TY - INPR A1 - Gabriel, Steven A. A1 - Leal, Marina A1 - Schmidt, Martin T1 - On Linear Bilevel Optimization Problems with Complementarity-Constrained Lower Levels N2 - We consider a novel class of linear bilevel optimization models with a lower level that is a linear program with complementarity constraints (LPCC). We present different single-level reformulations depending on whether the linear complementarity problem (LCP) as part of the lower-level constraint set depends on the upper-level decisions or not as well as on whether the LCP matrix is positive definite or positive semidefinite. Moreover, we illustrate the connection to linear trilevel models that can be reduced to bilevel problems with LPCC lower levels having positive (semi)definite matrices. Finally, we provide two generic and illustrative bilevel models from the fields of transportation and energy to show the practical relevance of the newly introduced class of bilevel problems and show related theoretical results. KW - Bilevel optimization KW - Linear programs with complementarity constraints KW - Linear complementarity problems KW - Reformulations KW - Spatial price equilibria Y1 - 2020 ER - TY - JOUR A1 - Gabriel, Steven A. A1 - Leal, Marina A1 - Schmidt, Martin T1 - Solving Binary-Constrained Mixed Complementarity Problems Using Continuous Reformulations JF - Computers & Operations Research N2 - Mixed complementarity problems are of great importance in practice since they appear in various fields of applications like energy markets, optimal stopping, or traffic equilibrium problems. However, they are also very challenging due to their inherent, nonconvex structure. In addition, recent applications require the incorporation of integrality constraints. Since complementarity problems often model some kind of equilibrium, these recent applications ask for equilibrium points that additionally satisfy certain integer conditions. Obviously, this makes the problem even harder to solve. The solution approach used most frequently in the literature is to recast the complementarity conditions as disjunctive constraints using additional binary variables and big-M constraints. However, both latter aspects create issues regarding the tractability and correctness of the reformulation. In this paper, we follow the opposite route and restate the integrality conditions as complementarity constraints, leading to purely continuous reformulations that can be tackled by local solvers. We study these reformulations theoretically and provide a numerical study that shows that continuous reformulations are useful in practice both in terms of solution times and solution quality. KW - Binary-constrained mixed complementarity problems KW - Mixed-integer optimization KW - Continuous reformulations KW - Spatial price equilibrium problems Y1 - 2020 ER -