@unpublished{GruebelHuberHuembsetal.2021, author = {Gr{\"u}bel, Julia and Huber, Olivier and H{\"u}mbs, Lukas and Klimm, Max and Schmidt, Martin and Schwartz, Alexandra}, title = {Nonconvex Equilibrium Models for Energy Markets: Exploiting Price Information to Determine the Existence of an Equilibrium}, pages = {29}, year = {2021}, abstract = {Motivated by examples from the energy sector, we consider market equilibrium problems (MEPs) involving players with nonconvex strategy spaces or objective functions, where the latter are assumed to be linear in market prices. We propose an algorithm that determines if an equilibrium of such an MEP exists and that computes an equilibrium in case of existence. Three key prerequisites have to be met. First, appropriate bounds on market prices have to be derived from necessary optimality conditions of some players. Second, a technical assumption is required for those prices that are not uniquely determined by the derived bounds. Third, nonconvex optimization problems have to be solved to global optimality. We test the algorithm on well-known instances from the power and gas literature that meet these three prerequisites. There, nonconvexities arise from considering the transmission system operator as an additional player besides producers and consumers who, e.g., switches lines or faces nonlinear physical laws. Our numerical results indicate that equilibria often exist, especially for the case of continuous nonconvexities in the context of gas market problems.}, language = {en} } @unpublished{GrimmNowakScheweetal.2020, author = {Grimm, Veronika and Nowak, Daniel and Schewe, Lars and Schmidt, Martin and Schwartz, Alexandra and Z{\"o}ttl, Gregor}, title = {A Tractable Multi-Leader Multi-Follower Peak-Load-Pricing Model with Strategic Interaction}, doi = {10.1007/s10107-021-01708-0}, pages = {35}, year = {2020}, abstract = {While single-level Nash equilibrium problems are quite well understood nowadays, less is known about multi-leader multi-follower games. However, these have important applications, e.g., in the analysis of electricity and gas markets, where often a limited number of firms interacts on various subsequent markets. In this paper, we consider a special class of two-level multi-leader multi-follower games that can be applied, e.g., to model strategic booking decisions in the European entry-exit gas market. For this nontrivial class of games, we develop a solution algorithm that is able to compute the complete set of Nash equilibria instead of just individual solutions or a bigger set of stationary points. Additionally, we prove that for this class of games, the solution set is finite and provide examples for instances without any Nash equilibria in pure strategies. We apply the algorithm to a case study in which we compute strategic booking and nomination decisions in a model of the European entry-exit gas market system. Finally, we use our algorithm to provide a publicly available test library for the considered class of multi-leader multi-follower games. This library contains problem instances with different economic and mathematical properties so that other researchers in the field can test and benchmark newly developed methods for this challenging class of problems.}, language = {en} } @unpublished{GrimmGruebelSchmidtetal.2023, author = {Grimm, Veronika and Gr{\"u}bel, Julia and Schmidt, Martin and Schwartz, Alexandra and Wiertz, Ann-Kathrin and Z{\"o}ttl, Gregor}, title = {On a Tractable Single-Level Reformulation of a Multilevel Model of the European Entry-Exit Gas Market with Market Power}, pages = {26}, year = {2023}, abstract = {We propose a framework that allows to quantitatively analyze the interplay of the different agents involved in gas trade and transport in the context of the European entry-exit system. While previous contributions focus on the case of perfectly competitive buyers and sellers of gas, our novel framework considers the mathematically more challenging case of a strategic and monopolistic gas seller. We present a multilevel framework that is suitable to capture the sequential nature of the decisions taken. We then derive sufficient conditions that allow for reformulating the challenging four-level model as a computationally tractable single-level reformulation. We prove the correctness of this reformulation and use it for solving several test instances to illustrate the applicability of our approach.}, language = {en} } @techreport{OggioniSchwartzZoettletal.2022, type = {Working Paper}, author = {Oggioni, Giorgia and Schwartz, Alexandra and Z{\"o}ttl, Gregor and Wiertz, Ann-Kathrin}, title = {Dynamic Pricing and Strategic Retailers in the Energy Sector: A Multi-Leader-Follower Approach}, pages = {41}, year = {2022}, abstract = {We consider strategic retail pricing in markets, where retail companies buy commodities at fluctuating wholesale prices and resell them to final consumers by applying dynamic retail tariffs. This is of especially large relevance in the context of energy markets where substantial wholesale price fluctuations are observed. Policy makers currently foster the introduction of such dynamic tariff schemes. From a modelling point of view, we propose a multi-leader-follower problem to investigate the implications of strategic retail pricing and we compare the impacts of implementing dynamic tariffs on retailers and final consumers. Our analysis tackles different aspects: first, we formulate the model and provide theoretical results. Second, we develop algorithms, which solve the multi-leader-follower problem and allow us to characterize the resulting market equilibria. Third, we calibrate and solve our framework based on data of the German retail electricity market for the years 2020 and 2021. This allows us to quantitatively assess the impact of introducing real time prices on retailers' profits and customers' benefits. As our results show, dynamic real-time pricing on the one hand typically increases market efficiency, which confirms previous results obtained without the explicit consideration of strategic behavior. On the other hand, however, as a novel aspect, dynamic real-time pricing turns out to significantly reduce equilibrium profits in case of strategic firms. This effect is especially large in environments with strongly fluctuating wholesale prices.}, language = {en} }