TY - INPR A1 - Kreimeier, Timo A1 - Sauter, Henning A1 - Streubel, Tom A1 - Tischendorf, Caren A1 - Walther, Andrea T1 - Solving Least-Squares Collocated Differential Algebraic Equations by Successive Abs-Linear Minimization - A Case Study on Gas Network Simulation N2 - This paper studies the numerical simulation of gas networks with regulating elements using differential algebraic equations (DAEs) in combination with least-squares collocation. In contrast to classical collocation methods, more collocation points than degrees of freedom for the collocation polynomials are used. Recently, it has been shown that such a least-squares collocation has a regularizing effect for DAEs, in particular for DAEs with higher index. In each time step of the numerical integration, one has to solve a system of nonlinear equations that is nonsmooth due to the regulating elements in the gas networks. We consider four solvers one of which explicitly exploits the inherent nonsmooth nature. Numerical results are given for three different test cases with increasing complexity illustrating the feasibility of the proposed approach to approximate a solution of the DAE and the advantageous performance of the nonsmooth solver that is based on the concept of abs-linearization. KW - Abs-smooth Algorithmic Differentiation KW - Numerical Integration KW - Simulation of Gas Transportation Networks KW - Nonsmooth Optimization KW - SALMIN KW - Least-Squares Collocation Method KW - Target Values KW - Set Point Values KW - Controlling Regulators and Compressors Y1 - 2021 ER - TY - INPR A1 - Sauter, Henning A1 - Tischendorf, Caren T1 - Optimal control of gas network DAEs Y1 - 2021 ER - TY - INPR A1 - Sauter, Henning A1 - Tischendorf, Caren T1 - Least squares collocation for the simulation of gas network DAEs Y1 - 2021 ER -