TY - JOUR A1 - Berthold, Holger A1 - Heitsch, Holger A1 - Henrion, René A1 - Schwientek, Jan T1 - On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints N2 - We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints. KW - probabilistic constraints KW - probust constraints KW - chance constraints KW - bilevel optimization KW - semi-infinite optimization Y1 - 2021 U6 - https://doi.org/10.1007/s00186-021-00764-8 ER - TY - INPR A1 - Branda, Martin A1 - Henrion, René A1 - Pištěk, Miroslav T1 - Value at risk approach to producer's best response in electricity market with uncertain demand N2 - We deal with several sources of uncertainty in electricity markets. The independent system operator (ISO) maximizes the social welfare using chance constraints to hedge against discrepancies between the estimated and real electricity demand. We find an explicit solution of the ISO problem, and use it to tackle the problem of a producer. In our model, production as well as income of a producer are determined based on the estimated electricity demand predicted by the ISO, that is unknown to producers. Thus, each producer is hedging against the uncertainty of prediction of the demand using the value-at-risk approach. To illustrate our results, a numerical study of a producer's best response given a historical distribution of both estimated and real electricity demand is provided. KW - electricity market KW - multi-leader-common-follower game KW - stochastic demand KW - day-ahead bidding KW - chance constraints Y1 - 2021 ER - TY - JOUR A1 - Adam, Lukas A1 - Branda, Martin A1 - Heitsch, Holger A1 - Henrion, René T1 - Solving joint chance constrained problems using regularization and Benders' decomposition JF - Annals of Operations Research N2 - In this paper we investigate stochastic programs with joint chance constraints. We consider discrete scenario set and reformulate the problem by adding auxiliary variables. Since the resulting problem has a difficult feasible set, we regularize it. To decrease the dependence on the scenario number, we propose a numerical method by iteratively solving a master problem while adding Benders cuts. We find the solution of the slave problem (generating the Benders cuts) in a closed form and propose a heuristic method to decrease the number of cuts. We perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with continuous distribution. KW - chance constrained programming KW - optimality conditions KW - regularization KW - Benders cuts KW - gas networks Y1 - U6 - https://doi.org/10.1007/s10479-018-3091-9 VL - 292 SP - 683 EP - 709 ER - TY - JOUR A1 - Branda, Martin A1 - Henrion, René A1 - Pistek, Miroslav T1 - Producer’s Best Response in Pay-as-clear Day-ahead Electricity Market with Uncertain Demand N2 - We deal with several sources of uncertainty in electricity markets. The independent system operator (ISO) maximizes the social welfare using chance constraints to hedge against discrepancies between the estimated and real electricity demand. We find an explicit solution of the ISO problem, and use it to tackle the problem of a producer. In our model, production as well as income of a producer are determined based on the estimated electricity demand predicted by the ISO, that is unknown to producers. Thus, each producer is hedging against the uncertainty of prediction of the demand using the value-at-risk approach. To illustrate our results, a numerical study of a producer’s best response given a historical distribution of both estimated and real electricity demand is provided. KW - electricity market KW - multi-leader-common-follower game KW - stochastic demand KW - day-ahead bidding KW - chance constraints Y1 - 2020 ER - TY - INPR A1 - Heitsch, Holger A1 - Henrion, René A1 - Kleinert, Thomas A1 - Schmidt, Martin T1 - On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints N2 - Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this setup, we develop a cutting-plane algorithm that computes approximate bilevel-feasible points. We apply this method to a bilevel model of the European gas market in which we use a joint chance constraint to model uncertain loads. Since the chance constraint is not available in closed form, this fits into the black-box setting studied before. For the applied model, we use further problem-specific insights to derive bounds on the objective value of the bilevel problem. By doing so, we are able to show that we solve the application problem to approximate global optimality. In our numerical case study we are thus able to evaluate the welfare sensitivity in dependence of the achieved safety level of uncertain load coverage. KW - Bilevel optimization KW - Black-box constraints KW - Chance constraints KW - Cutting planes KW - European gas market Y1 - 2021 ER - TY - JOUR A1 - Gonzalez Grandon, Tatiana A1 - Heitsch, Holger A1 - Henrion, Rene T1 - A joint model of probabilistic/robust constraints for gas transport management in stationary networks JF - Computational Management Science N2 - We present a novel mathematical algorithm to assist gas network operators in managing uncertainty, while increasing reliability of transmission and supply. As a result, we solve an optimization problem with a joint probabilistic constraint over an infinite system of random inequalities. Such models arise in the presence of uncertain parameters having partially stochastic and partially non-stochastic character. The application that drives this new approach is a stationary network with uncertain demand (which are stochastic due to the possibility of fitting statistical distributions based on historical measurements) and with uncertain roughness coefficients in the pipes (which are uncertain but non-stochastic due to a lack of attainable measurements). We study the sensitivity of local uncertainties in the roughness coefficients and their impact on a highly reliable network operation. In particular, we are going to answer the question, what is the maximum uncertainty that is allowed (shaping a 'maximal' uncertainty set) around nominal roughness coefficients, such that random demands in a stationary gas network can be satisfied at given high probability level for no matter which realization of true roughness coefficients within the uncertainty set. One ends up with a constraint, which is probabilistic with respect to the load of gas and robust with respect to the roughness coefficients. We demonstrate how such constraints can be dealt with in the framework of the so-called spheric-radial decomposition of multivariate Gaussian distributions. The numerical solution of a corresponding optimization problem is illustrated. The results might assist the network operator with the implementation of cost-intensive roughness measurements. KW - chance constraint KW - robust constraint KW - uncertainty set KW - spheric-radial decomposition Y1 - 2017 U6 - https://doi.org/10.1007/s10287-017-0284-7 VL - 14 SP - 443 EP - 460 ER - TY - JOUR A1 - Adam, Lukas A1 - Henrion, Rene A1 - Outrata, Jiri T1 - On M-stationarity conditions in MPECs and the associated qualification conditions JF - Mathematical Programming N2 - Depending on whether a mathematical program with equilibrium constraints (MPEC) is considered in its original or its enhanced (via KKT conditions) form, the assumed qualification conditions as well as the derived necessary optimality conditions may differ significantly. In this paper, we study this issue when imposing one of the weakest possible qualification conditions, namely the calmness of the perturbation mapping associated with the respective generalized equations in both forms of the MPEC. It is well known that the calmness property allows one to derive the so-called M-stationarity conditions. The restrictiveness of assumptions and the strength of conclusions in the two forms of the MPEC is also strongly related to the qualification conditions on the “lower level”. For instance, even under the Linear Independence Constraint Qualification (LICQ) for a lower level feasible set described by C 1 functions, the calmness properties of the original and the enhanced perturbation mapping are drastically different. When passing to C 1,1 data, this difference still remains true under the weaker Mangasarian-Fromovitz Constraint Qualification, whereas under LICQ both the calmness assumption and the derived optimality conditions are fully equivalent for the original and the enhanced form of the MPEC. After clarifying these relations, we provide a compilation of practically relevant consequences of our analysis in the derivation of necessary optimality conditions. The obtained results are finally applied to MPECs with structured equilibria. KW - equilibrium constraints KW - optimality conditions KW - constraint qualification KW - calmness KW - perturbation mapping Y1 - 2017 ER - TY - JOUR A1 - Gotzes, Claudia A1 - Heitsch, Holger A1 - Henrion, Rene A1 - Schultz, Rüdiger T1 - On the quantification of nomination feasibility in stationary gas networks with random load JF - Mathematical Methods of Operations Research N2 - The paper considers the computation of the probability of feasible load constellations in a stationary gas network with uncertain demand. More precisely, a network with a single entry and several exits with uncertain loads is studied. Feasibility of a load constellation is understood in the sense of an existing flow meeting these loads along with given pressure bounds in the pipes. In a first step, feasibility of deterministic exit loads is characterized algebraically and these general conditions are specified to networks involving at most one cycle. This prerequisite is essential for determining probabilities in a stochastic setting when exit loads are assumed to follow some (joint) Gaussian distribution when modeling uncertain customer demand. The key of our approach is the application of the spheric-radial decomposition of Gaussian random vectors coupled with Quasi Monte-Carlo sampling. This approach requires an efficient algorithmic treatment of the mentioned algebraic relations moreover depending on a scalar parameter. Numerical results are illustrated for different network examples and demonstrate a clear superiority in terms of precision over simple generic Monte-Carlo sampling. They lead to fairly accurate probability values even for moderate sample size. Y1 - 2016 U6 - https://doi.org/10.1007/s00186-016-0564-y VL - 84 IS - 2 SP - 427 EP - 457 ER - TY - JOUR A1 - van Ackooij, Wim A1 - Henrion, Rene T1 - (Sub-) Gradient formulae for probability functions of random inequality systems under Gaussian distribution JF - SIAM/ASA J. Uncertainty Quantification N2 - We consider probability functions of parameter-dependent random inequality systems under Gaussian distribution. As a main result, we provide an upper estimate for the Clarke subdifferential of such probability functions without imposing compactness conditions. A constraint qualification ensuring continuous differentiability is formulated. Explicit formulae are derived from the general result in case of linear random inequality systems. In the case of a constant coefficient matrix an upper estimate for even the smaller Mordukhovich subdifferential is proven. Y1 - 2017 U6 - https://doi.org/10.1137/16M1061308 VL - 5 SP - 63 EP - 87 ER - TY - JOUR A1 - Guigues, Vincent A1 - Henrion, Rene T1 - Joint dynamic probabilistic constraints with projected linear decision rules JF - Optimization Methods and Software N2 - We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically. Y1 - 2016 U6 - https://doi.org/10.1080/10556788.2016.1233972 VL - 32 SP - 1006 EP - 1032 ER - TY - JOUR A1 - Diniz, Andre Luiz A1 - Henrion, Rene T1 - On probabilistic constraints with multivariate truncated Gaussian and lognormal distributions JF - Energy Systems N2 - Many engineering problems with uncertain data, notably arising in power management, can be formulated as optimization problems subject to probabilistic constraints. While dealing with such constraints under continuous distributions of the underlying random parameter remains a difficult task in general both from the numerical and theoretical point of view, quite some progress has been made in the special case of multivariate Gaussian distributions. These are not perfectly adequate, however, in many circumstances, in particular not, when modeling uncertain inflows to hydro reservoirs or uncertain demands in gas networks. Interesting alternatives are offered by truncations of multivariate Gaussian distributions to polyhedra or by multivariate lognormal distributions. The paper discusses the applicability of such distributions in the context of a simple joint linear probabilistic constraint putting the emphasis on the numerical approximation of probabilities and their gradients (w.r.t. decisions to be optimized) as well as on the convexity of the set of feasible decisions. Y1 - 2016 U6 - https://doi.org/10.1007/s12667-015-0180-6 VL - 8 SP - 149 EP - 167 ER - TY - JOUR A1 - Henrion, Rene T1 - On M-stationarity conditions for probabilistic MPECs N2 - We consider Mathematical Programs with Equilibrium Constraints with proba- bilistic constraints (PMPECs). Such models have proven to be useful in modeling electricity or gas markets subject to random parameters. Our main interest is the derivation of Mordukhovich (M-) stationarity conditions under suitable constraint quali...cations ensuring the calmness of the canonically perturbed generalized equation. Applying recent results from deterministic MPECs, we identify the needed properties of the probability function in order to derive explicit M-stationarity conditions. The results are applied to a simple stochastic bilevel problem in an economic context. KW - Mathematical Programs with Equilibrium Constraints, probabilistic con- straints, M-stationarity conditions, calmness Y1 - 2021 ER - TY - JOUR A1 - Heitsch, Holger A1 - Henrion, René T1 - An enumerative formula for the spherical cap discrepancy N2 - The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size. KW - spherical cap discrepancy KW - uniform distribution on sphere KW - optimality conditions Y1 - 2019 U6 - https://doi.org/10.1016/j.cam.2021.113409 ER - TY - JOUR A1 - Gonzalez Grandon, Tatiana A1 - Henrion, Rene A1 - Perez-Aros, Pedro T1 - Dynamic probabilistic constraints under continuous random distributions N2 - In this paper we address novel results on the theoretical structural analysis of dynamic joint probabilistic constraints under continuous random variables. This dynamic probabilistic function is important when decisions are time-dependent and when the modeler can react on past observations. We first study the continuity of dynamic probabilistic constraints and provide strong and weak semi-continuous results depending on whether the policies are supposed to be in the L^p or W^{1,p} spaces. Moreover, we prove the non-convexity of the feasible set of decisions induced by a dynamic probability function in the L^p space. Lastly, for a simple two-stage model, verifiable conditions for Lipschitz continuity and differentiability of this probability function are derived and endowed with explicit derivative formulae. Y1 - 2019 U6 - https://doi.org/10.1007/s10107-020-01593-z ER - TY - JOUR A1 - Farshbaf Shaker, Mohammad Hassan A1 - Gugat, Martin A1 - Heitsch, Holger A1 - Henrion, René T1 - Optimal Neumann boundary control of a vibrating string with uncertain initial data and probabilistic terminal constraints N2 - In optimal control problems, often initial data are required that are not known exactly in practice. In order to take into account this uncertainty, we consider optimal control problems for a system with an uncertain initial state. A finite terminal time is given. On account of the uncertainty of the initial state, it is not possible to prescribe an exact terminal state. Instead, we are looking for controls that steer the system into a given neighborhood of the desired terminal state with sufficiently high probability. This neighborhood is described in terms of an inequality for the terminal energy. The probabilistic constraint in the considered optimal control problem leads to optimal controls that are robust against the inevitable uncertainties of the initial state. We show the existence of such optimal controls. Numerical examples with optimal Neumann control of the wave equation are presented. KW - PDE constrained optimization, probabilistic constraints, uncertain initial data Y1 - U6 - https://doi.org/10.1137/19M1269944 ER - TY - INPR A1 - Schmidt, Martin A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Pfetsch, Marc A1 - Geißler, Björn A1 - Henrion, René A1 - Joormann, Imke A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Schewe, Lars A1 - Schultz, Rüdiger A1 - Steinbach, Marc C. T1 - Capacity Evaluation for Large-Scale Gas Networks N2 - Natural gas is important for the energy turnaround in many countries like in Germany, where it serves as a "bridging energy" towards a fossil-free energy supply in the future. About 20% of the total German energy demand is provided by natural gas, which is transported through a complex pipeline network with a total length of about 30000 km and the efficient use of the given transport infrastructure for natural gas is of political, economic, and societal importance. As a consequence of the liberalization of the European gas market in the last decades, gas trading and transport have been decoupled. This has led to new challenges for gas transport companies, and mathematical optimization is perfectly suited for tackling many of these challenges. However, the underlying mathematical problems are by far too hard to be solved by today's general-purpose software so that novel mathematical theory and algorithms are needed. The industrial research project "ForNe: Research Cooperation Network Optimization" has been initiated and funded by Open Grid Europe in 2009 and brought together experts in mathematical optimization from seven German universities and research institutes, which cover almost the entire range of mathematical optimization: integer and nonlinear optimization as well as optimization under uncertainty. The mathematical research results have been put together in a software package that has been delivered to Open Grid Europe at the end of the project. Moreover, the research is still continuing - e.g., in the Collaborative Research Center/Transregio 154 "Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks" funded by the German Research Foundation. Y1 - 2019 ER - TY - JOUR A1 - Adelhütte, Dennis A1 - Aßmann, Denis A1 - Gonzàlez Grandòn, Tatiana A1 - Gugat, Martin A1 - Heitsch, Holger A1 - Liers, Frauke A1 - Henrion, René A1 - Nitsche, Sabrina A1 - Schultz, Rüdiger A1 - Stingl, Michael A1 - Wintergerst, David T1 - Joint model of probabilistic/robust (probust) constraints applied to gas network optimization N2 - Optimization tasks under uncertain conditions abound in many real-life applications. Whereas solution approaches for probabilistic constraints are often developed in case the uncertainties can be assumed to follow a certain probability distribution, robust approaches are usually used in case solutions are sought that are feasible for all realizations of uncertainties within some pre-defined uncertainty set. As many applications contain different types of uncertainties that require robust as well as probabilistic treatments, we deal with a class of joint probabilistic/robust constraints as its appears in optimization problems under uncertainty. Focusing on complex uncertain gas network optimization problems, we show the relevance of this class of problems for the task of maximizing free booked capacities in an algebraic model for a stationary gas network. We furthermore present approaches for their solution. Finally, we study the problem of controlling a transient system that is governed by the wave equation. The task consists in determining controls such that a certain robustness measure remains below some given upper bound, with high probability. KW - robust optimization KW - chance constraints KW - optimal control KW - spheric-radial decomposition Y1 - 2017 U6 - https://doi.org/10.1007/s10013-020-00434-y ER - TY - JOUR A1 - Hantoute, Abderrahim A1 - Henrion, Rene A1 - Perez-Aros, Pedro T1 - Subdifferential characterization of probability functions under Gaussian distribution N2 - Probability functions figure prominently in optimization problems of engineering. They may be nonsmooth even if all input data are smooth. This fact motivates the consideration of subdifferentials for such typically just continuous functions. The aim of this paper is to provide subdifferential formulae of such functions in the case of Gaussian distributions for possibly infinite-dimensional decision variables and nonsmooth (locally Lipschitzian) input data. These formulae are based on the spheric-radial decomposition of Gaussian random vectors on the one hand and on a cone of directions of moderate growth on the other. By successively adding additional hypotheses, conditions are satisfied under which the probability function is locally Lipschitzian or even differentiable. Y1 - 2018 U6 - https://doi.org/10.1007/s10107-018-1237-9 ER - TY - JOUR A1 - Farshbaf-Shaker, M. Hassan A1 - Henrion, Rene A1 - Hömberg, Dietmar T1 - Properties of Chance Constraints in Infinite Dimensions with an Application to PDE Constrained Optimization JF - Set-Valued and Variational Analysis N2 - Chance constraints represent a popular tool for finding decisions that enforce the satisfaction of random inequality systems in terms of probability. They are widely used in optimization problems subject to uncertain parameters as they arise in many engineering applications. Most structural results of chance constraints (e.g., closedness, convexity, Lipschitz continuity, differentiability etc.) have been formulated in finite dimensions. The aim of this paper is to generalize some of these well-known semi-continuity and convexity properties as well as a stability result to an infinite dimensional setting. The abstract results are applied to a simple PDE constrained control problem subject to (uniform) state chance constraints. KW - Chance constraints KW - Probabilistic constraints KW - PDE constrained optimization Y1 - 2018 U6 - https://doi.org/doi:10.1007/s11228-017-0452-5 ER - TY - JOUR A1 - Geiersbach, Caroline A1 - Henrion, René T1 - Optimality conditions in control problems with random state constraints in probabilistic or almost-sure form N2 - In this paper, we discuss optimality conditions for optimization problems {involving} random state constraints, which are modeled in probabilistic or almost sure form. While the latter can be understood as the limiting case of the former, the derivation of optimality conditions requires substantially different approaches. We apply them to a linear elliptic partial differential equation (PDE) with random inputs. In the probabilistic case, we rely on the spherical-radial decomposition of Gaussian random vectors in order to formulate fully explicit optimality conditions involving a spherical integral. In the almost sure case, we derive optimality conditions and compare them to a model based on robust constraints with respect to the (compact) support of the given distribution. Y1 - 2023 ER - TY - JOUR A1 - Geiersbach, Caroline A1 - Henrion, René A1 - Pérez-Aros, Pedro T1 - Numerical solution of an optimal control problem with probabilistic and almost sure state constraints N2 - We consider the optimal control of a PDE with random source term subject to probabilistic or almost sure state constraints. In the main theoretical result, we provide an exact formula for the Clarke subdifferential of the probability function without a restrictive assumption made in an earlier paper. The focus of the paper is on numerical solution algorithms. As for probabilistic constraints, we apply the method of spherical radial decomposition. Almost sure constraints are dealt with a Moreau--Yosida smoothing of the constraint function accompanied by Monte Carlo sampling of the given distribution or its support or even just the boundary of its support. Moreover, one can understand the almost sure constraint as a probabilistic constraint with safety level one which offers yet another perspective. Finally, robust optimization can be applied efficiently when the support is sufficiently simple. A comparative study of these five different methodologies is carried out and illustrated. Y1 - 2023 ER - TY - JOUR A1 - Gugat, Martin A1 - Henrion, René A1 - Heitsch, Holger T1 - A turnpike property for optimal control problems with dynamic probabilistic constraints JF - Journal of Convex Analysis N2 - In this paper we consider systems that are governed by linear time-discrete dynamics with an initial condition and a terminal condition for the expected values. We study optimal control problems where in the objective function a term of tracking type for the expected values and a control cost appear. In addition, the feasible states have to satisfy a conservative probabilistic constraint that requires that the probability that the trajectories remain in a given set F is greater than or equal to a given lower bound. An application are optimal control problems related to storage management systems with uncertain in- and output. We give suffcient conditions that imply that the optimal expected trajectories remain close to a certain state that can be characterized as the solution of an optimal control problem without prescribed initial- and terminal condition. Hence we contribute to the study of the turnpike phenomenon that is well-known in mathematical economics. KW - Probabilistic Constraints KW - Probabilistic Robustness KW - here-and-now decision KW - Turnpike phenomenon KW - Measure turnpike Y1 - 2021 VL - 30 IS - 3 SP - 1025 EP - 1052 PB - Heldermann Verlag 2023 ER -