
CHALLENGES IN OPTIMAL CONTROL PROBLEMS FOR GAS
AND FLUID FLOW IN NETWORKS OF PIPES AND CANALS:

FROM MODELING TO INDUSTRIAL APPLICATIONS

FALK M. HANTE∗, GÜNTER LEUGERING∗, ALEXANDER MARTIN† , LARS SCHEWE† ,
AND MARTIN SCHMIDT‡

Abstract. We consider optimal control problems for the flow of gas or fresh water in pipe
networks as well as drainage or sewer systems in open canals. The equations of motion are taken
to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or
the St. Venant equations for flow. We formulate model hierarchies and derive an abstract model
for such network flow problems including pipes, junctions, and controllable elements such as valves,
weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known
results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A
major challenge concerning the optimization is to deal with switching on-off states that are inherent
to controllable devices in such applications combined with continuous simulation and optimization of
the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and
outline a decomposition approach as a solution technique.
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1. Introduction. The optimization and control of networked transport systems
is becoming an increasingly important branch of industrial applied mathematics. In
particular, gas flow in pipe networks including providers, customers, valves, compressor
stations, and the like provides a grand challenge with respect to customer satisfaction,
low-cost operation of the network, legal restrictions, pressure and flow restrictions,
sensitivities with respect to temperature, and market conditions. Given the fact that
pipe systems involve easily thousands of pipes, valves, and a number of compressor
stations, which, in turn, are whole factories all by themselves, turns the overall problem
into a multiscale problem in time and space.

While the physical quantities are typically viewed as continuous entities, decisions
are not. The decision of switching a compressor on or closing a valve are 0-1 processes.
On the other hand, having switched on a compressor based on some decision-enhancing
argument, the compressor as physical entity is controlled by a continuous profile ranging
from the idle state to the desired state. Similarly, the operation of valves, release
elements, or tanks for fresh water or sewage water systems is again a combination
of discrete or integer controls and continuous controls. Pressurized flow problems
appear also in hot steam pipes in power plants, where in addition to the transportation
problem nonlinear fluid-structure interactions and a variety of design problems are
important.

What has been said so far exactly applies to other transportation systems in civil
engineering, such as in fresh water pressure-flow pipe networks as well as sewer systems
with free surface flow in open or closed canals that, in turn, may switch to pressurized
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Figure 1. A gas compressor.

Figure 2. A real-world gas network of Germany’s largest gas transport company Open Grid
Europe GmbH. Lines correspond to pipes or active elements like compressors as given in Figure 1.
Connection points of these lines correspond to simple junctions or entry as well as exit customers.
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flow under severe weather conditions. Again, opening a weir or a sluice gate in
possibly polluted waste water networks or river regulatory systems as well as operating
valves, tanks, purification plants, or pumps in fresh water systems involves discrete
and continuous optimization variables and cost or merit functions to be optimized.
In conclusion, one ends up with a vastly complex, discrete-continuous multilevel,
and multicriteria optimization problem involving systems of time dependent partial
differential equations, ordinary differential equations, as well as algebraic equality and
inequality constraints for the governing state variables as well as control constraints.
On top of that, the problem formulations are typically inexact, as parameters (e.g.,
wall roughness and other material properties) are unknown or uncertain. Knowledge
about initial and equilibrium conditions are lacking as well. This indicates that data
plays a predominant role in the applicability of the mathematical methods. Finally, all
what is done in controlling, operating, and planning of such a complex system should
be done in real-time or for a large number of instances, respectively. An example for
the different aspects to tackle such a problem is given in [51], where these aspects are
discussed for gas networks.

It is obvious that a mathematical program cannot cope with all these difficulties
and challenges. Nevertheless, it is also obvious that the mathematics community should
be aware of these challenges and particular of those leading to new and interesting
mathematics. The particular instant that the Indian Society of Industrial Applied
Mathematics (ISIAM) held an international workshop at Sharda University in January
2016 and is now committed in publishing a thematic volume regarding industrial
applied mathematics is an opportunity to provide a survey article on problems that are
grand challenges both for the Indian society and the Indian mathematical community.
The authors sincerely hope that this article provides some hints and stipulations where
to concentrate future research resources.

The article is organized as follows: In Section 2 we first embark on the modeling
of gas flow. We start with a rather general system of equations and then derive a
hierarchy of simpler models until we arrive at algebraic relations for which even explicit
formulae are known. We then provide a network modeling for the corresponding
systems of equations, where we introduce boundary conditions at so called simple
nodes (inflow and outflow nodes) and transmission conditions at interior nodes, where
either pipes meet or valves, compressors, and the like are coupled to pipes. The node
conditions involve discrete and continuous control variables. The same program is then
pursued for fresh and waste water systems. It becomes obvious that all the systems
can be put into a common abstract framework, namely systems of switching nonlinear
hyperbolic balance laws on metric graphs. Clearly, such hybrid formulations are non-
standard from the point of view of dynamical systems (PDEs, ODEs, Integro-PDEs,
etc.). We then discuss some system-theoretical results in Section 3 that are needed for
optimal control by discussing the existence of equilibria, linearizations around such an
equilibrium, Riemann invariants, and discretization techniques. The topic of the final
section 4 is then how to apply these results and techniques to optimal control problems.
Here, we also show computational results on problems from real-world applications.
We provide, in a sense, a road-map from modeling to optimal control, where in addition
to the dynamical system, side constraints for the states and the controls have to be
satisfied throughout operation. At each step we pose open questions and refer to
known results.

2. Modeling of flow in pipes and open canals. In this section, we introduce
three example problems and their common generalization. For every problem, we first
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state the model for a single pipe or canal and then introduce a network model that
also contains active, i.e., controllable, elements. Apart from this common structure,
we emphasize different aspects of the models in our examples. For instance, the gas
network example contains a discussion of a fine-grained model hierarchy, whereas the
sewage example contains a derivation of the model equations.

Before we start with the different examples, we fix some notation common to all
models. We consider networked systems that we commonly model by a metric graph
G = (N,E) with nodes N =

{
n1, n2, . . . , n|N |

}
and edges E =

{
e1, e2, . . . , e|E|

}
. Each

edge ei represents a pipe or canal as a one-dimensional object of normalized length 1
and we therefore associate to each edge an interval [0, 1]. Moreover, we associate with
each edge a direction pointing from x = 0 to x = 1. For what follows, we introduce
the edge-node-incidence matrix D ∈ Z|E|×|N | with entries

dij =


−1, if node nj is the left node of the edge ei,
+1, if node nj is the right node of the edge ei,
0, else.

The set of edges that are connected to a node j is denoted by Ij := {i = 1, . . . , E :
dij 6= 0} and the set of in- and outgoing edges are given by I+

j := {i ∈ Ij : dij = 1}
and I−j := {i ∈ Ij : dij = −1}. Finally, for each node we introduce the edge
degree dj := |Ij |.

We subdivide the set of nodes further, depending on their role in the network. To
this end, we introduce three sets of node indices:

• the set Jα corresponds to nodes that are active, i.e.,. controllable, e.g., valves,
compressors, and pumps;

• the set Jβ corresponds to boundary nodes at which gas or water enters or
exits the system; and

• the set Jπ corresponds to nodes that are passive in the sense that they do not
belong to one of the sets above. We call such nodes also junctions.

The set Jα will typically be subdivided further depending on the discussed model.
For nodes nj with j ∈ Jα, we assume that dj = 2 with one incoming edge with index
i ∈ I+

j and one outgoing edge with index k ∈ I−j . For all other node types, we make
no assumptions on their edge degree. We set J = Jα ∪ Jβ ∪ Jπ.

2.1. Gas flow. In this section we describe the modeling of gas flow. We start
by presenting a hierarchy of models for a single pipe in Section 2.1.1 and afterward
discuss a model for an entire network with valves and compressors in Section 2.1.2.

2.1.1. A single pipe. The Euler equations for the flow of gas are given by a
system of nonlinear hyperbolic partial differential equations (PDEs), which represent
the motion of a compressible non-viscous fluid or a gas. They consist of the continuity
equation, the balance of moments, and the energy equation. The full set of equations
is given by (see, e.g., [10, 57, 58, 70])

(1)

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv |v| − gρh′,

∂t

(
ρ(

1

2
v2 + e)

)
+ ∂x

(
ρv(

1

2
v2 + e) + pv

)
= −kw

D
(T − Tw) .

Here, ρ denotes the density, v the velocity of the gas, T its temperature, and p the
pressure. We further denote with g the gravitational constant, with h′ = h′(x) the
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slope of the pipe, with λ the friction coefficient of the pipe, with D the diameter, with
kw the heat coefficient, with Tw = Tw(x) the temperature of the wall, and the variable
e = cvT + gh denotes the internal energy, where cv is the specific heat. The conserved,
respectively balanced, quantities of the system are the flux q = aρv (where a is the
cross-sectional area of the pipe), the density ρ, and the total energy E = ρ(1/2v2 + e).
In addition to the Equations (1) we use the constitutive law for a real gas

p = RsρTz(p, T ),

where z = z(p, T ) is the real-gas, or compressibility, factor and Rs is the specific
gas constant. Note that z = 1 holds for ideal gas. The Equations (1) allow for
three characteristics corresponding to the eigenvalues of the Jacobi matrix of the flux
function that are given by

λ1 = v − c, λ2 = v, λ3 = v + c,

where c is the speed of sound, i.e., c2 = ∂ρp (for constant entropy). For natural
gas this is approximately 340 m s−1. While the first and third characteristics are
genuinely nonlinear, the second is linear degenerate. For the linear degenerate contact
discontinuities evolve. We consider pipes of finite length ` and by a reparameterization
x 7→ x` we may assume having (1) for x ∈ (0, 1). The characteristics determine the
direction and velocity of acoustic waves inducing the gas flow in the pipe and, hence,
the number of boundary conditions that have to be imposed at the ends of the pipe.
In particular, in the subsonic case (|v| < c) that we consider in the sequel and with
positive flow direction of the gas, the first two characteristics are oriented such that
the first is right and the second is left going. In this case two boundary conditions
have to be imposed on the left and one at the right end of the pipe.

We consider here the isothermal case only but note, however, that the temperature
may have a significant effect: Long pipes may develop large temperature gradients
depending on the weather conditions. In the isothermal case (T ≡ const) the energy
equation becomes obsolete. Thus, we obtain

(2)
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv |v| − gρh′.

In this case there are two characteristics λ1 = v − c and λ2 = v + c such that in the
common subsonic case we have one in- and one outgoing characteristic, and, hence,
one boundary condition at each boundary point. In the particular case z(p) ≡ const,
we obtain a constant speed of sound c =

√
p/ρ.

It is often more convenient to express the state variables in a different way. In
particular, often the flux q and the pressure p in a pipe are used. Here we have q = aρv
and p = c2ρ. With this, we can rewrite System (2) as follows:

(3)
∂tp+

c2

a
∂xq = 0,

∂tq + ∂x(ap+
c2

a

q2

p
) = − λc2

2Da

q |q|
p
− ga

c2
h′p.

We now write this system in terms of vectors. To this end, we define

(4) y :=

(
p
q

)
, F (y) :=

(
c2

a q

ap+ c2

a
q2

p

)
, S(y;x) :=

(
0

− λc2

2Da
q|q|
p −

ga
c2 h
′p

)
.
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Then, System (3) can be rewritten as a first-order system of nonlinear hyperbolic
balance equations

∂ty + ∂xF (y) = S(y;x).

For small velocities |v| � c we arrive at the semi-linear model

(5)
∂tp+

c2

a
∂xq = 0,

∂tq + a∂xp = − λc2

2Da

q |q|
p
− ga

c2
h′p.

This model exhibits the simple characteristics λ1 = −c and λ2 = c. If in addition ∂tq
is small, one obtains the quasi-stationary (friction dominated) model, see [10],

(6)
∂tp+

c2

a
∂xq = 0,

a∂xp = − λc2

2Da

q |q|
p
− ga

c2
h′p.

Finally, when considering the stationary case, all derivatives with respect to time
vanish and we obtain

(7)

c2

a
∂xq = 0,

a∂xp = − λc2

2Da

q |q|
p
− ga

c2
h′p.

With constant compressibility factor z ≡ const and by further neglecting the gravity
term we get that flux q is constant (hence, determined by the boundary data) and the
remaining momentum equation turns into the algebraic model

(8) pout =

√
p2
in −

λc2`

Da2
q |q|,

where pout and pin is the pressure at the end and the inlet of the pipe, respectively.
The algebraic model (8) is discussed, e.g., in [67] and in chapter [26] of the recent book
[51].

Remark 2.1. In view of the vectorial notation (4) we may embed the hierarchy of
models (3), (5), (6), and (7) into one format. For this it is only necessary to introduce

(9)

M1 :=

(
1 0
0 1

)
, F 1(y) :=

(
c2

a q

ap+ c2

a
q2

p

)
,

M2 :=

(
1 0
0 1

)
, F 2(y) :=

(
c2

a q
ap

)
,

M3 :=

(
1 0
0 0

)
, F 3(y) :=

(
c2

a q
ap

)
,

M4 :=

(
0 0
0 0

)
, F 4(y) :=

(
c2

a q
ap

)
.

Then, we can write

M j∂ty + ∂xF
j(y) = S(y;x), j = 1, 2, 3, 4.
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The above hierarchy and even further intermediate models can also be obtained from
asymptotic analysis; see [10].

2.1.2. Networks with pipes, valves, and compressors. In order to formu-
late a complete model for an entire network on a finite time horizon we have to specify
some continuity conditions. First, the pressure variables pi(nj) coincide for all incident
edges i ∈ Ij . We express these transmission conditions at all passive nodes by imposing

pi(nj , t) = pk(nj , t), j ∈ Jπ, i, k ∈ Ij , t ∈ (0, T ).

The nodal balance equation for the fluxes can be written as the classical Kirchhoff-type
condition at non-boundary nodes:∑

i∈Ij

dijqi(nj , t) = 0, j ∈ J \ Jβ .

We now turn to the active, i.e., controllable, nodes j ∈ Jα. These model compres-
sors (Jc) and valves (Jv). The main problem in gas flow is the inherent pressure drop
due to friction at the interior pipe surface. This significant pressure drop necessitates
compressor stations within the network. Clearly, such compressor stations are costly
and expensive to operate. Therefore, typically only few such stations appear in the
given network. For example, the German gas network contains about 70 such stations
with a power of approximately 2400 MW. The pressure at the outlet of such a station
can be up to over 100 bar. The description of compressors is typically established via
characteristic diagrams based on measured specific changes in adiabatic enthalpy Had
of the compression process. This quantity depends on the pressure and the temperature
and is given by

Had = z(pL, TL)TLRs
κ

κ− 1

((
pR
pL

)κ−1
κ

− 1

)
,

where the isentropic exponent κ is itself pressure and temperature dependent, but is
often taken to be a compressor specific constant, e.g., κ = 1.29. Here, TL denotes
the temperature at the inlet of the compressor. Accordingly, pL and pR denote the
pressures at the inlet and outlet of the compressor. After introducing a switching
variable scj(t) ∈ {0, 1} and the shorthand notation κ̄(qk) = sign(qk(nj , t))(κ− 1)/κ, we
obtain a model for a compressor node with index j ∈ Jc for all t ∈ (0, T ):

0 = scj(t)

[
uj − C|qk(nj , t)|

((
pk(nj , t)

pi(nj , t)

)κ̄(qk)

− 1

)]
+ (1− scj(t)) [pi(nj , t)− pk(nj , t)] .

For valves, the model is considerably simpler. With the switching variable scj(t) ∈
{0, 1}, the model for a valve node with index j ∈ Jv for all t ∈ (0, T ) reads

svj (t) (pi(nj , t)− pk(nj , t)) + (1− svj (t))qi(nj , t) = 0.

In total, we arrive at the following system given in Model 1.

2.2. Fresh water systems. In this section we describe the modeling of fresh
water flow. We again derive a hierarchy of models for a single pipe in Section 2.2.1 and
afterward discuss a model for an entire network with valves and pumps in Section 2.2.2.
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Model 1
Gas network model; x ∈ (0, 1) and t ∈ (0, T )

∂tpi(x, t) +
c2

ai
∂xqi(x, t) = 0, i ∈ I,

∂tqi(x, t) + ∂x

(
api(x, t) +

c2

ai

qi(x, t)
2

pi(x, t)

)
= − λc2

2Diai

qi(x, t) |qi(x, t)|
pi(x, t)

− ga

c2
h′ipi(x, t), i ∈ I,

pi(nj , t) = pk(nj , t), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijqi(nj , t) = 0, j ∈ J \ Jβ ,

svj (t) (pi(nj , t)− pk(nj , t)) + (1− svj (t))qi(nj , t) = 0, j ∈ Jv, i, k ∈ Ij ,

scj(t)

[
uj − C|qk(nj , t)|

((
pk(nj , t)

pi(nj , t)

)κ̄(qk)

− 1

)]
+(1− scj(t)) [pi(nj , t)− pk(nj , t)] = 0, j ∈ Jc, i, k ∈ Ij ,

gj(pi(nj , t), qi(nj , t)) = uj(t), j ∈ Jβ , i ∈ Ij ,
pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), i ∈ I,

2.2.1. A single pipe. In order to obtain a model hierarchy for pressurized pipe
flow of water similar to the one we have seen for gas flow we consider the fundamental
equations of conservation of mass and conservation of momentum for incompressible
flow

∂t(ρa) + ∂x(ρua) = 0,

∂t(ρua) + ∂x(ρau2) + a∂xp = −gaρ
(
d

dx
z +

λ

2gD
u|u|

)
,

where ρ is the density, u is the fluid velocity, and p is the pressure. Here, a is the
cross-sectional area of the pipe, D its diameter, and z its elevation above a reference
level. One introduces the piezometric height h(t, x) = z(x) + p(t, x)/(gρ0), where ρ0

is the density of water in free surface flow at reference level, the flux q = ua and
one assumes c2 = ∂ρp, where c is the speed of sound in fresh water at normalized
conditions. With these variables, we can verify for ρ = ρ0 that

∂th = − c2

gρ0a
∂xq,

a∂xp = gaρ0∂x(h− z).

Thus, we arrive at

(10)
∂th+

c2

ga
∂xq = 0,

∂tq +
1

a
∂xq

2 + ga∂xh = − λ

2aD
|q|q.
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For a pipe of finite length ` we may again employ a reparameterization x 7→ x`, having
(10) for x ∈ (0, 1). Moreover, we may again introduce a vectorial notation

y :=

(
h
q

)
, F (y) :=

(
c2

gaq
1
aq

2 + gah

)
, S(y;x) :=

(
0

− λ
2aD q |q|

)
.

Then (10) can be rewritten as a first-order system of nonlinear hyperbolic balance
equations

∂ty + ∂xF (y) = S(y;x).

As in the case of gas flow, one may deduce a number of simplifications and obtain a
hierarchy of models. First we may neglect the nonlinear term 1

a∂xq
2 in the momentum

equation in order to arrive at a semi-linear model called water hammer equations [1],
i.e.,

(11)
∂th+

c2

ga
∂xq = 0,

∂tq + ga∂xh = − λ

2aD
|q|q.

We may also neglect the temporal dynamics in the second equation to end up with
the quasi-stationary model

(12)
∂th+

c2

ga
∂xq = 0,

ga∂xh = − λ

2aD
|q|q.

In the stationary case, we have

(13)

c2

ga
∂xq = 0,

ga∂xh = − λ

2aD
|q|q.

As this implies q = q0 = const, we have the formula

hin − hout =
λL

2ga2D
q0|q0|.

Remark 2.2. As we did for the gas case, we also embed the hierarchy of models
(10)–(13) into one format. With M1, . . . ,M4 as in (9) and

F 1(y) :=

(
c2

gaq
1
aq

2 + gah

)
, F 2(y) := F 3(y) := F 4(y) :=

(
c2

gaq

gah

)

we can write

M j∂ty + ∂xF
j(y) = S(y;x), j = 1, 2, 3, 4.
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2.2.2. Pipe networks. On a finite time horizon (0, T ), let us consider a fresh
water pipeline system including valves and pumps. The pressure increase of a pump
expressed in terms of the piezometric height ∆h = hR − hL for given flow q and
piezometric heights hL and hR corresponding to the pressure at the inlet and outlet
can be described by

∆h = u2
(
α− β

( q
u

)γ)
,

where pump-dependent α > 0 is the maximal pressure increase, γ and β are efficiency
parameters, and u is the relative speed subject to our control [63]. Valves are modeled
in a straightforward sense similarly to the gas case. Thus, letting Jv and Jp denote the
set of node indicies corresponding to valves and compressors, respectively, we obtain
the network model given in Model 2.

Model 2
Fresh water network model; x ∈ (0, 1) and t ∈ (0, T )

∂thi(x, t) +
c2i
gai

∂xqi(x, t) = 0, i ∈ I,

∂tqi(x, t) +
1

ai
∂xq

2
i (x, t) + gai∂xhi(x, t) = −

λi
2aiDi

|qi(x, t)|qi(x, t) i ∈ I,

hi(nj , t) = hk(nj , t), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijqi(nj , t) = 0, j ∈ J \ Jβ ,

svj (t) (hi(nj , t)− hk(nj , t)) + (1− svj (t))qi(nj , t) = 0, j ∈ Jv, i, k ∈ Ij ,

spj (t)

[
hk(nj , t)− hi(nj , t)− u2

j

(
αj − βj

(
qk(nj , t)

uj

)γj)]
+(1− spj (t)) [hi(nj , t)− hk(nj , t)] = 0, j ∈ Jp, i, k ∈ Ij ,

gj(hi(nj , t), qi(nj , t) = uj(t), j ∈ Jβ , i ∈ Ij
hi(x, 0) = pi,0(x), qi(x, 0) = qij(x), i ∈ I,

2.3. Modeling sewage flow. The third type of models concerns the flow of
water in open canals and, in particular, in networks of such canals. The latter are
often considered as sewer systems. More precisely, sewage flow is modeled as a wave
of shallow water running through a long, slender, and prismatic canal. While the
shape of the canal profile is often of minor theoretical interest, we have to deal with
nontrivial canal shapes in practical applications and, therefore, we describe a canal
and its properties in a more general setting.

2.3.1. A single canal. To model a single canal we may again choose a one
dimensional model because a canal is long and relatively thin (small aspect ratio)
and the flow changes significantly only along the flow direction of the canal. The
floor of the canal is elevated by a (assumed smooth) floor function z0 and the shape
profile of the canal is characterized by the canal width function w(h), describing
the width of the canal in dependence of the filling height, and is assumed to fulfill
the following well-shapedness property: Namely, the canal width function w(h) is
called well-shaped if there exists εwmin and εwmax both in R+ with εwmax > εwmin > 0 and
w(h) ∈ C1(R+; [εwmin, ε

w
max]). We now focus on sewage flowing through a well-shaped
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canal X ⊂ R. The motion of the liquid is observed over a time interval Θ ⊂ R+

and can be described by physical quantities, which we call primary variables: These
variables consist of the water height h and the velocity along the canal V . In the case
of pollution, the primary variables are completed by the vector ~ρ ∈ Rr representing
concentrations of chemical solutes transported by the sewage. We have to remark that
~ρ(t, x) ∈ (R+

0 )r for all (t, x) ∈ Θ×X would be a reasonable restriction, as negative
concentrations have no physical meaning. Nevertheless, this restriction is not required
for the correctness of the mathematical derivations and is therefore neglected. Based
on these primary variables and the canal width function w(h) we introduce some
additional, so called secondary variables, consisting of the wetted cross-sectional area
of the sewage A(t, x), the flow rate of the sewage Q(t, x), and, in case of pollution, the
vector of r amounts of substances ~R(t, x) is used to describe the mass of pollution in a
cross-sectional area. These are defined as

A(t, x) :=

∫ h(t,x)

0

w(z) dz,

Q(t, x) := V (t, x)

∫ h(t,x)

0

w(z) dz,

~R(t, x) := ~ρ(t, x)

∫ h(t,x)

0

w(z) dz.

We use the vector notation in order to distinguish explicitly from the scalar case. In
order to derive the physical balance laws describing the dynamics of the flow variables,
we introduce a small but arbitrary part of the time-space domain, which is called
control volume and is defined as Θc ×Xc := (t0, t1)× (x0, x1) ⊂ Θ×X. We can now
state the system in terms of the variables (A,Q, ~R) instead of (h, V, ~ρ). Indeed, by
A =

∫ h
0
w(z) dz we can interpret A = A(h) and ∂hA(h) = w(h). Our assumption that

the canal is well-shaped then implies that A(h) is bijective. We have

h′(A) =
1

w(h(A))
, h(A) =

∫ A

0

1

w(h(a))
da.

The inversion of the other variables provides

V (A,Q) =
Q

A
, ~ρ(A, ~R) =

1

A
~R.

We use this to define the hydrostatic pressure function η as a function of A,

η(A) := g

∫ h(A)

0

(h(A)− z)w(z) dz,

and its derivative is given by

η′(A) = gAh′(A) =
gA

w(h(A))
> 0, A ∈ R+,

where g is, as before, the acceleration due to gravity. Let us now assume that the
quantities A, Q, and ~R are continuously differentiable functions with respect to time
and space. We arrive at the mass balance equation in integral form

(14)
∫

Θc

∫
Xc

∂tA(t, x) + ∂xQ(t, x) dxdt =

∫
Θc

∫
Xc

sM (t, x) dxdt,
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where sM (t, x) is a lateral in- or outflow along the canal. Similarly the momentum
balance is equivalent to∫

Θc

∫
Xc

∂tQ(t, x) + ∂x

(Q2(t, x)

A(t, x)
+ η(A(t, x))

)
dxdt

=

∫
Θc

∫
Xc

sP (A(t, x), Q(t, x), x) dxdt,

where sP (A,Q, x) is the friction term. Moreover, in case of pollution, the corresponding
balance reads as

(15)
∫

Θc

∫
Xc

∂t ~R(t, x) + ∂x
Q(t, x)

A(t, x)
~R(t, x) dxdt =

∫
Θc

∫
Xc

~sS(~R(t, x), t, x) dxdt.

As Θc ×Xc is chosen arbitrarily, we can conclude that Equations (14) and (15) must
hold in a pointwise sense in Θ×X. For a canal of length `, using a reparameterization
x 7→ x`, this leads to a system of hyperbolic equations on (0, 1), which we call
augmented shallow water equations in conservation form:

(16)

∂tA+ ∂xQ = sM (t, x),

∂tQ+ ∂x

(
Q2

A
+ η(A)

)
= −g

(
Az′0 +

λQ(x, t)|Q(x, t)|
2DA

)
=: sP (A,Q, x),

∂t ~R+ ∂x

(
Q

A
~R

)
= ~sS(~R, t, x),

where sS(~R, t, x) is a lateral in- or outflow term for the pollutant. We can put this in
a vector format as follows

∂t

 A
Q
~R

+ ∂x

 Q
Q2

A + η(A)
Q
A
~R

 =

 sM (t, x)
sP (A,Q, x)

~sS(~R, t, x)

 .

For convenience, we set

y(t, x) :=

A(t, x)
Q(t, x)
~R(t, x)

 , F (y) :=

 Q
Q2

A + η(A)
Q
A
~R

 , S(y, t, x) :=

 sM (t, x)
sP (A,Q, x)

~sS(~R, t, x)


and arrive at the system of hyperbolic balance laws:

(17) ∂ty(t, x) + ∂xF (y(t, x)) = S(y(t, x), t, x).

Remark 2.3. We add that the systems variables may be switched to V,A. Then
we have

∂t

AV
~R

+ ∂x

 AV
V 2

2 + gh(A)

V ~R

 =

 sM (t, x)
sP,1(A, V, x)

~sS(~R, t, x)

 ,

12



where sP,1(A, V, x) is a suitably modified friction term. If we set

y(t, x) :=

A(t, x)
V (t, x)
~R(t, x)

 , F (y) :=

 AV
V 2

2 + gh(A)

V ~R

 , S(y, t, x) :=

 sM (t, x)
sP,1(A, V, x)

~sS(~R, t, x)

 ,

we arrive again at a format as in (17). The quasilinear format then reads as

∂t

AV
~R

+

 V A 0
g

w(h(A)) V 0

0 ~R V

 ∂x

AV
~R

 =

 csM (t, x)
sP,1(A, V, x)

~sS(~R, t, x)

 .

In this system the first two equations resemble the classical shallow water equations,
which are completely independent from the substance amounts ~R. The last r equations
regarding the transport of the substance amounts are also called transport equations
of passive scalars.

Remark 2.4. As in the preceding examples, we can also derive a stationary variant
of the Equations (16) and write these two models in a common format. With

M1 :=

1 0 0
0 1 0
0 0 Ir

 ,

where Ir is the r × r identity matrix, M4 the (2 + r)× (2 + r) zero matrix and

F 1(y) := F 4(y) :=

 Q
Q2

A + η(A)
Q
A
~R


we can write

M j∂ty + ∂xF
j(y) = S(y; t, x), j = 1, 4.

2.3.2. Shallow water equations on networks. On a finite time horizon (0, T ),
we now consider an urban drainage network consisting of a set of nodes representing
canal junctions possibly involving active elements such as slice gates or pumps and
a set of edges representing prismatic sewer canals. As the pipe model we use the
shallow water equations discussed in the preceding section. To connect the pipes we
need adequate coupling conditions which occur as boundary conditions for each canal.
The boundary conditions at the canal boundaries, yi(nj , t), j ∈ Jβ , are given for all
t ∈ (0, T ). At the other nodes nj , i.e., nodes nj with j ∈ J \ Jβ , the states have
to satisfy transmission conditions. The most important of these conditions is again
Kirchhoff’s junction rule, which guarantees that no mass is lost as the liquid flows
across the vertices nj : ∑

i∈Ij

dijQi(nj , t) = 0, t ∈ (0, T ).

For passive nodes, Kirchhoff’s junction rule is completed with another coupling
condition stating continuity of free surface height

hi(nj , t) = hk(nj , t), j ∈ Jπ, i, k ∈ Ij , t ∈ (0, T ),
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or continuity of particle velocity

(18)
Qi(nj , t)

Ai(nj , t)
=
Qk(nj , t)

Ak(nj , t)
, j ∈ Jπ, i, k ∈ Ij , t ∈ (0, T ).

Active nodes can be subdivided into two types: gates (Jg) and pumps (Jp). At a
sluice gate, we have an upstream water level h1 and a downstream level h2 ≤ h1. The
actual height of the gate is h0. Considering a simple geometry of the gate area, we
have a width b and hydraulic constant κ that we do not want to elaborate upon further.
With this, the flow through the gate is given by

Q = κbh0

√
h1 − h2.

In our context, we identify the gate as a boundary condition between two consecutive
canals. We control the height h0 and put the coefficients into the definition of the
control that we then call uj(t), where j is the index for the active node nj with j ∈ Jg.
Thus, for i, k ∈ Ij and t ∈ (0, T ) we have

Qi(nj , t) = uj(t) sign(hi(nj , t)− hk(nj , t))
√
|hi(nj , t)− hk(nj , t)|.

We again introduce a decision variable sgj (t) ∈ {0, 1} such that if the gate is turned off
(not active) sgj (t) = 0 and otherwise sgj (t) = 1 holds. Thus, for i, k ∈ Ij and t ∈ [0, T ]
we have

0 = sgj (t)

(
Qi(nj , t)− uj(t) sign(hi(nj , t)− hk(nj , t))

√
|hi(nj , t)− hk(nj , t)|

)
+ (1− sgj (t)) (hi(nj , t)− hk(nj , t)) .

Pumps can be included in the modeling in a similar way. There are a number of
models with increasing accuracy when compared to real data. See [61] for an account
of models that are represented as transmission conditions between two adjacent canals.
Clearly, the simplest such model is when the flow rate is set equal to the pump rate
and there appears a transmission condition

spj (t)(Qi(nj , t)− Q̂j) + (1− spj (t))(hi(nj , t)− hk(nj , t)) = 0, j ∈ Jp, t ∈ (0, T ).

Combining these parts then leads to the network model given in Model 3, where,
for concreteness, we choose (18) as the coupling condition.

2.4. Abstract model. The modeling in this section has revealed that in all
cases of interest, say on the level of a quasilinear formulation, we can write all models
in a common abstract setting as

(19)

∂tyi +Ai(yi)∂xyi = Si(yi), i ∈ I, (x, t) ∈ (0, 1)× (0, T ),

Ei(yi)(nj) = Ek(yk)(nj), j ∈ Jπ, i, k ∈ Ij , t ∈ (0, T ),∑
i∈Ij

dijQi(yi)(nj) = 0, j ∈ J \ Jβ , t ∈ (0, T ),

Cj(yi(nj), yk(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij , t ∈ (0, T ),

Bi(yi)(nj) = uj , j ∈ Jβ , i ∈ Ij , t ∈ (0, T ),

yi(·, 0) = yi0, i ∈ I.

The following three examples give a detailed overview how the preceding models fit
into this abstract framework.
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Model 3
Sewage network model; x ∈ (0, 1) and t ∈ (0, T )

∂tAi(x, t) + ∂xQi(x, t) = 0 i ∈ I,

∂tQi(x, t) + ∂x

(
Q2
i (x, t)

Ai(x, t)
+ ηi(Ai(x, t))

)
= sP,i(Ai(x, t), Qi(x, t), x) i ∈ I,

∂t ~Ri(x, t) + ∂x

(
Qi(x, t)

Ai(x, t)
~Ri(x, t)

)
= ~sS,i(~Ri(x, t), t, x) i ∈ I,

Qi(nj , t)

Ai(nj , t)
=
Qk(nj , t)

Ak(nj , t)
j ∈ Jπ, i, k ∈ Ij ,∑

i∈Ij

dijQi(yi)(nj) = 0, j ∈ J \ Jβ ,

(1− sgj (t)) (hi(nj , t)− hk(nj , t))

+sgj (t)

(
Qi(nj , t)− uj(t) sign(hi(nj , t)

−hk(nj , t))
√
|hi(nj , t)− hk(nj , t)|

)
= 0, j ∈ Jg, i, k ∈ Ij ,

spj (t)(Qi(nj , t)− Q̂j)] + (1− spj (t))(hi(nj , t)− hk(nj , t)) = 0, j ∈ Jp, i, k ∈ Ij ,
g(Qi(nj , t), Ai(nj , t)) = uj , j ∈ Jβ , i ∈ Ij ,

Qi(x, 0) = Qi,0(x), Ai(x, 0) = Ai,0(x), i ∈ I,

Example 1. We begin with gas networks, where we have

yi =

(
pi
qi

)
, Fi(yi) =

(
c2i
ai
qi

ap+
c2i
ai

q2i
pi

)
, Ai(yi) = DFi(yi) =

(
0

c2i
ai

a− c2i
ai

q2i
p2i

2
c2i
ai

qi
pi

)
and

Ei(yi) = pi, Qi(yi) = qi.

At active nodes j ∈ Jα = Jv ∪ Jc we impose valve or compressor conditions. Thus,
for j ∈ Jv we have

Cj(yi(nj), yk(nj), sj , uj) = svj (t)(pi(nj , t)− pk(nj , t)) + (1− svj (t))qi(nj , t)

and for j ∈ Jc we have

Cj(yi(nj), yk(nj), sj , uj)

= scj(t)

[
uj − C|qk(nj , t)|

((
pk(nj , t)

pi(nj , t)

)κ̄(qk)

− 1

)]
+ (1− scj(t)) [pi(nj , t)− pk(nj , t)] .

Example 2. For fresh water systems we have

yi =

(
hi
qi

)
, Fi(yi) =

(
c2i
gai
qi

1
ai
q2
i + gaihi

)
, Ai(yi) = DFi(yi) =

(
0

c2i
gai

gai
2
ai
qi

)
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and

Ei(yi) = hi, Qi(yi) = qi.

At active nodes j ∈ Jα = Jp ∪ Jv we impose pump or valve conditions. Thus, for
j ∈ Jp we have

Cj(yi(nj), yk(nj), sj , uj)

= spj (t)

[
hi(nj , t)− hk(nj , t)− u2

j

(
αj − βj

(
qk(nj , t)

uj

)γj)]
+ (1− spj (t)) [hi(nj , t)− hk(nj , t)]

and for j ∈ Jv we have

Cj(yi(nj), yk(nj), sj , uj) = svj (t) (hi(nj , t)− hk(nj , t)) + (1− svj (t))qi(nj , t).

Example 3. Finally, we consider sewer systems. There, the pipe model can be
brought into the desired form via

yi :=

(
Ai(t, x)
Qi(t, x)

)
, Fi(yi) :=

(
Qi

Q2
i

Ai
+ η(Ai)

)
,

as well as

Ai(yi) := DFi(yi) =

(
0 1

−Q
2
i

A2
i

+ gAi
w(h(Ai))

2QiAi

)
,

and for the coupling conditions, we set

Ei(yi) :=
Qi
Ai
, Qi(yi) := Qi.

At active nodes j ∈ Jα = Jp ∪ Jg we impose pump or gate conditions. Thus, for
j ∈ Jp we have

Cj(yi(nj), yk(nj), sj , uj) = spj (t)(Qi(nj , t)− Q̂j) + (1− spj (t))(hi(nj , t)− hk(nj , t)),

and for j ∈ Jg, we have

Cj(yi(nj), yk(nj), sj , uj)

= (1− sgj (t)) (hi(nj , t)− hk(nj , t))

+ sgj (t)

(
Qi(nj , t)− uj(t) sign(hi(nj , t)− hk(nj , t))

√
|hi(nj , t)− hk(nj , t)|

)
.

Our framework can also be extended to a setting where we switch between models.
From the point of view of efficiency in the context of large-scale applications like,
e.g., real-world gas or water networks, we would like to take into account model
adaptivity. That is to say, in a network region with very little dynamics we would
like to invoke a stationary model, in regions where moderate dynamics govern the
process, a semi-linear time dependent model may be appropriate, whereas in regions
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with significant dynamics, the fully nonlinear system needs to be taken into account.
Thus, we have a set of mass matrices

M
smi (t)
i , smi (t) ∈ {0, 1, 2, . . . ,mi}

and a set of system matrices

A
smi (t)
i (yi), smi (t) ∈ {0, 1, 2, . . . ,mi} .

In all models we keep the source terms as they are essential in the applications discussed
here, yielding

(20)

M
smi
i ∂tyi +A

smi
i (yi)∂xyi = Si(yi), i ∈ I,

Ei(yi)(nj) = Ek(yk)(nj), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijQi(yi)(nj) = 0, j ∈ J \ Jβ ,

Cj(yi(nj), yk(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij ,
Bi(yi)(nj) = uj , j ∈ Jβ , i ∈ Ij ,

yi(·, 0) = yi0, i ∈ I,

where x ∈ (0, 1) and t ∈ (0, T ). Such model adaptivity with smi taken as adjoint-
based error estimators and hence state depending switching rules can numerically be
exploited to speed up simulations [21]. However, in one way or another, systems of
Type (20) appear also naturally in the context of gas and water network simulation
and control or, in a more general notion, in energy networks. We also want to add
that one also may have to consider model switching in the transmission conditions to
ensure well-posedness.

Remark 2.5. To the best knowledge of the authors, there is no mathematical
analysis available for Model 1, 2, and 3 covering all nonlinearities and mixed regularities
due to the switching functions sj(t) ∈ {0, 1} for j ∈ Jα. This holds even for the simplest
possible network, namely a two-link system with one controllable device (e.g., a valve
or a compressor) at the connection point and of course extends to the abstract system
(19). Even for smooth relaxations of sj(·), no published result seems to be available,
though we belief that the theory of Li Tatsien can be applied in this case—at least for
tree-like graphs. As a matter of fact, once the corresponding problem is understood for
a star-like graph, the tree network can typically be handled using a so called peeling
technique; see [53] and [59].

What has been said of course also applies to problem (20) including model switching.
Note that, for state depending switching rules, one can no longer guarantee a classical
notion of continuous dependency of the solution on parameters. Rather, one has to
work with set-valued solutions and discuss upper semicontinuity of the solution set.
How this can be realized for semilinear equations on networks and implications thereof
are discussed in [45, 46].

3. System-theoretical results. In this section, we collect some relevant system-
theoretical facts that apply to our abstract model (19) and point out open problems.
For fixed integer variables, we show how to derive equilibria for such a system using
the example of gas networks and discuss how linearization can be used to investigate
solutions in a neighborhood of such an equilibrium. We then study Riemann invariants
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for the system that are the basis for well-posedness, controllability, and reachability
results. We close the section by discussing discretization and piecewise linearization to
obtain simplified models that can cope with integer variables.

3.1. Equilibria and linearization. It has become amply clear that in all ap-
plications discussed in Section 2 we arrive at the common abstract model (19). An
elementary question is the existence and characterization of equilibria Y , i.e., a solution
of

(21)

Ai(Yi)∂xYi = Si(Yi), i ∈ I,
Ei(Yi)(nj) = Ek(Yk)(nj), j ∈ Jπ, i, k ∈ Ij ,∑

i∈Ij

dijQi(Yi)(nj) = 0, j ∈ J \ Jβ ,

Cj(Yi(nj), Yk(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij ,
Bi(Yi)(nj) = uj , j ∈ Jβ , i ∈ Ij ,

for x ∈ (0, 1), a constant s = (sj)j∈Jα , and constant u = (uj)j∈Jα∪Jβ . In order to
provide some evidence that the analytical description of such equilibria is possible
but can be quite involved, we exemplary study here the stationary solutions of the
isothermal Euler equations in a single horizontal pipe. The case of non-horizontal pipes
and results concerning tree-like networks can be found in [37]. An analysis concerning
more general networks including cycles is available in [41, 42].

Example 4. Consider the isothermal Euler equation (2). For every stationary
state, the flow rate q is constant. Hence, the density ρ satisfies the ordinary differential
equation

(a2c2 ρ2 − q2)ρx = −1

2
θq|q|ρ− a2ρ3gh′,

where θ = λ/D. Separation of variables yields∫
a2c2 ρ2 − q2

1
2θq|q| ρ+ a2ρ3gh′

ρx dx = −x+ Ĉ.

For horizontal pipes (i.e., for h′ = 0) we get a constant solution ρ if q = 0 and for
q 6== 0 we have ∫ (

2a2c2

θq|q|
ρ− 2 sign(q)

θρ

)
ρx dx = −x+ Ĉ.

This yields the implicit solution

(22)
a2c2

θq|q|
ρ2 − sign(q)

θ
ln(ρ2) = −x+ Ĉ.

By multiplication with θq we obtain

a2c2

|q|
ρ2 − |q| ln(ρ2) = θ q(−x+ Ĉ)

and, hence, we have the equation

1

|q|
a2c2ρ2 − |q| ln(a2c2ρ2) + |q| ln(a2c2) = θ q (−x+ Ĉ).
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Therefore,(
ac
ρ

q

)2

− ln

((
ac
ρ

q

)2
)

= θ sign(q) (−x+ Ĉ)− ln(a2c2) + ln(q2).

With the auxiliary variable ξ = (acρ/q)2, for which in the subcritical case ξ ∈ (1,∞),
we obtain

−ξ + ln(ξ) = θ sign(q) (x− Ĉ) + ln(a2c2)− ln(q2).

The application of the exponential function on both sides of the equation yields

(23) exp(−ξ + ln(ξ)) = exp
(
θ sign(q) (x− Ĉ) + ln(a2c2)− ln(q2)

)
.

Let W−1(x) denote a special branch of the Lambert W function defined as the
inverse function of x 7→ x exp(x) for x ∈ (−∞,−1). Thus W−1(x) ≤ −1 is defined
for x ∈ (−1/e, 0). For x ∈ [−1/e, 0) we get the equation

W−1(x) = ln(−x)− ln(−W−1(x)).

Then we obtain from (23)

−ξ = W−1

(
−a

2c2

q2
exp

(
θ sign(q) (x− Ĉ)

))
.

Hence, re-substituting ξ and solving for ρ we get

(24) ρ = |q| 1

ac

√
−W−1

(
−a

2c2

q2
exp

(
θ sign(q)(x− Ĉ)

))
.

Note that the value of Ĉ can be computed from the boundary values. For example, with
ρ0 = ρ(0), Equation (22) implies

(25) Ĉ = sign(q)
1

θ

((
ac
ρ0

q

)2

− ln(ρ2
0)

)
.

The Lambert W function W−1(x) can be computed to arbitrary precision or approxi-
mated by

W−1(x) ≈ ln(−x)− ln(−(ln(−x)− ln(− ln(−x)− · · · )))),

see [12].
An example of a pressure-flow relation for stationary solutions obtained by such an

approximation compared to the stationary solution obtained from the lowest level in the
model hierarchy is plotted in Figure 3. It shows the typical behavior of the considered
dynamics that is largely determined by the source term.

It becomes apparent from the discussion in the above example that equilibria may
become singular, i.e., there is a critical length. This has severe practical implications,
as gas pipes need to be calibrated in order to avoid such singular behavior. This
becomes a critical issue for very long under water pipes.
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Figure 3. The stationary pressure p = c2ρ for h′ = 0 with p(0) = 6500 kPa, c = 340m s−1,
D = 1m, and λ = 0.005 on a pipe of length ` = 30 km in dependency of q ∈ [0, 1200] kg s−1, obtained
by numerically solving Equations (24),(25) (solid line) and the approximation resulting from (8)
(dashed line).

Stationary states are of great interest in the industrial context, as one is interested
in small variations around such equilibria if it is not possible to stay there. In that
respect, the variation y of the stationary state Y is of interest. Now, assume the sum
ŷ := Y + y satisfies (19). By (21), we have

∂tyi +Ai(Yi + yi)∂xyi = −Ai(Yi + yi)∂xYi + Si(Yi + yi), i ∈ I,
Ei(Yi + yi)(nj) = Ek(Yk + yk)(nj), j ∈ Jπ, i, k ∈ Ij ,∑

i∈Ij

dijQi(Yi + yi)(nj) = 0, j ∈ J \ Jβ ,

Cj((Yi + yi)(nj), (Yk + yk)(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij ,
Bi(Yi + yi)(nj) = uj , j ∈ Jβ , i ∈ Ij ,
yi(·, 0) = yi0 − Yi0, i ∈ I,

where, as usual x ∈ (0, 1), t ∈ (0, T ). We define

(26)

−Ai(Yi + yi)∂xYi + Si(Yi + yi) =: Ŝi(yi),

Ei(Yi + yi)(nj) =: Êi(yi)(nj),

Qi(Yi + yi)(nj) =: Q̂i(yi)(nj),

Cj((Yi + yi)(nj), (Yk + yk)(nj), sj , uj) =: Ĉj(yi)(nj), (yk)(nj), sj , uj).

We clearly see that ŷ satisfies a modified version of (21), where we replace each operator
with its counterpart from (26). Moreover, we get

Ŝi(0) = 0.

This shows that the perturbation y of the equilibrium, which is not assumed small,
satisfies the original system with a source term that vanishes for the zero perturbation.

If the perturbations of an equilibrium are considered small, then one arrives at a
linear model. To this end, we fix the switching structure s and the controls u at the
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equilibrium Y . As changing the switching structure s cannot be considered as a small
variation, we concentrate on variations v = (vj)j∈Jβ of continuous boundary controls.
A Taylor approximation in Y for all terms in (19) then yields

∂tyi +Ai(Yi)∂xyi = DSi(Yi)yi, i ∈ I,
DEi(Yi)yi(nj) = DEk(Yk)yk(nj), j ∈ Jπ, i, k ∈ Ij ,∑

i∈Ij

dijDQi(Yi)yi(nj) = 0, j ∈ J \ Jβ ,

DCj(Yi(nj), Yk(nj), sj , uj)(yi, yk)(nj) = 0, j ∈ Jα, i, k ∈ Ij ,
DBi(Yi)yi(nj) = vj , j ∈ Jβ , i ∈ Ij ,
yi(·, 0) = yi0 − Yi0, i ∈ I.

Questions regarding well-posedness, controllability, stabilizability, and optimal control
for these linear systems on general graphs have been considered in the literature to a
certain degree of maturity; see, e.g., [16, 52, 53, 64] and the discussion in Section 4.

Remark 3.1. We pose some open questions:
• For the general abstract situation, the existence of an equilibrium Y to (19)
through (21) appears to be an open question.
• In general, it appears interesting to obtain full information of the set of
equilibria, e.g., connectedness or convexity, also in the case of compressors or
pumps.

• How does an equilibrium for a given switching structure behave once the
switching structure changes?
• What is the sensitivity of equilibria with respect to parameter changes in
general?

3.2. Riemann invariants. Solutions of (19) can be analyzed in small neighbor-
hoods of a given equilibrium Y . The method of choice is the concept of semi-global
classical solutions in the sense of Li Tatsien [59]. In order to apply the theory given
in [59], one needs to transform System (19) into a new coordinate system which reveals
a diagonal hyperbolic differential expression. To this end, Riemann invariants are very
useful. Fortunately, in the applications the edgewise 2-by-2 hyperbolic balance laws
admit such Riemann invariants. We consider the equations in quasilinear form:

(27) ∂tyi +Ai(yi)∂xyi = Si(yi), i ∈ I,

and we assume that

(28) Ai(yi) has two eigenvalues λ−i < 0 < λ+
i .

This condition is typically fulfilled in our examples: In the case of gas and fresh water
networks, it corresponds to the assumption that the flow is subsonic, in the case of
sewage networks it corresponds to the assumption that the flow is subcritical. We
denote the corresponding left eigenvectors by `±i (yi) while the right eigenvectors are
denoted by r±i (yi). We impose

`±i r
±
i = 0, ‖r±i ‖ = ‖`±i ‖ = 1.

By definition, the Riemann invariants ξ±i (yi) satisfy the equation

∇ξ±i = `±i .
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We apply `±i from the left of (27) and obtain

`±i ∂tyi + λ±i `
±
i ∂xyi = `±i Si(yi).

Clearly, using the Riemann invariants ξ±i , we obtain

∂tξ
±
i = `±i ∂tyi, ∂xξ

±
i = `±i ∂xyi

and, therefore, we arrive at the system

∂tξ
±
i + λ±i (yi)∂xξ

±
i = `±i Si(yi).

Thus, the main part (the one including spatial derivatives) is diagonalized with respect
to ξ±i . Clearly, the coupling still is present via the state variables yi and via the source
terms. In case of a perturbed equilibrium Y + y we have eigenvalues λ±i (Yi + yi) of
Ai(Yi + yi) and left and right eigenvectors `±i (Yi + yi) and r±i (Yi + yi), respectively.
Accordingly, ξ±i (Yi + yi) satisfy

(29) ∂tξ
±
i + λ±i (Yi + yi)∂xξ

±
i = `±i (Yi + yi)S̃i(Yi + yi) =: S±i (yi).

We assume that we have a diffeomorphism Hi such that

yi = (y1
i , y

2
i )> = H(ξ+

i , ξ
−
i ) = (h1i(ξ

+
i , ξ

−
i ), h2i(ξ

+
i , ξ

−
i ))>,

together with

H−1(yi) = (ξ+
i , ξ

−
i )> = (h−1

1i (y1
i , y

2
i ), h−1

2i (y1
i , y

2
i ))>.

We now partition the system into Riemann invariants with labels “−” and “+”:
ξ− := (ξ−1 , . . . , ξ

−
n )> and ξ+ := (ξ+

1 , . . . , ξ
+
n )>. We further introduce the diagonal

matrix

Λ(ξ+, ξ−) := diag(λ−1 (H1(ξ+
1 , ξ

−
1 )), . . . , λ−n (Hn(ξ+

n , ξ
−
n )),

λ+
1 (H1(ξ+

1 , ξ
−
1 )), . . . , λ+

n (Hn(ξ+
n , ξ

−
n )))

and split Λ into Λ = (Λ−,Λ+)> with

Λ− = diag(λ−1 (H1(ξ+
1 , ξ

−
1 )), . . . , λ−n (Hn(ξ+

n , ξ
−
n )))

and
Λ+ = diag(λ+

1 (H1(ξ+
1 , ξ

−
1 )), . . . , λ+

n (Hn(ξ+
n , ξ

−
n ))).

Moreover, we introduce the system source vector

S(ξ+, ξ−) := (S−1 (ξ+
1 , ξ

−
1 ), . . . , S−n (ξ+

n , ξ
−
n ), S+

1 (ξ+
1 , ξ

−
1 ), . . . , S+

n (ξ+
n , ξ

−
n ))>.

Then, (29) can be written as

∂tξ
± + Λ±(ξ+, ξ−)∂xξ

− = S±(ξ+, ξ−).

We would like to express the boundary and nodal conditions in terms of the new
variables ξ±. In fact, we would like to have a two-point boundary value problem.
Clearly, one can impose boundary conditions at x = 0 for ξ+, while at x = 1 we may
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impose boundary conditions for ξ−. Thus, we are aiming at a reformulation of the
boundary and nodal conditions in the following way,

ξ+(0, t) = G1(ξ−(0, t); s, u) +R1(t; s, u),

ξ−(1, t) = G2(ξ+(1, t); s, u) +R2(t; s, u),

such that, finally, the entire system (19) can be put into the standard format

(30)

∂tξ
± + Λ±(ξ+, ξ−)∂xξ

− = S±(ξ+, ξ−),

ξ+(0, t) = G1(ξ−(0, t); s, u) +R1(t; s, u),

ξ−(1, t) = G2(ξ+(1, t); s, u) +R2(t; s, u),

ξ+(·, 0) = ξ+
0 ,

ξ−(·, 0) = ξ−0 .

It is not obvious, however, how the nodal conditions included in (19) can be transformed
into the format of (30). We will use the particular structure, namely the continuity
conditions and the Kirchhoff-type balance condition as well as the boundary conditions
between two consecutive edges including a valve and a compressor or pump, respectively,

Ei(Yi + yi)(nj) = Ek(Yk + yk)(nj), j ∈ Jπ, i, k ∈ Ij , t ∈ (0, T ),∑
i∈Ij

dijQi(Yi + yi)(nj) = 0, j ∈ J \ Jβ , t ∈ (0, T ),

Cj((Yi + yi)(nj), (Yk + yk)(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij , t ∈ (0, T ),

Bi(Yi + yi)(nj) = uj , j ∈ Jβ , i ∈ Ij , t ∈ (0, T ).

We need to express the equilibrium Yi by the Riemann invariants ξ̃±i and yi = (y1
i , y

2
i )>

by the Riemann invariants ξ±i using the mappings H and H−1. In order to proceed,
we first consider a node nj , j ∈ Jπ, with dj = m. At such a node we have the junction
condition Pj = Pj(ξ

+, ξ−) = 0 with Pj(ξ+, ξ−) given by
E1(ξ̃+

1 + ξ+
1 , ξ̃

−
1 + ξ−1 )(nj)− Em(ξ̃+

m + ξ+
m, ξ̃

−
m + ξ−m)(nj)

E2(ξ̃+
2 + ξ+

2 , ξ̃
−
2 + ξ−2 )(nj)− Em(ξ̃+

m + ξ+
m, ξ̃

−
m + ξ−m)(nj)

...
Em−1(ξ̃+

m−1 + ξ+
m−1, ξ̃

−
m−1 + ξ−m−1)(nj)− Em(ξ̃+

m + ξ+
m, ξ̃

−
m + ξ−m)(nj)∑

i∈Ii dijQi(ξ̃
+
i + ξ+

i , ξ̃
−
i + ξ−i )(nj)

 .

We consider the Jacobian of Pj(ξ+, ξ−) with respect to ξ+ evaluated at (0, 0) and
abbreviate

∂ξ+i
Ei(ξ̃

+
i + ξ+

i , ξ̃
−
i + ξ−i )(nj)|(ξ+i ,ξ−i )=(0,0) =: ∂ξ+i

Ẽi,

∂ξ+i
dijQi(ξ̃

+
i + ξ+

i , ξ̃
−
i + ξ−i )(nj)|(ξ+i ,ξ−i )=(0,0) =: ∂ξ+i

Q̃i.

This yields the Jacobian

Dξ+Pj(0, 0) =



∂ξ+1
Ẽ1 −∂ξ+mẼm

∂ξ+2
Ẽ2 −∂ξ+mẼm

. . .
...

∂ξ+m−1
Ẽm−1 −∂ξ+mẼm

∂ξ+1
Q̃1 ∂ξ+2

Q̃2 · · · ∂ξ+m−1
Q̃m−1 ∂ξ+mQ̃m


.(31)
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Assuming that Dξ+Pj(0, 0) is invertible, by the implicit function theorem, there exists
a function Gj such that

ξ+(nj) = Gj(ξ−(nj)).

Remark 3.2. By the same arguments, one can consider the Jacobian Dξ−Pj(0, 0)
of Pj with respect to ξ− at the point (0, 0). By the construction of the quantities Ei
and Qi it is clear that, once Dξ+Pj(0, 0) is invertible, the same applies to Dξ−Pj(0, 0).
Thus,

∇ξ−Gj(0) = (detDξ+Pj(0, 0))−1 detDξ−Pj(0, 0).

We now look at a serial node nj , j ∈ Jα, containing active elements such as valves
and compressors or pumps, respectively. We have the equation

Cj((Yi + yi)(nj), (Yk + yk)(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij , t ∈ (0, T ).

Upon using the Riemann invariants, this turns into

Cj((ξ̃
+
i + ξ+

i , ξ̃
−
i + ξ−i )(nj), ((ξ̃

+
k + ξ+

k ), ξ̃−k + ξ−k ))(nj), sj , uj)

=: C̃j(ξ
+
i , ξ

−
i , ξ

+
k , ξ

−
i ; s, u) = 0.

In addition, at such nodes, we have the equation

dijQi(ξ̃
+
i + ξ+

i , ξ̃
−
i + ξ−i )(nj)) + dkjQk(ξ̃+

k + ξ+
k , ξ̃

−
k + ξ−k ))(nj))

=: Q̃i(ξ
+
i , ξ

−
i ) + Q̃k(ξ+

k , ξ
−
k ) = 0.

Therefore, the full nodal condition for nodes containing active elements reads

Wj(ξ
+
i , ξ

−
i , ξ

+
k , ξ

−
k ; s, u) :=

(
C̃j(ξ

+
i , ξ

−
i , ξ

+
i , ξ

−
i ; s, u)

Q̃i(ξ
+
i , ξ

−
i ) + Q̃k(ξ+

k , ξ
−
k )

)
= 0.

Thus,

(32) Dξ+Wj(0, 0, 0, 0; s, u) =

(
∂ξ+i

C̃j(s, u) ∂ξ+i
C̃j(s, u)

∂ξ+i
Q̃i ∂ξ+k

Q̃k

)
.

We assume again that Dξ+Wj(0, 0, 0, 0; s, u) is invertible for all choices of s, u. In this
case, there is also a function Gj such that

(ξ+
i , ξ

+
k )(nj) = Gj((ξ−i , ξ

−
k )(nj); s, u).

It is obvious that the controlled simple nodes can also be put into the desired format
without any further assumption. In the above derivations we may always assume that
all nodes nj with dj > 2 lie at x = 0 for all adjacent arcs and all nodes nj with dj = 2
lie at x = 1 for all adjacent arcs. This assumption can be satisfied by artificially
subdividing each arc with a passive node of degree 2. Hence, we have established the
following result.

Theorem 5. Assume that (28) holds, that (31) is invertible for all j ∈ Jπ, and
that (32) is invertible for all j ∈ Jα. Then, System (19) can be rewritten in standard
form (30).
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We can verify the assumptions of Theorem 5 for all applications from Section 2.
We consider here exemplary the case of sewage flow. In case of gas and fresh water,
similar arguments apply.

Example 6. For the shallow water equations we have the Riemann invariants

ξ±i :=
Qi
Ai
± ζi(Ai), ζi(Ai) :=

∫ Ai

0

√
g

awi(hi(a))
da, ξ3

i :=
~Ri
Ai
.

The diffeomorphism and its inverse are given as

ξ+
i − ξ

−
i = 2ζi(Ai), ξ+

i + ξ−i = 2
Qi
Ai
,

Ai = ζ−1
i

(
ξ+
i − ξ

−
i

2

)
, Qi =

ξ+
i + ξ−i

2
ζ−1
i

(
ξ+
i − ξ

−
i

2

)
.

The continuity conditions may have different formats. We choose the internal energy
and the conservation of fluxes

Ei(Ai, Qi) :=
1

2

(
Qi
Ai

)2

+ ghi(Ai).

For details, see [56].

Theorem 5 can be seen as a key for the well-posedness of the abstract system (19)
and hence of all the applications mentioned above in the following sense.

Remark 3.3. We may now use the concept of semi-global classical solutions by Li
Tatsien [59] in order to show existence of solutions of (30) and, hence, of (19), once
compatibility conditions for the data of first and second order are fulfilled and these
data are sufficiently small. We do not want to provide the full results, as these results
can be seen from the literature as particular examples of the general result described
here. See, e.g., [34, 35, 38, 40, 56, 59].

3.3. Discretization and piecewise linearization. In practical applications
the switching structure, i.e., the decision driven part of the process, becomes more
and more important. As there is no “sensitivity method” for discrete optimization
problems, the process of linearization around an equilibrium solution may not be
appropriate. To tackle a problem of the form (19) including switching variables, we
may discretize in time and space.

For the time discretization a typical choice is an implicit Euler scheme. To this
end, we assume that [0, T ] is replaced by grid points t0 = 0 < t1 < . . . < tK = T with
time steps ∆tκ := tκ+1 − tκ, κ = 0, . . . ,K − 1. Then, the discretized state and the
discretized controls can be written as yi,κ := yi(tκ, ·), sj,κ := sj(tκ), uj,κ := uj(tκ),
and the semi-discretized dynamics become

yi,κ+1 + ∆tκÃi(yi,κ+1)∂xyi,κ+1 = ∆tκS̃i(yi,κ+1) + yi,κ, i ∈ I,
Ẽi(yi,κ+1)(nj) = Ẽk(yk,κ+1)(nj), j ∈ Jπ, i, k ∈ Ij ,∑

i∈Ij

dijQ̃i(yi,κ+1)(nj) = 0, j ∈ J \ Jβ ,

C̃j(yi,κ+1(nj), yk,κ+1(nj), s̄j,κ+1, ūj,κ+1) = 0, j ∈ Jα, i, k ∈ Ij ,
B̃i(yi,κ+1)(nj) = ūi, j ∈ Jβ , i ∈ Jj ,

yi,0(·, 0) = yi0, i ∈ I,
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Figure 4. Left: Piecewise linear approximation (blue) and relaxation (gray boxes) of the gas
pressure p according to (8) in dependence of the mass flow q. Right: Piecewise linear approximation
of the source term S of Euler’s momentum equation.

where x ∈ (0, 1).
For the space discretization various possibilities exist. For instance, in [21]

an implicit Box-Scheme is used for the applications mentioned in Section 2. Such
discretization schemes typically give rise to a nonlinear system of equations which then
has to be solved. Given that the problem already involves discrete variables, these
nonlinearities can also be approximated by piecewise-linear functions (see, e.g., [60]).
The idea is visualized in the left part of Figure 4.

An extension of this approach covers the space of feasible states for each arc with
polytopes, yielding a relaxation of the underlying nonlinear equation system; see again
the left part of Figure 4. These systems can then be incorporated more readily into
mixed-integer optimization problems. The outlined approach was developed in [28]
and used in various problems coming from gas and water network optimization (see,
e.g., [30, 31, 51, 61, 67]). We discuss selected results in Section 4.3.

Remark 3.4. The idea of piecewise linear approximations can also be carried
over to the abstract problem (19) prior to discretization. Rather than relying on
the notion of linearization at some equilibrium, a piecewise linear approximation for
the flux function or a piecewise constant matrix for the quasilinear form may be
reasonable. To this end, we introduce a tesselation of the range space of the states
y into a finite set of mutually disjoint polyhedra. On each polyhedron Pλ we assume
that the matrices Ai(yi) are constant Aλi . Similarly, we assume that all matrices
DEi = Eλi , DQi = Qλi , DCj = Cλj , DBi = Bλi , and SDi = Sλi are constant on that Pλ;
see Figure 4 (right), where we give an illustration for a piecewise linear approximation
of the source term S of Euler’s momentum equation.

This turns (19) into a hybrid dynamical system, where the dynamics are given
by a family of affine-linear PDEs along with a discrete selection rule and solutions
are to be understood in the sense of characteristics. Model switching in the sense of
Section 2.4 can then also be included. The quality of the approximation depends on the
granularity of the tesselation. However, in continuous space and time, assuming that
the solution of the piecewise-affine dynamics can be handled in each mode, the Zeno
phenomenon, i.e., an eventual accumulation of discrete events, immediately becomes
an issue for the global existence of solutions. We provide further information and
provide some open questions in this context:

• For scalar hyperbolic equations piecewise continuous flux functions are the
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base for the so called front-tracking method [9, 50]. For systems, the piecewise
linear approach is applied to the Riemann problem rather than the original
PDE.
• Discontinuous flux functions have been considered by Adimurthi and Gowda
[2, 3].

• Control theoretical analysis is available for the case of piecewise affine ODEs,
see e.g., [15, 71, 72].
• Hybrid dynamical PDEs in the above generality have not been studied. If
piecewise linearization is understood in a lumped sense along each edge in the
network, well-posedness and stability analysis is available in [4, 44, 45, 47,
68].

4. Control, stabilization, and optimization. In this section we discuss con-
trollability, stabilizability, and optimal control problems for the models of Section 2.
We also sketch a technique that may lead to an applicable method. For this, we use
the methods and results of Section 3.

4.1. Controllability and stabilizability problems. Exact controllability and
observability, nodal reachability, and feedback stabilizability are crucial problems
in control theory. Of course even more, the controls realizing these properties are
of practical relevance. In exact controllability one wants to reach in finite time T
a prescribed full-state profile across a single element (pipe, canal, etc.) or along a
network thereof at process time T using a minimum amount of boundary controls.
Obviously, the control time in order to achieve this goal is limited below by the speed
of propagation of information along the network. In fact, the time is twice the time a
signal needs to travel from the controlled node to the farthest uncontrolled Dirichlet or
Neumann node. Exact boundary observability refers to the possibility of reconstructing
the initial data, and hence the entire state, from boundary measurement. As in the
previous case, the speed of propagation comes in crucially. In the linear case it is
well-known that exact controllability and observability are dual concepts—they are
equivalent. This is not true for the nonlinear equations discussed in this paper. A
more realistic notion is that of profile nodal reachability. Here one asks whether it is
possible to achieve a prescribed time function (the “profile”) at a given node in the
network. In terms of the application we address here, this means that one is interested
whether a customer can be guaranteed to receive exactly the gas or fresh water he or
she was asking for in an appropriate time window.

For a fixed switching structure, in view of Theorem 5 and Remark 3.3, exact
controllability, exact observability, exact boundary profile nodal controllability, and
uniform boundary feedback stabilizability results follow along the lines of [13, 22,
59] and [34, 35, 56]. Boundary feedback stabilization with or without time delays is
typically achieved via Lyapunov-functions [7, 14, 17–19, 36].

Further, for variable switching structure, uniform exponential stability can be
addressed on the level of linearized models [4–6]. For linear switched systems also a
particular Lyapunov theory is available [48, 49]. The switching mechanism may also
be used for stabilization. This is demonstrated in [55] for the case when switching
only changes the boundary conditions of a linear conservation law.

Remark 4.1. Despite the many individual result that are available—noting that
there are many non-equivalent notions of controllability and observability—we suggest
the following open questions:

• The equivalence of the problem of exact controllability and exact observability
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for quasilinear systems of hyperbolic balance equations is an open problem.
Also the relation to nodal profile controllability is unknown.
• Exact controllability or observability for systems of nonlinear hyperbolic balance
laws using switching controls is open.
• For bilinearly acting controls, as in valves, gates, compressors, or pumps, exact
controllability (observability) is very unlikely to hold. In this case approximate
controllability may be the right question to address. But this also remains
open.
• Stability and stabilizability for switched nonlinear problems are open problems.

4.2. A discrete-continuous optimal control problem. While feedback sta-
bilizability providing closed-loop control is of course very significant in real applications
for the operation of gas, fresh water, or sewage water networks, open-loop and hence
optimal control problems are relevant for various planning purposes. To this end we
consider the formulation of a general discrete-continuous optimal control problem for
non-stationary systems of nonlinear hyperbolic balance laws. Regarding our abstract
model, a discrete-continuous state-control vector (y, u, s) is feasible if it satisfies the
system

(33)

Msi
i ∂tyi +Asii (yi)∂xyi = Si(yi), i ∈ I,

Ei(yi)(nj) = Ek(yk)(nj), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijQi(yi)(nj) = 0, j ∈ J \ Jβ ,

Cj(yi(nj), yk(nj), sj , uj) = 0, j ∈ Jα, i, k ∈ Ij ,
Bi(yi)(nj) = uj , j ∈ Jβ , i ∈ Jj ,

si(t) ∈ {1, 2, 3, 4}, sj(t) ∈ {0, 1} , i ∈ I, j ∈ Jα,
yi(·, 0) = yi0, i ∈ I,

for x ∈ (0, 1), t ∈ (0, T ). We further define the cost functional

I(y, u, s) :=
∑
i∈I

∫ T

0

∫ 1

0

Ii(yi) dxdt+
∑
j∈Jα

∫ T

0

sj(t)ψ
1
j (uj) + (1− sj(t))ψ0

j (uj) dt

+
∑
j∈Jα

∫ T

0

ϕ(sj(t)) dt+
∑

j∈Jα∪Jβ

∫ T

0

‖uj(t)‖2 dt

and the bounds

Ξ(s) := {(y, u) : y−i (s) ≤ yi ≤ y+
i (s), u−j (s) ≤ uj ≤ u+

j (s), i ∈ I, j ∈ Jα ∪ Jβ}

on the state y and the continuous control variables u, which depend on the discrete
control s. With this notation, the discrete-continuous optimal control problem reads

(34) min
(y,u)∈Ξ(s)

I(y, u, s) s.t. (y, u, s) satisfies (33).

Remark 4.2. We note some related work:
• The problem belongs to the class of mixed-integer optimal control problems
(MIOCP) with partial differential equations. The notion of optimal switching
control problems, mixed-integer dynamic optimization problems, and hybrid
optimal control problems are also used for this and related problem classes; for
a discussion see [43, 47, 68].
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• If the PDE model remains fixed, with e.g., si ≡ 1 or si ≡ 2, the problem
reduces to optimal boundary control problems with hyperbolic PDE constraints
and switched boundary data; see [44, 65, 66] for related work addressing scalar
cases.
• Full discretization turns the problem into a (typically very large) mixed-integer
nonlinear problem (MINLP). In the stationary case, i.e., si ≡ 4, or in the case
of very coarse discretizations, these can be solved using structure exploiting
algorithms; see Section 4.3. However, this approach suffers from the curse of
dimensionality when discretization step sizes are reduced to fully resolve the
spatio-temporal dynamics of the system. We are therefore interested in new ap-
proaches for solving such problems, possibly on the level of semi-discretizations
(spatial or temporal), cf. Section 3.3, and using continuous optimality condi-
tions for appropriate subproblems. We outline such an approach in Section 4.4
below. We note that for fixed discrete controls the problem can be approached
via optimality conditions, see e.g., [73] for the scalar case.

4.3. Exemplary computational results for special cases. In this subsection
we discuss computational results for special cases to give an overview of what is the
state-of-the-art for the applications discussed in Section 2. We use two examples: One
from gas network optimization, where we show what state-of-the-art MINLP methods
can achieve on stationary problems and one from fresh water network optimization,
where we show how instationary problems can be tackled. In both cases the solution
approach is based on discretization and piecewise linearization as outlined in Section 3.3.

In the gas network setting, we discuss some of the results of [31]. Here, we consider
the network given in Figure 2. It is a real-world network operated by Open Grid
Europe GmbH and consists of 4189 passive and boundary nodes, whereof 976 are
used as boundary nodes. These nodes are connected by 3550 pipes. Additionally, the
network contains roughly 1000 non-pipe elements, notably 12 groups of compressors
and 401 valves.

In [31] the authors implement a piecewise linearization technique as discussed
in Section 3.3 for the stationary model (M4 and F 4 in our hierarchy) and combine
it with an alternating direction method to compute accurate gas quality parameters
(more precisely, the calorific value). The method was tested on 33 real-world load
scenarios provided by Open Grid Europe GmbH. The results are shown in Table 1.
Here the columns ‖∆P ‖∞, ‖∆rel

P ‖∞, ‖∆π‖∞ show different error measures to evaluate
the quality of the solutions (in order: absolute error in the computed power, relative
error in the computed power, and absolute error in the squared pressures). The
column N shows the number of iterations needed in the alternating direction method.

In the fresh water network example, we discuss one result of Chapter 4 of [61].
Here, the network used is shown in Figure 5. It consists of 16 pipes of 10.5 km total
length, 3 pumps, and 2 valves. There are also 4 storage tanks, which are not part of the
models discussed here. The load scenario is given in Figure 6. As pipe model the water
hammer equations (11) are used, i.e., M2 and F 2 in our model hierarchy. The optimal
control problem is to be solved for a time horizon of one day with a time step size of
one hour. After discretization and piecewise linearization, the resulting mixed-integer
linear problem has a size of 25 077 variables (10 839 binary) and 25 000 constraints
and 19 310 variables (6401 binary). The solution time for this mixed-integer linear
problem is then 41 s using standard solvers. For further details on the methods used,
we refer to Chapter 3 in [61]. This shows that for small networks, such methods can
be used to compute solutions of discrete-continuous control problems. To achieve the
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Table 1
Computational results (taken from [31]) for the L-gas network of Open Grid Europe GmbH; see

Figure 2

Instance ‖∆P ‖∞ ‖∆rel
P ‖∞ ‖∆π‖∞ N Time (s)

L-01 4.21× 10−1 0.0257 0.00 4 4131
L-02 3.63× 10−2 0.0000 0.00 4 943
L-03 6.75× 10−2 0.0000 0.00 4 536
L-04 3.76× 10−1 0.0151 0.00 3 460
L-05 6.64× 10−2 0.0000 0.00 3 313
L-06 6.61× 10−2 0.0000 0.00 3 590
L-07 6.72× 10−2 0.0000 0.00 3 1089
L-08 2.34× 10−1 0.0029 0.00 4 2774
L-09 5.12× 10−1 0.0022 0.00 4 3968
L-10 2.58× 10−1 0.0095 0.00 4 1514
L-11 2.38× 10−1 0.0312 0.00 3 1152
L-12 4.53× 10−2 0.0000 0.00 4 2752
L-13 8.38× 10−1 0.0110 0.00 3 2637
L-14 1.83 0.0111 0.00 3 1617
L-15 1.81× 10−2 0.0000 0.00 6 2671
L-16 2.49× 10−1 0.0028 0.00 3 1647
L-17 5.52× 10−1 0.0110 0.00 3 1697
L-18 4.93× 10−2 0.0000 0.00 5 3940
L-19 1.82 0.0472 0.00 3 2148
L-20 2.74× 10−1 0.0124 0.00 3 2423
L-21 8.79× 10−1 0.0111 0.00 3 2569
L-22 7.78× 10−1 0.0111 0.00 3 2127
L-23 4.03× 10−2 0.0000 0.00 4 1762
L-24 2.55× 10−1 0.0113 0.00 3 2432
L-25 2.45× 10−1 0.0688 0.00 3 3090
L-26 2.71× 10−2 0.0000 0.00 5 1705
L-27 2.27× 10−2 0.0000 0.00 5 1175
L-28 4.45× 10−1 0.0096 0.00 3 1473
L-29 3.72× 10−1 0.0624 0.00 3 1741
L-30 4.68× 10−2 0.0000 0.00 4 2215
L-31 1.17× 10−1 0.0061 0.00 5 3857
L-32 2.97× 10−2 0.0000 0.00 4 1692
L-33 3.64× 10−1 0.0383 0.00 3 1805

goal to compute controls for larger networks in real-time these methods need to be
refined or other methods need to be developed to achieve a synthesis of the discrete
and continuous aspects of the considered problems. The idea of such a synthesis is
outlined in the following section.

4.4. A decomposition approach for discrete-continuous optimal control.
In what follows, we decompose Problem (34) along the continuous and discrete controls
in order to set up an iterative framework. In addition, one may also need to decompose
the network into small sub-networks, possibly consisting of single pipes. This is the
approach of domain decomposition. In optimization and control for systems on metric
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Figure 5. An exemplary fresh water network (taken from [61])
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Figure 6. Load scenario for the water network of Figure 5 (from [61])

graphs, domain decompositions should not only be applied for the sake of simulation
but rather also for optimization. In the ideal case, after decomposition, we arrive at
a fully parallel set of optimization problems to solve. Such strategies are known for
elliptic and linear hyperbolic equations; see [54] for a general reference.

Decomposition is also possible on the level of time so that in principle small
time-space units can be considered in an iterative framework. Using the abbrevia-
tion K := {0, . . . ,K − 1}, the optimal control problem (34) after time discretization
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reads, with x ∈ (0, 1),

min
y,u,s

∑
i∈I

K−1∑
κ=0

∫ 1

0

Ii(yi,κ+1) dx

+
∑
j∈Jα

K−1∑
κ=0

sj,κ+1ψ
1
j (uj,κ+1) + (1− sj,κ+1)ψ0

j (uj,κ+1)

+
∑
j∈Jα

K−1∑
κ=0

ϕ(sj,κ+1) +
∑

j∈Jα∪Jβ

K−1∑
κ=0

‖uj,κ+1‖2

s.t. Msi
i yi,κ+1 + ∆tκÃ

si
i (yi,κ+1)∂xyi,κ+1 = ∆tκS̃i(yi,κ+1) + yi,κ, i ∈ I, κ ∈ K,

Ẽi(yi,κ+1)(nj) = Ẽk(yk,κ+1)(nj), j ∈ Jπ, i, k ∈ Ij , κ ∈ K,∑
i∈Ij

dijQi(yi,κ+1)(nj) = 0, j ∈ J \ Jβ , κ ∈ K,

C̃j(yi,κ+1(nj), yk,κ+1(nj), sj,κ+1, uj,κ+1) = 0, j ∈ Jα, i, k ∈ Ij , κ ∈ K,
B̃i(yi,κ+1)(nj) = ui, j ∈ Jβ , i ∈ Jj , κ ∈ K,
yi,0(·, 0) = yi0, i ∈ I,
(yκ+1, uκ+1) ∈ Ξ(sκ+1), κ ∈ K,

It is clear that the problem above involves all time steps in the cost functional. As a
matter of fact, even for this discrete-time optimization problem, no published method
seems to be available and the development of solution techniques for this setting is an
open and great challenge. Thus, at this point in time, we can only utilize solutions for
stationary problems. To this aim we consider what has come to be known as rolling
horizon control or instantaneous control. The latter amounts to reduce the sums in the
cost functional of the discrete-time problem to a single time step of the discretization.
Thus, for each κ ∈ K and given yi,κ we consider the problem

(35)

min
∑
i∈I

∫ 1

0

Ii(yi,κ+1) dx+
∑
j∈Jα

sj,κ+1ψ
1
j (uj,κ+1) + (1− sj,κ+1)ψ0

j (uj,κ+1)

+
∑
j∈Jα

ϕ(sj,κ+1) +
∑

j∈Jα∪Jβ

‖uj,κ+1‖2

s.t. Msi
i yi,κ+1 + ∆tκÃ

si
i (yi,κ+1)∂xyi,κ+1 = ∆tκS̃i(yi,κ+1) + yi,κ, i ∈ I,

Ẽi(yi,κ+1)(nj) = Ẽk(yk,κ+1)(nj), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijQi(yi,κ+1)(nj) = 0, j ∈ J \ Jβ ,

C̃j(yi,κ+1(nj), yk,κ+1(nj), sj,κ+1, uj,κ+1) = 0, j ∈ Jα, i, k ∈ Ij ,
B̃i(yi,κ+1)(nj) = ui, j ∈ Jβ , i ∈ Jj ,
(yκ+1, uκ+1) ∈ Ξ(sκ+1),

where x ∈ (0, 1) and where we optimize over yκ+1, uκ+1, sκ+1. Problem (35) is a
nonlinear optimization problem that is constrained by a system of ordinary differential
equations on a graph. It contains discrete control variables sκ+1 and continuous
control variables uκ+1. Thus, (35) is still in the format of a mixed-integer optimal
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control problem (MIOCP); cf. Remark 4.2. For the rest of this section we give a
sketch of a two-stage method that may be used to solve problems like (35). Our
aim is to decompose the problem such that we have two problems that are easier to
solve and that allow to design iterative algorithms with convergence or termination
guarantees. To this end, we set up a master problem that optimizes the discrete control
variables sj , j ∈ Jα, for fixed continuous control variables uj , j ∈ Jα ∪ Jβ , and a
subproblem that optimizes a continuous control u given a fixed discrete control s.

Typically, optimizing with respect to discrete controls is harder than optimizing
with respect to continuous controls. This is why one often wants to simplify the
physical model of the master problem. This model may be chosen as, e.g., si = 4 for
all i ∈ I, yielding M4

i , Ã
4
i . Once this MIOCP is solved for (y, s), the optimal switching

structure is delivered to the subproblem, where the more complicated physical model,
i.e., si < 4 for all i ∈ I, is optimized with respect to the continuous control variables u
and a new state y. The optimal state of the master problem will typically be infeasible
for the subproblem. Thus, there will be an error and one has to design a mechanism
that drives this error to zero in the course of an iterative algorithm.

For a more detailed discussion, we now state the master and the subproblem. The
master problem is obtained by (35) with the continuous control u fixed to ū. Moreover,
we assume that the data yi,κ for all i ∈ I from the last time step is given. This yields
the optimization problem

(36)

min
∑
i∈I

∫ 1

0

Ii(yi,κ+1) dx+
∑
j∈Jα

sj,κ+1ψ
1
j (ūj,κ+1) + (1− sj,κ+1)ψ0

j (ūj,κ+1)

+
∑
j∈Jα

ϕ(sj,κ+1)

s.t. Msi
i yi,κ+1 + ∆tκÃ

si
i (yi,κ+1)∂xyi,κ+1 = ∆tκS̃i(yi,κ+1) + yi,κ, i ∈ I,

Ẽi(yi,κ+1)(nj) = Ẽk(yk,κ+1)(nj), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijQi(yi,κ+1)(nj) = 0, j ∈ J \ Jβ ,

C̃j(yi,κ+1(nj), yk,κ+1(nj), sj,κ+1, ūj,κ+1) = 0, j ∈ Jα, i, k ∈ Ij ,
B̃i(yi,κ+1)(nj) = ūi, j ∈ Jβ , i ∈ Jj ,
(yκ+1, ūκ+1) ∈ Ξ(sκ+1)

in yκ+1 and sκ+1. Let now (ŷ, ŝ) be an optimal pair of (36) for fixed u = ū. The
subproblem (in the continuous variables yκ+1 and uκ+1 and for given yκ) is then given
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by

(37)

min
∑
i∈I

∫ 1

0

Ii(yi,κ+1) dx+
∑
j∈Jα

ŝj,κ+1ψ
1
j (uj,κ+1) + (1− ŝj,κ+1)ψ0

j (uj,κ+1)

+
∑

j∈Jα∪Jβ

‖uj,κ+1‖2

s.t. Msi
i yi,κ+1 + ∆tκÃ

si
i (yi,κ+1)∂xyi,κ+1 = ∆tκS̃i(yi,κ+1) + yi,κ, i ∈ I,

Ẽi(yi,κ+1)(nj) = Ẽk(yk,κ+1)(nj), j ∈ Jπ, i, k ∈ Ij ,∑
i∈Ij

dijQi(yi,κ+1)(nj) = 0, j ∈ J \ Jβ ,

C̃j(yi,κ+1(nj), yk,κ+1(nj), ŝj,κ+1, uj,κ+1) = 0, j ∈ Jα, i, k ∈ Ij ,
B̃i(yi,κ+1)(nj) = ui, j ∈ Jβ , i ∈ Jj ,
(yκ+1, uκ+1) ∈ Ξ(ŝκ+1),

where we fixed the discrete control s to ŝ.
We now receive an optimal pair (y∗, u∗) for the continuous nonlinear optimal

control problem (37) and the errors ey := ‖ŷ − y∗‖ and eu := ‖ū − u∗‖. Clearly, in
the next iteration we set ū = u∗.

If we neglect that we would like to choose different models for our hierarchy of
ODEs in the master and subproblem, we mainly constructed a primal alternating
direction method: We splitted the variables and solved the problem for one block
of the variables, fixed the result, and solved the problem for the other block of the
variables. Such an iterative procedure is closely related to general alternating direction
methods (ADMs). ADMs have originally been proposed in the context of nonlinear
variational problems in [27, 33] and have been also used recently for the optimization of
large-scale real-world mixed-integer stationary gas transport problems; see, Section 4.3
and, e.g., [30, 31].

Another way to interpret the sketched iterative procedure is as a method related to
generalized Benders decomposition; see [8, 32]. However, some additional assumptions
must be made and some additional techniques have to be designed if one wants to
embed the decomposition in a Benders-like framework. First of all, the master problem
has to be a relaxation of the overall problem. This is not given if one simply chooses a
coarser physics model in (36) since this does not translate into an embedding of the
corresponding feasible sets. A possible remedy would be to use a relaxation, e.g., given
by a suitably chosen outer approximation; see [23, 24]. Additionally, we also have to
construct Benders-like feasibility cuts (in the case of an infeasible subproblem for a
given discrete control ŝ) and optimality cuts (in case of a feasible subproblem). Since
the overall problem as well as both the master and the subproblem are inherently
nonconvex, standard Benders cuts are not globally valid and one thus has to derive
problem-specific cuts; see [69].

Remark 4.3. The program outlined above is widely open. No general procedure
is known, no convergence results shown on this general level. This can safely be said
to be an open challenge for the discrete-continuous optimization community. More
specifically, one has to answer the following questions:

• Consider a master problem that—after suitable relaxation of the ODE—is
a mixed-integer linear or nonlinear problem (MIP or MINLP) and that can
be solved to global optimality. Assume further that the subproblem can be
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solved to global optimality as well. Under which conditions is it true that the
alternation between master problem and subproblem converges and if it does,
is the solution globally optimal?
• What is the right way to introduce Benders-like cuts in the master problem in
order to take into account (in)feasibility of the subproblem?
• Can one provide special examples for this Benders-type decomposition, where
the questions above can be answered positively!

Alluding to the last point, we can provide a first result in [39], where the authors
exploit MIP and MINLP techniques that have been intensively discussed in [25, 62,
63, 67] and [20, 29, 60] in the context of gas transport problems. A more general but
related approach is given in the recent paper [11].
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