TY - JOUR A1 - Grimm, Veronika A1 - Martin, Alexander A1 - Schmidt, Martin A1 - Weibelzahl, Martin A1 - Zöttl, Gregor T1 - Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes JF - European Journal of Operational Research N2 - We propose an equilibrium model that allows to analyze the long-run impact of the electricity market design on transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized electricity markets. The model incorporates investment decisions of the transmission system operator and private firms in expectation of an energy-only market and cost-based redispatch. In different specifications we consider the cases of one vs. multiple price zones (market splitting) and analyze different approaches to recover network cost—in particular lump sum, generation capacity based, and energy based fees. In order to compare the outcomes of our multilevel market model with a first best benchmark, we also solve the corresponding integrated planner problem. Using two test networks we illustrate that energy-only markets can lead to suboptimal locational decisions for generation capacity and thus imply excessive network expansion. Market splitting heals these problems only partially. These results are valid for all considered types of network tariffs, although investment slightly differs across those regimes. KW - Electricity market modeling KW - Mixed-integer nonlinear optimization KW - Multilevel programming KW - Network expansion KW - Transmission management Y1 - 2016 U6 - https://doi.org/10.1016/j.ejor.2016.03.044 VL - 254 IS - 2 SP - 493 EP - 509 ER - TY - JOUR A1 - Hante, Falk A1 - Leugering, Günter A1 - Martin, Alexander A1 - Schewe, Lars A1 - Schmidt, Martin T1 - Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial applications N2 - We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St.~Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on-off states that are inherent to controllable devices in such applications combined with continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique. KW - Networks KW - pipes KW - optimal control KW - Euler and St. Venant equations KW - hierarchy of models Y1 - 2016 ER - TY - JOUR A1 - Gugat, Martin A1 - Keimer, Alexander A1 - Leugering, Günter A1 - Wang, Zhiqiang ED - Piccoli, Benedetto T1 - Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks JF -  Networks and Heterogeneous Media N2 - We consider a system of scalar nonlocal conservation laws on networks that model a highly re-entrant multi-commodity manufacturing system as encountered in semiconductor production. Every single commodity is mod-eled by a nonlocal conservation law, and the corresponding PDEs are coupled via a collective load, the work in progress. We illustrate the dynamics for two commodities. In the applications, directed acyclic networks naturally occur, therefore this type of networks is considered. On every edge of the network we have a system of coupled conservation laws with nonlocal velocity. At the junctions the right hand side boundary data of the foregoing edges is passed as left hand side boundary data to the following edges and PDEs. For distributing junctions, where we have more than one outgoing edge, we impose time dependent distribution functions that guarantee conservation of mass. We provide results of regularity, existence and well-posedness of the multi-commodity network model for L p-, BV-and W 1,p-data. Moreover, we define an L 2-tracking type objective and show the existence of minimizers that solve the corresponding optimal control problem. KW - conservation laws on network KW - nonlocal conservation laws KW - optimal nodal control KW - systems of hyperbolic pdes Y1 - 2016 U6 - https://doi.org/DOI: 10.3934/nhm.2015.10.749 VL - 10 IS - 4 SP - 749 EP - 785 ER -