presented. Instead of considering arbitrary gas networks, we focus on highlighting our795

methods’ performance on the core problem: deciding a single cycle under uncertainty.796
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Using Lemma 4.6, the feasibility of any subtree in a given network can be reduced if797

the pressure at the root node is contained in a pre-calculated interval. This allows798

us to remove any subtree by updating the pressure bounds at the intersecting node799

with the remaining network. Assuming there is only one remaining cycle, Lemma 4.10800

is then used to split the problem into subproblems on subsets of the uncertainty set801

while eliminating all absolute values. Since this just increases the number of problems802

to consider but does not fundamentally change their nature, we start with a single803

cycle and uncertainty sets that guarantee constant flow direction on all arcs.804

The example networks are cyclic with nodes V = {1, 2, . . . , n} for n ∈ {2, . . . , 7}805

and arcs A = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. A family of uncertainty sets is806

considered:807

U(c) = ×a∈A[1, c], c ∈ [2, 4].808

Furthermore, define two special uncertainty sets,809

Ufeas := U(2) and Uinfeas := U(4),810

which we want to investigate with respect to feasibility and infeasibility, respectively.811

Table 1 shows the parameters of the considered instances. The columns denote812

the nodes within the network.x Each row denotes the specific instance with n nodes.813

Within each row, the demand and bounds of the squared pressure π at each node is814

displayed in the first and second lines, respectively.815

Table 1
Demand and squared pressure bounds π per node v for each test network.

node v ∈ V
1 2 3 4 5 6 7

n=2 demand -10 10
π-bounds [0, 200] [140, 200]

n=3 demand -10 2 8
π-bounds [0, 200] [0, 200] [130, 200]

n=4 demand -10 2 6 2
π-bounds [0, 200] [0, 200] [115, 200] [0, 200]

n=5 demand -10 1 1 6 2
π-bounds [0, 200] [0, 200] [0, 200] [100, 200] [0, 200]

n=6 demand -10 1 1 6 1 1
π-bounds [0, 200] [0, 200] [0, 200] [70, 200] [0, 200] [0, 200]

n=7 demand -10 1 1 1 4 2 1
π-bounds [0, 200] [0, 200] [0, 200] [0, 200] [50, 200] [0, 200] [0, 200]

Every network’s H-set (see Subsection 4.1.5) is made up of n(n− 1) inequalities816

hi (i ∈ I). Each inequality is checked for feasibility using (MinCons); all inequalities817

are checked at once for infeasibility using (PolySepProj). Both optimization tasks are818

solved using SDP relaxations of the problems. We remark that (PolySepProj) could819

be applied to all constraints individually. However, experiments show that solving820

the problem for a single constraint individually is only marginally faster than solving821

the problem for all constraints at once. Therefore, we solve the infeasibility problem822

once with all constraints combined rather than up to |I| subproblems by considering823

each constraint on its own.824
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Table 2
Objectives of the feasibility method solving (MinCons) and infeasibility method solving (Pol-

ySepProj) for the three node instance over Uinfeas. Each row in the feasibility group denotes the
subproblem with objective function hi.

feasibility infeasibility
i level 2 level 3 level 2 level 3

1 216.89 217.39

0.00 unbnd

2 53.09 -
3 228.63 228.63
4 -116.79 -
5 201.67 -
6 -35.99 20.34

All experiments were carried out on a notebook with four Intel i7-4810MQ cores825

running at 2.80GHz each and 16 GB of RAM. The methods were implemented using826

MATLAB R2016b. GloptiPoly 3.8 [10] was used for the feasibility models since it827

provides a straight forward interface for solving polynomial optimization problems.828

Since the infeasibility method exceeds the capabilities of GloptiPoly, this approach829

was implemented using the SOS-module of YALMIP R20160930 [16]. The resulting830

SDP problems were solved with MOSEK 8 [18] using 4 threads.831

Some problems were not solvable with the desired precision. This happened al-832

though we evaluated the problems on a variety of solvers including SeDuMi [27] and833

SDPT3 [28] as well as on a third modeling tool, SOSTOOLS [20]. The chosen com-834

bination of MOSEK with GloptiPoly and YALMIP offered the most robust behavior835

amongst all considered possibilities.836

5.1. Effectiveness of the Methods. The effectiveness of both methods can be837

measured in the typical running times of the semidefinite subproblems as well as in838

hierarchy level at which set containment can be decided.839

First, the results of both methods on a fixed network are presented. Table 2 shows840

the outcome of both methods for the n = 3 instance over Uinfeas. The columns are sep-841

arated into groups concerning the feasibility method (MinCons) and the infeasibility842

method (PolySepProj) with a further distinction into the employed hierarchy level.843

The rows in the feasibility part denote the constraint hi which is minimized. Since844

the infeasibility method is applied to all constraints at once, there is only one row of845

results in the infeasibility part of the table. Cells marked by “-” indicate numerical846

difficulties, i.e., we were unable to solve the specific problem to the desired precision.847

The feasibility approach has a positive objective for five out of six subproblems, thus848

confirming set containment for those constraints. Out of these five problems, four were849

decided on the second hierarchy level while one required a level 3 solution. When ap-850

plying the infeasibility approach, the level 3 model is unbounded, thereby refuting set851

containment. Over all, the instance therefore isn’t robust feasible.852

Next, the required levels of the relaxation hierarchy are evaluated. For this pur-853

pose, each constraint of each instance is considered for set containment while gradually854

increasing the hierarchy level from two to four. Once a subproblem is solved success-855

fully, the corresponding number of solved problems on this specific level is incremented856

in the table.857

Table 3 contains the feasibility methods’ results for all instances on the smaller858

uncertainty set Ufeas. Each row denotes the considered instance with n nodes and a859

This manuscript is for review purposes only.



DECIDING ROBUST FEASIBILITY AND INFEASIBILITY USING A SET CONTAINMENT APPROACH:AN APPLICATION TO STATIONARY PASSIVE GAS NETWORK OPERATIONS23

Table 3
For a given instance with n nodes, count how many subproblems out of I were solved successfully

using the feasibility method. Positive outcomes of each subproblem are counted only once on the
smallest level. All instances were solved over the Ufeas uncertainty set.

n |I| level 2 level 3 level 4

2 2 1 1 0
3 6 5 1 0
4 12 11 1 0
5 20 19 1 0
6 30 29 1 0
7 42 42 0 0

total of |I| subproblems. The columns indicate how many of the feasibility problems860

were solved successfully on the respective level. For any subproblem, only the first861

success is counted, thus the sum of each row can be at most |I|. If the row-wise sum862

is less then |I|, this implies that some problems were not solvable with the desired863

precision.864

It can be observed that the feasibility approach almost exclusively confirms set865

containment at the second level. At most one subproblem per instance required866

solving of a level 3 problem. As suspected, all instances are robust feasibly with this867

uncertainty region.868

Using the larger uncertainty set Uinfeas, both the feasibility and the infeasibility869

method were applied to all instances. Table 4 summarizes all results. Each row de-870

notes the considered instance with n nodes. The columns are separated into groups871

according to the employed method with further distinction for the used hierarchy level.872

Each column in the feasibility group indicates how many of the feasibility problems873

were solved successfully. For any subproblem, only the first success is counted, there-874

fore the sum of each row in the feasibility group can be at most |I|. The columns in875

the infeasibility group denote the status of the corresponding problem. Cells marked876

with“zero obj.” indicate global optimality of the considered problem but an objective877

value of zero, which is insufficient to show certify infeasibility. Cells marked with a878

checkmark (X) represent an unbounded objective and thus a negative answer to the879

set containment question. As usual, “-” marks numerical difficulties.880

Many feasibility problems were solved successfully at the second hierarchy level. Set881

containment of some constraints could not be confirmed with the feasibility method882

using the given levels. This is either due to numerical problems or negative objective883

values. However, for almost all instances, the infeasibility method was able to provide884

a certificate against set containment using the third hierarchy level relaxation. This885

shows that Uinfeas is robust infeasible for the n = 2, . . . , 6 instances.886

To conclude this set of test runs, Tables 5 and 6 show the characteristic run887

times where each row denotes the n-node instance. For the feasibility approach, the888

columns show mean run time and standard deviation using the specific relaxation889

hierarchy level. All values are aggregated over all subproblems of the given instance890

and hierarchy level. Since the infeasibility approach is a single problem when instance891

and hierarchy level are fixed, no aggregation is possible and we show the run time892

as-is. It can be observed that the run times are quiet small for the level 2 problems893

but increase quickly for higher levels and larger instances.894
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Table 4
For a given instance with n nodes, count how many subproblems of I were solved successfully

using the feasibility method. For each subproblem, a positive outcome is counted only once on the
smallest level. The results of the infeasibility method are displayed in the right column group. All
instances were solved over the Uinfeas uncertainty set.

feasibility infeasibility
n |I| level 2 level 3 level 4 level 2 level 3 level 4

2 2 1 0 0 zero obj. X X
3 6 4 1 0 zero obj. X X
4 12 9 1 0 zero obj. X X
5 20 16 1 0 zero obj. X X
6 30 25 1 0 zero obj. X X
7 42 36 2 0 zero obj. - -

Table 5
Mean and standard deviation of the feasibility method’s run time on Ufeas. Each row shows the

aggregated values for all subproblems of the n-node instance per hierarchy level.

level 2 level 3 level 4
n mean std mean std mean std

2 0.032 s 0.019 s 0.042 s 0.014 s 0.111 s 0.021 s
3 0.040 s 0.010 s 0.111 s 0.070 s 0.605 s 0.083 s
4 0.048 s 0.015 s 0.324 s 0.030 s 3.899 s 0.187 s
5 0.083 s 0.024 s 1.229 s 0.185 s 26.679 s 3.040 s
6 0.147 s 0.047 s 4.533 s 0.894 s 148.397 s 9.500 s
7 0.241 s 0.061 s 15.721 s 2.328 s 809.944 s 71.564 s

5.2. Evaluation of the Gap Between Methods. The proposed methods are895

based on semidefinite relaxations of polynomial problems (see subsection 2.2). Since896

the objective values of relaxed problems are smaller or equal than the non-relaxed897

optimal values (for minimization problems), it is expected that the feasibility and898

infeasibility approach can decide a smaller number of problems than their non-relaxed899

counterparts. The aim of this section is to investigate how large the “gap” between900

feasibility and infeasibility approach is. After fixing a hierarchy level, all problems901

which cannot be decided by either feasibility or infeasibility approach are said to fall902

into this relaxation gap. In order to compare both methods, we need to apply the903

infeasibility approach to the same constraint as the feasibility method. This is different904

to all previous tests where the infeasibility method was solved for all constraints at905

once.906

Consider the parameterized uncertainty set U(c) for increasing c ∈ [2, 4]. From907

Table 3, it can be derived that all subproblems are feasible for Ufeas = U(2). On the908

other hand, as Table 4 shows, all instances are infeasible for the larger Uinfeas = U(4).909

This implies that there is always at least one violated constraint hi when using U(4).910

For this test set, we select one subproblem per instance that is infeasible for the911

larger uncertainty set. Then, the feasibility and infeasibility approaches are solved912

for the selected subproblems over all twenty uncertainty sets U(c) for c = 2 + i 1
10 ,913

i = 0, . . . , 20. Figure 1 shows the results in more detail for the four node instance.914

We consider the subproblem that is marked as infeasible in Table 4. The objective915
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Table 6
Runtime of the infeasibility method on Uinfeas where each row denotes the n-node instance and

each column the respective level.

n level 2 level 3 level 4

2 0.415 s 0.564 s 0.504 s
3 0.435 s 0.501 s 0.849 s
4 0.433 s 0.771 s 3.909 s
5 0.390 s 1.854 s 20.203 s
6 0.432 s 4.915 s 134.531 s
7 0.643 s 10.281 s 975.161 s

Fig. 1. Objective values of the two methods for varied c ∈ {2.0, 2.1, . . . , 4} on the four node
instance.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
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level 3 “gap”
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values of the feasibility problem (MinCons) are marked with blue (level 2) and orange916

(level 3) triangles in the figure. Additionally, the values of solving (PolySepProj) are917

marked using red (level 3) and purple (level 4) circles. We remark that the outcome918

of the infeasibility method for level 2 is omitted since as all subproblems were feasible919

but had objective value of zero. Unbounded subproblems of the infeasibility method920

are marked with an objective value of fifteen times their level. Missing data points921

can be attributed to numerical difficulties of the SDP solver.922

As can be observed, no instance can be decided on the second hierarchy level923

since all solutions of the feasibility method have negative objective values and all924

solutions of the infeasibility method have objective value zero (not shown in the925

figure). On the third hierarchy level, the feasibility approach confirms set containment926

for c ∈ {2.0, 2.1, . . . , 2.5} as these problems have positive objective value. With the927

same level, the infeasibility approach finds certificates against set containment for928

c ∈ {3.4, . . . , 4.0}. For the problems with c ∈ {2.6, . . . , 3.3}, neither of the methods929
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Table 7
Extreme values for c where the feasibility (cfeas) and infeasibility (cinfeas) methods can solve the

problem.

level 3 level 4
n cfeas cinfeas gap cfeas cinfeas gap

2 2.4 3.3 0.9 2.4 2.9 0.5
3 2.4 3.2 0.8 2.4 3.1 0.7
4 2.5 3.4 0.9 2.5 3.2 0.7
5 2.4 3.4 1.0 2.4 3.3 0.9
6 2.6 3.7 1.1 3.1 3.6 0.5
7 3.0 3.3

was able to decide set containment successfully (disregarding numerical difficulties).930

In this range, the feasibility method only returns negative objective values and all931

objective values of the infeasibility method were zero.932

Increasing the hierarchy level to four leads to numerical problems for all feasibility933

models, but also increases the number of successfully solved infeasibility models by934

two (c = 3.2 and c = 3.3). This confirms the expectation that increasing the hierarchy935

level can lead to more certificates for non-set containment.936

The results over all instances is summarized in Table 7. For each hierarchy level, it937

shows both he largest value for c (indicated by cfeas) such that the feasibility approach938

confirms set containment and the smallest value for c (indicated by cinfeas) where939

a certificate for infeasibility could be obtained. Note that these bounds on c take940

all smaller hierarchy levels into account as well. The gap column is the difference941

cinfeas−cfeas and indicates the range of problems which could not be solved successfully942

with either feasibility and infeasibility approach. Again it can be observed that the943

gap is reduced after increasing the hierarchy level as this leads to a tighter relaxation944

for the feasibility approach and admits a richer set of polynomials for the infeasibility945

certificate.946

6. Concluding Remarks. In this paper, we study feasibility and infeasibility947

of nonlinear two-stage fully adjustable robust feasibility problems with an empty first948

stage. We propose to solve this problem by deciding whether the given uncertainty set949

is a subset of the projection of all feasible (uncertainty, solution)-pairs. A particular950

challenge with this approach is given by the projected set whose defining constraints951

are typically not available. Compared to typical methods from robust optimization,952

our approach requires no additional restrictions such as like convexity of the prob-953

lem or the uncertainty set. Furthermore, it can decide the fully adjustable problem954

without using (possible approximative) decision rules for the second stage variables.955

We develop two approaches towards solving this problem, one for deciding feasibility956

and one for deciding infeasibility. As we solve relaxations of the proposed methods957

in practice, two distinct methods are necessary since a single method cannot be ex-958

pected to solve both sides of the question. The first approach for deciding infeasibility959

uses a separation argument to find polynomial that certifies violation of the set con-960

tainment question. The second approach is based the assumption that part of the961

problem constraints define a unique solution for a fixed element of the uncertainty962

set. Exploiting this fact allows a reformulation as a set containment question over two963

regular (non-projected) sets. Set containment can then be confirmed by minimizing964
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the constraint functions of the superset over the subset. In our setting, both methods965

lead to polynomial optimization problems. For solving the polynomial problems in966

practice, we fall back onto the Lasserre SDP relaxation hierarchy.967

The proposed models are then applied to an uncertain gas transport problem.968

This is a non-convex quadratic problem with absolute value functions. First, we show969

how this problem can be decided exactly on tree structured using LP duality to decide970

set containment of polyhedra. Next, this result is used to preprocess larger problems971

so that only cycles remain. Lastly, we present different ideas how to remove the972

absolute values functions from the problem formulation. By removing the absolute973

values, the problem is transformed to a purely polynomial description to which the974

proposed methods can be applied.975

Both approaches are then solved on a set of cyclic test networks. For problems976

where deciding robustness was possible, we observe that typically level 2 or level 3977

of the Lasserre hierarchy were sufficient. We further investigate the strength of the978

relaxation by searching for uncertainty sets where neither feasibility nor infeasibility979

can be decided for a given instance and hierarchy level. As can be expected, increasing980

the level yields tighter relaxations which translates into a more effective method.981

As an outlook, the developed ideas could be applied to similar potential driven982

network flow problems such as e.g., the DC optimal power problem flow or water983

network problems. Concerning the application to gas networks, extending the relation984

between subsets of the uncertainty set and flow directions to networks with multiple985

intermeshed cycles is another relevant question. Lastly, using the feasibility methods986

as part of a larger two-stage robust optimization task with non empty first stage987

provides another possible extension of the studied problem. In case of gas, first stage988

variables model decisions of the network operator e.g., the compressor machines’ power989

level.990
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