TY - JOUR A1 - Bärmann, Andreas A1 - Liers, Frauke A1 - Martin, Alexander A1 - Merkert, Maximilian A1 - Thurner, Christoph A1 - Weninger, Dieter T1 - Solving network design problems via iterative aggregation JF - Mathematical Programming Computation N2 - In this work, we present an exact approach for solving network design problems that is based on an iterative graph aggregation procedure. The scheme allows existing preinstalled capacities. Starting with an initial aggregation, we solve a sequence of network design master problems over increasingly fine-grained representations of the original network. In each step, a subproblem is solved that either proves optimality of the solution or gives a directive where to refine the representation of the network in the subsequent iteration. The algorithm terminates with a globally optimal solution to the original problem. Our implementation uses a standard integer programming solver for solving the master problems as well as the subproblems. The computational results on random and realistic instances confirm the profitable use of the iterative aggregation technique. The computing time often reduces drastically when our method is compared to solving the original problem from scratch. KW - Aggregation KW - Network design KW - Combinatorial optimization KW - Mixed-integer programming KW - Branch-and-cut Y1 - 2015 U6 - https://doi.org/10.1007/s12532-015-0079-1 VL - 7 IS - 2 SP - 189 EP - 217 ER - TY - JOUR A1 - Liers, Frauke A1 - Merkert, Maximilian T1 - Structural Investigation of Piecewise Linearized Network Flow Problems N2 - In this work we study polyhedra in the context of network flow problems, where the flow value on each arc lies in one of several predefined intervals. This is motivated by nonlinear problems on transportation networks, where nonlinearities are handled by piecewise linear approximation or relaxation - a common and established approach in many applications. Several methods for modeling piecewise linear functions are known which provide a complete description for a single network arc. However, in general this property is lost when considering multiple arcs. We show how to strengthen the formulation for specific substructures consisting of multiple arcs by linear inequalities. For the case of paths of degree-two-nodes we give a complete description of the polyhedron projected to the integer variables. Our model is based on - but not limited to - the multiple choice method; we also show how to transfer our results to a formulation based on the incremental method. Computational results show that a state-of-the-art MIP-solver greatly benefits from using our cutting planes for random and realistic network topologies. KW - Combinatorial optimization KW - Complete description KW - Network flow problems KW - Piecewise linear functions Y1 - 2016 U6 - https://doi.org/10.1137/15M1006751 VL - 26 SP - 2863 EP - 2886 ER - TY - INPR A1 - Bärmann, Andreas A1 - Gellermann, Thorsten A1 - Merkert, Maximilian A1 - Schneider, Oskar T1 - Staircase Compatibility and its Applications in Scheduling and Piecewise Linearization N2 - We consider the clique problem with multiple-choice constraints (CPMC) and characterize a case where it is possible to give an efficient description of the convex hull of its feasible solutions. This case, which we call staircase compatibility, generalizes common properties in applications and allows for a linear description of the integer feasible solutions to (CPMC) with a totally unimodular constraint matrix of polynomial size. We derive two such totally unimodular reformulations for the problem: one that is obtained by a strengthening of the compatibility constraints and one that is based on a representation as a dual network flow problem. Furthermore, we show a natural way to derive integral solutions from fractional solutions to the problem by determining integral extreme points generating this fractional solution. We also evaluate our reformulations from a computational point of view by applying them to two different real-world applications. The first one is a problem in railway timetabling where we try to adapt a given timetable slightly such that energy costs from operating the trains are reduced. The second one is the piecewise linearization of non-linear flow problems on a gas network. In both cases, we are able to reduce the solution times significantly by passing to the theoretically stronger formulations of the problem. KW - Clique Problem KW - Multiple-Choice Constraints KW - Total Unimodularity KW - Scheduling KW - Piecewise Linearization Y1 - 2016 ER - TY - JOUR A1 - Schmidt, Martin A1 - Aßmann, Denis A1 - Burlacu, Robert A1 - Humpola, Jesco A1 - Joormann, Imke A1 - Kanelakis, Nikolaos A1 - Koch, Thorsten A1 - Oucherif, Djamal A1 - Pfetsch, Marc E. A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Sirvent, Mathias T1 - GasLib – A Library of Gas Network Instances JF - Data N2 - The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library. KW - Gas Transport KW - Networks KW - Problem Instances KW - Mixed-Integer Nonlinear Optimization KW - GasLib Y1 - 2017 U6 - https://doi.org/10.3390/data2040040 VL - 4 IS - 2 ER - TY - JOUR A1 - Cacchiani, Valentina A1 - Jünger, Michael A1 - Liers, Frauke A1 - Lodi, Andrea A1 - Schmidt, Daniel T1 - Single-commodity robust network design with finite and Hose demand sets JF - Mathematical Programming N2 - We study a single-commodity robust network design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of scenarios or as a polytope. We propose a branch-and-cut algorithm to derive optimal solutions to sRND, built on a capacity-based integer linear programming formulation. It is strengthened with valid inequalities derived as {0, 1/2}-Chvátal–Gomory cuts. Since the formulation contains exponentially many constraints, we provide practical separation algorithms. Extensive computational experiments show that our approach is effective, in comparison to existing approaches from the literature as well as to solving a flow based formulation by a general purpose solver. KW - Robust network design KW - Branch-and-cut KW - Cut-set inequalities KW - Polyhedral demand uncertainty KW - Separation under uncertainty Y1 - 2016 U6 - https://doi.org/10.1007/s10107-016-0991-9 VL - 157 IS - 1 SP - 297 EP - 342 ER - TY - JOUR A1 - Gottschalk, Corinna A1 - Koster, Arie M.C.A. A1 - Liers, Frauke A1 - Peis, Britta A1 - Schmand, Daniel A1 - Wierz, Andreas T1 - Robust Flows over Time: Models and Complexity Results N2 - We study dynamic network flows with uncertain input data under a robust optimization perspective. In the dynamic maximum flow problem, the goal is to maximize the flow reaching the sink within a given time horizon T, while flow requires a certain travel time to traverse an arc. In our setting, we account for uncertain travel times of flow. We investigate maximum flows over time under the assumption that at most Γ travel times may be prolonged simultaneously due to delay. We develop and study a mathematical model for this problem. As the dynamic robust flow problem generalizes the static version, it is NP-hard to compute an optimal flow. However, our dynamic version is considerably more complex than the static version. We show that it is NP-hard to verify feasibility of a given candidate solution. Furthermore, we investigate temporally repeated flows and show that in contrast to the non-robust case (i.e., without uncertainties) they no longer provide optimal solutions for the robust problem, but rather yield a worst case optimality gap of at least T. We finally show that for infinite delays, the optimality gap is at most O(k log T), where k is a newly introduced instance characteristic. The results obtained in this paper yield a first step towards understanding robust dynamic flow problems with uncertain travel times. KW - Dynamic Network Flows KW - Uncertain Travel Times KW - Dynamic Robust Flow Y1 - 2017 U6 - https://doi.org/10.1007/s10107-017-1170-3 ER - TY - JOUR A1 - Schweiger, Jonas A1 - Liers, Frauke T1 - A Decomposition Approach for Optimum Gas Network Extension with a Finite Set of Demand Scenarios N2 - Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the arising challenging optimization tasks. In fact, euch subproblem consists of a mixed-integer nonlinear optimization problem (MINLP). Valid bounds are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. Results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time. Y1 - 2016 ER - TY - INPR A1 - Gutina, Daria A1 - Bärmann, Andreas A1 - Roeder, Georg A1 - Schellenberger, Martin A1 - Liers, Frauke T1 - Optimisation over Decision Trees – A Case Study for the Design of Stable Direct-Current Electricity Networks N2 - In many real-world mixed-integer optimisation problems from engineering, the side constraints can be subdivided into two categories: constraints which describe a certain logic to model a feasible allocation of resources (such as a maximal number of available assets, working time requirements, maintenance requirements, contractual obligations, etc.), and constraints which model physical processes and the related quantities (such as current, pressure, temperature, etc.). While the first type of constraints can often easily be stated in terms of a mixed-integer program (MIP), the second part may involve the incorporation of complex non-linearities, partial differential equations or even a black-box simulation of the involved physical process. In this work, we propose the integration of a trained tree-based classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a possible remedy. We assume that the classifier has been trained on data points produced by a detailed simulation of a given complex process to represent the functional relationship between the involved physical quantities. We then derive MIP-representable reformulations of the trained classifier such that the resulting model can be solved using state-of-the-art solvers. At the hand of several use cases in terms of possible optimisation goals, we show the broad applicability of our framework that is easily extendable to other tasks beyond engineering. In a detailed real-world computational study for the design of stable direct- current power networks, we demonstrate that our approach yields high-quality solutions in reasonable computation times. KW - decision trees KW - random forests KW - mixed-integer programming KW - power networks Y1 - 2022 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Bärmann, Andreas A1 - Braun, Kristin A1 - Liers, Frauke A1 - Pokutta, Sebastian A1 - Schneider, Oskar A1 - Sharma, Kartikey A1 - Tschuppik, Sebastian T1 - Data-driven Distributionally Robust Optimization over Time N2 - Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations. KW - distributionally robust optimization KW - learning over time KW - gradient descent Y1 - 2023 ER - TY - JOUR A1 - Kreimeier, Timo A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Stingl, Michael A1 - Walther, Andrea T1 - Towards the Solution of Robust Gas Network Optimization Problems Using the Constrained Active Signature Method N2 - This work studies robust gas network optimization under uncertainties in demand and in the physical parameters. The corresponding optimization problems are nonconvex in node pressures and flows along the pipes. They are thus very difficult to solve for realistic instance sizes. In recent approaches, an adaptive bundle method has been developed, where one solves the occurring adversarial problems via iteratively refined piecewise linear relaxations. These subproblems need to be solved always from scratch using mixed-integer linear programming (MIP). As alternative to the MIP solver, we employ here a nonsmooth optimization approach that allows a warm start strategy such that it can profit from the results obtained for coarser relaxations. We evaluate the approach for realistic gas network topologies and outline possibilities for future research. Y1 - 2022 ER - TY - INPR A1 - Pflug, Lukas A1 - Grieshammer, Max A1 - Uihlein, Andrian A1 - Stingl, Michael T1 - CSG: A stochastic gradient method for a wide class of optimization problems appearing in a machine learning or data-driven context N2 - In a recent article the so called continuous stochastic gradient method (CSG) for the efficient solution of a class of stochastic optimization problems was introduced. While the applicability of known stochastic gradient type methods is typically limited to so called expected risk functions, no such limitation exists for CSG. The key to this lies in the computation of design dependent integration weights, which allows for an optimal usage of available information leading to stronger convergence properties. However, due to the nature of the formula for these integration weights, the practical applicability was essentially limited to problems, in which stochasticity enters via a low-dimensional and suficiently simple probability distribution. In this paper the scope of the CSG method is significantly extended presenting new ways of calculating the integration weights. A full convergence analysis for this new variant of the CSG method is presented and its efficiency is demonstrated in comparison to more classical stochastic gradient methods by means of a number of problem classes, relevant in stochastic optimization and machine learning. KW - stochastic gradient method KW - nonlinear stochastic optimization KW - chance constraints KW - machine learning Y1 - 2021 ER - TY - INPR A1 - Kuchlbauer, Martina T1 - Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems N2 - We consider mixed-integer nonlinear robust optimization problems with nonconvexities. In detail, the functions can be nonsmooth and generalized convex, i.e., f°-quasiconvex or f°-pseudoconvex. We propose a robust optimization method that requires no certain structure of the adversarial problem, but only approximate worst-case evaluations. The method integrates a bundle method, for continuous subproblems, into an outer approximation approach. We prove that our algorithm converges and finds an approximately robust optimal solution and propose robust gas transport as a suitable application. Y1 - ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Schaumann, Peter A1 - von Loeper, Freimut A1 - Martin, Alexander A1 - Schmidt, Volker A1 - Liers, Frauke T1 - Robust DC Optimal Power Flow with Modeling of Solar Power Supply Uncertainty via R-Vine Copulas N2 - We present a robust approximation of joint chance constrained DC Optimal Power Flow in combination with a model-based prediction of uncertain power supply via R-vine copulas. It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in. This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of Operational Research, (2021)). The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets. The resulting robust optimization problem has a known equivalent tractable reformulation. To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes. The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model. Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts. The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas. We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees. KW - chance constrained programming KW - optimal power flow KW - robust optimization KW - conditional uncertainty set KW - R-vine copula Y1 - ER - TY - INPR A1 - Biefel, Christian A1 - Liers, Frauke A1 - Rolfes, Jan A1 - Schmidt, Martin T1 - Affinely Adjustable Robust Linear Complementarity Problems N2 - Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties - especially in the sense of robust optimization - is still in its infancy. During the last years, robust LCPs have only been studied using the notions of strict and Γ-robustness. Unfortunately, both concepts lead to the problem that the existence of robust solutions cannot be guaranteed. In this paper, we consider affinely adjustable robust LCPs. In the latter, a part of the LCP solution is allowed to adjust via a function that is affine in the uncertainty. We show that this notion of robustness allows to establish strong characterizations of solutions for the cases of uncertain matrix and vector, separately, from which existence results can be derived. Our main results are valid for the case of an uncertain LCP vector. Here, we additionally provide sufficient conditions on the LCP matrix for the uniqueness of a solution. Moreover, based on characterizations of the affinely adjustable robust solutions, we derive a mixed-integer programming formulation that allows to solve the corresponding robust counterpart. If, in addition, the certain LCP matrix is positive semidefinite, we prove polynomial-time solvability and uniqueness of robust solutions. If the LCP matrix is uncertain, characterizations of solutions are developed for every nominal matrix, i.e., these characterizations are, in particular, independent of the definiteness of the nominal matrix. Robust solutions are also shown to be unique for positive definite LCP matrix but both uniqueness and mixed-integer programming formulations still remain open problems if the nominal LCP matrix is not positive definite. KW - Linear Complementarity Problems KW - Adjustable Robustness KW - Robust Optimization KW - Existence KW - Uniqueness Y1 - 2020 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Burlacu, Robert A1 - Liers, Frauke A1 - Martin, Alexander T1 - Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality N2 - We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC OPF problems with discrete decisions as mixed-integer nonlinear programs. The solution method starts from a known framework that uses piecewise linear relaxations. These relaxations are modeled as as mixed-integer linear programs and adaptively refined until some termination criterion is fulfilled. In this work, we extend and complement this approach by problem-specific as well as very general algorithmic enhancements. In particular, these are mixed-integer second-order cone programs as well as primal and dual cutting planes. For example objective cuts and no-good-cuts help to compute good feasible solutions as where outer approximation constraints tighten the relaxations. We present extensive numerical results for various AC OPF problems where discrete decisions play a major role. Even for hard instances with a large proportion of discrete decisions, the method is able to generate high quality solutions efficiently. Furthermore, we compare our approach with state-of-the-art MINLP. Our method outperforms all other algorithms. KW - Mixed-Integer Nonlinear Programming KW - Second-Order Cone Programming KW - AC Optimal Power Flow KW - Discrete Decisions KW - Piecewise Linear Relaxation Y1 - 2020 ER - TY - JOUR A1 - Biefel, Christian A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Waldmüller, Lisa T1 - Robust static and dynamic maximum flows N2 - We study the robust maximum flow problem and the robust maximum flow over time problem where a given number of arcs Γ may fail or may be delayed. Two prominent models have been introduced for these problems: either one assigns flow to arcs fulfilling weak flow conservation in any scenario, or one assigns flow to paths where an arc failure or delay affects a whole path. We provide a unifying framework by presenting novel general models, in which we assign flow to subpaths. These models contain the known models as special cases and unify their advantages in order to obtain less conservative robust solutions. We give a thorough analysis with respect to complexity of the general models. In particular, we show that the general models are essentially NP-hard, whereas, e.g. in the static case with Γ=1 an optimal solution can be computed in polynomial time. Further, we answer the open question about the complexity of the dynamic path model for Γ=1. We also compare the solution quality of the different models. In detail, we show that the general models have better robust optimal values than the known models and we prove bounds on these gaps. Y1 - 2021 ER - TY - JOUR A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Stingl, Michael T1 - Outer approximation for mixed-integer nonlinear robust optimization N2 - Currently, few approaches are available for mixed-integer nonlinear robust optimization. Those that do exist typically either require restrictive assumptions on the problem structure or do not guarantee robust protection. In this work, we develop an algorithm for convex mixed-integer nonlinear robust optimization problems where a key feature is that the method does not rely on a specific structure of the inner worst-case (adversarial) problem and allows the latter to be non-convex. A major challenge of such a general nonlinear setting is ensuring robust protection, as this calls for a global solution of the non-convex adversarial problem. Our method is able to achieve this up to a tolerance, by requiring worst-case evaluations only up to a certain precision. For example, the necessary assumptions can be met by approximating a non-convex adversarial via piecewise relaxations and solving the resulting problem up to any requested error as a mixed-integer linear problem. In our approach, we model a robust optimization problem as a nonsmooth mixed-integer nonlinear problem and tackle it by an outer approximation method that requires only inexact function values and subgradients. To deal with the arising nonlinear subproblems, we render an adaptive bundle method applicable to this setting and extend it to generate cutting planes, which are valid up to a known precision. Relying on its convergence to approximate critical points, we prove, as a consequence, finite convergence of the outer approximation algorithm. As an application, we study the gas transport problem under uncertainties in demand and physical parameters on realistic instances and provide computational results demonstrating the efficiency of our method. Y1 - 2021 ER - TY - INPR A1 - Biefel, Christian A1 - Liers, Frauke A1 - Rolfes, Jan A1 - Schewe, Lars A1 - Zöttl, Gregor T1 - Robust Market Equilibria under Uncertain Cost N2 - We consider equilibrium problems under uncertainty where firms maximize their profits in a robust way when selling their output. Robust optimization plays an increasingly important role when best guaranteed objective values are to be determined, independently of the specific distributional assumptions regarding uncertainty. In particular, solutions are to be determined that are feasible regardless of how the uncertainty manifests itself within some predefined uncertainty set. Our analysis adopts the robust optimization perspective in the context of equilibrium problems. First, we consider a singlestage, nonadjustable robust setting. We then go one step further and study the more complex two-stage or adjustable case where a part of the variables can adjust to the realization of the uncertainty. We compare equilibrium outcomes with the corresponding centralized robust optimization problem where the sum of all profits are maximized. As we find, the market equilibrium for the perfectly competitive firms differs from the solution of the robust central planner, which is in stark contrast to classical results regarding the efficiency of market equilibria with perfectly competitive firms. For the different scenarios considered, we furthermore are able to determine the resulting price of anarchy. In the case of non-adjustable robustness, for fixed demand in every time step the price of anarchy is bounded whereas it is unbounded if the buyers are modeled by elastic demand functions. For the two-stage adjustable setting, we show how to compute subsidies for the firms that lead to robust welfare optimal equilibria. KW - Continuous Optimization KW - Equilibrium Problems KW - Robust Optimization KW - Adjustable Robustness Y1 - 2021 ER - TY - INPR A1 - Adelhütte, Dennis A1 - Biefel, Christitan A1 - Kuchlbauer, Martina A1 - Rolfes, Jan T1 - Pareto Robust optimization on Euclidean vector spaces N2 - Pareto efficiency for robust linear programs was introduced by Iancu and Trichakis in [9]. We generalize their approach and theoretical results to robust optimization problems in Euclidean spaces with linear uncertainty. Additionally, we demonstrate the value of this approach in an exemplary manner in the area of robust semidefinite programming (SDP). In particular, we prove that computing a Pareto robustly optimal solution for a robust SDP is tractable and illustrate the benefit of such solutions at the example of the maximal eigenvalue problem. Furthermore, we modify the famous algorithm of Goemans and Williamson [8] in order to compute cuts for the robust max cut problem that yield an improved approximation guarantee in non-worst-case scenarios. Y1 - ER - TY - JOUR A1 - Grimm, Veronika A1 - Kleinert, Thomas A1 - Liers, Frauke A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Optimal Price Zones of Electricity Markets: A Mixed-Integer Multilevel Model and Global Solution Approaches JF - Optimization Methods and Software N2 - Mathematical modeling of market design issues in liberalized electricity markets often leads to mixed-integer nonlinear multilevel optimization problems for which no general-purpose solvers exist and which are intractable in general. In this work, we consider the problem of splitting a market area into a given number of price zones such that the resulting market design yields welfare-optimal outcomes. This problem leads to a challenging multilevel model that contains a graph-partitioning problem with multi-commodity flow connectivity constraints and nonlinearities due to proper economic modeling. Furthermore, it has highly symmetric solutions. We develop different problem-tailored solution approaches. In particular, we present an extended KKT transformation approach as well as a generalized Benders approach that both yield globally optimal solutions. These methods, enhanced with techniques such as symmetry breaking and primal heuristics, are evaluated in detail on academic as well as on realistic instances. It turns out that our approaches lead to effective solution methods for the difficult optimization tasks presented here, where the problem-specific generalized Benders approach performs considerably better than the methods based on KKT transformation. KW - Multilevel Optimization KW - Mixed-Integer Nonlinear Optimization KW - Graph Partitioning KW - Generalized Benders Decomposition KW - Electricity Market Design} Y1 - 2017 IS - 34(2) SP - 406 EP - 436 ER - TY - INPR A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation T2 - EJOR N2 - Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators (TSOs). The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation. Y1 - 2017 ER - TY - INPR A1 - Aßmann, Denis A1 - Liers, Frauke A1 - Stingl, Michael A1 - Vera, Juan T1 - Deciding Robust Feasibility and Infeasibility Using a Set Containment Approach: An Application to Stationary Passive Gas Network Operations N2 - In this paper we study feasibility and infeasibility of nonlinear two-stage fully adjustable robust feasibility problems with an empty first stage. This is equivalent to deciding set containment of a projection of the feasible region and the uncertainty set. For answering this question, two very general approaches using methods from polynomial optimization are presented --- one for showing feasibility and one for showing infeasibility. The developed methods are approximated through sum of squares polynomials and solved using semidefinite programs. Deciding robust feasibility and infeasibility is important for gas network operations, which is a \nonconvex quadratic problem with absolute values functions. Concerning the gas network problem, different topologies are considered. It is shown that a tree structured network can be decided exactly using linear programming. Furthermore, a method is presented to reduce a tree network with one additional arc to a single cycle network. In this case, removing the absolute values and solving the problem can be decided with linearly many polynomial optimization problems. Lastly, the effectivity of the methods is tested on a variety of small cyclic networks. For instances where robust feasibility or infeasibility can be decided, level~2 or level~3 of the Lasserre relaxation hierarchy is typically sufficient. KW - robust optimization KW - polynomial optimization KW - stationary gas transport Y1 - 2017 ER - TY - JOUR A1 - Ambrosius, Mirjam A1 - Grimm, Veronika A1 - Kleinert, Thomas A1 - Liers, Frauke A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Endogenous Price Zones and Investment Incentives in Electricity Markets: An Application of Multilevel Optimization with Graph Partitioning JF - Energy Economics N2 - In the course of the energy transition, load and supply centers are growing apart in electricity markets worldwide, rendering regional price signals even more important to provide adequate locational investment incentives. This paper focuses on electricity markets that operate under a zonal pricing market design. For a fixed number of zones, we endogenously derive the optimal configuration of price zones and available transfer capacities on a network in order to optimally govern investment and production decisions in the long run. In a multilevel mixed-integer nonlinear model that contains a graph partitioning problem on the first level, we determine welfare-maximizing price zones and available transfer capacities for a given electricity market and analyze their impact on market outcomes. Using a generalized Benders decomposition approach developed in Grimm et al. (2019) and a problem-tailored scenario clustering for reducing the input data size, we are able to solve the model to global optimality even for large instances. We apply the approach to the German electricity market as an example to examine the impact of optimal zoning on key performance indicators such as welfare, generation mix and locations, or electricity prices. It turns out that even for a small number of price zones, an optimal configuration of zones induces a welfare level that almost approaches the first best. KW - Electricity Markets KW - Price Zones KW - Investment Incentives KW - Multilevel Optimization KW - Graph Partitioning Y1 - 2018 IS - 92 ER - TY - INPR A1 - Liers, Frauke A1 - Martin, Alexander A1 - Merkert, Maximilian A1 - Mertens, Nick A1 - Michaels, Dennis T1 - Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification - a Case Study for Gas Networks N2 - Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each constraint function is considered separately. Instead, a considerably tighter relaxation can be found via so-called simultaneous convexification, where convex underestimators are derived for more than one constraint function at a time. In this work, we present a global solution approach for solving mixed-integer nonlinear problems that uses simultaneous convexification. We introduce a separation method that relies on determining the convex envelope of linear combinations of the constraint functions and on solving a nonsmooth convex problem. In particular, we apply the method to quadratic absolute value functions and derive their convex envelopes. The practicality of the proposed solution approach is demonstrated on several test instances from gas network optimization, where the method outperforms standard approaches that use separate convex relaxations. KW - Mixed-Integer Nonlinear Programming KW - Simultaneous Convexification KW - Convex Envelope KW - Gas Network Optimization Y1 - 2020 ER - TY - INPR A1 - Kuchlbauer, Martina A1 - Liers, Frauke A1 - Stingl, Michael T1 - Adaptive bundle methods for nonlinear robust optimization N2 - Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the approaches that do exist impose restrictive assumptions on the problem structure. We present an adaptive bundle method for nonlinear and non-convex robust optimization problems with a suitable notion of inexactness in function values and subgradients. As the worst case evaluation requires a global solution to the adversarial problem, it is a main challenge in a general non-convex nonlinear setting. Moreover, computing elements of an epsilon-perturbation of the Clarke subdifferential in the l2-norm sense is in general prohibitive for this class of problems. In this article, instead of developing an entirely new bundle concept, we demonstrate how existing approaches, such as Noll's bundle method for non-convex minimization with inexact information (Computational and analytical mathematics 50: 555-592, 2013) can be modified to be able to cope with this situation. Extending the non-convex bundle concept to the case of robust optimization in this way, we prove convergence under two assumptions: Firstly, that the objective function is lower C1 and secondly, that approximately optimal solutions to the adversarial maximization problem are available. The proposed method is hence applicable to a rather general setting of nonlinear robust optimization problems. In particular, we do not rely on a specific structure of the adversary's constraints. The considered class of robust optimization problems covers the case that the worst-case adversary only needs to be evaluated up to a certain precision. One possibility to evaluate the worst case with the desired degree of precision is the use of techniques from mixed-integer linear programming (MIP). We investigate the procedure on some analytic examples. As applications, we study the gas transport problem under uncertainties in demand and in physical parameters that affect pressure losses in the pipes. Computational results for examples in large realistic gas network instances demonstrate the applicability as well as the efficiency of the method. Y1 - 2020 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Clarner, Jan-Patrick A1 - Liers, Frauke A1 - Martin, Alexander T1 - Robust Approximation of Chance Constrained DC Optimal Power Flow under Decision-Dependent Uncertainty N2 - We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The uncertainty sets are calculated by encompassing randomly drawn scenarios using the scenario approach proposed by Margellos et al. (IEEE Transactions on Automatic Control, 59 (2014)). The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions lead only to a small increase in curtailment, when compared to nominal solutions. KW - OR in energy KW - optimal power flow KW - chance constrained programming KW - robust optimization KW - decision-dependent uncertainty Y1 - 2020 ER - TY - JOUR A1 - Adelhütte, Dennis A1 - Aßmann, Denis A1 - Gonzàlez Grandòn, Tatiana A1 - Gugat, Martin A1 - Heitsch, Holger A1 - Liers, Frauke A1 - Henrion, René A1 - Nitsche, Sabrina A1 - Schultz, Rüdiger A1 - Stingl, Michael A1 - Wintergerst, David T1 - Joint model of probabilistic/robust (probust) constraints applied to gas network optimization N2 - Optimization tasks under uncertain conditions abound in many real-life applications. Whereas solution approaches for probabilistic constraints are often developed in case the uncertainties can be assumed to follow a certain probability distribution, robust approaches are usually used in case solutions are sought that are feasible for all realizations of uncertainties within some pre-defined uncertainty set. As many applications contain different types of uncertainties that require robust as well as probabilistic treatments, we deal with a class of joint probabilistic/robust constraints as its appears in optimization problems under uncertainty. Focusing on complex uncertain gas network optimization problems, we show the relevance of this class of problems for the task of maximizing free booked capacities in an algebraic model for a stationary gas network. We furthermore present approaches for their solution. Finally, we study the problem of controlling a transient system that is governed by the wave equation. The task consists in determining controls such that a certain robustness measure remains below some given upper bound, with high probability. KW - robust optimization KW - chance constraints KW - optimal control KW - spheric-radial decomposition Y1 - 2017 U6 - https://doi.org/10.1007/s10013-020-00434-y ER - TY - INPR A1 - Liers, Frauke A1 - Schewe, Lars A1 - Thürauf, Johannes T1 - Radius of Robust Feasibility for Mixed-Integer Problems N2 - For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal “size” of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs as well as to include “safe” variables and constraints, i.e., where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. KW - Robust Optimization, Mixed-integer programming, Uncertainty sets, Robust feasibility Y1 - 2019 U6 - https://doi.org/10.1287/ijoc.2020.1030 PB - Informs Journal on Computing ER - TY - INPR A1 - Aßmann, Denis A1 - Liers, Frauke A1 - Stingl, Michael T1 - Decomposable Robust Two-Stage Optimization: An Application to Gas Network Operations Under Uncertainty N2 - We study gas network problems with compressors and control valves under uncertainty that can be formulated as two-stage robust optimization problems. Uncertain data are present in the physical parameters of the pipes as well as in the overall demand. We show how to exploit the special decomposable structure of the problem in order to reformulate the two-stage robust problem as a standard single-stage optimization problem. Since this structure is present in similar problems on e.g., water or direct current electricity networks, we investigate the consequences of the decomposable structure in an abstract setting: The right-hand side of the single-stage problem can be precomputed by solving a series of optimization problems and multiple elements of the right-hand side can be combined into one optimization task. In order to apply our results to gas network problems, we extend piecewise relaxations and preprocessing techniques to incorporate uncertain input data. The practical feasibility and effectiveness of our approach is demonstrated with benchmarks on realistic gas network instances. We observe large speedups due to the described aggregation method together with the developed preprocessing strategies. Furthermore, we are able to solve even comparably large gas network instances quickly for the price of slightly more conservative solutions. KW - robust optimization KW - gas networks KW - relaxations Y1 - 2017 ER - TY - JOUR A1 - Aigner, Kevin-Martin A1 - Denzler, Sebastian A1 - Liers, Frauke A1 - Pokutta, Sebastian A1 - Sharma, Kartikey T1 - Scenario Reduction for Distributionally Robust Optimization N2 - Stochastic and (distributionally) robust optimization problems often become computationally challenging as the number of scenarios increases. Scenario reduction is therefore a key technique for improving tractability. We introduce a general scenario reduction method for distributionally robust optimization (DRO), which includes stochastic and robust optimization as special cases. Our approach constructs the reduced DRO problem by projecting the original ambiguity set onto a reduced set of scenarios. Under mild conditions, we establish bounds on the relative quality of the reduction. The methodology is applicable to random variables following either discrete or continuous probability distributions, with representative scenarios appropriately selected in both cases. Given the relevance of optimization problems with linear and quadratic objectives, we further refine our approach for these settings. Finally, we demonstrate its effectiveness through numerical experiments on mixed-integer benchmark instances from MIPLIB and portfolio optimization problems. Our results show that the oroposed approximation significantly reduces solution time while maintaining high solution quality with only minor errors. KW - distributionally robust optimization KW - scenario reduction KW - scenario clustering KW - approximation bounds KW - mixed-integer programming Y1 - 2025 ER - TY - INPR A1 - Bernhard, Daniela A1 - Liers, Frauke A1 - Stingl, Michael A1 - Uihlein, Andrian T1 - A Gradient-Based Method for Joint Chance-Constrained Optimization with Continuous Distributions N2 - The input parameters of an optimization problem are often affected by uncertainties. Chance constraints are a common way to model stochastic uncertainties in the constraints. Typically, algorithms for solving chance-constrained problems require convex functions or discrete probability distributions. In this work, we go one step further and allow non-convexities as well as continuous distributions. We propose a gradient-based approach to approximately solve joint chance-constrained models. We approximate the original problem by smoothing indicator functions. Then, the smoothed chance constraints are relaxed by penalizing their violation in the objective function. The approximation problem is solved with the Continuous Stochastic Gradient method that is an enhanced version of the stochastic gradient descent and has recently been introduced in the literature. We present a convergence theory for the smoothing and penalty approximations. Under very mild assumptions, our approach is applicable to a wide range of chance-constrained optimization problems. As an example, we illustrate its computational efficiency on difficult practical problems arising in the operation of gas networks. The numerical experiments demonstrate that the approach quickly finds nearly feasible solutions for joint chance-constrained problems with non-convex constraint functions and continuous distributions, even for realistically-sized instances. Y1 - ER - TY - INPR A1 - Denzler, Sebastian A1 - Aigner, Kevin-Martin A1 - Lüer, Larry A1 - Brabec, Christoph A1 - Liers, Frauke T1 - Robust Bayesian Optimization with an Application to Material Science N2 - We propose a novel online learning framework for robust Bayesian optimization of uncertain black-box functions. While Bayesian optimization is well-suited for data-efficient optimization of expensive objectives, its standard form can be sensitive to hidden or varying parameters. To address this issue, we consider a min–max robust counterpart of the optimization problem and develop a practically efficient solution algorithm, BROVER (Bayesian Robust Optimization via Exploration with Regret minimization). Our method combines Gaussian process regression with a decomposition approach: the minimax structure is split into a non-convex online learner based on the Follow-the-Perturbed-Leader algorithm together with a subsequent minimization step in the decision variables. We prove that the theoretical regret bound converges under mild assumptions, ensuring asymptotic convergence to robust solutions. Numerical experiments on synthetic data validate the regret guarantees and demonstrate fast convergence to the robust optimum. Furthermore, we apply our method to the robust optimization of organic solar cell performance, where hidden process parameters and experimental variability naturally induce uncertainty. Our results on real-world datae show that BROVER identifies solutions with strong robustness properties within relatively few iterations, thereby offering a modern and practical approach for data-driven black-box optimization under uncertainty. KW - robust optimization KW - Bayesian optimization KW - online learning KW - solar cell performance Y1 - 2025 ER - TY - INPR A1 - Bernhard, Daniela A1 - Liers, Frauke A1 - Stingl, Michael T1 - Robust chance-constrained optimization with discrete distributions N2 - Typically, probability distributions that generate uncertain parameters cannot be measured exactly in practice. As a remedy, distributional robustness determines optimized decisions that are protected in a robust fashion against all probability distributions in some appropriately chosen ambiguity set. In this work, we consider robust joint chance-constrained optimization problems and focus on discrete probability distributions. Many methods for this kind of problems study convex or even linear constraint functions. In contrast, we introduce a practically efficient scenario-based bundle method without convexity assumptions on the constraint functions. We start by deriving an approximation problem to the original robust chance-constrained version by using smoothing and penalization techniques that build on our former work on chance-constrained optimization. Our convergence results with respect to the smoothing approximation and well-known results for penalty approximations suggest replacing the original problem with the approximation problem for large smoothing and penalty parameters. Our scenario-based bundle method starts by solving the approximation problem with a bundle method, and then uses the bundle solution to decide which scenarios to include in a scenario-expanded formulation. This formulation is a standard nonlinear optimization problem. Our approach is guaranteed to find feasible solutions. Furthermore, in the numerical experiments on real-world gas transport problems with uncertain demands, we mostly find globally optimal solutions. Comparing these results to the classical robust reformulations for ambiguity sets consisting of confidence intervals and Wasserstein balls, we observe that the scenario-based bundle method typically outperforms solving the classical reformulation directly. Y1 - 2024 ER - TY - INPR A1 - Aigner, Kevin-Martin A1 - Goerigk, Marc A1 - Hartisch, Michael A1 - Liers, Frauke A1 - Miehlich, Arthur A1 - Rösel, Florian T1 - Feature Selection for Data-Driven Explainable Optimization N2 - Mathematical optimization, although often leading to NP-hard models, is now capable of solving even large-scale instances within reasonable time. However, the primary focus is often placed solely on optimality. This implies that while obtained solutions are globally optimal, they are frequently not comprehensible to humans, in particular when obtained by black-box routines. In contrast, explainability is a standard requirement for results in Artificial Intelligence, but it is rarely considered in optimization yet. There are only a few studies that aim to find solutions that are both of high quality and explainable. In recent work, explainability for optimization was defined in a data-driven manner: a solution is considered explainable if it closely resembles solutions that have been used in the past under similar circumstances. To this end, it is crucial to identify a preferably small subset of features from a presumably large set that can be used to explain a solution. In mathematical optimization, feature selection has received little attention yet. In this work, we formally define the feature selection problem for explainable optimization and prove that its decision version is NP-complete. We introduce mathematical models for optimized feature selection. As their global solution requires significant computation time with modern mixed-integer linear solvers, we employ local heuristics. Our computational study using data that reflect real-world scenarios demonstrates that the problem can be solved practically efficiently for instances of reasonable size. KW - Feature selection KW - Explainable optimization KW - Data-driven optimization Y1 - 2025 ER - TY - INPR A1 - Bernhard, Daniela A1 - Stingl, Michael A1 - Liers, Frauke T1 - Algorithms for robust chance-constrained optimization with mixture ambiguity N2 - Constructing ambiguity sets in distributionally robust optimization is difficult and currently receives increased attention. In this paper, we focus on mixture models with finitely many reference distributions. We present two different solution concepts for robust joint chance-constrained optimization problems with these ambiguity sets and non-convex constraint functions. Both concepts rely on solving an approximation problem that is based on well-known smoothing and penalization techniques. On the one side, we consider a classical bundle method together with an approach for finding good starting points. On the other side, we integrate the Continuous Stochastic Gradient method, a variant of the stochastic gradient descent that is able to exploit regularity in the data. On the example of gas networks we compare the two algorithmic concepts for different topologies and two types of mixture ambiguity sets with Gaussian reference distributions and polyhedral and ϕ-divergence based feasible sets for the mixing coefficients. The results show that both solution approaches are well-suited to solve this difficult problem class. Based on the numerical results we provide some general advices for choosing the more efficient algorithm depending on the main challenges of the considered optimization problem. We give an outlook for the applicability of the method in a wider context. Y1 - ER - TY - INPR A1 - Bernhard, Daniela A1 - Liers, Frauke A1 - Stingl, Michael T1 - Branch-and-cut for mixed-integer robust chance-constrained optimization with discrete distributions N2 - We study robust chance-constrained problems with mixed-integer design variables and ambiguity sets consisting of discrete probability distributions. Allowing general non-convex constraint functions, we develop a branch-and-cut framework using scenario-based cutting planes to generate lower bounds. The cutting planes are obtained by exploiting the classical big-M reformulation of the chance-constrained problem in the case of discrete distributions. Furthermore, we include the calculation of initial feasible solutions based on a bundle method applied to an approximation of the original problem into the branch-and-cut procedure. We conclude with a detailed discussion about the practical performance of the branch-and-cut framework with and without initial feasible solutions. In our experiments we focus on gas transport problems under uncertainty and provide a comparison of our method with solving the classical reformulation directly for various real-world sized instances. Y1 - ER - TY - JOUR A1 - Bernhard, Daniela A1 - Heitsch, Holger A1 - Henrion, René A1 - Liers, Frauke A1 - Stingl, Michael A1 - Uihlein, Andrian A1 - Zipf, Viktor T1 - Continuous stochastic gradient and spherical radial decomposition N2 - In this paper, a new method is presented for solving chance-constrained optimization problems. The method combines the well-established Spherical-Radial Decomposition approach with the Continuous Stochastic Gradient method. While the Continuous Stochastic Gradient method has been successfully applied to chance-constrained problems in the past, only the combination with the Spherical-Radial Decomposition allows to avoid smoothing of the integrand. In this chapter, we prove this fact for a relevant class of chance-constrained problems and apply the resulting method to the capacity maximization problem for gas networks. KW - chance constraints KW - continuous stochastic gradient KW - spheric-radial decomposition Y1 - ER -