TY - JOUR A1 - Grübel, Julia A1 - Kleinert, Thomas A1 - Krebs, Vanessa A1 - Orlinskaya, Galina A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Thürauf, Johannes T1 - On Electricity Market Equilibria with Storage: Modeling, Uniqueness, and a Distributed ADMM JF - Computers & Operations Research N2 - We consider spot-market trading of electricity including storage operators as additional agents besides producers and consumers. Storages allow for shifting produced electricity from one time period to a later one. Due to this, multiple market equilibria may occur even if classical uniqueness assumptions for the case without storages are satisfied. For models containing storage operators, we derive sufficient conditions that ensure uniqueness of generation and demand. We also prove uniqueness of the market equilibrium for the special case of a single storage operator. Nevertheless, in case of multiple storage operators, uniqueness fails to hold in general, which we show by illustrative examples. We conclude the theoretical discussion with a general ex-post condition for proving the uniqueness of a given solution. In contrast to classical settings without storages, the computation of market equilibria is much more challenging since storage operations couple all trading events over time. For this reason, we propose a tailored parallel and distributed alternating direction method of multipliers (ADMM) for efficiently computing spot-market equilibria over long time horizons. We first analyze the parallel performance of the method itself. Finally, we show that the parallel ADMM clearly outperforms solving the respective problems directly and that it is capable of solving instances with more than 42 million variables in less than 13 minutes. Y1 - 2019 U6 - https://doi.org/10.1016/j.cor.2019.104783 IS - 114 ER - TY - JOUR A1 - Grimm, Veronika A1 - Orlinskaya, Galina A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Optimal Design of Retailer-Prosumer Electricity Tariffs Using Bilevel Optimization JF - Computers & Operations Research N2 - We compare various flexible tariffs that have been proposed to cost-effectively govern a prosumer's electricity management - in particular time-of-use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP). As the outside option, we consider a fixed-price tariff (FP) that restricts the specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are at least as profitable for the prosumer as the fixed-price tariff. We propose bilevel models to determine the optimal interplay between the retailer's tariff design and the prosumer's decisions on using the storage, on consumption, and on electricity purchases from as well as electricity sales to the grid. The single-level reformulations of the considered bilevel models are computationally highly challenging optimization problems since they, e.g., combine bilinearities and mixed-integer aspects for modeling certain tariff structures. Based on a computational study using real-world data, we find that RTP increases retailer profits, however, leads to the largest price volatility for the prosumer. TOU and CPP only yield mild additional retailer profits and, due to the multiplicity of optimal plans on the part of the prosumer, imply uncertain revenues for the retailer. KW - Electricity tariffs KW - Pricing KW - Bilevel optimization KW - Mixed-integer optimization KW - Tariff design Y1 - 2019 IS - 114 ER -