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Abstract Today’s gas markets demand more flexibility from the network oper-
ators which in turn have to invest into their network infrastructure. As these
investments are very cost-intensive and long-living, network extensions should not
only focus on a single bottleneck scenario, but should increase the flexibility to ful-
fill different demand scenarios. In this work, we formulate a model for the network
extension problem for multiple demand scenarios and propose a scenario decom-
position in order to solve the arising challenging optimization tasks. In fact, euch
subproblem consists of a mixed-integer nonlinear optimization problem (MINLP).
Valid bounds are derived even without solving the subproblems to optimality.
Furthermore, we develop heuristics that prove capable of improving the initial so-
lutions substantially. Results of computational experiments on realistic network
topologies are presented. It turns out that our method is able to solve these chal-
lenging instances to optimality within a reasonable amount of time.
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1 Introduction

Gas transmission networks are complex structures that consist of passive elements
and active, controllable elements such as valves and compressors. The behavior of
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the passive elements is entirely governed by the laws of physics and the network
operator has no means to influence that behavior. Pipes are the most important
representative of that group. Other passive elements are for example measure-
ment equipment that causes a pressure drop or artificial resistors modeling e.g.,
extensive piping within stations. Active elements on the other hand are controlled
by the network operator. Several active elements exist: Valves can be open or
close and are a means to decouple different parts of the network. Compressors
and control valves allow to increase and decrease the pressure within technical
limitations. For planning purposes, the relationship of flow through a pipe and the
resulting pressure difference is appropriately modeled by a nonlinear equation. The
description of the active elements on the other side involves discrete decisions, e.g.,
whether a valve is open or closed. Therefore, the model to describe a gas network
is a Mixed-Integer Nonlinear Program (MINLP) and its feasible set is non-convex in
general.

Recent changes in the regulation of the German gas market are creating new
challenges for Transmission System Operators (TSO). Especially the unbundling of
gas transport and trading reduces the influence of network operators on trans-
portation requests. Greater flexibility in the network is therefore demanded and
the networks have to be extended accordingly. Traditionally, deterministic plan-
ning approaches focus on one bottleneck situation. Accordingly, the solutions are
fine-tuned to that scenario. In practice, however, the TSOs are obliged by the reg-
ulators and by contracts with gas traders to ensure a feasible network operation
in a large range of different flow scenarios (also known as nominations). Consid-
ering uncertainty in the form of a set of scenarios leads to more flexible network
extensions that can meet future demands more efficiently. In order to be protected
against such a finite set of different flow scenarios, we model the problem in a
robust optimization framework.

Determining best possible network extensions at minimum cost is a difficult
task as the network can be extended in various ways. In principle any two points
can be connected by a new pipe and pipes are available in different standardized
diameters. Building an additional pipe next to an existing one is called looping.
Loops are the favorite extensions of network operators as they are considerably
cheaper than new pipes as the regulatory process is much simpler and the TSO
most often already owns the land the pipe is built on. In addition to pipes, new
active elements can also be added anywhere in the network. Hence, generating
meaningful extension candidates is a challenging task on its own. In this work we
assume extension candidates already given as part of the input to the problem
and consider the question of choosing a subset that renders all scenarios feasible
at minimal cost.

While typically network extensions are increasing the transport capacity of a
network, they can also cause new infeasibilities. A new pipe allows flow but cou-
ples the pressures at the end nodes, possibly rendering previously feasible transport
requests infeasible. An additional valve retains all possibilities of the original net-
work. Closing the valve forbids flow over the pipe which effectively removes the
pipe from the system.

In this work, we present a robust model for gas network extension that protects
the TSO against a finite set of scenarios (i.e., transport requests). A branch-and-
bound algorithm based on scenario decomposition is proposed that solves the net-
work extension problem for the individual scenarios as subproblem. The algorithm
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provides lower bounds on the obtainable cost such that the quality of solutions
can be accessed. While the algorithm is guaranteed to find the optimum solution,
we incorporate heuristic methods that prove capable of finding high quality solu-
tions and in turn speed up the optimization. A computational study on realistic
network topologies shows the effectiveness of our approach. Our method is able
to solve challenging instances with up to 256 scenarios whose scenario-expanded
MINLP formulations have hundreds of thousands of variables and constraints to
global optimality in a reasonable amount of time.

This paper is organized as follows. Section 2 gives an overview over the math-
ematical model for gas networks and its extension. The decomposition method is
presented in Section 3 together with some details about primal and dual bounds
and results on the ability to reuse solutions from previous optimization runs over
the same scenario. Section 4 presents the results of computational experiments.
Section 5 provides an outlook on planned future work on the topic. A short version
of this paper has been published in Schweiger [2016].

2 Models and algorithms for gas network optimization

2.1 Modeling gas transportation networks

In this section, we describe the mathematical optimization model for topology
planning in a deterministic setting. We restrict our presentation to a level needed
to understand the mathematical structure of the problem. The reader is referred
to Koch et al. [2015] and Pfetsch et al. [2014] for further details on the assumptions
underlying our model and for precise formulas for the coefficients.

The gas network is modeled as a directed graph G = (V,A), where the arcs A
are physical network components. Within the network, gas is to be transported
from entries to exits. The flow at these points if given by a so-called nomination

and is modeled by a vector qnom ∈ RV where positive and negative values of qnomu

means that flow is leaving and entering the network at node u, respectively.
We assume a steady-state model where dynamic effects are not taken into

account and pressure within the arcs is assumed to be constant. Therefore, we
introduce pressure variables pu to track the pressure at node u ∈ V . Flow though
an element is modeled by a variable qa for arc a ∈ A. Flows in the direction of
the arcs are encoded by positive values for qa while negative values encode flow
in the reverse direction. We assume a homogeneous gas composition. Under this
assumption, gas blending effects at the nodes can be ignored and the flow respects
the flow conservation constraints∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = qnomu ,

where δ−(u) and δ+(u) are the arcs entering and leaving node u, respectively. Flow
conservation constraints at all nodes ensure that the flow is compliant with the
given nomination. Additionally, flow and pressure can have technical upper and
lower bounds.

The relationship between flow and pressure depends on the network element,
i.e., on the type of the arc. Generally, network elements can be partitioned into
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two groups: Passive and active elements. In the following, we will shortly review
the model for pipes as the most prominent representative of a passive element and
the models of the different active elements.

Pipes. Pipes are used to transport gas over long distances. A difference in the
pressures in the end points is responsible for gas to flow. Mathematically, the
relationship between the pressure at the end nodes u and v of a pipe a and the
flow qa is modeled by the equation

αa|qa|qa = p2u − βap2v (1)

The parameters αa and βa are determined by the properties of the pipe and are
assumed to be constant.

The right hand side can be linearized by reformulating it using variables for
the square of the pressure πu = p2u. Since the pressure is always positive (above
the atmospheric pressure), this reformulation does not introduce ambiguities. Fur-
thermore, we introduce an auxiliary variable za and split the equation into a linear
and a nonlinear equation:

αa|qa|qa = za (2)

za = π2u − βaπ2v . (3)

The only remaining nonlinearity is then present in Eq. (2), see Fig. 1 for a plot. If
the pressure variable pu is needed to model a network element, it is added to the
model together with the coupling constraint πu = p2u, otherwise it is omitted.

Active Elements: Valve, control valve, and compressor. The three most important
active elements are valves, control valves and compressors. Valves can be used to
disconnect parts of the network. Control valves have the additional feature that
they are able to reduce the pressure while compressors can increase the pressure.
In contrast to pipes, whose behavior is completely ruled by gas physics, the state
of active elements can be controlled by the network operator.

The simplest active element is a valve. Valves have two possible states, open
and closed, which is modeled by a binary variable sa. An open valve (sa = 1) does
not cause a change in the pressure and allows flow within some technical bounds.
A closed valve (sa = 0) does not allow flow, but completely decouples the pressures
at both end points. Mathematically, the conditions for a valve a = (u, v) can be
expressed as follows:

sa = 0 ⇒ qa = 0 (4)

sa = 1 ⇒ pu = pv (5)

These implications can be implemented using indicator or so-called Big-M con-
straints.

In addition to open (called “bypass”) and closed, control valves and compres-
sors have an additional possible state: The active state. When in this state, the
actual increase or decrease of pressure takes place. Compressors and control valves
use two binary variables sbpa and saca to decide the state of the element. If sbpa = 1,
then the element is in bypass mode. If saca = 1, the element is in active mode. If
both variables are zero, the element is closed.
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A control valve a = (u, v) allows the reduction of the pressure in direction of
the flow within certain bounds when in active state. The constraints for a control
valve are thus:

sbpa = 0, saca = 0 ⇒ qa = 0 (6)

sbpa = 1, saca = 0 ⇒ pu = pv (7)

sbpa = 0, saca = 1 ⇒

{
qa ≥ 0

0 < ∆a ≤ pu − pv ≤ ∆a
(8)

sbpa + saca ≤ 1 (9)

The equations (6)–(8) describe the three states. Inequality (9) makes sure that
exactly one of the three states is selected.

Compressors are by far the most complex elements. The pressure increase de-
pends on the flow and is governed by the so-called characteristic diagram which
typically is a non-convex set. We use a linear approximation to the characteristic
diagram and remain with the statement that the triple (pu, pv, qa) must be in a
certain polytope.

Since bypass and closed state of compressors and control valves behave iden-
tically to a valve, we also model valves with the two binary variables sbpa and saca ,
but fix saca to zero.

The question whether a network allows feasible operation for a given nomina-
tion qnom is called nomination validation. Nomination validation is a challenging
task on its own which network operators routinely face in daily operation as well as
tactical and strategic planning. Formulated in this way, it is a feasibility problem
without objective function. We refer to Koch et al. [2015] and Pfetsch et al. [2014]
for a more detailed description of the network elements and their coefficients as
well for details on the nomination validation problem.

2.2 Deterministic network extension

In this section, we extend the feasibility problem of checking whether a nomination
allows a feasible operation in a network to the selection of a cost-optimal set of
network extensions that allows the operation of a previously infeasible nomination.
More details on the approach for deterministic network extension can be found in
Fügenschuh et al. [2011].

For this question to be well posed, we assume a set of possible extension can-
didates E is given. An extension e ∈ E can be a new pipe to be built (possibly
as a loop) or the insertion of an active element at the beginning or end of an
existing pipe in the network. In the case of a new pipe, an active element is always
added at one of the end points. This is not only important for our model, but has a
practical background. A new pipe connects previously unconnected or only loosely
connected parts of the network and might effect the flow and pressure distribution
in the entire network. In the extreme case, the construction of a new pipe can
render previously feasible nominations infeasible. Closing the active element at
the endpoints neutralizes the effect of the pipe and yields the original network.

We assign an integer variable xe to each extension candidate e ∈ E. Control
valves and compressors augment the functionality of the valve by the respective
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active state as all elements have closed and open/bypass states. Therefore, when
the active state is not used, a much cheaper valve should be built instead of a
control valve or a compressor. There are three possible outcomes of the investment
decision for extension e which are translated into the variable xe:

xe = 0: Do not build e.
xe = 1: Build extension e with a valve instead of the proposed active element.
xe = 2: Build extension e with the proposed active element.

If the active element is a valve, then xe can only take the values 0 and 1. The
three options form a hierarchy, where every option is at least as powerful as the
ones with a smaller value, but usually at a higher cost.

The general approach consists in extending the network by the candidates
and penalizing the use of the extensions by cost on the binary variables of the
corresponding active elements. The operation decision of the active element is
then translated into the decision whether and how the extension is built. Consider
for example a new pipe or loop and its corresponding active element. As closing
the active element means that no flow goes through the pipe and the effect of the
pipe is neutralized, no cost is associated to the closed state. Using the bypass state
means that flow goes along the pipe, but the active element is not used in its active
state. Thus, it suffices to build a valve to activate and deactivate the new pipe.
The cost for the bypass state is thus the cost for the new pipe plus the cost of a
valve. Finally, if the active state is used, then the pipe and the proposed element
have to be constructed and therefore the cost associated to the active state is the
cost of the pipe plus the cost of the proposed active element. The translation from
the operation variables sbpa and saca to the investment variable xe is in this case

xe = sbpa + 2saca .

In the other case of an active element being added to the end of an existing pipe,
the meaning of bypass and closed state are reversed. When in bypass, the proposed
element has no effect and no cost occur while when in closed state, a valve has to
be constructed:

xe = 1− sbpa + saca .

The cost for the extension e is modeled by an increasing function ce(xe) which
is only evaluated at integer points. Using the variables sbpa and saca the objective
can be formulated easily.

We denote by F the set of all vectors x = (xe)e∈E such that the extended
network allows a feasible operation. In our situation, a closed form description of
F is not at hand and optimization over this set corresponds to the solution of a
non-convex MINLP due to the complex model for physics and discrete decisions.
In an abstract form, the deterministic extension planning problem can now be
stated as

min c(x) (SingleScen)

s.t. x ∈ F

This formulation is complete, but hides the difficulties in describing and optimizing
over the set F . An MINLP model of this problem can be solved by different
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Fig. 1: Nonlinear equation |qa|qa = za and a linear approximation on the original
interval (a) and after one branch at qa = 0 (b).

techniques. The approach used in this paper uses an outer approximation of the
nonlinear function that is refined in the course of the algorithm and is described
in the following section. An alternative is the approximation or relaxation of the
nonlinear function by piece-wise linear functions which yields a MILP to be solved
(see for example Koch et al. [2015]).

2.3 Algorithmic approach for the deterministic network extension problem

The model has two complicating features: Discrete decisions as well as nonlinear
equations. Discrete decisions are essential to model the settings of active devices
which are naturally discrete. Nonlinearities arise from the model of the gas physics
and add to the nonconvexity of the feasible set. The result is a non-convex MINLP,
which is a very broad class of mathematical programs and belongs to the most
challenging optimization task that are currently studied. In this section we briefly
describe the algorithmic framework which most MINLP solvers use to tackle such
a problem. We sketch only the basic principles and refer to Berthold et al. [2012]
and Vigerske [2012] for the details on the algorithm and the implementation in the
solver SCIP. SCIP has been extended to solve gas network optimization problems
effectively, and our method uses the corresponding subroutines in the subproblems.

The algorithmic paradigm to handle both features is branch-and-bound. To
this end, we first construct a linear relaxation for the nonlinear equation Eq. (2).
This is done by replacing the non-convex set of feasible points by a larger set
that contains all feasible points, but is described solely by linear inequalities. The
convex hull of the feasible points yields the best relaxation, but it is not necessarily
a polyhedron. Figure 1a shows the feasible set for the equation |qa|qa = za as solid
line and a linear relaxation as shaded area. Usually the relaxation is strengthened
by additional valid inequalities (also called cutting planes) during the algorithm.

The relaxation is then used within a LP-based branch-and-bound algorithm.
When a relaxation is integer feasible, however, it is not necessarily feasible for the
nonlinear problem as the nonlinear equation is relaxed. If the point is in the interior
of the convex hull of the feasible points it cannot be separated by a linear cutting
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plane without also cutting off feasible points. In this case, the two subproblems are
created by splitting the domain of za into two parts. As the domain of za is smaller
in both subproblems, the relaxation can be improved and the current solution of
the relaxation can be separated. Branching on a continuous variable is generally
referred to as spatial branching. The effect of spatial branching is then illustrated
in Fig. 1b, where the branching point is za = 0 and the outer approximations in
both branches are drawn in the same picture.

3 Gas network topology planning for multiple scenarios

The extension of the gas infrastructure involves long-lasting and cost-intensive
investments. The operators therefore seek extensions that solve several potential
bottleneck situations at once, are flexible in the future operation and play well
with possible subsequent network extensions. Clearly, deterministic optimization
does not respect any of these objectives. Instead it selects a set of extensions
that is tailored towards the particular nomination that might not be relevant
for the future. It is therefore of high importance to consider several nominations
simultaneously in order to avoid over-tuning and prepare the network for a large
range of different flow distribution patterns.

Robust Optimization (Ben-Tal et al. [2009]) is a framework to protect against
uncertainty in the input data of an optimization problem. Instead of assuming
that the data that describes the objective and the constraints is known, the input
data assumed to realize itself within an uncertainty set. The decisions that are to
be determined then must be robust, i.e., they need to be feasible no matter how
the data manifests itself with the uncertainty set. Furthermore, a robust solution
is sought that yields the best guaranteed cost.

For linear mixed-integer problems, tractable robust counterparts can be derived
for several classes of uncertainty sets, such as conic or polyhedral sets. As we are
facing a complex MINLP, much less is known about tractable robust counterparts.
We therefore consider a discrete uncertainty set that consists of a finite number of
nominations. This reflects the situation in which different scenarios are collected
from historical data or from future forecasts, which was also the case for our
industry partner. We will refer to the elements in the uncertainty set as scenarios.

The decision variables in our application naturally decompose into two stages:
In the first stage, the decision which extensions are built has to be taken. In the
second stage, the operational decisions, i.e., the control of the active devices and
the resulting physical values such as pressure and flow, have to be determined
for all scenarios. While the first stage decisions are taken once for all scenarios,
the second stage decisions are taken independently in each scenario and have to
take the first stage decisions into account. Accommodating robust multi-stage
optimization problems is an active research field and several different approaches
have been proposed, among them Adjustable Robust Optimization (Ben-Tal et al.
[2004]) and Recoverable Robust Optimization (Liebchen et al. [2009]).

In the context of our multi-scenario extension planning problem, the scenarios
represent nominations and we seek for a set of extensions at minimal cost such
that the resulting network allows a feasible operation of all scenarios. We stress
that in the different scenarios not all extensions that have been built have to
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be actually used. However, the hierarchical model of network extensions from
Section 2.2 ensures that extensions can always be used at a smaller scale.

The problem can then be formulated as a two-stage robust program. The first
stage variables y indicate the extent to which extensions are built. This decision is
independent of the scenario. In a particular scenario ω, the second stage variables
xω ∈ Fω describe the extent to which the extensions are used. The multi-scenario
problem can then be stated as:

min c(y) (MultiScen)

s.t. xω ∈ Fω for all ω ∈ Ω (10)

xω ≤ y for all ω ∈ Ω (11)

y ≤ y ≤ y (12)

The constraints (11) ensure that an extension used in at least one scenario also
has to built. Together with the increasing objective function c(y), (11) simply is
the linearization of the maximum

y = max
ω∈Ω

xω. (13)

Clearly, all variables have to be nonnegative, but we state explicit bounds as
they will be handy in the description of the algorithm in Section 3.1. Integrality
constraints can be omitted as they are encoded in Fω for xω and enforced by (13).
Note that this model is only valid because the extensions form a hierarchy where
more expensive extensions only add functionality. The model also accounts for the
fact that extensions might be used to a smaller extent than possible.

In principle, a scenario-expanded problem can be formulated by adding all
constraints that describe the relationship xω ∈ Fω explicitly to the model. Then
the operational decisions get another index for the scenario as they act on the
second level of the problem. This formulation could be solved with the algorithm
from Section 2.3. However, since the problem is challenging for even one scenario,
there is no hope that the resulting MINLP can be solved for a non-trivial number
of scenarios.

The simple constraints (11) are the only connection between different sce-
narios. Without these constraints the model would decompose as each scenario
problem could be solved individually. A decomposition approach therefore seems
most promising for this model. Known decomposition approaches make struc-
tural assumptions that are not fulfilled in our model. Classical Generalized Ben-
ders Decomposition (Geoffrion [1972]) requires convexity to provide optimal solu-
tions (Sahinidis and Grossmann [1991]). A non-convex variant by Li et al. [2011]
was used to solve a stochastic pooling problem for gas network planning under
uncertainty (Li et al. [2011]) but allows binary variables only in the first stage. In
general, due to the lack of knowledge of the structure in the set Fω, feasibility cuts
that carry more information than just forbidding one particular assignment of y
are difficult to obtain. We therefore propose a decomposition where the constraints
(11) are ensured by branching on the y variables.
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3.1 Scenario decomposition: A branch-and-bound approach

In the following we outline the algorithmic approach that consists in scenario
decomposition in combination with branching on y variables.

First, we solve the scenario subproblems (SingleScen) independently and possi-
bly in parallel for all scenarios ω ∈ Ω. Due to the complexity of the problem, which
is a non-convex MINLP even for one scenario, we aim to leverage our capabilities
of solving these problems and chose a setting where second stage decisions are
decided by a black-box solver we don’t want to interfere with. This way we also
directly benefit from future improvements of solvers for non-convex MINLP. The
non-convex problems are encapsulated but we can still use the known structure of
the solution space in the design of the algorithm.

If one scenario subproblem is infeasible, the multi-scenario problem is infeasi-
ble. If all subproblems are feasible, we denote the best solution found for scenario
ω by xω. A feasible solution to the multi-scenario problem can be computed by
setting

y?e = max
ω∈Ω

xωe ,

i.e., by building all extensions that are used in at least one scenario.

Next, we identify extensions that disagree in the extent the extension should
be built, i.e., extensions e ∈ E for which it is

min
ω∈Ω

xωe 6= max
ω∈Ω

xωe . (14)

Branching on the y variables is used to synchronize the investment decisions in the
different scenarios. To this end, an extension e for which (14) holds and a value τ
between minω∈Ω x

ω
e +1 and maxω∈Ω x

ω
e is chosen and two subproblems, i.e., nodes

in the branch-and-bound tree, are created: one with the condition ye ≤ τ − 1 and
one with the condition ye ≥ τ . In the two nodes that emerge the variables y now
have non-default bounds, but otherwise the structure of (MultiScen) is unchanged.
In consequence, a branch-and-bound tree is built, where each node is identified by
the bound vectors y and y.

In the nodes, the subproblems have to be modified in order to reflect the
bounds on the y variables. Extensions e whose lower bound ye is greater than zero
are built to this extent and the cost are charged as fixed cost in the subproblems.
In addition, the extension might be used with a value larger than ye, in which case
additional cost is charged. The cost is thus computed as max

(
ce(ye), ce(x

ω
e )
)
, an

expression which is linearized easily. Upper bounds ye are applied to xωe to control
the use of extension e in scenario ω.

The modified single-scenario problem for scenario ω and bounds y and y then
reads as:

min
∑
e∈E

max
(
ce(ye), ce(x

ω
e )
)

(SingleScenω)

s.t. xω ∈ Fω

xω ≤ y
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Hence the subproblem is again a single-scenario extension planning problem with
an adapted objective function and upper bounds on some variables which forbid
the usage of certain extensions.

In most branch-and-bound algorithms a relaxation is used to guide the algo-
rithm and produce lower bounds. Tighter bounds on the problem remove solutions
from the relaxation and thus the objective function of the relaxation can only be-
come worse by tightening the bounds. In our case, the value of the multi-scenario
problem (MultiScen) also deteriorates as the bounds get tighter since the search
space is restricted. Therefore nodes which are deeper in the tree, i.e., have tighter
bounds, have a lower or an equal optimal objective value than higher ones. A lower
bound on the solution value of the multi-scenario problem associated to a node of
the branch-and-bound tree, i.e., to a pair of bounds (y, y), enables to prune the
node if this lower bound is worse, i.e., larger, than the value of the best known
solution. In this case, no improving solution can be found in the subtree associated
to the node and the node can reliably be pruned from the branch-and-bound tree.
A lower bound on the solution value of a minimization problem is also referred to
as dual bound while feasible solutions are also known as primal solutions and the
value of the best known feasible solution as primal bound. If primal and dual bound
coincide, the problem is solved to optimality as the dual bound ensures that no
solution with a better objective value can exist. The following two sections study
dual bounds and primal solutions for our problem.

3.2 Dual bounds

Lower bounds for the single-scenario problems can be instantly translated into
lower bounds for the multi-scenario problem. Intuitively, the cost to ensure simul-
taneous feasibility of all scenarios has to be greater than for any single scenario.
The following short lemma formalizes the argument.

Lemma 1 Let the objective function be non-negative. Then any dual bound for problem

(SingleScenω) for any scenario is also a dual bound for problem (MultiScen).

Proof Let c be a dual bound to (SingleScenω) for scenario ω, i.e., c ≤ c(xω) for
xω ∈ Fω. With constraint (11) and the fact that the objective function c(.) is
increasing in every direction, we have c ≤ c(xω) ≤ c(y) for any feasible y. Therefore,
c is also a lower bound for problem (MultiScen). ut

It is clear that the constant value c(y) is a lower bound on the objective value
for (SingleScenω). As tighter bounds alter the objective function and the solution
space of the subproblems it is not obvious that the solution value of the subproblem
might only increase with tighter bounds (y, y). The following lemma however states
that this is the case.

Lemma 2 Let c∗ be the optimal value of (SingleScenω) for some scenario ω and for

the bounds (y, y). Consider a second pair of more restrictive bounds (ỹ, ỹ) with ỹ ≥ y

and ỹ ≤ y and its optimal value c̃∗ for (SingleScenω). Then c∗ ≤ c̃∗.

Proof We use induction over n = ‖ỹ − y‖+ ‖ỹ − y‖ where ‖.‖ is the `1-norm. For
n = 0, the problems and thus their optimal objective values coincide and our claim
holds. For the induction step n = 1, we distinguish between a tightened upper and
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lower bound. In case a lower bound is tightened, i.e., ỹe > ye for some e, then the
search space remains the same, but the objective function increases for ye = xωe .
In the case where an upper bound is tightened, i.e., ỹe < ye, the search space
is restricted and the objective functions remains unchanged. In both bases the
objective function value deteriorates. ut

This result will be used in later sections as it ensures consistency of the dual bound
of the subproblem.

3.3 Primal solutions

We propose three ways to generate or to improve feasible solutions:

From the solutions of the subproblems: First, by construction the union of all ex-
tensions used in the different scenarios constitutes a primal solution for the multi-
scenario problem. Therefore, we construct a solution to (MultiScen) in every node
by setting y = maxω∈Ω x

ω
e where xωe is taken as the best solution for scenario ω.

1-opt heuristic: Second, we observed that checking if a small subset of extensions
is feasible is typically very fast. This observation is used by a 1-opt procedure that
takes a solution to (MultiScen), decreases one variable that has been chosen to
take value ye > 0 by 1, and checks all scenarios for feasibility. Of course, a priori
it is not clear which ye > 0 to choose. Several options have been explored. The
most promising is to sort the ye according to the possible saving ce(ye)− ce(ye −
1) realizable by decreasing its value by one and consider extensions with small
saving first. The rationale behind this is that often these “small” extensions are
used by scenarios which are rather close to feasibility and some more expensive
extensions used in the more challenging scenarios often also ensures feasibility of
these almost feasible scenarios. Therefore chances are high that these extensions
can be removed. Extensions with higher savings are likely to render some scenario
infeasible as their effect can’t be compensated by the other extensions in the
solution.

In order to protect ourselves against outliers, a strict timelimit is used when
checking the scenarios for feasibility. Note, that during the 1-opt heuristic all ex-
tensions are fixed and the problem is a feasibility problem (nomination validation).
Therefore, only a solution is needed to solve the problem and no time is used to
prove optimality.

Best-known heuristic: Third, we solve an auxiliary problem to compute the best
known multi-scenario solution taking into a account all solutions to the sub-
problems that the solver found during its solution process.

Optimal single-scenario solutions are very specialized in fixing the bottleneck
of the particular scenario. When facing uncertainty in the data, these solutions are
not likely to be feasible in the perturbed problems. The optimal solution to the
problem with uncertain data is thus often suboptimal for each individual scenario
but is able to balance the needs for the different scenarios (e.g., Wallace [2010]).
In this light, it seems reasonable to consider all known solutions to scenarios in
order to construct a multi-scenario solution.
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During the solution process of a branch-and-bound solver, all feasible solutions
the solver encounters are collected and stored in a solution pool. These include solu-
tions that are the best known at the time of finding them but also non-improving
solutions that might be used in improvement heuristics by the solver. During and
in particular after the optimization, the user can query all solutions in the pool.
We collect the solutions for some scenario ω in the set Sω ⊆ Fω. Using these
solutions provides two benefits. First, they might be suitable solutions to one of
the single-scenario problems that are solved in the remaining solution process. All
solutions from Fω are therefore added to the solver as start solutions whenever a
single scenario needs to be solved. Second, we construct the “best known” solu-
tion for the multi-scenario solution by solving an auxiliary MILP. To this end, we
use indicator variables zx for each x ∈ Sω and each scenario ω. To ensure the sce-
nario feasibility constraint (10) the MILP has select one solution for each scenario.
Furthermore, we need to ensure that all extensions that are used in the selected
solutions are built. This leads to the following MILP:

min c(y) (15a)

s.t.
∑
x∈Sω

zx = 1 for all ω ∈ Ω (15b)

x · zx ≤ y for all x ∈ Sω, ω ∈ Ω (15c)

zx ∈ {0, 1} for all x ∈ Sω, ω ∈ Ω (15d)

y ≤ y ≤ y (15e)

The program has the building indicator variables y and the same objective function
as before. Auxiliary variables to formulate the objective function are omitted.
Constraint (15b) says that a feasible solution has to be selected for every scenario
ω. The term x · zx in (15c) is a vector-scalar multiplication whose result is a
(column-)vector as is y. Constraint (15c) says, that extensions used in a solution
x have to be built if the solution is selected, i.e., zx = 1. The solution to this
program gives the best solution to the multi-scenario problem taking all solutions
that the solver has found so far for the single scenarios into account.

Note that the program (15) is also a complete description of the multi-scenario
problem if Sω = Fω, i.e., if Sω is the set of all feasible solutions. Singh et al.
[2009] use this formulation and perform a Dantzig-Wolfe decomposition to solve the
continuous relaxation of (15). The pricing problem is then again a single-scenario
problem with the dual variables in the objective function. In their application these
solutions are mostly integer feasible. In principle heuristics or a Branch-and-price
scheme is needed to generate integer feasible solutions with this approach.

3.4 Reusing solutions

During the course of the proposed branch-and-bound procedure, the bounds y

and y are tightened, and adjusted single-scenario problems are repeatedly solved.
Two instances of the single-scenario problem for a scenario only differ in the ob-
jective function and the upper bound on the extension variables as discussed in
Section 3.1. In some important cases, not all scenario subproblems need to be
solved again since we already know the optimal solution. As an example, take the
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extreme case where a scenario is found to be feasible without extensions. Clearly,
the procedure should never touch this scenario again.

In order to decide whether a solution x ∈ Fω from a previous node can be
reused, we need to take the bounds (yx, yx) under which the solution was computed
and the current bounds (y, y) into account.

We start with the simple observation that if all the extensions in a solution are
already built, then the solution is optimal for the restricted problem:

Lemma 3 If x ∈ Fω and x ≤ y, then x is an optimal solution for (SingleScenω) for

bounds (y, y).

Proof Clearly x is feasible for (SingleScenω) for bounds (y, y). As the objective
function is increasing, its cost equals c(y) which is a lower bound for the sub-
problem. ut

Observe that in this case it is irrelevant for which bounds x was computed and
that it is not required that it was an optimal solution when it was computed.

The previous lemma examined the situation where all extensions that are used
are already built. The next lemma treats the opposite situation where we are
using more than has been built and no built extension is unused. In this situation
the solution has to be optimal for some bounds and the new bounds need to be
stronger than the previous ones.

Lemma 4 Let x ∈ Fω be an optimal solution to (SingleScenω) given the bounds

(yx, yx). Let (y, y) be tighter than (yx, yx), i.e., y ≥ yx and y ≤ yx.
If y ≤ x and x ≤ y, then x is an optimal solution to (SingleScenω) for bounds

(y, y).

Proof The crucial point is the optimality of x given the bounds (yx, yx). Since
x ≤ y, the solution is still feasible for (y, y). Since y ≤ x the solution value of x
remains the same for (y, y) as it was for (yx, yx). The value c(x) was a dual bound
to (SingleScenω) with respect to the bounds (yx, yx). Due to Lemma 2, the dual
bound can only have increased by using tighter bounds. In total, x is a feasible
solution whose objective value matches the dual bound and is therefore optimal.
ut

The previous lemmas dealt with extreme cases where solution dominates the lower
bound or vice versa. The situation becomes tricky if a solution x neither dominates
nor is dominated by the current lower bound vector y. In this case the solution
does not fully use extensions that are already built but uses extensions that are
still undecided. We have to make sure that these unused, but built extensions
cannot help to find cheaper overall solution. Define for some solution x ∈ Fω the
set I of extensions where the lower bound has been increased compared to when
the solution was found

I = {e ∈ E | ye > yxe}

and the set J of those extensions where the solution x uses more than what is
already built

J = {e ∈ E | ye ≤ xe}.

The following lemma generalizes Lemma 4.
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Lemma 5 Let x ∈ Fω be an optimal solution given the bounds (yx, yx) and let (y, y)
be tighter than (yx, yx), i.e., y ≥ yx and y ≤ yx.

If I ⊂ J and x ≤ y, then x is an optimal solution to (SingleScenω) for bounds

(y, y).

Proof In contrast to Lemma 4, there might be extensions that are decided to be
built to a larger extent than they are used in the solution (ye > xe). However,
the amount by which extensions have been built additionally, i.e., where the lower
bound increased, does not suffice to exceed the usage of the extensions. Hence,
the objective function value for x is identical for both sets of bounds. Since the
dual bounds can only increase by tightening the bounds and since the solution
is optimal for the bounds (yx, yx), the solution is still optimal given the bounds
(y, y). ut

To illustrate the usefulness of the previous lemmas, consider the situation after
branching for the first time. At the root, we assume all scenarios are solved to
optimality and a branching point τ is chosen for some extension e. In the first
branch, the constraint ye ≤ τ − 1 is added. Clearly, all scenarios ω with xωe ≥ τ

in the optimal solution x need to be solved in this branch because their optimal
solution has been cut off and the dual bound for these scenarios might increase
due to the additional constraint. For those scenarios ω with xωe ≤ τ , Lemma 4
holds and we know that optimal solutions computed in the root remain optimal
in this branch. In the second branch, the constraint ye ≥ τ is added and the lower
bound is tightened. All scenarios with xωe < τ have to be solved again, unless they
fulfill the conditions of Lemma 3 which in this case means that x = yx. Optimal
solutions of those scenarios with xωe ≥ τ again fulfill the conditions of Lemma 4
and those scenarios don’t have to be solved again.

4 Computational experiments

To show that our approach can solve practical problems we conducted extensive
computational experiments an realistic gas network topologies. Our subproblem
is a non-convex MINLP and topology optimization for even one scenario is a
big challenge; even deciding feasibility of a nomination is a difficult task, see for
example Koch et al. [2015] where the nomination validation problem has been
extensively studied and it has been shown that problems which are on the boarder
between being feasible and infeasible are particularly challenging. In this situation,
the linear relaxation is often feasible and it needs a lot of spatial branching to
proof infeasibility. The situation where a set of extensions almost suffices to ensure
feasibility of a scenario and a large effort of spatial branching has to be made to
proof this is not the case is expected to occur frequently during our algorithm.

Nevertheless, we are able to provide optimal solutions for instances with up to
256 scenarios whose deterministic equivalent problems have almost 200 000 vari-
ables and over 225 000 constraints from which 80 000 are nonlinear. Furthermore,
we provide feasible solutions with a proven optimality gap of 16 % for an instances
whose deterministic equivalent has more than 360 000 variables and 220 000 con-
straints from which more than 68 000 are nonlinear.
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Fig. 2: Visualization of the gaslib-582 network

4.1 Computational setup

The approach is implemented using the MINLP solver SCIP (Achterberg [2009],
Vigerske and Gleixner [2016]) in the framework Lamatto++ (Geißler et al. [2014]),
which is used for data handling. SCIP provides the core of the branch-and-bound
algorithm. A proper constraint handler ensures the abstract constraint (10) and is
able to solve single-scenario problems. Methods to solve the single-scenario prob-
lems were developed in the ForNe project. A relaxator plugin triggers the solu-
tion of the single-scenario problems, returns dual bounds to SCIP and identifies
branching candidates. The heuristics from Section 3.3 are implemented as heuristic
plugins. SCIP is also used to solve the MILP (15). SCIP is used in a development
version (shortly before the 3.1 release) and calls Cplex version 12.5.1 to solve
LP-relaxations.

4.2 Testsets and instances

To test our approach, we used the networks of the publicly available gaslib (Gaslib,
Pfetsch et al. [2014]). The gaslib contains three networks of different sizes. The
biggest one, gaslib-582, is a distorted version of real data from the German gas
network operator Open Grid Europe GmbH and comes with a large number of
nominations. The smaller ones gaslib-40 and gaslib-135 are abstractions of the
first. They are given mainly for testing purposes and come with one reference
scenario. For gaslib-582 we used the associated nominations and scaled them to
simulate growing demand which renders increasing infeasibilities with the original
network. For gaslib-40 we were able to generate scenarios and extensions that
yield promising instances. For gaslib-135, however, the same algorithm did not
produce instances where SCIP could find feasible solutions for the single scenarios
within the timelimit for subproblems. We therefore skip this network and use only
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Fig. 3: Visualization of the gaslib-40 network

the largest gaslib-582 and the smallest gaslib-40 networks for our computational
study.

The generation of meaningful scenarios and extension candidates is a difficult
task. The scenarios should be infeasible and have different bottlenecks that can be
fixed by a large number of different extensions from the candidate set in order to
yield interesting instances for a robust planning approach. As our approach solves
the single-scenario problems repeatedly, it is important to select nominations that
are known to be feasible. Infeasible nomination directly render the multi-scenario
problem also infeasible while nominations where no feasible solution for the topol-
ogy planning problem can be found will block our approach. Both situations are
not in the interest to study the behavior of our approach. In the following we
describe the instances on the two networks in more detail.

gaslib-582: To test we approach, we seek a large number of infeasible scenarios
in order to be able to construct a reasonable number of instances with multiple
scenarios. However, feasible solution to the single-scenario problems should be
found within the timelimit.

As a first step, a list of possible network extensions has to be created. The
generation of meaningful extension candidates is an art by itself. Considering that
every possible network extension adds binary decisions and in the case of pipes also
nonlinearities to the problem, adding too many candidates renders the selection of
an optimal subset for a single scenario impossible. Too few extensions on the other
hand might not allow a feasible solution for all scenarios and are to inflexible for
challenging multi-scenario instances.

For the generation of network extensions we relied on techniques developed in
the ForNe project. For the gaslib-582 network, we used two methods to create
extensions. First, for one of the scenarios all pipes where the flow is fixed by a
simple flow propagation are looped. The rationale is that if the flow is fixed, then
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difference of the squared pressures is also known and the nonlinearities describ-
ing the physics of this pipe and its loop disappear. Computationally, these loops
are expected to be very cheap. The second method proposes new pipes by eval-
uating the reduction in the transport momentum caused by adding a pipe. The
transport momentum for a scenario is computed by disregarding the gas physics
and considering only a linear flow problem. The objective is to minimize the sum
over all pipes of the product of the length of the pipe with the flow through it. It
is a measure how efficiently flow can be routed through the network. New pipes
whose endpoints are far enough apart and whose addition to the network results
in the largest reductions of the transport momentum are selected as extension
candidates. Meaningful geographic coordinates (or a meaningful distance matrix)
are essential for the computation of the transport momentum and we therefore
consider this approach especially useful for the realistic gaslib-582 network.

To ensure we have a sufficiently large number of infeasible scenarios, all input
and output flows have been scaled by a factor of 1.2. Then, we performed a single-
scenario topology optimization to filter out those instances that are still feasible
without network extension and those that don’t find a solution with the timelimit
for subproblems. The result are 107 scenarios that exhibit a positive objective
value after 600 seconds.

It is worthwhile noting that this procedure is non-deterministic because of the
timelimit used. The path taken to solve the problem is deterministic, but if the
solution is found very close to the timelimit, a random disturbance might cause
a slowdown and the solution might not be found within the timelimit in the next
run. It therefore can (and actually does) happen that in a multi-scenario run some
scenario does not find a solution in the root node. A limit based on the number
of simplex iterations or number of branch-and-bound nodes would eliminate this
problem, but is not practical in our application.

In the next step, the 107 scenarios have been grouped together to construct
multi-scenario instances. The aim was to construct a set of instances and to make
sure that all scenarios participate in the mix. The procedure was to first shuffle
the list of scenarios. Then, assuming that k is the desired number of scenarios in
an instance, the first k scenarios in the list are selected and removed from the list.
This is repeated until the length of the list of unused scenarios is smaller than
k. Then the list of all scenarios is shuffled again and the procedure is repeated.
We composed 50 instances of 4, 8, and 16 scenarios each, 25 instances with 32
scenarios and 10 instances with 64 scenarios. Finally, we add one instance with all
107 scenarios.

For the gaslib-582 testset, the subproblems are solved in parallel with up to
16 threads whenever possible. We used a time limit of 600 seconds for the sub-
problems which is reduced to 60 in the 1-opt heuristic. The total timelimit was
set to 12 hours.

Table 1 summarized the size of the scenario-expanded formulations of the re-
sulting multi-scenario instances. The table is split into two parts, each for one
network topology. Each line contains the number of variables and constraints for
the deterministic equivalent for the number of scenarios that is given in the first col-
umn. We report the total number of variables and the number of binary variables.
For the constraints, we report the total number of constraints and break them
down into the three relevant classes for our problem which are linear constraints,
SignPower constraints, i.e., constraints of type (2), and indicator constraints which
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Variables Constraints

Scenarios Total Binary Total Linear SignPower Indicator

gaslib-582
4 13 740 624 12 336 8 296 2 568 1 472
8 27 480 1 248 24 672 16 592 5 136 2 944

16 54 960 2 496 49 344 33 184 10 272 5 888
32 109 920 4 992 98 688 66 368 20 544 11 776
64 219 840 9 984 197 376 132 736 41 088 23 552

107 367 545 16 692 329 988 221 918 68 694 39 376

gaslib-40
4 3 044 168 3 524 1 948 1 256 320
8 6 088 336 7 048 3 896 2 512 640

16 12 176 672 14 096 7 792 5 024 1 280
32 24 352 1 344 28 192 15 584 10 048 2 560
64 48 704 2 688 56 384 31 168 20 096 5 120

128 97 408 5 376 112 768 62 336 40 192 10 240
256 194 816 10 752 225 536 124 672 80 384 20 480

Table 1: Size of the deterministic equivalent formulations

are used to model implications such as (4)-(8). The largest problems for this net-
work have 360 000 variables and 220 000 constraints from which almost 70 000 are
nonlinear. These numbers are given for reference purpose only as our decomposi-
tion approach does not work on the scenario-expanded formulation. Nevertheless,
our approach assigns values to each of the variables and provides guarantees on
the quality of the full solution to the multi-stage robust optimization problem.

gaslib-40: In contrast to the gaslib-582 network which contains 4227 realistic
nominations, the gaslib-40 network only has one nomination. This scenario is
quite artificial as it evenly distributes the flow amount over all 3 entries and 29
exits. The motivation to work with this network however is not primarily the
practical relevance of the instances but to challenge our approach using a network
where the subproblems are easier to solve than on the more realistic gaslib-582.

We created 2000 nominations using the following algorithm. First, we sampled
the number of entries/exists that should have inflow/outflow uniformly between 1
and the number of entries/exists. Then, we randomly picked that assigned number
of entries/exits. The total flow from the reference scenario is scaled with a uni-
formly sampled factor between 0.75 and 2. The resulting scaled total flow is then
uniformly distributed among the selected entries and exists, respectively.

For this network, only loops are considered. As before, all pipes where the flow
after preprocessing of the reference scenario is fixed can be looped. In addition all
pipes that are longer than 20 km are in the candidate set.

From the 2000 nominations, of course a large number is feasible in the original
network or still infeasible even with the proposed loops. We therefore proceed
as before and solve the single-scenario problem with a timelimit of 600 seconds.
In order to keep the time to solve the subproblems as small as possible, we select
those nominations that are solved to optimality within the timelimit of 600 seconds
that have a positive objective function value. We note that many different loops
are used in these solutions such that challenging multi-scenario instances can be
expected. The resulting 425 nominations are then grouped into 50 instances of 4,
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Scenarios Instances Opt. MsaS Union LTL Nodes Gap [%]

Finished All

gaslib-582
4 50 28 20 14 20 3.6 16.4 42.8
8 50 21 9 7 26 6.3 24.4 41.9

16 50 8 0 0 34 7.2 36.9 27.3
32 25 1 0 0 16 7.0 47.2 17.4
64 10 0 0 0 6 – 56.5 23.2

107 1 0 0 0 1 – 48.0 16.4

gaslib-40 (Timelimit 12 hours)
4 50 49 12 22 0 13.7 14.2 44.3
8 50 43 7 9 0 24.8 29.7 12.3

16 50 33 1 2 0 35.7 38.5 26.4
32 25 11 0 0 1 27.4 33.2 24.6
64 10 3 0 0 0 23.7 25.4 28.5

128 10 1 0 0 0 67.0 16.1 64.1
256 10 0 0 0 0 – 4.5 98.6

gaslib-40 (Timelimit 48 hours)
64 10 8 0 0 0 56.8 64.1 25.7

128 10 2 0 0 2 80.0 60.7 26.5
256 10 1 0 0 0 27.0 21.2 49.3

Table 2: Summary of computational results

8, and 16 scenarios each, 25 instances with 32 scenarios and 10 instances with 64,
128, and 256 scenarios each.

For gaslib-40 the parallel solution of single-scenario problems caused buffer
overflow errors in the CppAD package for algorithmic differentiation used with
SCIP. As these errors are out of our control, these instances are solved purely
sequentially which avoids this error.

We used the same time limits of 600 seconds for the subproblems, 60 seconds
for subproblems within the 1-opt heuristic. For the overall algorithm we first used
12 hours for all numbers of scenarios on the gaslib-582. As this timelimit is found
to be short for 64 and more scenarios, we ran the instances with 64, 128, and 256
scenarios also with a timelimit of 48 hours.

4.3 Results

Table 2 summarizes the performance of our approach. The table is divided into
three parts; the first part for results on the gaslib-582 testset and then two parts
for results on the gaslib-40 testset with timelimit 12 and 48 hours. The rows
are grouped by the number of scenarios considered in each instance. The first two
columns then report the number of scenarios and instances in the respective group.
The third column gives the number of instances solved to optimality within the
timelimit. The next two columns analyze the structure of the best solution found
by our approach and compare it with the best solutions known for each scenario.
For gaslib-40 the optimal solutions to the single scenario runs are known. For
gaslib-582 the best solution after solving the scenario for 12 hours is used as the
best known solution for the scenarios. The column MsaS states the number of
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instances where the best solution to the multi-scenario problem builds the same
extensions as the best known solution to one of the scenarios. In this case one
scenario dominates the others as the extensions needed by the scenario suffice
to ensure feasibility of all other scenario problems as well. The column Union

in contrast brings light into the opposite case where the solution of the multi-
scenario problem contains the union of the extensions built in the single scenarios.
An instance appears in both columns MsaS and Union if all scenarios select the
same extensions. Eventually, the branch-and-bound algorithm comes to the point
when all y variables are fixed and the subproblems only have to decide feasibility
given the fixed extensions. In this case, the remainder of the global timelimit might
be used for the feasibility problem as otherwise the algorithm can’t proceed. The
column LTL states how many instances did not finish to optimality because the
remaining time was used in the subproblems and the algorithm was stuck. The last
two groups of columns show the average number of nodes, split by the instances
that were solved to optimality and all instances, and the average gap of those
instances that were not solved to optimality.

While our approach is able to solve 28 out of 50 instances, or 56 % of the
instances, with 4 scenarios on the realistic gaslib-582, this percentage decreases
with increasing number of scenarios. At the same time the number of instances
where the algorithm gets stuck because one of the subproblems can’t properly
decide feasibility is constantly high. At the maximum more than 11 of the 12 hours
are spent trying to decide the feasibility of one scenario. On this testset there is
also a remarkable difference between the number of nodes of those instances that
could be solved to optimality, where the average number is at most 7.2 nodes for
16 scenarios, to those instances that hit the timelimit, where the number goes up
to 56.5 for 64 instances. This shows that the instances that could be solved don’t
need much branching in order synchronize the scenarios and that our heuristics
do a good job in finding the optimal solution. The high numbers over all instances
are because at many nodes some scenarios don’t find a feasible solution, but also
don’t prove infeasibility or even provide good bounds. In this case, our branching
mechanism branches on some unfixed variable. In general, the number of nodes
is quite low compared to what we are used to from branch-and-bound MILP or
MINLP solvers. This shows that the solutions of the single scenarios provide good
indications for the structure of multi-scenario solution, even though their solution
is rather time consuming. Also good solutions are found very early in the tree.
The primal bound makes pruning and propagation very effective, especially as
solutions can typically use only very few extensions because otherwise the cost is
higher than the dual bound.

The average gap values reported on the gaslib-582 are quite satisfactory. Note
that the gap is computed as the average of only those instances t hat are not solved
to optimality and again we have to see them in the light of the difficulty of the
problem. Particularly, an average gap of 23.2 % on the instances with 64 scenarios
and 16.4 % gap on the instance with all 107 scenarios shows that the solutions are
of high quality. Overall, the ability to provide bounds on the solution quality and,
if possible, a certificate for optimality is an advantage of our approach.

High numbers in the MsaS and Union columns indicate that the structure of
the optimal solution is such that a manual approach might find a good or even the
optimal solution. In this case, either one scenario dominates the solution of the
solution consists of the union of all the built extensions in the single scenarios; a
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situation that is easily recognized in a manual fashion and which renders a more
sophisticated approach unnecessary. On both testsets, many optimal solutions to
the instances with 4 and 8 scenarios have such a structure. In the instances with
4 scenarios 30 instances on gaslib-582 and 27 gaslib-40 are either dominated by
one scenario or the multi-scenario solution is the union of the extensions in the best
single-scenario solutions. We note that both can also happen simultaneously. The
number goes down to 15 and 11 for gaslib-582 and gaslib-40, respectively, when 8
scenarios are considered and completely disappear for higher number of scenarios
except for 3 instances with 16 scenarios on the gaslib-40 network. This shows
that for a few scenarios only a manual planning approach based on solving the
single-scenarios could provide good or even optimal solutions. For larger numbers
of scenarios the manual approaches are unlikely to find good solutions as there
the synchronization between the scenarios becomes more important. Of course
manual planning approaches also lack quality guaranties in terms of gap to the
best possible solution which our approach provides.

On the smaller gaslib-40, all but one instances with 4 scenarios can be solved
to optimality. Then the percentage of instances solved to optimality decreases, but
still 3 out of 10 instances with 64 scenarios are solved within the timelimit. Still
one instances with 128 scenarios is solved, but we observe a strong decrease in
the number of nodes processed which indicates that the timelimit is very short for
these large numbers of scenarios. Note that on gaslib-40 on average 24 nodes are
used in the instances that are solved to optimality, but with 128 and 256 only 16.1
and 4.5 nodes are processed on average, respectively. The large average gaps in
these groups of instances then also do not surprise. When increasing the timelimit
from 12 to 48 hours many more nodes are processed and 8 out of 10 instances with
64 scenarios, 2 with 128 and 1 instance with 256 scenarios are solved to optimality
within the increased timelimit. Also the average gap is reduced considerably giving
with 25.7 %, 26.5 %, and 49.3 % for 64, 128, and 256 scenarios, respectively, very
reasonable results. On this testset, as intended the subproblems can be solved much
more reliably and the algorithm is stuck only on one instances where feasibility of
the subproblem can’t be decided in more than 10 hours.

Table 3 analyses the components of the algorithm that produce primal solu-
tions. The structure of the table is similar to Table 2. The column Sols states the
average number of solutions that have been found in the instances of the respec-
tive group. Then three blocks analyze the heuristic components of the algorithm.
In each block, we report the number of instances where the component found at
least one solution and where it found the best solution (columns Succ and Best,
respectively), the average number of solutions found (column Sols), and the aver-
age time spent in the heuristic (column Time). The first block with header Subprob

belongs to the solution that is derived by building all extensions that are used in
the best solutions of the scenarios, i.e., by setting y = maxω∈Ω x

ω
e . This approach

finds solutions for all instances (in one instance which is not marked as success, all
scenarios use exactly the same extensions and thus the heuristic is not called as
the relaxation already found the optimal solution). The second block 1opt belongs
to the highly effective 1opt heuristic. Even though it can be time-consuming, it
finds plenty of solutions which often constitute big improvements. It is also able to
find the best known solutions for a large number of instances. The last block Best

Known corresponds to the approach where the best known solution is computed
by the auxiliary MILP (15). This approach is also successful on a broad range
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Scen. Inst. Sols Subprob 1opt Best Known

Succ Best Sols Time Succ Best Sols Time Succ Best Sols Time

gaslib-582
4 50 3.2 50 7 1.1 2.0 42 39 2.4 144.8 6 2 1.0 0.2
8 50 4.7 50 13 1.4 4.8 45 29 3.3 399.2 11 4 1.1 1.0

16 50 6.0 50 13 2.1 11.7 47 28 3.6 940.1 24 8 1.1 4.1
32 25 8.0 25 5 2.4 27.1 22 8 5.1 2194.6 17 12 1.6 17.4
64 10 6.5 10 7 2.6 57.3 9 0 3.1 2236.2 6 3 1.8 34.7

107 1 6.0 1 1 2.0 103.9 1 0 1.0 2094.8 1 0 3.0 152.3

gaslib-40 (Timelimit 12 hours)
4 50 3.0 49 24 2.3 0.4 17 13 1.3 24.6 18 12 1.0 0.2
8 50 6.5 50 10 4.7 0.7 33 29 1.9 64.5 29 11 1.0 0.8

16 50 10.5 50 4 6.5 1.5 43 33 3.3 345.8 41 11 1.3 2.5
32 25 14.3 25 2 8.0 3.0 24 21 5.4 951.4 22 2 1.2 4.6
64 10 13.0 10 0 6.1 5.5 10 8 5.3 1336.2 10 2 1.6 11.1

128 10 15.3 10 0 7.4 12.2 9 5 6.3 4377.3 10 5 2.2 26.8
256 10 10.6 10 0 3.5 22.2 10 8 5.5 10174.9 10 2 1.6 36.5

gaslib-40 (Timelimit 48 hours)
64 10 20.0 10 1 11.2 6.9 10 7 7.1 1935.3 10 1 1.6 17.9

128 10 21.7 10 0 13.2 12.5 9 6 6.7 5782.0 10 4 2.5 44.0
256 10 14.4 10 0 6.5 22.3 10 5 6.0 10732.0 10 5 1.9 52.3

Table 3: Statistics about solutions found by the different parts of the algorithm

of instances and in particular on the most difficult instances with larger numbers
of scenarios where it often finds the best solution. The short running times show
that the MILP is solved without problems. Overall, we conclude that all proposed
heuristics constitute to the success of the algorithm.

5 Conclusion

We presented a method for gas network planning with multiple demand scenarios.
The computational experiments show that our approach can provide good solu-
tions with reasonable quality guarantees on realistic network topologies. A large
range of instances is solved to proven optimality.

Even though developed in the context of gas network planning, the limited
assumptions on the underlying problem structure suggest the generalization to
other capacity planning problems in the future. Recall that we only assume that
the extensions form a hierarchy where higher levels, i.e., more expensive extensions,
have all the functionality of all lower levels and the availability of a black box
solver for the adjusted single-scenario problems (SingleScenω). Singh et al. [2009],
for example, use the same framework and Dantzig-Wolfe decomposition on model
(15) to approach a rather generic capacity expansion problem.

While it is an advantage of our approach that it assumes no particular struc-
ture in the subproblems, the algorithm can be enhanced by using more infor-
mation about the solution space of the subproblems. For gas networks without
active devices in the original network and with only loops as extensions candi-
dates, Humpola [2014] describes inequalities that enforce that a certain amount of
loops has to be built in order to make a scenario feasible. Using inequalities of this
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type that are found during the solution of the subproblems to propagate bounds
on the y variables or to steer the search could be promising way to improve the
algorithm in this special application and is subject to future research.
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