TY - JOUR A1 - Cacchiani, Valentina A1 - Jünger, Michael A1 - Liers, Frauke A1 - Lodi, Andrea A1 - Schmidt, Daniel T1 - Single-commodity robust network design with finite and Hose demand sets JF - Mathematical Programming N2 - We study a single-commodity robust network design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of scenarios or as a polytope. We propose a branch-and-cut algorithm to derive optimal solutions to sRND, built on a capacity-based integer linear programming formulation. It is strengthened with valid inequalities derived as {0, 1/2}-Chvátal–Gomory cuts. Since the formulation contains exponentially many constraints, we provide practical separation algorithms. Extensive computational experiments show that our approach is effective, in comparison to existing approaches from the literature as well as to solving a flow based formulation by a general purpose solver. KW - Robust network design KW - Branch-and-cut KW - Cut-set inequalities KW - Polyhedral demand uncertainty KW - Separation under uncertainty Y1 - 2016 U6 - https://doi.org/10.1007/s10107-016-0991-9 VL - 157 IS - 1 SP - 297 EP - 342 ER - TY - JOUR A1 - Gottschalk, Corinna A1 - Koster, Arie M.C.A. A1 - Liers, Frauke A1 - Peis, Britta A1 - Schmand, Daniel A1 - Wierz, Andreas T1 - Robust Flows over Time: Models and Complexity Results N2 - We study dynamic network flows with uncertain input data under a robust optimization perspective. In the dynamic maximum flow problem, the goal is to maximize the flow reaching the sink within a given time horizon T, while flow requires a certain travel time to traverse an arc. In our setting, we account for uncertain travel times of flow. We investigate maximum flows over time under the assumption that at most Γ travel times may be prolonged simultaneously due to delay. We develop and study a mathematical model for this problem. As the dynamic robust flow problem generalizes the static version, it is NP-hard to compute an optimal flow. However, our dynamic version is considerably more complex than the static version. We show that it is NP-hard to verify feasibility of a given candidate solution. Furthermore, we investigate temporally repeated flows and show that in contrast to the non-robust case (i.e., without uncertainties) they no longer provide optimal solutions for the robust problem, but rather yield a worst case optimality gap of at least T. We finally show that for infinite delays, the optimality gap is at most O(k log T), where k is a newly introduced instance characteristic. The results obtained in this paper yield a first step towards understanding robust dynamic flow problems with uncertain travel times. KW - Dynamic Network Flows KW - Uncertain Travel Times KW - Dynamic Robust Flow Y1 - 2017 U6 - https://doi.org/10.1007/s10107-017-1170-3 ER - TY - JOUR A1 - Schweiger, Jonas A1 - Liers, Frauke T1 - A Decomposition Approach for Optimum Gas Network Extension with a Finite Set of Demand Scenarios N2 - Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the arising challenging optimization tasks. In fact, euch subproblem consists of a mixed-integer nonlinear optimization problem (MINLP). Valid bounds are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. Results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time. Y1 - 2016 ER - TY - INPR A1 - Gutina, Daria A1 - Bärmann, Andreas A1 - Roeder, Georg A1 - Schellenberger, Martin A1 - Liers, Frauke T1 - Optimisation over Decision Trees – A Case Study for the Design of Stable Direct-Current Electricity Networks N2 - In many real-world mixed-integer optimisation problems from engineering, the side constraints can be subdivided into two categories: constraints which describe a certain logic to model a feasible allocation of resources (such as a maximal number of available assets, working time requirements, maintenance requirements, contractual obligations, etc.), and constraints which model physical processes and the related quantities (such as current, pressure, temperature, etc.). While the first type of constraints can often easily be stated in terms of a mixed-integer program (MIP), the second part may involve the incorporation of complex non-linearities, partial differential equations or even a black-box simulation of the involved physical process. In this work, we propose the integration of a trained tree-based classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a possible remedy. We assume that the classifier has been trained on data points produced by a detailed simulation of a given complex process to represent the functional relationship between the involved physical quantities. We then derive MIP-representable reformulations of the trained classifier such that the resulting model can be solved using state-of-the-art solvers. At the hand of several use cases in terms of possible optimisation goals, we show the broad applicability of our framework that is easily extendable to other tasks beyond engineering. In a detailed real-world computational study for the design of stable direct- current power networks, we demonstrate that our approach yields high-quality solutions in reasonable computation times. KW - decision trees KW - random forests KW - mixed-integer programming KW - power networks Y1 - 2022 ER - TY - JOUR A1 - Kreimeier, Timo A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Stingl, Michael A1 - Walther, Andrea T1 - Towards the Solution of Robust Gas Network Optimization Problems Using the Constrained Active Signature Method N2 - This work studies robust gas network optimization under uncertainties in demand and in the physical parameters. The corresponding optimization problems are nonconvex in node pressures and flows along the pipes. They are thus very difficult to solve for realistic instance sizes. In recent approaches, an adaptive bundle method has been developed, where one solves the occurring adversarial problems via iteratively refined piecewise linear relaxations. These subproblems need to be solved always from scratch using mixed-integer linear programming (MIP). As alternative to the MIP solver, we employ here a nonsmooth optimization approach that allows a warm start strategy such that it can profit from the results obtained for coarser relaxations. We evaluate the approach for realistic gas network topologies and outline possibilities for future research. Y1 - 2022 ER - TY - INPR A1 - Pflug, Lukas A1 - Grieshammer, Max A1 - Uihlein, Andrian A1 - Stingl, Michael T1 - CSG: A stochastic gradient method for a wide class of optimization problems appearing in a machine learning or data-driven context N2 - In a recent article the so called continuous stochastic gradient method (CSG) for the efficient solution of a class of stochastic optimization problems was introduced. While the applicability of known stochastic gradient type methods is typically limited to so called expected risk functions, no such limitation exists for CSG. The key to this lies in the computation of design dependent integration weights, which allows for an optimal usage of available information leading to stronger convergence properties. However, due to the nature of the formula for these integration weights, the practical applicability was essentially limited to problems, in which stochasticity enters via a low-dimensional and suficiently simple probability distribution. In this paper the scope of the CSG method is significantly extended presenting new ways of calculating the integration weights. A full convergence analysis for this new variant of the CSG method is presented and its efficiency is demonstrated in comparison to more classical stochastic gradient methods by means of a number of problem classes, relevant in stochastic optimization and machine learning. KW - stochastic gradient method KW - nonlinear stochastic optimization KW - chance constraints KW - machine learning Y1 - 2021 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Schaumann, Peter A1 - von Loeper, Freimut A1 - Martin, Alexander A1 - Schmidt, Volker A1 - Liers, Frauke T1 - Robust DC Optimal Power Flow with Modeling of Solar Power Supply Uncertainty via R-Vine Copulas N2 - We present a robust approximation of joint chance constrained DC Optimal Power Flow in combination with a model-based prediction of uncertain power supply via R-vine copulas. It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in. This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of Operational Research, (2021)). The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets. The resulting robust optimization problem has a known equivalent tractable reformulation. To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes. The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model. Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts. The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas. We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees. KW - chance constrained programming KW - optimal power flow KW - robust optimization KW - conditional uncertainty set KW - R-vine copula Y1 - ER - TY - JOUR A1 - Grimm, Veronika A1 - Kleinert, Thomas A1 - Liers, Frauke A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Optimal Price Zones of Electricity Markets: A Mixed-Integer Multilevel Model and Global Solution Approaches JF - Optimization Methods and Software N2 - Mathematical modeling of market design issues in liberalized electricity markets often leads to mixed-integer nonlinear multilevel optimization problems for which no general-purpose solvers exist and which are intractable in general. In this work, we consider the problem of splitting a market area into a given number of price zones such that the resulting market design yields welfare-optimal outcomes. This problem leads to a challenging multilevel model that contains a graph-partitioning problem with multi-commodity flow connectivity constraints and nonlinearities due to proper economic modeling. Furthermore, it has highly symmetric solutions. We develop different problem-tailored solution approaches. In particular, we present an extended KKT transformation approach as well as a generalized Benders approach that both yield globally optimal solutions. These methods, enhanced with techniques such as symmetry breaking and primal heuristics, are evaluated in detail on academic as well as on realistic instances. It turns out that our approaches lead to effective solution methods for the difficult optimization tasks presented here, where the problem-specific generalized Benders approach performs considerably better than the methods based on KKT transformation. KW - Multilevel Optimization KW - Mixed-Integer Nonlinear Optimization KW - Graph Partitioning KW - Generalized Benders Decomposition KW - Electricity Market Design} Y1 - 2017 IS - 34(2) SP - 406 EP - 436 ER - TY - INPR A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation T2 - EJOR N2 - Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators (TSOs). The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation. Y1 - 2017 ER - TY - INPR A1 - Aßmann, Denis A1 - Liers, Frauke A1 - Stingl, Michael A1 - Vera, Juan T1 - Deciding Robust Feasibility and Infeasibility Using a Set Containment Approach: An Application to Stationary Passive Gas Network Operations N2 - In this paper we study feasibility and infeasibility of nonlinear two-stage fully adjustable robust feasibility problems with an empty first stage. This is equivalent to deciding set containment of a projection of the feasible region and the uncertainty set. For answering this question, two very general approaches using methods from polynomial optimization are presented --- one for showing feasibility and one for showing infeasibility. The developed methods are approximated through sum of squares polynomials and solved using semidefinite programs. Deciding robust feasibility and infeasibility is important for gas network operations, which is a \nonconvex quadratic problem with absolute values functions. Concerning the gas network problem, different topologies are considered. It is shown that a tree structured network can be decided exactly using linear programming. Furthermore, a method is presented to reduce a tree network with one additional arc to a single cycle network. In this case, removing the absolute values and solving the problem can be decided with linearly many polynomial optimization problems. Lastly, the effectivity of the methods is tested on a variety of small cyclic networks. For instances where robust feasibility or infeasibility can be decided, level~2 or level~3 of the Lasserre relaxation hierarchy is typically sufficient. KW - robust optimization KW - polynomial optimization KW - stationary gas transport Y1 - 2017 ER - TY - JOUR A1 - Ambrosius, Mirjam A1 - Grimm, Veronika A1 - Kleinert, Thomas A1 - Liers, Frauke A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Endogenous Price Zones and Investment Incentives in Electricity Markets: An Application of Multilevel Optimization with Graph Partitioning JF - Energy Economics N2 - In the course of the energy transition, load and supply centers are growing apart in electricity markets worldwide, rendering regional price signals even more important to provide adequate locational investment incentives. This paper focuses on electricity markets that operate under a zonal pricing market design. For a fixed number of zones, we endogenously derive the optimal configuration of price zones and available transfer capacities on a network in order to optimally govern investment and production decisions in the long run. In a multilevel mixed-integer nonlinear model that contains a graph partitioning problem on the first level, we determine welfare-maximizing price zones and available transfer capacities for a given electricity market and analyze their impact on market outcomes. Using a generalized Benders decomposition approach developed in Grimm et al. (2019) and a problem-tailored scenario clustering for reducing the input data size, we are able to solve the model to global optimality even for large instances. We apply the approach to the German electricity market as an example to examine the impact of optimal zoning on key performance indicators such as welfare, generation mix and locations, or electricity prices. It turns out that even for a small number of price zones, an optimal configuration of zones induces a welfare level that almost approaches the first best. KW - Electricity Markets KW - Price Zones KW - Investment Incentives KW - Multilevel Optimization KW - Graph Partitioning Y1 - 2018 IS - 92 ER - TY - INPR A1 - Liers, Frauke A1 - Martin, Alexander A1 - Merkert, Maximilian A1 - Mertens, Nick A1 - Michaels, Dennis T1 - Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification - a Case Study for Gas Networks N2 - Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each constraint function is considered separately. Instead, a considerably tighter relaxation can be found via so-called simultaneous convexification, where convex underestimators are derived for more than one constraint function at a time. In this work, we present a global solution approach for solving mixed-integer nonlinear problems that uses simultaneous convexification. We introduce a separation method that relies on determining the convex envelope of linear combinations of the constraint functions and on solving a nonsmooth convex problem. In particular, we apply the method to quadratic absolute value functions and derive their convex envelopes. The practicality of the proposed solution approach is demonstrated on several test instances from gas network optimization, where the method outperforms standard approaches that use separate convex relaxations. KW - Mixed-Integer Nonlinear Programming KW - Simultaneous Convexification KW - Convex Envelope KW - Gas Network Optimization Y1 - 2020 ER - TY - INPR A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Stingl, Michael T1 - Adaptive bundle methods for nonlinear robust optimization N2 - Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the approaches that do exist impose restrictive assumptions on the problem structure. We present an adaptive bundle method for nonlinear and non-convex robust optimization problems with a suitable notion of inexactness in function values and subgradients. As the worst case evaluation requires a global solution to the adversarial problem, it is a main challenge in a general non-convex nonlinear setting. Moreover, computing elements of an epsilon-perturbation of the Clarke subdifferential in the l2-norm sense is in general prohibitive for this class of problems. In this article, instead of developing an entirely new bundle concept, we demonstrate how existing approaches, such as Noll's bundle method for non-convex minimization with inexact information (Computational and analytical mathematics 50: 555-592, 2013) can be modified to be able to cope with this situation. Extending the non-convex bundle concept to the case of robust optimization in this way, we prove convergence under two assumptions: Firstly, that the objective function is lower C1 and secondly, that approximately optimal solutions to the adversarial maximization problem are available. The proposed method is hence applicable to a rather general setting of nonlinear robust optimization problems. In particular, we do not rely on a specific structure of the adversary's constraints. The considered class of robust optimization problems covers the case that the worst-case adversary only needs to be evaluated up to a certain precision. One possibility to evaluate the worst case with the desired degree of precision is the use of techniques from mixed-integer linear programming (MIP). We investigate the procedure on some analytic examples. As applications, we study the gas transport problem under uncertainties in demand and in physical parameters that affect pressure losses in the pipes. Computational results for examples in large realistic gas network instances demonstrate the applicability as well as the efficiency of the method. Y1 - 2020 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Clarner, Jan-Patrick A1 - Liers, Frauke A1 - Martin, Alexander T1 - Robust Approximation of Chance Constrained DC Optimal Power Flow under Decision-Dependent Uncertainty N2 - We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The uncertainty sets are calculated by encompassing randomly drawn scenarios using the scenario approach proposed by Margellos et al. (IEEE Transactions on Automatic Control, 59 (2014)). The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions lead only to a small increase in curtailment, when compared to nominal solutions. KW - OR in energy KW - optimal power flow KW - chance constrained programming KW - robust optimization KW - decision-dependent uncertainty Y1 - 2020 ER - TY - JOUR A1 - Adelhütte, Dennis A1 - Aßmann, Denis A1 - Gonzàlez Grandòn, Tatiana A1 - Gugat, Martin A1 - Heitsch, Holger A1 - Liers, Frauke A1 - Henrion, René A1 - Nitsche, Sabrina A1 - Schultz, Rüdiger A1 - Stingl, Michael A1 - Wintergerst, David T1 - Joint model of probabilistic/robust (probust) constraints applied to gas network optimization N2 - Optimization tasks under uncertain conditions abound in many real-life applications. Whereas solution approaches for probabilistic constraints are often developed in case the uncertainties can be assumed to follow a certain probability distribution, robust approaches are usually used in case solutions are sought that are feasible for all realizations of uncertainties within some pre-defined uncertainty set. As many applications contain different types of uncertainties that require robust as well as probabilistic treatments, we deal with a class of joint probabilistic/robust constraints as its appears in optimization problems under uncertainty. Focusing on complex uncertain gas network optimization problems, we show the relevance of this class of problems for the task of maximizing free booked capacities in an algebraic model for a stationary gas network. We furthermore present approaches for their solution. Finally, we study the problem of controlling a transient system that is governed by the wave equation. The task consists in determining controls such that a certain robustness measure remains below some given upper bound, with high probability. KW - robust optimization KW - chance constraints KW - optimal control KW - spheric-radial decomposition Y1 - 2017 U6 - https://doi.org/10.1007/s10013-020-00434-y ER - TY - INPR A1 - Liers, Frauke A1 - Schewe, Lars A1 - Thürauf, Johannes T1 - Radius of Robust Feasibility for Mixed-Integer Problems N2 - For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal “size” of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs as well as to include “safe” variables and constraints, i.e., where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. KW - Robust Optimization, Mixed-integer programming, Uncertainty sets, Robust feasibility Y1 - 2019 U6 - https://doi.org/10.1287/ijoc.2020.1030 PB - Informs Journal on Computing ER - TY - INPR A1 - Aßmann, Denis A1 - Liers, Frauke A1 - Stingl, Michael T1 - Decomposable Robust Two-Stage Optimization: An Application to Gas Network Operations Under Uncertainty N2 - We study gas network problems with compressors and control valves under uncertainty that can be formulated as two-stage robust optimization problems. Uncertain data are present in the physical parameters of the pipes as well as in the overall demand. We show how to exploit the special decomposable structure of the problem in order to reformulate the two-stage robust problem as a standard single-stage optimization problem. Since this structure is present in similar problems on e.g., water or direct current electricity networks, we investigate the consequences of the decomposable structure in an abstract setting: The right-hand side of the single-stage problem can be precomputed by solving a series of optimization problems and multiple elements of the right-hand side can be combined into one optimization task. In order to apply our results to gas network problems, we extend piecewise relaxations and preprocessing techniques to incorporate uncertain input data. The practical feasibility and effectiveness of our approach is demonstrated with benchmarks on realistic gas network instances. We observe large speedups due to the described aggregation method together with the developed preprocessing strategies. Furthermore, we are able to solve even comparably large gas network instances quickly for the price of slightly more conservative solutions. KW - robust optimization KW - gas networks KW - relaxations Y1 - 2017 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Bärmann, Andreas A1 - Braun, Kristin A1 - Liers, Frauke A1 - Pokutta, Sebastian A1 - Schneider, Oskar A1 - Sharma, Kartikey A1 - Tschuppik, Sebastian T1 - Data-driven Distributionally Robust Optimization over Time N2 - Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations. KW - distributionally robust optimization KW - learning over time KW - gradient descent Y1 - 2023 ER - TY - INPR A1 - Bernhard, Daniela A1 - Liers, Frauke A1 - Stingl, Michael T1 - A Gradient-Based Method for Joint Chance-Constrained Optimization with Continuous Distributions N2 - The input parameters of an optimization problem are often affected by uncertainties. Chance constraints are a common way to model stochastic uncertainties in the constraints. Typically, algorithms for solving chance-constrained problems require convex functions or discrete probability distributions. In this work, we go one step further and allow non-convexities as well as continuous distributions. We propose a gradient-based approach to approximately solve joint chance-constrained models. We approximate the original problem by smoothing indicator functions. Then, the smoothed chance constraints are relaxed by penalizing their violation in the objective function. The approximation problem is solved with the Continuous Stochastic Gradient method that is an enhanced version of the stochastic gradient descent and has recently been introduced in the literature. We present a convergence theory for the smoothing and penalty approximations. Under very mild assumptions, our approach is applicable to a wide range of chance-constrained optimization problems. As an example, we illustrate its computational efficiency on difficult practical problems arising in the operation of gas networks. The numerical experiments demonstrate that the approach quickly finds nearly feasible solutions for joint chance-constrained problems with non-convex constraint functions and continuous distributions, even for realistically-sized instances. Y1 - ER - TY - INPR A1 - Kuchlbauer, Martina T1 - Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems N2 - We consider nonlinear robust optimization problems with mixed-integer decisions as well as nonconvexities. In detail, we consider cases where objective and constraint functions can be nonsmooth and generalized convex, i.e., f°-quasiconvex or f°-pseudoconvex. We propose an algorithm for such robust optimization problems that does not require a certain structure of the adversarial problem but only requires that approximate worst cases are available. As a result, our algorithm finds a robust optimal solution up to a tolerance. Our method integrates a bundle method into an outer approximation approach where the bundle method is used for the arising continuous subproblems. We rely on methods from the literature, namely a bundle method for nonlinear and nonconvex robust optimization problems and outer approximation approaches for quasiconvex settings. Our contribution is to combine them to one convergent robust optimization method that can cope with inexactness of worst-case evaluations. Further, we propose the gas transport under uncertainties as a relevant application and demonstrate that generalized convexity is fulfilled for a type of a network structure. Y1 - ER -