TY - CHAP A1 - Benner, Peter A1 - Grundel, Sarah A1 - Himpe, Christian A1 - Huck, Christoph A1 - Streubel, Tom A1 - Tischendorf, Caren T1 - Gas Network Benchmark Models T2 - Applications of Differential-Algebraic Equations: Examples and Benchmarks N2 - The simulation of gas transportation networks becomes increasingly more important as its use-cases broaden to more complex applications. Classically, the purpose of the gas network was the transportation of predominantly natural gas from a supplier to the consumer for long-term scheduled volumes. With the rise of renewable energy sources, gas-fired power plants are often chosen to compensate for the fluctuating nature of the renewables, due to their on-demand power generation capability. Such an only short-term plannable supply and demand setting requires sophisticated simulations of the gas network prior to the dispatch to ensure the supply of all customers for a range of possible scenarios and to prevent damages to the gas network. In this work we describe the modeling of gas networks and present benchmark systems to test implementations and compare new or extended models. Y1 - 2017 U6 - https://doi.org/10.1007/11221_2018_5 VL - DAE-FORUM SP - 171 EP - 197 PB - Springer CY - Cham ER - TY - INPR A1 - Kreimeier, Timo A1 - Sauter, Henning A1 - Streubel, Tom A1 - Tischendorf, Caren A1 - Walther, Andrea T1 - Solving Least-Squares Collocated Differential Algebraic Equations by Successive Abs-Linear Minimization - A Case Study on Gas Network Simulation N2 - This paper studies the numerical simulation of gas networks with regulating elements using differential algebraic equations (DAEs) in combination with least-squares collocation. In contrast to classical collocation methods, more collocation points than degrees of freedom for the collocation polynomials are used. Recently, it has been shown that such a least-squares collocation has a regularizing effect for DAEs, in particular for DAEs with higher index. In each time step of the numerical integration, one has to solve a system of nonlinear equations that is nonsmooth due to the regulating elements in the gas networks. We consider four solvers one of which explicitly exploits the inherent nonsmooth nature. Numerical results are given for three different test cases with increasing complexity illustrating the feasibility of the proposed approach to approximate a solution of the DAE and the advantageous performance of the nonsmooth solver that is based on the concept of abs-linearization. KW - Abs-smooth Algorithmic Differentiation KW - Numerical Integration KW - Simulation of Gas Transportation Networks KW - Nonsmooth Optimization KW - SALMIN KW - Least-Squares Collocation Method KW - Target Values KW - Set Point Values KW - Controlling Regulators and Compressors Y1 - 2021 ER -