@unpublished{SchmidtThuerauf2022, author = {Schmidt, Martin and Th{\"u}rauf, Johannes}, title = {An Exact Method for Nonlinear Network Flow Interdiction Problems}, pages = {28}, year = {2022}, abstract = {We study network flow interdiction problems with nonlinear and nonconvex flow models. The resulting model is a max-min bilevel optimization problem in which the follower's problem is nonlinear and nonconvex. In this game, the leader attacks a limited number of arcs with the goal to maximize the load shed and the follower aims at minimizing the load shed by solving a transport problem in the interdicted network. We develop an exact algorithm consisting of lower and upper bounding schemes that computes an optimal interdiction under the assumption that the interdicted network remains weakly connected. The main challenge consists of computing valid upper bounds for the maximal load shed, whereas lower bounds can directly be derived from the follower's problem. To compute an upper bound, we propose solving a specific bilevel problem, which is derived from restricting the flexibility of the follower when adjusting the load flow. This bilevel problem still has a nonlinear and nonconvex follower's problem, for which we then prove necessary and sufficient optimality conditions. Consequently, we obtain equivalent single-level reformulations of the specific bilevel model to compute upper bounds. Our numerical results show the applicability of this exact approach using the example of gas networks.}, language = {en} } @unpublished{KrugLeugeringMartinetal.2022, author = {Krug, Richard and Leugering, G{\"u}nter and Martin, Alexander and Schmidt, Martin and Weninger, Dieter}, title = {A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems}, pages = {26}, year = {2022}, abstract = {We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel and which may result in simpler classes of optimization problems since not every block necessarily contains mixed-integer or nonlinear aspects. For achieving feasibility at the interfaces of the several blocks, we employ a tailored consensus-based penalty alternating direction method. Our numerical results show that such decomposition techniques can outperform the baseline approach of just solving the overall MINLP from scratch. However, a complete answer to the question of how to decompose MINLPs on graphs in dependence of the given model is still an open topic for future research.}, language = {en} } @unpublished{KreimeierPokuttaWaltheretal.2022, author = {Kreimeier, Timo and Pokutta, Sebastian and Walther, Andrea and Woodstock, Zev}, title = {On a Frank-Wolfe Approach for Abs-smooth Functions}, year = {2022}, abstract = {We propose an algorithm which appears to be the first bridge between the fields of conditional gradient methods and abs-smooth optimization. Our nonsmooth nonconvex problem setting is motivated by machine learning, since the broad class of abs-smooth functions includes, for instance, the squared \$\ell_2\$-error of a neural network with ReLU or hinge Loss activation. To overcome the nonsmoothness in our problem, we propose a generalization to the traditional Frank-Wolfe gap and prove that first-order minimality is achieved when it vanishes. We derive a convergence rate for our algorithm which is identical to the smooth case. Although our algorithm necessitates the solution of a subproblem which is more challenging than the smooth case, we provide an efficient numerical method for its partial solution, and we identify several applications where our approach fully solves the subproblem. Numerical and theoretical convergence is demonstrated, yielding several conjectures.}, language = {en} } @unpublished{GruebelKrugSchmidtetal.2022, author = {Gr{\"u}bel, Julia and Krug, Richard and Schmidt, Martin and Wollner, Winnifried}, title = {A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities}, pages = {34}, year = {2022}, abstract = {We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate between solving a master problem, which is a mixed-integer linear relaxation of the original problem, and a subproblem, which is designed to tighten the linear relaxation of the next master problem by using the Lipschitz information about the respective functions. By doing so, we follow the ideas of Schmidt et al. (2018, 2021) and improve the tackling of multivariate constraints. Although multivariate nonlinearities obviously increase modeling capabilities, their incorporation also significantly increases the computational burden of the proposed algorithm. We prove the correctness of our method and also derive a worst-case iteration bound. Finally, we show the generality of the addressed problem class and the proposed method by illustrating that both bilevel optimization problems with nonconvex and quadratic lower levels as well as nonlinear and mixed-integer models of gas transport can be tackled by our method. We provide the necessary theory for both applications and briefly illustrate the outcomes of the new method when applied to these two problems.}, language = {en} } @unpublished{HanteSchmidt2023, author = {Hante, Falk M. and Schmidt, Martin}, title = {Gas Transport Network Optimization: PDE-Constrained Models}, pages = {8}, year = {2023}, abstract = {The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically and technically detailed modeling of transient gas dynamics leads to theoretically and computationally highly demanding models involving nonlinear partial differential equations (PDEs). For further background on the application, historical notes and a detailed discussion of mixed-integer aspects for stationary descriptions we refer to Hante and Schmidt (2023). In this chapter, we focus on the most common modeling approaches concerning transient descriptions, point out the challenges, and summarize important contributions concerning the optimization of the most relevant control parameters for this particular class of problems.}, language = {en} } @unpublished{BeckLjubicSchmidt2021, author = {Beck, Yasmine and Ljubic, Ivana and Schmidt, Martin}, title = {Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem}, pages = {39}, year = {2021}, abstract = {Developing solution methods for discrete bilevel problems is known to be a challenging task - even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty. We study discrete min-max problems with a follower who faces uncertainties regarding the parameters of the lower-level problem. Adopting a Γ-robust approach, we present an extended formulation and a multi-follower formulation to model this type of problem. For both settings, we provide a generic branch-and-cut framework. Specifically, we investigate interdiction problems with a monotone Γ-robust follower and we derive problem-tailored cuts, which extend existing techniques that have been proposed for the deterministic case. For the Γ-robust knapsack interdiction problem, we computationally evaluate and compare the performance of the proposed algorithms for both modeling approaches.}, language = {en} } @unpublished{HannesVolkerRolandetal.2022, author = {Hannes, D{\"a}nschel and Volker, Mehrmann and Roland, Marius and Schmidt, Martin}, title = {Adaptive Nonlinear Optimization of District Heating Networks Based on Model and Discretization Catalogs}, pages = {29}, year = {2022}, abstract = {We propose an adaptive optimization algorithm for operating district heating networks in a stationary regime. The behavior of hot water flow in the pipe network is modeled using the incompressible Euler equations and a suitably chosen energy equation. By applying different simplifications to these equations, we derive a catalog of models. Our algorithm is based on this catalog and adaptively controls where in the network which model is used. Moreover, the granularity of the applied discretization is controlled in a similar adaptive manner. By doing so, we are able to obtain optimal solutions at low computational costs that satisfy a prescribed tolerance w.r.t. the most accurate modeling level. To adaptively control the switching between different levels and the adaptation of the discretization grids, we derive error measure formulas and a posteriori error measure estimators. Under reasonable assumptions we prove that the adaptive algorithm terminates after finitely many iterations. Our numerical results show that the algorithm is able to produce solutions for problem instances that have not been solvable before.}, language = {en} } @unpublished{BeckSchmidtThueraufetal.2022, author = {Beck, Yasmine and Schmidt, Martin and Th{\"u}rauf, Johannes and Bienstock, Daniel}, title = {On a Computationally Ill-Behaved Bilevel Problem with a Continuous and Nonconvex Lower Level}, pages = {16}, year = {2022}, abstract = {It is well known that bilevel optimization problems are hard to solve both in theory and practice. In this paper, we highlight a further computational difficulty when it comes to solving bilevel problems with continuous but nonconvex lower levels. Even if the lower-level problem is solved to ɛ-feasibility regarding its nonlinear constraints for an arbitrarily small but positive ɛ, the obtained bilevel solution as well as its objective value may be arbitrarily far away from the actual bilevel solution and its actual objective value. This result even holds for bilevel problems for which the nonconvex lower level is uniquely solvable, for which the strict complementarity condition holds, for which the feasible set is convex, and for which Slater's constraint qualification is satisfied for all feasible upper-level decisions. Since the consideration of ɛ-feasibility cannot be avoided when solving nonconvex problems to global optimality, our result shows that computational bilevel optimization with continuous and nonconvex lower levels needs to be done with great care. Finally, we illustrate that the nonlinearities in the lower level are the key reason for the observed bad behavior by showing that linear bilevel problems behave much better at least on the level of feasible solutions.}, language = {en} } @unpublished{GoessMartinPokuttaetal., author = {G{\"o}ß, Adrian and Martin, Alexander and Pokutta, Sebastian and Sharma, Kartikey}, title = {Norm-induced Cuts: Optimization with Lipschitzian Black-box Functions}, abstract = {Optimal control problems usually involve constraints which model physical states and their possible transitions. These are represented by ordinary or partial differential equations (ODEs/PDEs) which add a component of infinite dimension to the problem. In recent literature, one method to simulate such ODEs/PDEs are physics-informed neural networks. Typically, neural networks are highly non-linear which makes their addition to optimization problems challenging. Hence, we leverage their often available Lipschitz property on a compact domain. The respective Lipschitz constants have to be computed only once and are accessible thereafter. We present a method that, based on this property, iteratively adds cuts involving the violation of the constraints by the current incumbent and the Lipschitz constant. Hereby, the "shape" of a cut depends on the norm used. We prove the correctness of the method by showing that it either returns an optimal solution when terminating or creates a sequence with optimal accumulation points. This is complemented by a discussion about the termination in the infeasible case, as well as an analysis of the problem complexity. For the analysis, we show that the lower and upper iteration bound asymptotically coincide when the relative approximation error goes to zero. In the end, we visualize the method on a small example based on a two-dimensional non-convex optimization problem, as well as stress the necessity of having a globally optimal oracle for the sub-problems by another example.}, language = {en} }