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Abstract. Mathematical modeling of market design issues in liberalized elec-
tricity markets often leads to mixed-integer nonlinear multilevel optimization
problems for which no general-purpose solvers exist and which are intractable in
general. In this work, we consider the problem of splitting a market area into a
given number of price zones such that the resulting market design yields welfare-
optimal outcomes. This problem leads to a challenging multilevel model that
contains a graph-partitioning problem with multi-commodity flow connectivity
constraints and nonlinearities due to proper economic modeling. Furthermore, it
has highly symmetric solutions. We develop different problem-tailored solution
approaches. In particular, we present an extended KKT transformation approach
as well as a generalized Benders approach that both yield globally optimal so-
lutions. These methods, enhanced with techniques such as symmetry breaking
and primal heuristics, are evaluated in detail on academic as well as on realistic
instances. It turns out that our approaches lead to effective solution methods
for the difficult optimization tasks presented here, where the problem-specific
generalized Benders approach performs considerably better than the methods
based on KKT transformation.

1. Introduction

Bilevel and, in general, multilevel optimization problems become increasingly
important in applied optimization. Especially in fields like economics, where proper
models often need to consider different objectives of different agents, optimization
tasks naturally lead to multilevel problems that are extremely hard to solve. Even in
their easiest instantiation, i.e., bilevel problems with linear lower and upper level, they
are strongly NP hard; cf. Dempe et al. [18], Deng [19], and Garey and Johnson [28].
Moreover, Vicente et al. [62] have shown that even the verification of local optimality
is NP hard in general. Besides these theoretical properties, the inherent violation
of constraint qualifications adds to their hardness; cf. Ye and Zhu [63]. Obviously,
many bilevel models from practice are not linear and, even worse, do not only contain
continuous variables. In these situations one is faced with mixed-integer nonlinear
bi- or multilevel problems. When confronted with such a model, one typically has
to develop problem-tailored solution approaches since—at least to the best of our
knowledge—no general-purpose solvers exist.

In this paper we consider an application from electricity market design that is of
special economic and political importance: We analyze zonal pricing in electricity
markets with redispatch as it is implemented, e.g., in Europe, Australia, or Latin
America. In those regimes all intra-zonal network constraints are ignored at the spot
market, which implies distorted investment incentives for generation capacity, leading
to inefficiencies. In case the number of price zones cannot be adjusted, a partial remedy

Date: January 16, 2017.
2010 Mathematics Subject Classification. 90B10, 90C11, 90C35, 90C90, 91-08, 91B26.
Key words and phrases. Multilevel Optimization, Mixed-Integer Nonlinear Optimization, Graph

Partitioning, Generalized Benders Decomposition, Electricity Market Design.

1



2 V. GRIMM1, T. KLEINERT, F. LIERS2, M. SCHMIDT3, G. ZÖTTL4

consists in implementing an optimal configuration of price zones, such that congestion
issues are reflected most appropriately in view of generation investment and production
incentives. In other words, given an electricity market area with a corresponding
electricity transmission network, a regulatory authority partitions the market area into
“optimally configured” price zones. The corresponding zonal configuration specifies
the set of physical constraints that have to be respected upon day-ahead spot-market
trading of electricity. Due to the incomplete consideration of network constraints
at the spot market, possibly infeasible outcomes have to be redispatched ex post,
which gives rise to additional costs. The objective of the regulator (upon the optimal
configuration of price zones) is to maximize overall social welfare, i.e., net welfare from
spot-market trading minus investment costs and costs incurred at the redispatch level.

Rigorous mathematical modeling of this economic setting yields a mixed-integer
nonlinear trilevel optimization problem. On the one hand, it combines various ingredi-
ents from different fields of optimization like its overall multilevel structure, a graph
partitioning problem, a classical direct current (DC) power flow approximation, and,
e.g., a multi-commodity flow problem as an auxiliary technique for modeling connec-
tivity of the resulting zones. On the other hand, it suffers from integer programming
(IP) symmetry and its large model size, even for comparably small networks. Thus,
it is intractable in general and no off-the-shelf solution techniques exist to tackle the
problem.

Our contribution is the following. First, we present a clear-cut model formulation.
Since it is required to exploit the specific structure of the problem, the presentation of
the complex model is as brief as possible but as detailed as required. Based on this
model, we develop different solution techniques such as a KKT reformulation approach
using a problem-tailored technique for reducing the number of levels. In addition,
we present a problem-specific generalized Benders approach. We furthermore discuss
the used techniques for breaking IP symmetry, present primal heuristics, and discuss
how to algorithmically exploit structural variants of the overall objective function
of the multilevel problem. Lastly, we evaluate the developed techniques on a set of
academic instances from the literature as well as on further realistic instances modeling
the German electricity market. We show that our methods lead to effective solution
approaches.

The paper is structured as follows. In Sect. 2 we present the mixed-integer multi-
level model for the specification of welfare-optimal price zones in electricity markets.
Afterward, in Sect. 3 we discuss two different solution approaches for solving this
model. Section 4 then presents some enhanced solution techniques and Sect. 5 contains
a detailed computational study. The paper closes with some concluding remarks in
Sect. 6.

Since the relevant parts of the literature are widespread, we discuss the relevant
literature in the corresponding sections.

2. The Mixed-Integer Multilevel Market Model

Electricity markets are frequently organized as a system of interconnected price zones,
where price formation at the spot market only takes into account inter-zonal network
constraints but disregards all other (intra-zonal) network constraints; e.g., in Europe,
Australia, or Latin-America. Feasibility of the final dispatch is typically guaranteed by
so-called redispatch operations ex post; cf., e.g., Holmberg and Lazarczyk [37], or The
European Commission [59] and ENTSO-E [24]. Whenever network constraints are not
reflected in spot-market prices, this potentially distorts investment incentives for the
efficient location of new generation capacity; cf., e.g., Grimm et al. [33]. As the principle
decision to use price zones is often not questioned, a proper configuration of price zones
(that most appropriately reflects congestion issues for a given number of zones) is of
high interest and relevance. In fact, many recent academic contributions discuss and
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Figure 1. Timing of the multilevel game

analyze the impact of zonal configuration; cf., e.g., Bjørndal and Jørnsten [8, 9], Breuer
and Moser [12], Egerer et al. [23], Stoft [58], and Trepper et al. [60]. However, none
of those contributions proposes models or even techniques which allow to determine
optimal zone configurations, as we do in this article.

In this section we first briefly sketch the structure of our model before we introduce
the details at all levels. We consider a trilevel problem in which the regulator decides
about a specification of price zones anticipating an energy-only market (within price
zones) with cost-based redispatch. Figure 1 illustrates the economic setup we have in
mind. Later in Fig. 2 and 3 we illustrate how the situation is captured in a trilevel
model. The specification of zones is done once by the regulator, followed by generation
capacity investment by private firms and multiple periods of spot-market trading and,
in the case of congestion, redispatch by the transmission system operator (TSO). This
game can be translated into a trilevel model as follows; see Grimm et al. [33] for a
more detailed discussion. At the first level, the regulator specifies the price zones,
anticipating the outcomes at all subsequent levels. The objective of the regulator
is to maximize social welfare. At the second level, we model investment decisions
of private firms in generation capacity as well as trading at a sequence of |T | spot
markets with fluctuating demand. In contrast to the regulator who is driven by welfare
concerns, firms take investment and supply decisions in order to maximize profits. We
assume that spot-market rules yield no price signals within price zones and assume
perfectly competitive spot markets. The redispatch of the |T | spot-market results is
modeled in the third level and is anticipated by firms when they decide on generation
investment, production, and demand at level two. Redispatch is operated by the
regulated TSO. We assume that the TSO’s objective is to maximize welfare (due to
regulation of his activities). Redispatch occurs whenever traded quantities turn out to
be infeasible subject to transmission constraints that have been ignored at the spot
market. Note that consideration of redispatch in a separate third level is possible since,
once generation capacities as well as price zones have been chosen, redispatch in time
period t does not have any impact on supply decisions at any later point in time.

2.1. Basic Economic and Technical Setup. In this section we present the basic
notation that is used throughout the paper.

We consider an electricity transmission network G = (N,L) with a set of nodes N
and a set of transmission lines L ⊆ N × N . Different lines l are characterized by
their capacity f̄l and their susceptance Bl. Throughout the paper we make use of the
standard δ-notation, i.e., the sets of in- and outgoing lines of a node set N ′ ⊆ N are
denoted by δinN ′ and δoutN ′ , respectively. More formally, we have

δinN ′ := {l ∈ L : l = (n,m) with n /∈ N ′,m ∈ N ′},
δoutN ′ := {l ∈ L : l = (n,m) with n ∈ N ′,m /∈ N ′}.

Price zones Zi are modeled as parts of a partition N = Z1 ∪ · · · ∪ Zk of the node
set, i.e., i ∈ [k] := {1, . . . , k}.

At every node n ∈ N we introduce a set of consumers Cn (with 0 ≤ |Cn| <∞) that
are located at that node. We further assume a given set of scenarios T = {t1, . . . , t|T |}
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with scenario durations τ` = t`+1 − t` for ` = 1, . . . , |T | − 1. Elastic demand of a
consumer c ∈ Cn at node n ∈ N in scenario t ∈ T is modeled by a continuous and
strictly decreasing function pt,c = pt,c(dt,c), where dt,c denotes demand and pt,c(dt,c)
is the resulting market price. Note that the gross consumer surplus∫ dt,c

0

pt,c(ω) dω

is a strictly concave function in this case. For what follows it is important (both for
theory and practice) that the models under consideration can be solved efficiently. Thus,
we restrict ourselves to the case of strictly decreasing linear demand functions pt,c =
pt,c(dt,c) that yield concave-quadratic gross consumer surplus.

For a given network node n ∈ N , Gall
n (with 0 ≤ |Gall

n | <∞) denotes a finite set of
existing technologies and candidate technologies that firms can invest in. We use the
set Gex

n for already existing generation technologies and the set Gnew
n for candidate

generation technologies. Thus, Gall
n = Gnew

n ∪Gex
n holds. For all existing generators

g ∈ Gex
n , their capacity q̄exg is given. In contrast, new generation capacity q̄newg can be

installed for candidate generators. The corresponding investment costs are denoted by
cinvg ∈ R≥0 for g ∈ Gnew

n . Variable costs for production qt,g are denoted by cvarg ∈ R≥0
for all g ∈ Gall

n and n ∈ N .
In what follows, a superindex “spot” indicates quantities contracted upon spot-

market trading and a superindex “red” denotes quantities actually produced and
consumed after redispatch.

2.2. First-Level Problem: Specification of Price Zones. At the first level, the
regulator decides on a specification of price zones as to maximize welfare, which is
given as the difference of gross consumer surplus from all markets and investment and
generation costs (after redispatch) of the producers:

ψ1 :=
∑
t∈T

∑
n∈N

∑
c∈Cn

∫ dredt,c

0

pt,c(ω) dω −
∑
n∈N

 ∑
g∈Gnew

n

cinvg q̄newg +
∑
t∈T

∑
g∈Gall

n

cvarg qredt,g

 .

The specification of price zones is modeled as follows. A price zone Zi is part of
a partition of the node set N . The number of parts of the partition is set to k ∈ N,
i.e., N = Z1 ∪ · · · ∪ Zk, where k is given as input. For every node n the binary
variables xn,i ∈ {0, 1}, i ∈ [k], indicate to which zone i it belongs, i.e., xn,i = 1 if
node n belongs to zone i and xn,i = 0 if not. Obviously, every node has to be located
in one zone, i.e., we have the SOS-1 type constraint∑

i∈[k]

xn,i = 1 for all n ∈ N. (1)

For the application considered here, we are only interested in connected partitions
that we model using a multi-commodity flow problem. Every commodity models a
zone and every zone needs a sink to which every other node of that zone must be able
to send a certain amount of flow in order to ensure connectivity. To be specific, we
introduce another binary variable zn,i ∈ {0, 1} with zn,i = 1 if and only if node n is
the (artificial) sink of zone i. The constraints∑

n∈N
zn,i = 1 for all i ∈ [k], (2a)

zn,i ≤ xn,i for all n ∈ N, i ∈ [k] (2b)

ensure that every zone has exactly one sink. Finally, we need two more constraints for
modeling connectivity. To this end, we define the bi-directed graph G′ := (N,A) with
A consisting of lines a1(l) = (n,m) and a2(l) = (m,n) for all l = (n,m) ∈ L. Now
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let ui = (uia)a∈A ≥ 0 be the vector of flows of commodity i ∈ [k] and consider the
conditions ∑

a∈δout
n

uia ≤Mxn,i for all n ∈ N, i ∈ [k], (3a)

∑
a∈δout

n

uia −
∑
a∈δinn

uia ≥ xn,i −Mzn,i for all n ∈ N, i ∈ [k], (3b)

whereM is a sufficiently large number. Constraints (3a) model that flow of commodity i
can only flow out of node n if this node belongs to zone i and Constraints (3b) state
the following: First, if node n belongs to zone i and is not the sink of that zone, then
n supplies at least one unit of flow of commodity i. Second, this supplied flow has to
be transported to the sink of that zone because it is the only “demand” node in that
zone.

Due to the nature of the application, we have modeled an exact k-cut problem with
connectivity constraints. For the spot-market model (cf. Sect. 2.3) we additionally
need indicator variables for inter-zonal lines, i.e., for the cut edges obtained from the
graph partition. To this end, we introduce binary variables yl ∈ {0, 1} with yl = 1 if
and only if line l is an inter-zonal link, i.e., if it connects nodes of different zones. This
is modeled by the constraints

xn,i − xm,i ≤ yl for all l = (n,m) ∈ L, (4a)
xm,i − xn,i ≤ yl for all l = (n,m) ∈ L, (4b)

xn,i + xm,i + yl ≤ 2 for all l = (n,m) ∈ L. (4c)

Altogether, we obtain the following first-level problem:

max ψ1 s.t. (1)–(4). (5)

In the following, we assume that social welfare ψ1 is non-negative, which is reasonable
for well-functioning markets. Model (5) consists of a concave-quadratic objective
function and a set of mixed-integer linear constraints that contain both a graph
partitioning as well as a multi-commodity flow problem as substructures, i.e., we are
faced with a mixed-integer quadratic program (MIQP).

Graph partitioning problems have been studied extensively in the literature—often
specifically for the case k = 2. Many beautiful structural insights could be obtained.
Out of the many references, we refer to the book Deza and Laurent [20] as well as to
Barahona and Mahjoub [6], Boros and Hammer [11] for the case k = 2, and to Chopra
and Rao [15, 16] for general values of k.

Effective branch-and-bound approaches based on linear relaxations have been
developed for k = 2 in Barahona et al. [5] and Liers et al. [43], as well as for the
k-equipartition problem by Mitchell [50]. Furthermore, positive semidefinite relaxations
yield very strong bounds and lead to effective global solution approaches, see Rendl
et al. [55] for k = 2. For general values of k, we refer to Anjos et al. [3] and to Lisser
and Rendl [44] for the the k-equipartition problem. In contrast, graph partitioning
with connectivity constraints has been considered much less. A related problem is
the maximum-weight connected subgraph problem that has several applications, for
example in designing fiber-optic networks discussed in Lee and Dooly [42], in wildlife
corridor design considered in Dilkina and Gomes [21], and in forest planning studied
in Carvajal et al. [13]. According to our knowledge, multi-level graph partitioning
problems have not yet been studied in the literature.

2.3. Second-Level Problem: Generation Investment and Spot-Market Be-
havior. At the second level we model the behavior of firms with respect to generation
investment and spot-market trading. The wholesale electricity market is assumed to
be perfectly competitive, i.e., no firm can directly affect prices by strategic investment
or supply decisions. It has been shown that a perfectly competitive environment
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yields welfare maximizing investment and production decisions in our context; see,
e.g., Grimm et al. [34]. We are aware of the issue that the assumption of perfect com-
petition may not be adequate for power systems in general. However, this assumption
is necessary in order to keep the multilevel problem tractable—both theoretically and
computationally. For a discussion about this, see Grimm et al. [33].

When making investment and supply decisions, firms only consider physical con-
straints for which they receive price signals. If the market is not divided into zones,
firms receive no signals concerning network capacities and thus will not account for
them. If the market is divided into two or more zones, firms consider those physical
constraints that are expressed in price differences due to market splitting: Between any
pair of zones, electricity flow cannot exceed the maximum capacity of the respective
inter-zone network links and congestion implies price differences across zones. This
is modeled by the following zonal version of Kirchhoff’s first law: total generation in
zone i plus total inflow of zone i equals total demand in zone i plus total outflow of
that zone. More formally, using the binary variables of the first level, we obtain

dspott,n =
∑
c∈Cn

dspott,c , qspott,n =
∑
g∈Gall

n

qspott,g for all n ∈ N, t ∈ T, (6a)

Di
t =

∑
n∈N

xn,id
spot
t,n , Qit =

∑
n∈N

xn,iq
spot
t,n for all i ∈ [k], t ∈ T, (6b)

F in
i,t =

∑
l=(n,m)∈L

(1− xn,i)xm,if spott,l for all i ∈ [k], t ∈ T, (6c)

F out
i,t =

∑
l=(n,m)∈L

xn,i(1− xm,i)f spott,l for all i ∈ [k], t ∈ T, (6d)

Di
t + F out

i,t = Qit + F in
i,t for all i ∈ [k], t ∈ T. (6e)

Market splitting based flow restrictions are modeled by flow capacity constraints on
inter-zonal lines, i.e.,

− f̄l − (1− yl)M ≤ f spott,l ≤ f̄l + (1− yl)M for all l ∈ L, t ∈ T. (7)

Again, M is a sufficiently large number. In addition, we have lower and/or upper
bounds on demand, power generation, and capacity:

0 ≤ dspott,c for all t ∈ T, n ∈ N, c ∈ Cn, (8a)

0 ≤ qspott,g ≤ τ q̄newg for all t ∈ T, n ∈ N, g ∈ Gnew
n , (8b)

0 ≤ qspott,g ≤ τ q̄exg for all t ∈ T, n ∈ N, g ∈ Gex
n . (8c)

To summarize, at level two we consider welfare-maximizing generation investment and
supply decisions, i.e.,

ψ2 :=
∑
t∈T

∑
n∈N

∑
c∈Cn

∫ dspot
t,c

0

pt,c(ω) dω −
∑
n∈N

 ∑
g∈Gnew

n

cinvg q̄newg +
∑
t∈T

∑
g∈Gall

n

cvarg qspott,g

 ,

where supply is constrained by generation capacities installed and transmission con-
straints across zones. Thus, the second-level problem reads

max ψ2 s.t. (6)–(8). (9)

In the case where every zone consists of exactly one network node, (6e) coincides
with Kirchhoff’s first law and ensures power balance at every network node:∑

c∈Cn

dspott,c +
∑
l∈δout

n

f spott,l =
∑
g∈Gall

n

qspott,g +
∑
l∈δinn

f spott,l for all n ∈ N, t ∈ T. (10)

The spot-market model is a concave-quadratic maximization problem over mixed-
integer nonlinear constraints. All binary variables are variables of the first level and all
nonlinearities in the constraints appear in the zonal version of Kirchhoff’s first law (6).
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max social welfare (regulator)
s.t. graph partitioning with connectivity constraints

max profits (competitive firms)
s.t. generation capacity investment,

production & demand constraints,
Kirchhoff’s 1st law (inter-zonal),
flow restrictions (inter-zonal)

min redispatch costs (TSO)
s.t. production & demand constraints,

lossless DC power flow constraints

Figure 2. Structure of the trilevel market model

These nonlinearities are of the type xw with x ∈ {0, 1} and w ∈ R. Assuming that
the continuous variable w is bounded below and above, i.e., w ∈ [

¯
w, w̄], we linearize

this product by introducing the new variable v ∈ R and by adding the constraints

¯
wx ≤ v ≤ w̄x and

¯
w(1 − x) ≤ w − v ≤ w̄(1 − x). Thus, we again end up with a

concave-quadratic maximization problem over a set of mixed-integer linear constraints,
where all discrete variables are first-level variables.

2.4. Third-Level Problem: Optimal Redispatch. At the third level, the TSO
simultaneously decides on cost-based redispatch for all |T | spot markets. Reallocation
of spot-market outcomes is realized in a way that ensures feasibility with respect to
transmission constraints at lowest costs. The latter are given by

ψ3 :=
∑
t∈T

∑
n∈N

∑
c∈Cn

∫ dspot
t,c

dredt,c

pt,c(ω) dω +
∑
t∈T

∑
n∈N

∑
g∈Gall

n

cvarg (qredt,g − qspott,g )

and the redispatch decision has to account for all physical transmission constraints.
Beside the already stated constraints, this includes Kirchhoff’s second law, which
determines the voltage angles θt,n, t ∈ T , n ∈ N , in the network:

f redt,l = Bl(θt,n − θt,m) for all l = (n,m) ∈ L, t ∈ T. (11)

In order to obtain unique physical solutions, we have to fix the voltage angle at an
arbitrary reference node n̂ ∈ N in every time period:

θt,n̂ = 0 for all t ∈ T. (12)

Furthermore, all transmission flows are limited by lower and upper bounds, i.e.,

− f̄l ≤ f redt,l ≤ f̄l for all l ∈ L, t ∈ T. (13)

The problem at the redispatch level then reads

min ψ3 s.t. (8), (10)–(13),

where we replaced dspott,n , qspott,g in (8) and dspott,n , qspott,g , f spott,l in (10) by the redispatch
variables dredt,n , qredt,g , f redt,l . Finally, we note that the redispatch model is a convex-
quadratic minimization problem over linear constraints.

The entire trilevel market model is sketched in economic and technical terms in
Fig. 2. More formally, the trilevel model is given in Fig. 3 (left), where Wi ∈ Rni and
Xi ∈ {0, 1}mi are the continuous and discrete variables of level i = 1, 2, 3, and Ωi is the
corresponding discrete-continuous feasible set. The dependencies between the three
levels is as follows; cf. Fig. 3 (right). The first level depends on the continuous variables
of the second and third level (spot-market and redispatch results), the second level
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max ψ1(W2,W3)

s.t. (W1, X1) ∈ Ω1

max ψ2(W2)

s.t. (W2, X1) ∈ Ω2

min ψ3(W2,W3)

s.t. (W2,W3) ∈ Ω3
Level 3

Level 2

Level 1

Figure 3. Mathematical structure of the trilevel market model (left)
and dependencies of the three market-model levels (right). Green
arcs denote dependencies on continuous variables, red arcs denote
dependencies on discrete variables.

depends on the discrete variables of the first level (zone specification) and the third
level depends on the continuous variables of the second level (spot-market results).

2.5. The Integrated Planner Model. It is helpful to additionally consider a related
optimization problem that is less complex than the full trilevel problem. It models an
integrated planner. In a version slightly adapted from Jenabi et al. [38], a fictitious
integrated generation and transmission company (IGTC) simultaneously determines
capacity expansion and production at the spot markets such that social welfare ψIGTC

is maximized. The latter is defined as the difference of gross consumer surplus and
generation capacity investment costs as well as variable costs of production:

ψIGTC :=
∑
t∈T

∑
n∈N

∑
c∈Cn

∫ dt,c

0

pt,c(ω) dω −
∑
n∈N

 ∑
g∈Gnew

n

cinvg q̄newg +
∑
t∈T

∑
g∈Gall

n

cvarg qt,g

 .

An integrated planner has to account for the full physical network. Kirchhoff’s first
law, i.e., flow conservation at each node, reads∑

c∈Cn

dt,c +
∑
l∈δout

n

ft,l =
∑
g∈Gall

n

qt,g +
∑
l∈δinn

ft,l for all t ∈ T, n ∈ N. (14)

As before, Kirchhoff’s second law determines the voltage angles θn:

ft,l = Bl (θt,n − θt,m) for all l = (n,m) ∈ L, t ∈ T. (15)

We again fix the voltage angle at a reference node n̂ ∈ N in every time period:

θt,n̂ = 0 for all t ∈ T. (16)

In addition, we have lower and/or upper bounds on demand, power generation, and
capacity, i.e.,

0 ≤ dt,c for all t ∈ T, n ∈ N, c ∈ Cn, (17a)
0 ≤ qt,g ≤ τ q̄newg for all t ∈ T, n ∈ N, g ∈ Gnew

n , (17b)
0 ≤ qt,g ≤ τ q̄exg for all t ∈ T, n ∈ N, g ∈ Gex

n . (17c)

In summary, the integrated planner model is a continuous maximization problem with
linear constraints and a concave-quadratic objective function:

max ψIGTC (18a)
s.t. Kirchhoff’s first law: (14), (18b)

Kirchhoff’s second law: (15), (16), (18c)
Bounds: (17). (18d)
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This convex problem can be solved efficiently. Furthermore, it is easy to see that the
social welfare ψIGTC is non-negative since the trivial solution is feasible.

Finally note that the relation of the physical parts (14), (15) of the IGTC model
and the zonal spot-market model is given by interpreting every node as a single zone.

3. Solution Approaches

As described in the last section, our electricity market model is a trilevel optimization
model including mixed-integer aspects for modeling the exact k-cut problem. We now
develop problem-specific solution techniques that are required to solve instances of
relevant size.

In this section, we discuss two different approaches. The first approach, cf. Sect. 3.1,
exploits problem-tailored reformulations of the trilevel model in combination with
general transformation techniques based on first-order optimality conditions. These
techniques yield a single-level but large and numerically challenging MIQP. The ad-
vantage however is that it can be solved using standard solvers. Second, in Sect. 3.2
we present a tailored variant of generalized Benders decomposition, where the decom-
position explicitly exploits the relation between discrete and continuous aspects of the
overall model.

Enhanced techniques that can be used within the MIQP and/or the Benders
approach like, e.g., symmetry breaking or primal heuristics, are topic of Sect. 4.

3.1. An MIQP Approach. We first show how reformulation techniques that exploit
the problem structure can be used to reformulate the trilevel market model as an
equivalent mixed-integer bilevel model with concave-quadratic objectives at both
levels. Afterward, we employ a standard KKT transformation approach for the lower
level of the bilevel problem; cf., e.g., Dempe et al. [18]. This leads to a single-level
mixed-integer concave-quadratic maximization problem that can be solved by general-
purpose MIQP solvers. The main observation for the reformulation of the trilevel to
an equivalent bilevel problem is the following:

Proposition 1. Let ψ1, ψ2, and ψ3 be the objective functions of the trilevel market
model. Then, ψ1 = ψ2 − ψ3 holds.

This proposition is also used in Grimm et al. [33] in a slightly modified setting. It
reveals that the first- and third-level problem have affine equivalent objective functions
and thus have identical optimization directions. Hence, we can equivalently replace
the original trilevel model (cf. Fig. 3) by the following bilevel model:

max ψ1(W2,W3)

s.t. (W1, X1) ∈ Ω1, (W2,W3) ∈ Ω3,

W2 ∈ arg max {ψ2(W2) : (W2, X1) ∈ Ω2} .
The upper level maximizes the original first-level objective subject to the constraints
of the original first and third level. This new upper level is again an MIQP containing
an exact k-cut problem with multi-commodity flow connectivity constraints as well
as a lossless DC flow problem as substructures. The new lower-level problem is the
original second level. All discrete variables appearing in the lower level stem from the
upper level, i.e., there are no discrete lower-level variables.

We now replace this bilevel problem by an equivalent single-level MIQP using the
standard KKT transformation approach for the lower level. We note that the lower
level model is a concave-quadratic maximization problem subject to constraints that
are linear in the continuous second-level variables. Thus, for given discrete upper-level
variables the KKT conditions are both necessary and sufficient. Hence, we can replace
the lower level of our bilevel problem by its KKT conditions. These are given by dual
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feasibility

pt,c(d
spot
t,c ) +

∑
i∈[k]

εi,txn,i + κ−t,c = 0 for all t ∈ T, n ∈ N, c ∈ Cn, (19a)

−cvarg −
∑
i∈[k]

εi,txn,i + π−t,g − π+
t,g = 0 for all t ∈ T, n ∈ N, g ∈ Gnew

n , (19b)

−cvarg −
∑
i∈[k]

εi,txn,i + ν−t,g − ν+t,g = 0 for all t ∈ T, n ∈ N, g ∈ Gex
n , (19c)

−cinvg +
∑
t∈T

τtπ
+
t,g = 0 for all n ∈ N, g ∈ Gnew

n , (19d)

η−t,l − η+t,l −
∑
i∈[k]

εi,t(xm,i − xn,i) = 0 for all t ∈ T, l = (n,m) ∈ L, (19e)

primal feasibility (6)–(8), non-negativity of dual variables of inequality constraints

η−t,l, η
+
t,l ≥ 0 for all l ∈ L, t ∈ T,

π−t,g, π
+
t,g ≥ 0 for all t ∈ T, n ∈ N, g ∈ Gnew

n ,

ν−t,g, ν
+
t,g ≥ 0 for all t ∈ T, n ∈ N, g ∈ Gex

n ,

κ−t,c ≥ 0 for all t ∈ T, n ∈ N, c ∈ Cn,
and KKT complementarity conditions

η−t,l(−f̄l − (1− yl)M − f spott,l ) = 0 for all t ∈ T, l ∈ L, (20a)

η+t,l(f
spot
t,l − f̄l − (1− yl)M) = 0 for all t ∈ T, l ∈ L, (20b)

κ−t,cd
spot
t,c = 0 for all t ∈ T, n ∈ N, c ∈ Cn, (20c)

π−t,gq
spot
t,g = π+

t,g(q
spot
t,g − τtq̄newg ) = 0 for all t ∈ T, n ∈ N, g ∈ Gnew

n , (20d)

ν−t,gq
spot
t,g = ν+t,g(q

spot
t,g − τtq̄exg ) = 0 for all t ∈ T, n ∈ N, g ∈ Gex

n . (20e)

Note that the dual variables of the primal auxiliary constraints (6a)–(6d) are already
eliminated in the dual feasibility conditions (19).

The KKT conditions, except for the complementarity conditions (20), are linear in
the primal and dual lower level variables. Using a standard linearization trick, we now
get rid of the nonlinearities caused by the KKT complementarity conditions; cf. Fortuny-
Amat and McCarl [26]. To this end, for a dual variable ξ ≥ 0 let z(ξ) ∈ {0, 1} be a
binary variable that is zero, if ξ = 0 and 1 otherwise. Furthermore, let the constant M̃
be a sufficiently large number. Now, the nonlinear conditions (20) can be replaced by
the mixed-integer linear constraints

η−t,l ≤ M̃z(η−t,l), f̄l + (1− yl)M + f spott,l ≤ (1− z(η−t,l))M̃,

η+t,l ≤ M̃z(η+t,l), f̄l + (1− yl)M − f spott,l ≤ (1− z(η+t,l))M̃
for all t ∈ T, l ∈ L,

κ−t,c ≤ M̃z(κ−t,c), dspott,c ≤ (1− z(κ−t,c))M̃
for all t ∈ T, n ∈ N, c ∈ Cn,

π−t,g ≤ M̃z(π−t,g), qspott,g ≤ (1− z(π−t,g))M̃,

π+
t,g ≤ M̃z(π+

t,g), τ q̄newg − qspott,g ≤ (1− z(π+
t,g))M̃

for all t ∈ T, n ∈ N, g ∈ Gnew
n , and

ν−t,g ≤ M̃z(ν−t,g), qspott,g ≤ (1− z(ν−t,g))M̃,

ν+t,g ≤ M̃z(ν+t,g), τ q̄exg − qspott,g ≤ (1− z(ν+t,g))M̃
for t ∈ T, n ∈ N, g ∈ Gex

n .
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After applying all reformulations and linearizations we end up with a single-level
mixed-integer quadratic problem that is equivalent to the trilevel market model
of Sect. 2.

We close this session with a final remark. It turns out in the computational studies
of Sect. 5 that the linearized version of the KKT complementarity conditions makes the
overall problem very hard to solve. One may, as a possible remedy, think of replacing
the lower level by primal and dual feasibility plus an additional constraint that ensures
that the primal and dual objective functions have the same value. Unfortunately,
this is a nonlinear constraint and thus yields a mixed-integer nonlinear optimization
problem (MINLP) instead of an MIQP.

3.2. A Generalized Benders Decomposition Approach. In general, the intrinsic
difficulty of multilevel problems stem from the interdependence of the different levels,
which makes the overall problem extremely hard to solve. Fortunately, after fixing
the discrete (i.e., graph partitioning) variables of the first level, the considered trilevel
problem exhibits a one-way dependence of the remaining two levels: Whereas the
constraints of each lower-level problem depend on variables of the level above, the
other way around does not appear. In fact, no first- or second-level constraint contains
any respective lower-level variables. A similar observation holds for the objective
functions. The second-level objective depends on second-level variables and the third-
level objective depends on second- and third-level variables. Only the first-level
objective interconnects all three levels; cf. Fig. 3.

We now exploit this weak coupling by iteratively computing a connected graph
partition as a feasible solution of the first level. After fixing this partition, we solve the
second level and then fix its solution in the third level. Finally, we use the solutions of
the second and third level in order to compute the objective value of the first-level,
i.e., of the overall trilevel problem. In principle, these steps need to be performed for
every feasible partition.

In each iteration of this decomposition approach, a connected graph partition is
determined and two convex-quadratic problems are successively solved. To prove
correctness of such a decomposition algorithm, the optimal solution in the second
level necessarily has to be unique as otherwise the third-level problem’s solution would
depend on an ambiguous second-level solution. Fortunately, uniqueness of the second
level solution can be shown under certain assumptions that are satisfied in our case;
see Grimm et al. [34] for a proof.

For the algorithmic details on globally optimizing the trilevel problem, we now
present a problem-specific generalized Benders decomposition approach. These meth-
ods are extensions of the variable partitioning approach by Benders [7] for solving
large linear programs as proposed in Geoffrion [29]; cf. Bonnans et al. [10] for an in-
troduction. For briefly summarizing the generalized Benders approach, let us consider
an optimization problem of the form

max
x,y

f(x, y) s.t. g(x, y) ≥ 0, (x, y) ∈ X × Y,

where X and Y are assumed to be convex sets. This problem can be rewritten as the
bilevel problem

max
x

v(x) (21a)

s.t. v(x) = max
y
{f(x, y) : g(x, y) ≥ 0, y ∈ Y }, (21b)

x ∈ X ∩ {x : ∃y ∈ Y with g(x, y) ≥ 0}. (21c)

The main idea is that it is often easier to decompose Problem (21) and to optimize
over the sets (21c) and Y separately than to solve the entire problem directly. We
now assume that Problem (21b) is easy to solve, and we assume further that v(x)
is convex. The idea is to solve a relaxed version of (21) that ignores all but a few
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constraints of (21). If its solution also satisfies all ignored constraints, it is a solution
of (21). Otherwise, violated constraints are added to the relaxed problem, which
is then solved again. Let F denote the corresponding set of feasibility cuts, i.e.,
supporting hyperplanes of the feasible set (21c). Furthermore, we denote by O a set
of optimality cuts, i.e., elements of the subdifferential of v(x) for some given x. We
now consider the relaxation

max
x∈X

τ

s.t. τ ≤ a>x+ b for all (a, b) ∈ O,
d ≤ c>x for all (c, d) ∈ F

(22)

of Problem (21). Problem (22) is called the master problem. A solution of (21) is
determined by alternately solving master problems and subproblems of the form (21b).
First, we solve the master problem and obtain a solution x̂ ∈ X. If (21b) is infeasible
for fixed x̂, a feasibility cut is added to F in (22). If (21b) has an optimal solution for
fixed x̂, an optimality cut is added to O in (22). The difficulty is the generation of the
cut sets F and O. The general idea relies on knowledge of the dual of the subproblem.
However, for the application considered here, the cuts are computed by exploiting
problem-specific knowledge without appealing to duality. Assuming we can implement
the required oracles for F and O, the overall procedure can be performed as displayed
in Alg. 1.

Algorithm 1: Generalized Benders decomposition framework
1 Set F ← ∅, O ← ∅, Θ← −∞, φ←∞.
2 while Θ < φ do
3 Solve master problem (22).
4 if (22) is infeasible then return infeasible
5 Let x̂ be an optimal solution of (22) and set φ to its optimal value.
6 Solve subproblem (21b) with fixed x̂.
7 if (21b) is feasible then
8 Let ŷ be the optimal solution of (21b) and γ its optimal value.
9 if γ > Θ then set Θ← γ, (x∗, y∗)← (x̂, ŷ)

10 Compute a subgradient s of v at x̂ and add (s,−s>x̂) to O.

11 else
12 Compute (c, d) so that c>x ≥ d separates x̂ from (21c) and add (c, d) to F .

13 return (x∗, y∗)

Geoffrion [29] showed that this approach converges under suitable assumptions.
However, Sahinidis and Grossmann [56] demonstrated that a naive application of the
generalized Benders decomposition to nonconvex problems may not even lead to local
optima since for general nonconvex problems the standard construction of optimality
cuts only gives validity over the set (21c). In order to obtain global optima, validity
over the whole set X is needed. We will show that such globally valid cuts can be
obtained in our case.

Applying the basic ideas of the described decomposition approach to the trilevel
problem we obtain the master problem

max τ s.t. τ ≤ a>x+ b for all (a, b) ∈ O, (23a)
graph partition with connectivity: (1)–(3). (23b)

We later show that no additional feasibility cuts F are needed. In our context, the
subproblem consists of the original second- and third-level problem. However, after
fixing the master problem’s solution, this subproblem decomposes into two convex
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QPs that can be solved successively: (1) The zonal spot-market model with fixed
zones (given as the result of the master problem) and (2) the redispatch model for
fixed capacity investment, production, and demand decisions (given as the result of
the zonal spot-market model).

In order to construct suitable optimality cuts that are valid for the whole feasible
domain of (23b), we need some more notation. In what follows, let x̂ be a connected
partition and let ψ2(x̂) be the corresponding optimal zonal spot-market welfare, i.e.,
the optimal value of the second level for fixed first-level variables. Let ψ3(x̂) be the
optimal value of the third level for fixed spot-market solutions in dependence of the
fixed graph partition. Thus, the overall objective value of the trilevel market model for
a fixed graph partition x̂ is given by ψ1(x̂) = ψ2(x̂)− ψ3(x̂). We denote the optimal
value of the integrated planner problem by ψ∗IGTC.

We now show that

τ ≤ ψ2(x̂)− ψ3(x̂) + ψ∗IGTC

∑
i∈[k]

∑
n∈N :x̂n,i=0

xn,i +
∑
i∈[k]

∑
n∈N :x̂n,i=1

(1− xn,i)

 (24)

is a valid optimality cut. We first show that the optimal solution ψ∗IGTC of the
integrated planner (18) yields an upper bound for the optimal objective value ψ∗1 of
the trilevel problem, i.e.,

ψ∗1 ≤ ψ∗IGTC. (25)
To this end, let X∗ = (x∗, q∗, d∗, f∗, (q̄new)∗, θ∗) be part of an optimal solution of the
trilevel problem, where q∗, d∗, f∗, and θ∗ denote quantities after redispatch. Thus,
we omitted all spot-market variable values in X∗ except for the optimal capacity
investment values (q̄new)∗. Then, X = (q∗, d∗, f∗, (q̄new)∗, θ∗) is feasible for the
integrated planner problem (18) and, hence,

ψ∗1 = ψ1(X∗) = ψIGTC(X) ≤ ψIGTC(X∗IGTC) = ψ∗IGTC

holds, where X∗IGTC is an optimal solution for the integrated planner problem (18).
The right-hand side of the cut (24) equals ψ1(x̂) for x = x̂, otherwise it has a value

of at least 2ψ∗IGTC, as we assume ψ1(x̂) ≥ 0 for all x̂. Thus, by optimality of the
master problem, the cut (24) ensures that whenever the master problem is solved it
determines a partition that has not been examined yet (if one still exists). In order
to bound the master problem in the first iteration, we initialize the set of optimality
cuts O with the cut τ ≤ ψ∗IGTC.

The second-level problems as well as the third-level problems are always feasible.
Furthermore, the master problem is feasible as we assume that the network is connected.
Thus, feasibility cuts are not needed. An outline of the algorithm is given in Alg. 2. We
show next that it is correct and that it terminates within a finite number of iterations.

Theorem 1. Assume that the social welfare ψ1(x̂) is non-negative for all x̂, that the
second-level problem’s solutions q(x̂), d(x̂), and q̄new(x̂) are unique for given x̂, and
that the network is connected. Then, Alg. 2 terminates within a finite number of
iterations and returns a globally optimal solution for the trilevel problem.

Proof. As argued above, every optimality cut (24) is valid over the whole feasible
region (23b).

We now consider an iteration of Alg. 2 and assume that there exists at least one
feasible solution of the master problem, i.e., a connected graph partition, that the
algorithm has not considered in the preceding iterations. Suppose now that Alg. 2
computes a solution x̂ that has already been computed before. Thus, the set O
contains the corresponding optimality cut and from (24) it follows that the master
problem’s objective value φ has to satisfy φ ≤ ψ1(x̂). Moreover, by optimality of the
master problem’s solution x̂, the latter is fulfilled with equality, i.e., φ = ψ1(x̂). By
assumption, there is another master problem solution x′ that has not been considered
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Algorithm 2: Generalized Benders decomposition for the trilevel problem
Input: The trilevel problem
Output: A solution (x∗, (qspot)∗, (dspot)∗, (q̄new)∗, q∗, d∗, f∗, θ∗) for the trilevel

problem.
1 Set O ← {(0, ψ∗IGTC)}, Θ← 0, φ←∞.
2 while Θ < φ do
3 Solve (23). Let x̂ be its optimal solution, set φ to its optimal value.
4 Solve the second-level problem with fixed x̂. Let qspot, dspot, and q̄new be part

of its optimal solution and let ψ2(x̂) be its optimal value.
5 Solve the third-level problem with fixed qspot, dspot, and q̄new. Let (q, d, f, θ)

be the optimal solution and let ψ3(x̂) be its optimal value.
6 if ψ2(x̂)− ψ3(x̂) > Θ then
7 Set Θ← ψ2(x̂)− ψ3(x̂) and (x∗, (qspot)∗, (dspot)∗, (q̄new)∗, q∗, d∗, f∗, θ∗)←

(x̂, qspot, dspot, q̄new, q, d, f, θ).
8 Add cut (24) to O.

9 return (x∗, (qspot)∗, (dspot)∗, (q̄new)∗, q∗, d∗, f∗, θ∗).

so far. However, this yields τ ≤ ψ1(x̂) + 2ψ∗IGTC with a right-hand side larger than φ,
which is, again by optimality, a contradiction. Thus, the algorithm does not consider
a connected graph partition more than once.

Since the number of connected graph partitions is finite, it remains to prove
that the algorithm terminates with an optimal solution if no connected graph parti-
tion x′ exists that has not been considered so far. Let x∗ be the solution for which
Θ = ψ2(x∗)− ψ3(x∗) is maximal and let φ∗ be the objective value of the corresponding
master problem. Since no more connected graph partitions exist that have not been
considered so far, an additional iteration would yield a master problem’s objective
value of φ = Θ = ψ2(x∗)−ψ3(x∗) and hence, the termination criterion is satisfied. �

As the number of iterations of this algorithm scales with the number of feasible
connected graph partitions, the number of iterations grows prohibitively large, already
for medium-sized instances. In the next section, we introduce algorithmic improvements
that enhance the performance of the introduced solution approaches.

4. Enhanced Solution Techniques

In the last section we described two different solution strategies for the mixed-integer
multilevel problem of Sect. 2. These approaches can, in principle, be used to solve
practical instances. However, their computational performance might be unnecessarily
weak. To strengthen their capabilities we discuss some enhanced solution techniques
in this section.

4.1. Breaking IP Symmetry. The first-level problem uses binary variables to specify
whether a node is contained in a specific zone or not. This leads to symmetric integer
solutions that typically lead to a large number of branch-and-bound nodes in our
MIQP approach or a large number of iterations in our Benders approach. It is therefore
desirable to exploit techniques for breaking this symmetry.

Since the early 2000s, different approaches have been introduced to cope with integer
symmetries. Among the first, Sherali and Smith [57] proposed simple symmetry
breaking constraints. Another technique is to perturb the objective function as
proposed by Ghoniem and Sherali [30]. More complex approaches exploit the structure
of the branch-and-bound tree. Important contributions are isomorphism pruning
developed in Margot [45, 46], orbital branching suggested by Ostrowski et al. [52], as
well as orbital fixing by Kaibel et al. [39]. A recent overview is given in Margot [47]
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and, together with a computational comparison of different methods, in Pfetsch and
Rehn [53]. For the ease of implementation and because they can be used both in our
MIQP and the Benders approach we focus on symmetry breaking constraints in the
following.

Several formulations of graph partitioning problems exist. One of them uses |L|
binary variables defined on the edges L of the graph. For each edge, the corresponding
variable states whether the end points of that edge are in different zones or not. The
alternative formulation that we use in the first-level problem requires k|N | binary
variables for a graph with |N | nodes and k zones. For each node n ∈ N and each
zone i ∈ [k], the node variable states whether the node belongs to the corresponding
zone or not. Whereas symmetry does not play a major role in the first formulation,
the one that we use suffers from many symmetric solutions. Indeed, given a solution
of the graph partition problem as a matrix Z = [xn,i]

i∈[k]
n∈N ∈ {0, 1}|N |×k it is easy to

see that any permutation of the zones, i.e., of the columns of Z, results in another
feasible solution. Clearly, this fact leads to many unnecessary branchings in standard
IP solvers.

Nevertheless, the node formulation cannot easily be avoided in our context. In fact,
if all we had to know is whether a line is an inter-zonal line or not, a graph partition
model with edge variables would suffice. Instead, we (i) need node variables in our
multi-commodity flow formulation (2), (3) for modeling connectedness of all partitions
and (ii) for the formulation of the zonal spot-market model (6). This is why we chose
the formulation using node variables together with methods to break the resulting IP
symmetry.

Another way to view IP symmetry is by group theory. To be more specific, the
symmetric group Sk of order k acts on solutions Z by permuting the columns of Z.
In our context, it is easy to see that Sk acts in such a way that the corresponding
second-level problem (9) is invariant along every orbit of the group. Thus, when
considering, e.g., the Benders approach discussed in Sect. 3.2, it is obvious that the
algorithm will perform many redundant iterations because many second-level problems
are parameterized by symmetric first-level solutions. Therefore, the effect of symmetry
breaking can be highly significant (even on small network instances).

In the rest of this section we review all types of symmetry breaking constraints
that we later compare in Sect. 5 w.r.t. their computational behavior. One central
idea of symmetry breaking constraints is to make use of a lexicographic ordering of
the representatives of the orbits and to cut off all points from each orbit except the
one that is the maximal point w.r.t. the ordering. From now on we assume that the
node set is given as N = {1, . . . , |N |}. A solution Z ∈ {0, 1}|N |×k of a general graph
partitioning problem is called maximal w.r.t. to a lexicographic ordering if and only if
the columns of Z are in non-increasing lexicographical order, i.e., if they satisfy

|N |∑
n=1

2|N |−n xn,i ≥
|N |∑
n=1

2|N |−n xn,i+1 for all i ∈ [k − 1]. (26)

In fact, these inequalities single out the lexicographically maximal representative from
each orbit from the set of all 0/1-matrices with exactly one 1-entry per row. Hence, we
can add these inequalities to the first-level problem in order to break the IP symmetry.
However, although the number of additional inequalities is small compared to the total
number of constraints of the problem, Constraints (26) are likely to result in numerical
problems for larger networks due to the order of magnitude of the coefficients 2|N |−n.

In what follows we make use of the fact that a lexicographical ordering always yields
a zero upper triangle of Z, i.e., we have xn,i = 0 for all i > n. A different approach
than (26) to ensure lexicographical order has been proposed by Méndez-Díaz and
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Zabala in [48, 49]. They used the inequalities

xn,i −
n−1∑
`=1

x`,i−1 ≤ 0 for all 2 ≤ i ≤ n (27)

to cut off all points of each orbit except the lexicographical maximal. This formulation
is expected to be numerically more stable than (26). However, we have to add O(k|N |)
inequalities instead of only O(k).

A strengthening of these inequalities is given by so-called column inequalities
k∑
`=i

xn,` −
n−1∑
`=1

x`,i−1 ≤ 0 for all 2 ≤ i ≤ n, (28)

cf. Kaibel and Pfetsch [40]. It is known that the column inequalities (28) are not
strong enough to obtain complete descriptions of partitioning orbitopes. To this end,
one needs so-called shifted column inequalities that build a substantially richer class
of exponentially many (in k) inequalities. Their description is quite technical and
we refer the interested reader to Kaibel and Pfetsch [40] for the details. Since the
exponential number of shifted column inequalities is not prohibitively large in our
application, we also statically add all constraints to the models as we do for (26), (27),
and (28).

4.2. Primal Heuristics. It is folklore knowledge that highly symmetric
(mixed-)integer problems like ours suffer from the fact that primal feasible solu-
tions of good quality are typically found quite late in the branch-and-bound process
because solutions of the LP relaxations typically contain many fractional entries. This
is why we now discuss primal heuristics in order to determine good feasible solutions
early in the process.

For the maximum k-cut problem, randomized greedy heuristics such as the GRASP
heuristic introduced in Festa et al. [25] as well as variable-neighborhood search methods
as proposed in Hansen and Mladenović [36] are known to generate good solutions
quickly. These methods can easily be extended to partition the graph into more than
two parts. Good graph partitions can be extracted from approximation algorithms
based on positive semidefinite optimization; cf. Goemans and Williamson [31] for
maximum 2-cut and Frieze and Jerrum [27] for the generalization to maximum k-
cut. Recently, several effective solution algorithms and implementations have been
developed for graph partitioning and graph clustering problems in Bader et al. [4],
where the focus lies on partitioning very large unweighted graphs.

In the following, we will present two primal heuristics for the trilevel problem we
study here.

4.2.1. A Minimum k-Cut Approximation Heuristic. The key idea of the heuristic is
simple. If one neglects the economic data of producers and consumers, bottlenecks in
the network mainly depend on the capacity of the transport lines. Since infeasible spot-
market outcomes typically tend to violate these capacity constraints it is reasonable
to consider zonings that stem from minimum k-cuts in the capacitated network.

The algorithmic realization of this idea is straight forward and based on Chap. 4 of
Vazirani [61]: First, we compute a Gomory–Hu tree T of the network graph G and
then delete the k − 1 lightest edges (w.r.t. their capacity) of T . These Gomory–Hu
tree edges correspond to cuts in G. In Vazirani [61] it is shown that this yields a
k-cut in the original graph G and that this k-cut approximates a minimum k-cut with
approximation factor 2− 2/k.

Applied to a connected graph, this procedure yields a connected graph partition
that can be directly translated into an assignment of the first-level variables xn,i and yl.
Given these values it is then straight forward to construct feasible values of all other
variables of the first level. However, in the MIQP approach, it is reasonable to fix all
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other variables as well—or, at least, the remaining discrete variables that occur due
to the linearization of the KKT complementarity conditions. This can be done by
solving the second-level problem for fixed first-level variables (that are outcome of the
heuristic) and by finally solving the third-level problem for fixed second-level variables.
Both completion steps require solving a QP. By doing so, we have used the key idea
of the Benders approach of Sect. 3.2: Fixing the first-level discrete decisions yields
decoupled second- and third-level problems that can be solved successively. Thus, we
could also use the presented heuristic in the first iteration of the Benders approach; cf.
Sect. 3.2.

4.2.2. A Relaxation-Based Rounding Heuristic. We now present a relaxation-based
rounding heuristic. Since there is no suitable relaxation involved in the Benders
decomposition, this heuristic can only be used in the MIQP approach.

The relaxation-based rounding heuristic is formally stated in Alg. 3. Let x̂n,i ∈ [0, 1]
for n ∈ N, i ∈ [k], be part of a relaxation solution of the single-level MIQP of Sect. 3.1.
We interpret these relaxation solutions as the probability that node n should be part
of zone i. The idea is now as follows. First, we sort the vector x̂ ∈ [0, 1]k|N | in
descending order (Line 1). Moreover, we encode the information to which pair of
node and zone each entry of the sorted vector belongs using the mappings ν and ζ,
which map every entry to the corresponding node and to the corresponding zone,
respectively. For instance, assume the entry x̂n,i has index α ∈ {1, . . . , k|N |} after
sorting. Then, ν(α) = n and ζ(α) = i holds. Next, we assign to every zone the
node with the highest probability of being assigned to that zone (while-loop). The
set M used in the algorithm collects all nodes that have already been associated to
a zone. Afterward, we again iterate over the sorted vector of relaxation solutions
and assign every node that is not yet assigned to a zone if this assignment does not
violate connectivity (for-loop). It is possible that in early iterations of Alg. 3 a node

Algorithm 3: A relaxation-based rounding heuristic

Input: A vector x̂ = (x̂n,i)
i∈[k]
n∈N ∈ [0, 1]k|N |.

1 Sort the vector x̂ in descending order, yielding the vector (x`)`∈[k|N |] with
ν(`) = n ∈ N and ζ(`) = i ∈ [k].

2 Set Zi = ∅ for all i ∈ [k], ` = 1, and M = ∅.
3 while ∃i ∈ [k] with Zi = ∅ and ν(`) /∈M do
4 if Zζ(`) = ∅ then set Zζ(`) = {ν(`)} and M ←M ∪ {ν(`)}.
5 Set `← `+ 1.

6 for ` = 1, . . . , k|N | with ν(`) /∈M do
7 if ν(`) ∈ δ(Zζ(`)) then set Zζ(`) ← Zζ(`) ∪ {ν(`)} and M ←M ∪ {ν(`)}

cannot be assigned to a favorable zone because it is not yet connected to any other
node of that zone. Thus, we subsequently apply local improvement steps in which
we iteratively check for each node whether it should be assigned to a different zone
than to the one to which it is currently assigned to. The method is given in Alg. 4.
More formally, suppose a node n is assigned to zone i. If the value of the relaxation
x̂n,i is smaller than x̂n,j for some other zone j 6= i (cf. Line 5), then n is moved from
zone i to j if this leaves all partitions non-empty and if the resulting node partition
is still connected (cf. Line 6). As it is the case for the Gomory–Hu based minimum
k-cut heuristic, the rounding heuristic (with or without the 1-opt improvements of
Alg. 4) yields a connected graph partition that can be used to compute the remaining
variables as explained in Sect. 4.2.1.
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Algorithm 4: A 1-opt improvement heuristic
Input: A vector x̂ = (x̂n,i)n∈N,i∈[k] ∈ [0, 1]k|N | and a connected graph

partition N = ∪ki=1Zi.
Output: A connected graph partition N = ∪ki=1Zi.

1 improved = true
2 while improved do
3 improved = false
4 for i = 1, . . . , k with |Zi| > 1 do
5 if ∃n ∈ Zi, j ∈ [k], i 6= j, with x̂n,j > x̂n,i then
6 if Zi \ {n} and Zj ∪ {n} are connected then
7 Set Zi → Zi \ {n}, Zj → Zj ∪ {n}, and improved → true

4.3. Algorithmic Improvements for the Benders Decomposition Approach.
In case the first-level problem contains objective function terms that directly depend
on first-level variables, additional optimality cuts can be added to reduce the overall
number of iterations of the Benders approach of Sect. 3.2. The description of the
first-level problem in Sect. 2.2 does not have any such first-level terms in the objective
function ψ1. However, in practice, such non-zero contributions may be present if, e.g.,
one wants to penalize undesired shapes of the resulting zones. This can be realized by
so-called acceptance costs for every pair of nodes that may, e.g., be proportional to
the geographical proximity of each pair of nodes because nodes that are geographically
“close” are more desirable to be contained in one zone than those that are “far apart”
from each other.

To this end, we impose additional first-level variables xacci that represent the
acceptance costs for each zone i ∈ [k]. They are determined by the largest acceptance
costs data caccn,m ≥ 0 for any two nodes n and m within the zone i. Expressed in
quadratic constraints, this leads to

xacci ≥ caccn,mxn,ixm,i for all i ∈ [k], n,m ∈ N, n < m. (29)

For each binary quadratic expression of the form xn,ixm,i, we add an auxiliary binary
variable xn,m,i together with the linearization constraints

xn,m,i ≥ xn,i + xm,i − 1, xn,m,i ≤ xn,i, xn,m,i ≤ xm,i, (30)

which enables us to linearize (29) as

xacci ≥ caccn,mxn,m,i for all i ∈ [k], n,m ∈ N, n < m. (31)

The objective function of the first-level problem then is rephrased to

ψ1 ← ψ1 − ψacc, ψacc :=
∑
i∈[k]

xacci

to prioritize graph partitions with low acceptance costs. We note that O(k|N |2)
constraints of the form (30) and (31) are added, which makes the first-level problem
more difficult. However, this setting enhances the decomposition approach as additional
optimality cuts can be added in the first level. The goal is to cut off partitions with
high acceptance costs that cannot improve the overall objective function value. This
can be modeled with constraints of the form

ψ∗IGTC − ψacc(x) ≥ ψinc
1 ,

where ψinc
1 is the best known objective value of the trilevel problem and ψacc(x) denotes

the acceptance costs for a given connected partition x. As no acceptance costs are
present in the integrated planner model, its optimal value ψ∗IGTC is again a valid upper
bound for ψ1; cf. (25).
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In the following, we informally describe how acceptance costs are embedded into
the Benders decomposition approach of Sect. 3.2. The adopted master problem in the
generalized Benders approach reads

max τ − ψacc

s.t. τ ≤ a>x+ b for all (a, b) ∈ O,
first-level constraints: (1)–(3),
(linearized) acceptance costs: (30), (31).

Optimality cuts (24) can be added to the master problem—they remain valid for the
whole feasible set of the master problem without adjustments.

Taking these modifications into account, one can easily extend the generalized
Benders approach in Alg. 2 to the case of acceptance costs. We remark that it is
needed to restrict τ from above by ψ∗IGTC. Thus, we initialize O again with the
cut τ ≤ ψ∗IGTC. The decomposition algorithms works as follows. We alternately
solve master- and subproblems. As long as there exist yet unexplored partitions with
acceptance costs lower than ψ∗IGTC−Θ, the master problem provides a new partition x′
with minimum acceptance cost ψacc(x

′). The reason is that for x′ the right-hand side
of every optimality cut in set O is equal to or greater than ψ∗IGTC, as x

′ has not yet
been investigated. Hence, the initial cut τ ≤ ψ∗IGTC becomes active and we obtain the
master problem’s objective value of φ = ψ∗IGTC − ψacc(x

′) > Θ.
On the other hand, if acceptance costs exceed ψ∗IGTC−Θ for every yet unexplored x′,

the objective value of the master problem falls below Θ when choosing such a solution.
Hence, an already investigated solution is chosen and an optimality cut becomes active.
In this case, a partition x∗ is determined that yields the master objective value φ = Θ.
Thus, the stopping criterion is reached and a solution is returned. Since we compute
partitions in non-decreasing order with respect to acceptance costs, it is correct to stop
when ψacc(x

′) exceeds ψ∗IGTC − ψ for the first time since no more connected partition
with lower acceptance costs exist.

The actual number of iterations clearly depends on the choice of the parameters caccn,m

and is crucial for the efficiency of the algorithm; a detailed discussion of the choice of
the parameters caccn,m is given in the thesis [41] by Kleinert.

5. Computational Study

In this section we present an extensive computational study of the presented global
solution approaches of Sect. 3 as well as of the enhanced techniques discussed in
Sect. 4. To this end, we first describe the computational setup and the test instances
in Sect. 5.1. Afterward, we present the results for the MIQP approach in Sect. 5.2
and finally discuss the results of the generalized Benders approach in Sect. 5.3, where
we also compare both approaches.

5.1. Test Instances and Computational Setup. We use a set of test instances
that divides into purely academic instances as well as realistic instances that model the
German electricity market. All test networks together with their graph sizes and the
size of the corresponding scenario sets are given in Table 1. The first three networks
Grimm-et-al-2015-3, Chao-Peck-1998, and Grimm-et-al-2016-6 are test instances from
the literature on energy economics; the references are given in Table 1 as well. The DE
networks all are based on the policy report [32] by Grimm et al. The DE-28 network is
exactly the network that is used in the report. It models each of the 16 federal states
of Germany as single nodes and also includes 12 additional nodes for the neighboring
countries. More information about the network and the scenario data of this network
is given in [32]. We note that the policy report uses a scenario set of size 8760 (which
corresponds to an hourly discretized year) that we reduced to a scenario set of size
52 (which corresponds to a weekly discretized year). The other DE networks DE-09,
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Table 1. Test networks with number of nodes (|N |), number of lines
(|L|), and the number of scenarios (|T |)

Network name |N | |L| |T | Reference

Grimm-et-al-2015-3 3 3 4 Grimm et al. [33]
Chao-Peck-1998 6 6 4 Chao and Peck [14]
Grimm-et-al-2016-6 6 6 52 Grimm et al. [33]

DE-09 9 19 52 —
DE-12 12 23 52 —
DE-16 16 27 52 —
DE-23 23 39 52 —
DE-28 28 39 52 Grimm et al. [32]

DE-12, DE-16, and DE-23 have been constructed by aggregating nodes and lines of
the original DE-28 network. All models that we have to solve within our solution
approaches are MIQPs, MIPs, or convex QPs and we use Gurobi 6.5.2 [35] for solving
the instances. All models as well as the primal heuristics and the generalized Benders
approach have been implemented in Python 2.7.6 using the graph library NetworkX [51]
contained in Anaconda 2.7 [2]. All computational experiments have been executed on
a compute cluster; cf. [54] for the details about installed hardware. The time limit for
all computations is set to 2 h.

Throughout this section we use log-scaled performance profiles as proposed by Dolan
and Moré [22] to compare running times or branch-and-bound node counts.

5.2. The MIQP Approach. We now present and discuss the numerical results
obtained with the MIQP approach described in Sect. 3.1. Since it turned out that it
is very challenging to solve the mixed-integer trilevel problem with this approach, we
deleted both the DE-23 and the DE-28 network from the test set used in this section.
The academic instances are solved for all possible number of zones k ∈ {1, . . . , |N |},
whereas we reduced the number of zones to {1, 2, 3, 7, 8, 9} for the DE-09 network, to
{1, 2, 10, 11, 12} for the DE-12 network, and to {1, 2, 14, 15, 16} for the DE-16 network.
This leads to an overall number of 31 test instances.

The number of (connected) graph partitions for a given network obviously is highest
for mid-level sizes k whereas the number is small for k close to 1 or close to |N |. Since
it is not possible to compute global optimal solutions of the trilevel model using the
MIQP approach for mid-level k within the given time limit of 2 h we deleted some of
these mid-level k test instances in order to get a reasonable test set for comparing the
impact of different enhanced techniques used within the MIQP approach.

Before we discuss the numerical results in detail we further note that we did some
tuning of Gurobi’s parameters but will not discuss the details here.1

We start by discussing the impact of different symmetry breaking constraints. We
again note that we implemented the symmetry breaking constraints by statically
adding all of them to the MIQP that is to be solved. We also tested an implementa-
tion of symmetry breaking constraints as lazy constraints in Gurobi. However, this
implementation neither yields an improvement in running times nor in the number of
solved instances.

Fig. 4 displays the corresponding log-scaled performance profiles. The first and
obvious observation is that using “any” type of symmetry breaking constraints is crucial
for the performance of the method: The performance profile of Gurobi applied to the
MIQP without using symmetry breaking constraints is clearly dominated by all other
profiles. Comparing the symmetry breaking constraints with each other, no distinct

1The used parameters are Heuristics = 0, Cuts = 0, VarBranch = 1, MIPFocus = 2.
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Figure 4. Log-scaled performance profiles of all tested types of sym-
metry breaking constraints within the the MIQP approach; (S)CI:
(shifted) column inequalities, Lex: lexicographic ordering, MDZ:
Méndez-Díaz and Zabala

winner can be designated. Independent of the specific symmetry breaking constraints,
one obtains a global optimal solution for slightly less than 50 % of all tested instances
whereas the MIQP without symmetry breaking constraints can only be solved for 38 %.
Since the profile corresponding to the constraints (27) of Méndez-Díaz and Zabala
seems to dominate the other profiles for the largest range of the profile in which not
all constraint types behave equal, we choose to use these constraints in the sequel.

The small amount of solved instances, especially for the MIQP without symmetry
breaking constraints, also indicates the hardness of the MIQP instances. First of all,
also for small networks and moderate number of scenarios, the resulting MIQP is quite
large. For instance, the 6-node network Grimm-et-al-2016-6 with 52 scenarios leads to
an MIQP with 20 167 constraints, 8699 variables (out of which 1332 are binary), 49 932
nonzeros, and 156 quadratic objective terms. Moreover, we have many symmetric
solutions and a lot of numerically challenging Big-M formulations for linearizing KKT
complementarity conditions.

Next, we analyze the impact of the minimum k-cut root node heuristic described
in Sect. 4.2.1. The performance profiles are given in Fig. 5, where we compare the
MIQP equipped with the symmetry breaking constraints of Méndez-Díaz and Zabala
and with and without the root node heuristic. Moreover, we also plot the resulting
profiles if we stop Gurobi whenever the MIQP gap falls below 5 %. Taking first a closer
look at the results using a 0 % gap tolerance we see that the usage of the root node
heuristic both leads to shorter running times as well as to significantly more solved
instances (less than 50 % vs. approximately 62 %). Comparing the profiles for the
MIQP runs using a 5 % gap tolerance the spread becomes even more visible. Despite
the fact that the root node heuristic is not as lightweight than many other root node
heuristics applied in mixed-integer optimization, the application of the heuristic leads
to a significant improvement in running times as well as in the overall robustness of the
approach. This also indicates that the quality of solutions obtained by the minimum
k-cut heuristic is quite good on the considered test set.

We now turn to the evaluation of the rounding node heuristic presented in Sect. 4.2.2.
We tested the rounding heuristic for different parameterizations; namely whether the
heuristic is applied all 10, 20, or 50 nodes in the branch-and-bound tree. In Fig. 6 we
see the corresponding performance profiles both for running times (left) as well as for
the number of branch-and-bound nodes (right). We again used the symmetry breaking
constraints of Méndez-Díaz and Zabala and de-activated the root node heuristic in
order to exclusively measure the impact of the rounding heuristic. The figure shows
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Figure 5. Log-scaled performance profiles for the MIQP approach
with symmetry breaking constraints of Méndez-Díaz and Zabala,
(de-)activated root node heuristic (cf. Sect. 4.2.1), as well as 0 and
5 % MIQP gap
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Figure 6. Log-scaled performance profiles of the rounding heuristic
applied every p ∈ {10, 20, 50, 100} branch-and-bound nodes within the
MIQP approach with symmetry breaking constraints of Méndez-Díaz
and Zabala and deactivated root node heuristic; cf. Sect. 4.2.2. Left:
running times. Right: Node count

that the positive impact of the rounding heuristic is significant both w.r.t. running
times as well as to the overall number of solved instances. A comparison of both
performance profiles also reveals that there is an important trade-off between the
number of branch-and-bound nodes solved and the running times. For instance, the
parameterization with p = 10 solves significantly less branch-and-bound nodes than
the one applied every 50 nodes. However, it turns out that the heuristic (and, in
particular, its completion steps in which at least one QP has to be solved in order to
assign feasible values to all binary variables of the MIQP) is too expensive for being
applied as often as in every 10th branch-and-bound node. In summary, the left plot in
Fig. 6 shows that p = 50 leads to the best method.

We also compared the combined application of the root node heuristic together
with the rounding heuristic for different p. However, it turned out that by using the
rounding heuristic, the root node heuristic does not have a significant impact on the
performance and overall robustness of the MIQP approach. Thus, the parameterization
of the MIQP using the symmetry breaking constraints of Méndez-Díaz and Zabala
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Figure 7. Log-scaled performance profiles for the MIQP models
with and without acceptance costs solved with deactivated root node
heuristic, with the rounding heuristic applied every p = 50 nodes, and
symmetry breaking constraints of Méndez-Díaz and Zabala

together with the rounding heuristic applied with p = 50 leads to the best variant
of the MIQP approach. Again looking at the left plot in Fig. 6 we see that this
variant solves approximately 81 % of all test instances. In particular, this means that
the enhanced solution techniques improved the plain MIQP approach (which solved
approx. 38 %) by a factor larger than 2.

Although we introduced zonal acceptance costs in Sect. 4.3 in order to enhance the
performance of the generalized Benders approach, we now finally analyze the impact of
these first-level cost terms within the MIQP approach; see Fig. 7 for the corresponding
performance profiles. It is apparent that the integration of acceptance costs makes
the MIQP comparably easier to solve for Gurobi and that even a larger number of
instances can be solved to global optimality at all.

5.3. Results for the Generalized Benders Decomposition and a Compari-
son of both Approaches. During our numerical experiments it turned out that
the generalized Benders decomposition approach is by far faster than the MIQP
approach. This was to be expected. First of all, the decomposition leads to master
and subproblems that are much easier to solve than the single-level MIQP. The master
problem is a—for the instances of our test set—quite small mixed-integer linear graph
partitioning problem with connectivity constraints and the two successively solvable
convex QPs can be solved efficiently.

This is why we extend our test set significantly compared to the analysis of the
preceding section. We now consider all test networks listed in Table 1 and also include
the instances for all k ∈ {1, . . . , |N |} for all networks except for DE-23 and DE-28, where
we only consider k ∈ {1, 2, 3, 4, 20, 21, 22, 23} for DE-23 and k ∈ {1, 2, 3, 4, 25, 26, 27, 28}
for DE-28. That is, we now consider a test set of 68 instances that is more than
twice as large as the test set for the MIQP approach in Sect. 5.2 and that is a proper
superset of the MIQP test set.

All master problems solved within the generalized Benders approach are equipped
with the symmetry breaking constraints (27) of Méndez-Díaz and Zabala. We again
tuned Gurobi’s parameters for the master problem as well as for both subproblems but
again will not discuss the details here.2

2The used parameters for the master problems are Threads = 4, Symmetry = 0, and Cuts = 0. For
the zonal spot-market QP we used Threads = 4, PreSolve = 1, and NumericFocus 2. The parameters
used for the redispatch QP are Threads = 4 and PreSolve = 1.
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Figure 8. Log-scaled performance profiles comparison of the gener-
alized Benders approach with and without acceptance costs

We now analyze the overall success rate of the generalized Benders approach and
compare the impact of acceptance costs as first-level objective function terms. The
respective performance profiles can be seen in Fig. 8. First of all, we see that both the
variant with and without acceptance costs leads to an overall success rate of slightly
less than 75 %. This means that the incorporation of acceptance costs does not lead
to a larger number of solved instances. However, the variant using acceptance costs
and thus stronger optimality cuts within the Benders framework clearly outperforms
the variant without acceptance costs. Moreover, it is possible to choose acceptance
costs that dominate the overall objective more strongly than the costs that we use in
our computations. These larger acceptance costs may than, of course, also lead to a
larger number of solved instances.

We also remark that the Benders approach is much more stable in terms of nu-
merics than the MIQP approach. When testing the MIQP approach with the global
MIQP solvers Gurobi, CPLEX [17], and SCIP [1] we observed almost every imaginable
behavior ranging from primal constraints only satisfied with comparably large feasi-
bility tolerances to wrong objective values and false infeasibilities. Moreover, these
outcomes do not only vary between different solvers but also between different versions
of the same solver. There are two main reasons for these problems: First, the Big-M
reformulation of KKT complementarity (20) and, second, the bounding of genuinely
free dual variables in the dual feasibility conditions (19) that is required for linearizing
the products of binary and continuous variables.

In contrast to this, due to the applied decomposition, the problems that have to be
solved within the generalized Benders decomposition method do not include any of
these issues and can, thus, be solved in much more stable way.

Finally, we compare the MIQP approach with the generalized Benders decomposition
in terms of absolute running times. For both approaches, the results are given in
Table 2 and 3 for the academic instances and in Table 4 and 5 for the realistic DE
instances. We see that there are already two instances out of the small instances
of Table 2 that cannot be solved using the MIQP approach while the generalized
Benders approach never needs significantly more than 1 s for solving the instances
to global optimality. When using acceptance costs, cf. Table 3, the MIQP approach
solves all but one of the smaller instances and the Benders approach solves every
instance in less than 0.52 s. Thus, the Benders approach drastically outperforms the
MIQP on the small-scale instances. Considering the larger instances in Table 4 and
5 we can make two clear observations. First, the instances are much harder to solve.
The MIQP approach only solves the instances with smallest and largest k for the
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Table 2. Comparison of absolute running times (in s) of the MIQP
and generalized Benders approach (without acceptance costs) on
academic instances

Network Zones MIQP Benders

Chao-Peck-1998 1 0.04 0.04
Chao-Peck-1998 2 10.39 0.16
Chao-Peck-1998 3 26.22 0.30
Chao-Peck-1998 4 17.93 0.30
Chao-Peck-1998 5 9.54 0.13
Chao-Peck-1998 6 0.11 0.06
Grimm-et-al-2015-3 1 0.02 0.02
Grimm-et-al-2015-3 2 0.05 0.04
Grimm-et-al-2015-3 3 0.02 0.03
Grimm-et-al-2015-6 1 0.06 0.23
Grimm-et-al-2015-6 2 222.58 0.57
Grimm-et-al-2015-6 3 — 1.06
Grimm-et-al-2015-6 4 — 0.97
Grimm-et-al-2015-6 5 6834.90 0.56
Grimm-et-al-2015-6 6 54.65 0.37

Table 3. Comparison of absolute running times (in s) of the MIQP
and generalized Benders approach (with acceptance costs) on academic
instances

Network Zones MIQP Benders

Chao-Peck-1998 1 0.04 0.03
Chao-Peck-1998 2 9.81 0.10
Chao-Peck-1998 3 25.84 0.24
Chao-Peck-1998 4 18.18 0.21
Chao-Peck-1998 5 9.32 0.11
Chao-Peck-1998 6 0.11 0.05
Grimm-et-al-2015-3 1 0.01 0.03
Grimm-et-al-2015-3 2 0.02 0.03
Grimm-et-al-2015-3 3 0.01 0.04
Grimm-et-al-2015-6 1 0.05 0.15
Grimm-et-al-2015-6 2 201.52 0.29
Grimm-et-al-2015-6 3 3334.64 0.50
Grimm-et-al-2015-6 4 — 0.52
Grimm-et-al-2015-6 5 5261.35 0.45
Grimm-et-al-2015-6 6 17.62 0.24

DE-09, DE-12, and the DE-16 network. The mid-level k instances cannot be solved.
This is, in principle, also true for the generalized Benders approach. Second, the
Benders approach solves more instances and the instances that can be solved by both
approaches are solved much faster by the Benders approach. The same holds for the
case of acceptance costs, where it can be also seen that both approaches benefit from
the additional first-level objective terms.

In summary, the Benders decomposition significantly outperforms the MIQP ap-
proach. However, there is still room for improvement not only for the MIQP approach
but also for the Benders approach because there are still instances that cannot be
solved within the given time limit of 2 h.
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Table 4. Comparison of absolute running times (in s) of the MIQP
and generalized Benders approach with (right) and without (left)
acceptance costs on small realistic instances

Network Zones MIQP Benders

DE-09 1 13.20 0.78
DE-09 2 1656.49 5.20
DE-09 3 4081.41 33.97
DE-09 4 — 61.13
DE-09 5 — 65.13
DE-09 6 — 36.36
DE-09 7 3645.49 12.54
DE-09 8 75.11 3.12
DE-09 9 8.52 1.33
DE-12 1 4.85 0.82
DE-12 2 3470.03 19.60
DE-12 3 — 434.34
DE-12 4 — 6097.09
DE-12 5 — —
DE-12 6 — —
DE-12 7 — —
DE-12 8 — 3684.91
DE-12 9 — 334.37
DE-12 10 — 38.60
DE-12 11 303.54 4.99
DE-12 12 10.75 1.66

Network Zones MIQP Benders

DE-09 1 13.07 0.81
DE-09 2 1652.11 5.16
DE-09 3 4164.11 33.82
DE-09 4 — 60.38
DE-09 5 — 65.79
DE-09 6 — 36.27
DE-09 7 3689.02 12.42
DE-09 8 76.47 3.09
DE-09 9 8.49 1.30
DE-12 1 4.73 0.79
DE-12 2 3468.23 19.41
DE-12 3 — 439.33
DE-12 4 — 6159.36
DE-12 5 — —
DE-12 6 — —
DE-12 7 — —
DE-12 8 — 3428.91
DE-12 9 — 332.64
DE-12 10 — 38.35
DE-12 11 297.22 4.99
DE-12 12 10.69 1.67

6. Conclusion

In this paper we presented a mixed-integer nonlinear trilevel model for computing
welfare-optimal price zones in electricity markets. For problems of this kind no
general-purpose solution algorithms exist. Thus, we developed two different global
solution approaches. One is based on the reduction of levels using problem-specific
insights as well as a standard KKT transformation. The other one is a problem-
specific instantiation of generalized Benders decomposition. We then additionally
presented enhanced solution techniques like, e.g., symmetry breaking constraints and
problem-tailored primal heuristics.

Our computational results show that the generalized Benders framework significantly
outperforms the approach yielding a single-level but large and numerically challenging
MIQP. Using the techniques developed in this paper, it is now possible to address the
application problem on a network size that in principle allows to draw conclusions
for, e.g., the German electricity market. However, there is still a lot of room for
improvement. The largest network that we could solve within a time limit of 2 h
is a 28-node network. Obviously, one wants to further improve the performance of
the methods such that it is possible to address problems on much larger graphs; for
instance, to address questions of energy market design on the European scale.

To this end, two different branches of research may be followed in the future. First,
one could study the actual model and try to develop equivalent formulations that
have more desirable properties. For instance, models without IP symmetry are highly
preferable. Moreover, numerically more stable mixed-integer linear reformulations
of first-order optimality conditions of quadratic problems would lead to much more
effective solution approaches. Second, one could study many algorithmic questions.
For instance: How is it possible to improve the performance of branch-and-bound



OPTIMAL PRICE ZONES IN ELECTRICITY MARKETS 27

Table 5. Comparison of absolute running times (in s) of the MIQP
and generalized Benders approach with (right) and without (left)
acceptance costs on large realistic instances

Network Zones MIQP Benders

DE-16 1 64.31 1.22
DE-16 2 — 48.64
DE-16 3 — 6672.61
DE-16 4 — —
DE-16 5 — —
DE-16 6 — —
DE-16 7 — —
DE-16 8 — —
DE-16 9 — —
DE-16 10 — —
DE-16 11 — —
DE-16 12 — —
DE-16 13 — 5286.82
DE-16 14 — 129.30
DE-16 15 350.91 9.73
DE-16 16 12.48 3.26
DE-23 1 — 1.01
DE-23 2 — 241.18
DE-23 3 — —
DE-23 4 — —
DE-23 20 — —
DE-23 21 — 705.10
DE-23 22 — 13.83
DE-23 23 — 3.35
DE-28 1 — 1.02
DE-28 2 — 83.62
DE-28 3 — —
DE-28 4 — —
DE-28 25 — —
DE-28 26 — 1042.95
DE-28 27 — 15.28
DE-28 28 — 3.74

Network Zones MIQP Benders

DE-16 1 64.71 0.87
DE-16 2 — 39.28
DE-16 3 — 5674.01
DE-16 4 — —
DE-16 5 — —
DE-16 6 — —
DE-16 7 — —
DE-16 8 — —
DE-16 9 — —
DE-16 10 — —
DE-16 11 — —
DE-16 12 — —
DE-16 13 — 5203.69
DE-16 14 — 129.38
DE-16 15 343.30 9.68
DE-16 16 12.52 3.30
DE-23 1 — 1.02
DE-23 2 — 240.45
DE-23 3 — —
DE-23 4 — —
DE-23 20 — —
DE-23 21 — 704.54
DE-23 22 — 13.81
DE-23 23 — 3.27
DE-28 1 — 1.02
DE-28 2 — 84.07
DE-28 3 — —
DE-28 4 — —
DE-28 25 — —
DE-28 26 — 1016.68
DE-28 27 — 15.35
DE-28 28 — 3.79

methods for solving mixed-integer reformulations of optimality conditions that, due
to KKT complementarity, contain a lot combinatorial structure? Going further,
another research goal is to enhance decomposition methods for multilevel optimization
problems.
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