TY - JOUR A1 - Martin, Gugat A1 - Giesselmann, Jan A1 - Kunkel, Teresa T1 - Exponential synchronization of a nodal observer for a semilinear model for the flow in gas networks N2 - The flow of gas through networks of pipes can be modeled by coupling hyperbolic systems of partial differential equations that describe the flow through the pipes that form the edges of the graph of the network by algebraic node conditions that model the flow through the vertices of the graph. In the network, measurements of the state are available at certain points in space.Based upon these nodal observations, the complete system state can be approximated using an observer system. In this paper we present a nodal observer, and prove that the state of the observer system converges to the original state exponentially fast. Numerical experiments confirm the theoretical findings. Y1 - 2021 U6 - https://doi.org/10.1093/imamci/dnab029 CY - IMA Journal of Mathematical Control and Information ER - TY - INPR A1 - Giesselmann, Jan A1 - Egger, Herbert T1 - Stability and asymptotic analysis for instationary gas transport via relative energy estimates N2 - We consider the transport of gas in long pipes and pipeline networks for which the dynamics are dominated by friction at the pipe walls. The governing equations can be formulated as an abstract dissipative Hamiltonian system which allows us to derive perturbation bounds by means of relative energy estimates. As particular consequences, we obtain stability with respect to initial conditions and model parameters and quantitative estimates in the high friction limit. Our results are established in detail for the flow in a single pipe and through the energy-based modelling they naturally generalize also to pipe networks. KW - gas transport on networks KW - asymptotic limits KW - hyperbolic balance laws KW - relative energy estimates KW - singular perturbations Y1 - 2020 ER - TY - INPR A1 - Sarna, Neeraj A1 - Giesselmann, Jan A1 - Benner, Peter T1 - Data-Driven Snapshot Calibration via Monotonic Feature Matching N2 - Snapshot matrices of hyperbolic equations have a slow singular value decay, resulting in inefficient reduced-order models. We develop on the idea of inducing a faster singular value decay by computing snapshots on a transformed spatial domain, or the so-called snapshot calibration/transformation. We are particularly interested in problems involving shock collision, shock rarefaction-fan collision, shock formation, etc. For such problems, we propose a realizable algorithm to compute the spatial transform using monotonic feature matching. We consider discontinuities and kinks as features, and by carefully partitioning the parameter domain, we ensure that the spatial transform has properties that are desirable both from a theoretical and an implementation standpoint. We use these properties to prove that our method results in a fast $m$-width decay of a so-called calibrated manifold. A crucial observation we make is that due to calibration, the $m$-width does not only depend on $m$ but also on the accuracy of the full order model, which is in contrast to elliptic and parabolic problems that do not need calibration. The method we propose only requires the solution snapshots and not the underlying partial differential equation (PDE) and is therefore, data-driven. We perform several numerical experiments to demonstrate the effectiveness of our method. Y1 - 2020 ER - TY - JOUR A1 - Gugat, Martin A1 - Giesselmann, Jan T1 - Boundary feedback stabilization of a semilinear model for the flow in star-shaped gas networks N2 - The flow of gas through a pipeline network can be modelled by a coupled system of 1-d quasilinear hyperbolic equations. In this system, the influence of certain source terms that model friction effects is essential. Often for the solution of control problems it is convenient to replace the quasilinear model by a simpler semilinear model. In this paper, we analyze the behavior of such a semilinear model on a star-shaped network. The model is derived from the diagonal form of the quasilinear model by replacing the eigenvalues by the sound speed multiplied by 1 or -1 respectively. Thus in the corresponding eigenvalues the influence of the gas velocity is neglected, which is justified in the applications since it is much smaller than the sound speed in the gas. For a star-shaped network of horizontal pipes for suitable coupling conditions we present boundary feedback laws that stabilize the system state exponentially fast to a position of rest for sufficiently small initial data. We show the exponential decay of the $H^1$-norm for arbitrarily long pipes. This is remarkable since in general even for linear systems, for certain source terms the system can become exponentially unstable if the space interval is too long. Our proofs are based upon observability inequalities for the $L^2$ and the $H^1$-norm. Y1 - 2020 U6 - https://doi.org/10.1051/cocv/2021061 CY - ESAIM:COCV ER - TY - INPR A1 - Egger, Herbert A1 - Giesselmann, Jan A1 - Philippi, Nora A1 - Kunkel, Teresa T1 - An asymptotic-preserving discretization scheme for gas transport in pipe networks N2 - We consider the simulation of barotropic flow of gas in long pipes and pipe networks. Based on a Hamiltonian reformulation of the governing system, a fully discrete approximation scheme is proposed using mixed finite elements in space and an implicit Euler method in time. Assuming the existence of a smooth subsonic solution bounded away from vacuum, a full convergence analysis is presented based on relative energy estimates. Particular attention is paid to establishing error bounds that are uniform in the friction parameter. As a consequence, the method and results also cover the parabolic problem arising in the asymptotic large friction limit. The error estimates are derived in detail for a single pipe, but using appropriate coupling conditions and the particular structure of the problem and its discretization, the main results directly generalize to pipe networks. Numerical tests are presented for illustration. Y1 - 2021 ER - TY - INPR A1 - Giesselmann, Jan A1 - Gugat, Martin A1 - Kunkel, Teresa T1 - Observer-based data assimilation for barotropic gas transport using distributed measurements N2 - We consider a state estimation problem for gas pipeline flow modeled by the one-dimensional barotropic Euler equations. In order to reconstruct the system state, we construct an observer system of Luenberger type based on distributed measurements of one state variable. First, we show the existence of Lipschitz-continuous semi-global solutions of the observer system and of the original system for initial and boundary data satisfying smallness and compatibility conditions for a single pipe and for general networks. Second, based on an extension of the relative energy method we prove that the state of the observer system converges exponentially in the long time limit towards the original system state. We show this for a single pipe and for star-shaped networks. Y1 - 2023 ER - TY - INPR A1 - Giesselmann, Jan A1 - Krupa, Sam T1 - Theory of shifts, shocks, and the intimate connections to L2-type a posteriori error analysis of numerical schemes for hyperbolic problems N2 - In this paper, we develop reliable a posteriori error estimates for numerical approximations of scalar hyperbolic conservation laws in one space dimension. Our methods have no inherent small-data limitations and are a step towards error control of numerical schemes for systems. We are careful not to appeal to the Kruzhkov theory for scalar conservation laws. Instead, we derive novel quantitative stability estimates that extend the theory of shifts, and in particular, the framework for proving stability first developed by the second author and Vasseur. This is the first time this methodology has been used for quantitative estimates. We work entirely within the context of the theory of shifts and a-contraction, techniques which adapt well to systems. In fact, the stability framework by the second author and Vasseur has itself recently been pushed to systems [Chen-Krupa-Vasseur. Uniqueness and weak-BV stability for 2×2 conservation laws. Arch. Ration. Mech. Anal., 246(1):299--332, 2022]. Our theoretical findings are complemented by a numerical implementation in MATLAB and numerical experiments. KW - Conservation laws KW - entropy conditions KW - entropy solutions KW - shocks, KW - a posteriori error estimates Y1 - 2023 ER - TY - INPR A1 - Giesselmann, Jan A1 - Kolbe, Niklas T1 - A posteriori error analysis of a positivity preserving scheme for the power-law diffusion Keller-Segel model N2 - We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law diffusion with exponent γ∈[1,3] and periodic boundary conditions. We derive conditional a posteriori bounds for the error measured in the L∞(0,T;H1(Ω)) norm for the chemoattractant and by a quasi-norm-like quantity for the density. These results are based on stability estimates and suitable conforming reconstructions of the numerical solution. We perform numerical experiments showing that our error bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of γ. KW - Keller-Segel KW - chemotaxis; KW - nonlinear diffusion KW - finite volume scheme KW - a posteriori error analysis Y1 - 2023 ER - TY - INPR A1 - Alldredge, Graham A1 - Frank, Martin A1 - Giesselmann, Jan T1 - On the convergence of the regularized entropy-based moment method for kinetic equations N2 - The entropy-based moment method is a well-known discretization for the velocity variable in kinetic equations which has many desirable theoretical properties but is difficult to implement with high-order numerical methods. The regularized entropy-based moment method was recently introduced to remove one of the main challenges in the implementation of the entropy-based moment method, namely the requirement of the realizability of the numerical solution. In this work we use the method of relative entropy to prove the convergence of the regularized method to the original method as the regularization parameter goes to zero and give convergence rates. Our main assumptions are the boundedness of the velocity domain and that the original moment solution is Lipschitz continuous in space and bounded away from the boundary of realizability. We provide results from numerical simulations showing that the convergence rates we prove are optimal. Y1 - 2023 U6 - https://doi.org/https://doi.org/10.5802/smai-jcm.93 VL - 9 ER - TY - INPR A1 - Giesselmann, Jan A1 - Kwon, Kiwoong T1 - A posteriori error control for a Discontinuous Galerkin approximation of a Keller-Segel model N2 - We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional, in the sense that an a posteriori computable quantity needs to be small enough - which can be ensured by mesh refinement - and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove existence of a weak solution up to a certain time based on numerical results. KW - Keller-Segel KW - chemotaxis KW - nonlinear diffusion KW - discontinuous Galerkin scheme KW - a posteriori error analysis Y1 - 2023 ER - TY - INPR A1 - Gugat, Martin A1 - Giesselmann, Jan T1 - An Observer for pipeline flow with hydrogen blending in gas networks: exponential synchronization N2 - We consider a state estimation problem for gas flows in pipeline networks where hydrogen is blended into the natural gas. The flow is modeled by the quasi-linear isothermal Euler equations coupled to an advection equation on a graph. The flow through the vertices where the pipes are connected is governed by algebraic node conditions. The state is approximated by an observer system that uses nodal measurements. We prove that the state of the observer system converges to the original system state exponentially fast in the L2-norm if the measurements are exact. If measurement errors are present we show that the observer state approximates the original system state up to an error that is proportional to the maximal measurement error. The proof of the synchronization result uses Lyapunov functions with exponential weights. Y1 - 2023 ER - TY - INPR A1 - Domschke, Pia A1 - Giesselmann, Jan A1 - Lang, Jens A1 - Breiten, Tobias A1 - Mehrmann, Volker A1 - Morandin, Riccardo A1 - Hiller, Benjamin A1 - Tischendorf, Caren T1 - Gas Network Modeling: An Overview (Extended English Version) N2 - With this overview we want to provide a compilation of different models for the description of gas flow in networks in order to facilitate the introduction to the topic. Special attention is paid to the hierarchical structure inherent to the modeling, and the detailed description of individual components such as valves and compressors. Also included are network model classes based on purely algebraic relations, and energy-based port-Hamiltonian models. A short overview of basic numerical methods and concepts for the treatment of hyperbolic balance equations is also given. We do not claim completeness and refer in many places to the existing literature. Y1 - 2023 ER - TY - INPR A1 - Egger, Herbert A1 - Giesselmann, Jan T1 - Regularity and long time behavior of a doubly nonlinear parabolic problem and its discretization N2 - We study a doubly nonlinear parabolic problem arising in the modeling of gas transport in pipelines. Using convexity arguments and relative entropy estimates we show uniform bounds and exponential stability of discrete approximations obtained by a finite element method and implicit time stepping. Due to convergence of the approximations to weak solutions of the problem, our results also imply regularity, uniqueness, and long time stability of weak solutions of the continuous problem. KW - gas transport KW - doubly nonlinear parabolic problems KW - relative entropy estimates KW - exponential stability KW - structure preserving discretization Y1 - 2023 ER -