TY - JOUR A1 - Gugat, Martin A1 - Leugering, Günter A1 - Martin, Alexander A1 - Schmidt, Martin A1 - Sirvent, Mathias A1 - Wintergerst, David T1 - Towards Simulation Based Mixed-Integer Optimization with Differential Equations JF - Networks N2 - We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinear equalities. The latter yield nonconvex feasible sets for the optimization model but we have to restrict ourselves to convex and monotone constraint functions. Under these assumptions, we prove that our algorithm finitely terminates with an approximate feasible global optimal solution of the mixed integer nonlinear problem. Additionally, we show the applicability of our approach for three applications from optimal control with integer variables, from the field of pressurized flows in pipes with elastic walls, and from steady-state gas transport. For the latter we also present promising numerical results of our method applied to real-world instances that particularly show the effectiveness of our method for problems defined on networks. KW - Mixed-Integer Optimization KW - Simulation Based Optimization KW - Optimization with Differential Equations KW - Decomposition Method KW - Gas Transport Networks Y1 - 2018 U6 - https://doi.org/10.1002/net.21812 ER - TY - JOUR A1 - Kramer, Anja A1 - Krebs, Vanessa A1 - Schmidt, Martin T1 - Strictly and Γ-Robust Counterparts of Electricity Market Models: Perfect Competition and Nash-Cournot Equilibria JF - Operations Research Perspectives N2 - This paper mainly studies two topics: linear complementarity problems for modeling electricity market equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot models of electricity markets and study their robustifications using strict robustness and the Γ-approach. For three out of the four combinations of economic competition and robustification, we derive algorithmically tractable convex optimization counterparts that have a clear-cut economic interpretation. In the case of perfect competition, this result corresponds to the two classical welfare theorems, which also apply in both considered robust cases that again yield convex robustified problems. Using the mentioned counterparts, we can also prove the existence and, in some cases, uniqueness of robust equilibria. Surprisingly, it turns out that there is no such economic sensible counterpart for the case of Γ-robustifications of Nash–Cournot models. Thus, an analogue of the welfare theorems does not hold in this case. Finally, we provide a computational case study that illustrates the different effects of the combination of economic competition and uncertainty modeling. KW - Robust optimization KW - Linear complementarity problems KW - Electricity market equilibrium models KW - Perfect competition KW - Nash-Cournot competition Y1 - 2018 IS - 89(2) SP - 100197 ER - TY - JOUR A1 - Hojny, Christopher A1 - Joormann, Imke A1 - Lüthen, Hendrik A1 - Schmidt, Martin T1 - Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem JF - Mathematical Programming Computation N2 - We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The main focus of this paper is an extensive numerical study in which we analyze the impact of the different techniques for various test sets. It turns out that the techniques from the existing literature are not sufficient to solve an adequate fraction of the test sets. However, our novel techniques significantly outperform the existing ones both in terms of running times and the overall number of instances that can be solved. KW - Max-cut KW - Connectivity KW - Branch-and-cut KW - Mixed-integer programming Y1 - 2018 ER - TY - JOUR A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Thürauf, Johannes T1 - Structural Properties of Feasible Bookings in the European Entry-Exit Gas Market System JF - 4OR N2 - In this work we analyze the structural properties of the set of feasible bookings in the European entry-exit gas market system. We present formal definitions of feasible bookings and then analyze properties that are important if one wants to optimize over them. Thus, we study whether the sets of feasible nominations and bookings are bounded, convex, connected, conic, and star-shaped. The results depend on the specific model of gas flow in a network. Here, we discuss a simple linear flow model with arc capacities as well as nonlinear and mixed-integer nonlinear models of passive and active networks, respectively. It turns out that the set of feasible bookings has some unintuitive properties. For instance, we show that the set is nonconvex even though only a simple linear flow model is used. KW - Gas networks KW - Booking KW - Entry-exit system KW - Convexity KW - Flow models Y1 - 2018 U6 - https://doi.org/10.1007/s10288-019-00411-3 IS - 18 SP - 197 EP - 218 ER - TY - JOUR A1 - Ambrosius, Mirjam A1 - Grimm, Veronika A1 - Kleinert, Thomas A1 - Liers, Frauke A1 - Schmidt, Martin A1 - Zöttl, Gregor T1 - Endogenous Price Zones and Investment Incentives in Electricity Markets: An Application of Multilevel Optimization with Graph Partitioning JF - Energy Economics N2 - In the course of the energy transition, load and supply centers are growing apart in electricity markets worldwide, rendering regional price signals even more important to provide adequate locational investment incentives. This paper focuses on electricity markets that operate under a zonal pricing market design. For a fixed number of zones, we endogenously derive the optimal configuration of price zones and available transfer capacities on a network in order to optimally govern investment and production decisions in the long run. In a multilevel mixed-integer nonlinear model that contains a graph partitioning problem on the first level, we determine welfare-maximizing price zones and available transfer capacities for a given electricity market and analyze their impact on market outcomes. Using a generalized Benders decomposition approach developed in Grimm et al. (2019) and a problem-tailored scenario clustering for reducing the input data size, we are able to solve the model to global optimality even for large instances. We apply the approach to the German electricity market as an example to examine the impact of optimal zoning on key performance indicators such as welfare, generation mix and locations, or electricity prices. It turns out that even for a small number of price zones, an optimal configuration of zones induces a welfare level that almost approaches the first best. KW - Electricity Markets KW - Price Zones KW - Investment Incentives KW - Multilevel Optimization KW - Graph Partitioning Y1 - 2018 IS - 92 ER - TY - JOUR A1 - Hante, Falk M. A1 - Schmidt, Martin T1 - Convergence of Finite-Dimensional Approximations for Mixed-Integer Optimization with Differential Equations JF - Control and Cybernetics N2 - We consider a direct approach to solve mixed-integer nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach in the sense of the corresponding optimal values. The results are obtained by considering the discretized problem as a parametric mixed-integer nonlinear optimization problem in finite dimensions, where the maximum step size for discretizing the dynamics is the parameter. In this setting, we prove the continuity of the optimal value function under a stability assumption for the integer feasible set and second-order conditions from nonlinear optimization. We address the necessity of the conditions on the example of pipe sizing problems for gas networks. KW - Optimization with differential equations KW - Optimal value function KW - Lipschitz continuity KW - Parametric optimization KW - Mixed-integer nonlinear programming Y1 - 2018 ER - TY - JOUR A1 - Labbé, Martine A1 - Plein, Fränk A1 - Schmidt, Martin T1 - Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results JF - Optimization and Engineering N2 - As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry or exit nodes of the network. These supplies and withdrawals are nominated at the day-ahead. The special property of bookings then is that they need to be feasible, i.e., every nomination that complies with the given bookings can be transported. While checking the feasibility of a nomination can typically be done by solving a mixed-integer nonlinear feasibility problem, the verification of feasibility of a set of bookings is much harder. The reason is the robust nature of feasibility of bookings - namely that for a set of bookings to be feasible, all compliant nominations, i.e., infinitely many, need to be checked for feasibility. In this paper, we consider the question of how to verify the feasibility of given bookings for a number of special cases. For our physics model we impose a steady-state potential-based flow model and disregard controllable network elements. For this case we derive a characterisation of feasible bookings, which is then used to show that the problem is in coNP for the general case but can be solved in polynomial time for linear potential-based flow models. Moreover, we present a dynamic programming approach for deciding the feasibility of a booking in tree-shaped networks even for nonlinear flow models. It turns out that the hardness of the problem mainly depends on the combination of the chosen physics model as well as the specific network structure under consideration. Thus, we give an overview over all settings for which the hardness of the problem is known and finally present a list of open problems. KW - Gas networks KW - Booking KW - Nomination KW - Computational complexity KW - Trees Y1 - 2018 IS - 21(1) SP - 305 EP - 334 ER - TY - JOUR A1 - Robinius, Martin A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Stolten, Detlef A1 - Thürauf, Johannes A1 - Welder, Lara T1 - Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks JF - Computational Optimization and Applications N2 - We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to be NP-complete even on trees. In order to obtain a tractable problem, we introduce a method for generating a finite scenario set such that optimality of a sizing for this finite set implies the sizing's optimality for the originally given infinite set of scenarios. We further prove that the size of the finite scenario set is quadratically bounded above in the number of nodes of the underlying tree and that it can be computed in polynomial time. The resulting problem can then be solved as a standard mixed-integer linear optimization problem. Finally, we show the applicability of our theoretical results by computing globally optimal arc sizes for a realistic hydrogen transport network of Eastern Germany. KW - Discrete arc sizing KW - Mixed-integer linear optimization KW - Potential networks KW - Scenario generation KW - Robust optimization Y1 - 2018 U6 - https://doi.org/10.1007/s10589-019-00085-x IS - 73(3) SP - 791 EP - 819 ER - TY - JOUR A1 - Kleinert, Thomas A1 - Schmidt, Martin T1 - Global Optimization of Multilevel Electricity Market Models Including Network Design and Graph Partitioning JF - Discrete Optimization N2 - We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal network expansion and the optimal zonal configuration of zonal pricing electricity markets, which is an extension of the model discussed in [25] that does not include a network design problem. The two classical discrete optimization problems of network design and graph partitioning together with nonlinearities due to economic modeling yield extremely challenging mixed-integer nonlinear multilevel models for which we develop two problem-tailored solution techniques. The first approach relies on an equivalent bilevel formulation and a standard KKT transformation thereof including novel primal-dual bound tightening techniques, whereas the second is a tailored generalized Benders decomposition. For the latter, we strengthen the Benders cuts of [25] by using the structure of the newly introduced network design subproblem. We prove for both methods that they yield global optimal solutions. Afterward, we compare the approaches in a numerical study and show that the tailored Benders approach clearly outperforms the standard KKT transformation. Finally, we present a case study that illustrates the economic effects that are captured in our model. KW - Network design KW - Graph partitioning KW - Multilevel optimization KW - Mixed-integer optimization KW - Electricity market design Y1 - 2018 IS - 33 SP - 43 EP - 69 ER - TY - JOUR A1 - Schmidt, Martin A1 - Sirvent, Mathias A1 - Wollner, Winnifried T1 - The Cost of Not Knowing Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities JF - Optimization Letters N2 - It is folklore knowledge that nonconvex mixed-integer nonlinear optimization problems can be notoriously hard to solve in practice. In this paper we go one step further and drop analytical properties that are usually taken for granted in mixed-integer nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear functions and additionally consider multivariate implicit constraint functions that cannot be solved for any parameter analytically. For this class of mixed-integer problems we propose a novel algorithm based on an approximation of the feasible set in the domain of the nonlinear function---in contrast to an approximation of the graph of the function considered in prior work. This method is shown to compute approximate global optimal solutions in finite time and we also provide a worst-case iteration bound. In some first numerical experiments we show that the ``cost of not knowing enough'' is rather high by comparing our approach with the open-source global solver SCIP. This reveals that a lot of work is still to be done for this highly challenging class of problems and we thus finally propose some possible directions of future research. KW - Mixed-Integer Nonlinear Optimization, Global Optimization, Lipschitz Optimization, Gas Networks Y1 - 2018 ER -