@article{BeckSchmidt2021, author = {Beck, Yasmine and Schmidt, Martin}, title = {A Robust Approach for Modeling Limited Observability in Bilevel Optimization}, series = {Operations Research Letters}, journal = {Operations Research Letters}, number = {49(5)}, pages = {752 -- 758}, year = {2021}, abstract = {Many applications of bilevel optimization contain a leader facing a follower whose reaction deviates from the one expected by the leader due to some kind of bounded rationality. We consider bilinear bilevel problems with follower's response uncertainty due to limited observability regarding the leader's decision and exploit robust optimization to model the decision making of the follower. We show that the robust counterpart of the lower level allows to tackle the problem via the lower level's KKT conditions.}, language = {en} } @unpublished{BeckLjubicSchmidt2022, author = {Beck, Yasmine and Ljubic, Ivana and Schmidt, Martin}, title = {A Survey on Bilevel Optimization Under Uncertainty}, pages = {57}, year = {2022}, abstract = {Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve - both in theory and practice. Fortunately, there have been significant algorithmic advances in the field of bilevel optimization so that we can solve much larger and also more complicated problems today compared to what was possible to solve two decades ago. This results in more and more challenging bilevel problems that researchers try to solve today. This survey gives a detailed overview of one of these more challenging classes of bilevel problems: bilevel optimization under uncertainty. We review the classic ways of addressing uncertainties in bilevel optimization using stochastic or robust techniques. Moreover, we highlight that the sources of uncertainty in bilevel optimization are much richer than for usual, i.e., single-level, problems since not only the problem's data can be uncertain but also the (observation of the) decisions of the two players can be subject to uncertainty. We thus also review the field of bilevel optimization under limited observability, the area of problems considering only near-optimal decisions, and discuss intermediate solution concepts between the optimistic and pessimistic cases. Finally, we also review the rich literature on applications studied using uncertain bilevel problems such as in energy, for interdiction games and security applications, in management sciences, and networks.}, language = {en} } @misc{BeckSchmidt2021, author = {Beck, Yasmine and Schmidt, Martin}, title = {A Gentle and Incomplete Introduction to Bilevel Optimization}, pages = {104}, year = {2021}, abstract = {These are lecture notes on bilevel optimization. The class of bilevel optimization problems is formally introduced and motivated using examples from different fields. Afterward, the main focus is on how to solve linear and mixed-integer linear bilevel optimization problems. To this end, we first consider various single-level reformulations of bilevel optimization problems with linear or convex follower problems, discuss geometric properties of linear bilevel problems, and study different algorithms for solving linear bilevel problems. Finally, we consider mixed-integer linear bilevel problems, discuss the main obstacles for deriving exact as well as effective solution methods, and derive a branch-and-bound method for solving these problems.}, language = {en} } @unpublished{BeckLjubicSchmidt2021, author = {Beck, Yasmine and Ljubic, Ivana and Schmidt, Martin}, title = {Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem}, pages = {39}, year = {2021}, abstract = {Developing solution methods for discrete bilevel problems is known to be a challenging task - even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty. We study discrete min-max problems with a follower who faces uncertainties regarding the parameters of the lower-level problem. Adopting a Γ-robust approach, we present an extended formulation and a multi-follower formulation to model this type of problem. For both settings, we provide a generic branch-and-cut framework. Specifically, we investigate interdiction problems with a monotone Γ-robust follower and we derive problem-tailored cuts, which extend existing techniques that have been proposed for the deterministic case. For the Γ-robust knapsack interdiction problem, we computationally evaluate and compare the performance of the proposed algorithms for both modeling approaches.}, language = {en} } @unpublished{BeckSchmidtThueraufetal.2022, author = {Beck, Yasmine and Schmidt, Martin and Th{\"u}rauf, Johannes and Bienstock, Daniel}, title = {On a Computationally Ill-Behaved Bilevel Problem with a Continuous and Nonconvex Lower Level}, pages = {16}, year = {2022}, abstract = {It is well known that bilevel optimization problems are hard to solve both in theory and practice. In this paper, we highlight a further computational difficulty when it comes to solving bilevel problems with continuous but nonconvex lower levels. Even if the lower-level problem is solved to ɛ-feasibility regarding its nonlinear constraints for an arbitrarily small but positive ɛ, the obtained bilevel solution as well as its objective value may be arbitrarily far away from the actual bilevel solution and its actual objective value. This result even holds for bilevel problems for which the nonconvex lower level is uniquely solvable, for which the strict complementarity condition holds, for which the feasible set is convex, and for which Slater's constraint qualification is satisfied for all feasible upper-level decisions. Since the consideration of ɛ-feasibility cannot be avoided when solving nonconvex problems to global optimality, our result shows that computational bilevel optimization with continuous and nonconvex lower levels needs to be done with great care. Finally, we illustrate that the nonlinearities in the lower level are the key reason for the observed bad behavior by showing that linear bilevel problems behave much better at least on the level of feasible solutions.}, language = {en} }