@unpublished{GoerigkKurtzSchmidtetal.2023, author = {Goerigk, Marc and Kurtz, Jannis and Schmidt, Martin and Th{\"u}rauf, Johannes}, title = {Connections between Robust and Bilevel Optimization}, pages = {22}, year = {2023}, abstract = {Robust and bilevel optimization share the common feature that they involve a certain multilevel structure. Hence, although they model something rather different when used in practice, they seem to have a similar mathematical structure. In this paper, we analyze the connections between different types of robust problems (static robust problems with and without decision-dependence of their uncertainty sets, worst-case regret problems, and two-stage robust problems) as well as of bilevel problems (optimistic problems, pessimistic problems, and robust bilevel problems). It turns out that bilevel optimization seems to be more general in the sense that for most types of robust problems, one can find proper reformulations as bilevel problems but not necessarily the other way around. We hope that these results pave the way for a stronger connection between the two fields - in particular to use both theory and algorithms from one field in the other and vice versa.}, language = {en} } @unpublished{HorlaenderSchmidt2022, author = {Horl{\"a}nder, Andreas and Schmidt, Martin}, title = {A Penalty Branch-and-Bound Method for Mixed-Integer Quadratic Bilevel Problems}, pages = {9}, year = {2022}, abstract = {We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of branching on constraints as usual, suitably chosen penalty terms are added to the objective function in order to create new subproblems in the tree. We prove the correctness of the method and present its applicability by some first numerical results.}, language = {en} } @unpublished{MolanSchmidt2022, author = {Molan, Ioana and Schmidt, Martin}, title = {Using Neural Networks to Solve Linear Bilevel Problems with Unknown Lower Level}, pages = {16}, year = {2022}, abstract = {Bilevel problems are used to model the interaction between two decision makers in which the lower-level problem, the so-called follower's problem, appears as a constraint in the upper-level problem of the so-called leader. One issue in many practical situations is that the follower's problem is not explicitly known by the leader. For such bilevel problems with unknown lower-level model we propose the use of neural networks to learn the follower's optimal response for given decisions of the leader based on available historical data of pairs of leader and follower decisions. Integrating the resulting neural network in a single-level reformulation of the bilevel problem leads to a challenging model with a black-box constraint. We exploit Lipschitz optimization techniques from the literature to solve this reformulation and illustrate the applicability of the proposed method with some preliminary case studies using academic and linear bilevel instances.}, language = {en} } @unpublished{BeckLjubicSchmidt2022, author = {Beck, Yasmine and Ljubic, Ivana and Schmidt, Martin}, title = {A Survey on Bilevel Optimization Under Uncertainty}, pages = {57}, year = {2022}, abstract = {Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve - both in theory and practice. Fortunately, there have been significant algorithmic advances in the field of bilevel optimization so that we can solve much larger and also more complicated problems today compared to what was possible to solve two decades ago. This results in more and more challenging bilevel problems that researchers try to solve today. This survey gives a detailed overview of one of these more challenging classes of bilevel problems: bilevel optimization under uncertainty. We review the classic ways of addressing uncertainties in bilevel optimization using stochastic or robust techniques. Moreover, we highlight that the sources of uncertainty in bilevel optimization are much richer than for usual, i.e., single-level, problems since not only the problem's data can be uncertain but also the (observation of the) decisions of the two players can be subject to uncertainty. We thus also review the field of bilevel optimization under limited observability, the area of problems considering only near-optimal decisions, and discuss intermediate solution concepts between the optimistic and pessimistic cases. Finally, we also review the rich literature on applications studied using uncertain bilevel problems such as in energy, for interdiction games and security applications, in management sciences, and networks.}, language = {en} } @unpublished{BeckSchmidtThueraufetal.2022, author = {Beck, Yasmine and Schmidt, Martin and Th{\"u}rauf, Johannes and Bienstock, Daniel}, title = {On a Computationally Ill-Behaved Bilevel Problem with a Continuous and Nonconvex Lower Level}, pages = {16}, year = {2022}, abstract = {It is well known that bilevel optimization problems are hard to solve both in theory and practice. In this paper, we highlight a further computational difficulty when it comes to solving bilevel problems with continuous but nonconvex lower levels. Even if the lower-level problem is solved to ɛ-feasibility regarding its nonlinear constraints for an arbitrarily small but positive ɛ, the obtained bilevel solution as well as its objective value may be arbitrarily far away from the actual bilevel solution and its actual objective value. This result even holds for bilevel problems for which the nonconvex lower level is uniquely solvable, for which the strict complementarity condition holds, for which the feasible set is convex, and for which Slater's constraint qualification is satisfied for all feasible upper-level decisions. Since the consideration of ɛ-feasibility cannot be avoided when solving nonconvex problems to global optimality, our result shows that computational bilevel optimization with continuous and nonconvex lower levels needs to be done with great care. Finally, we illustrate that the nonlinearities in the lower level are the key reason for the observed bad behavior by showing that linear bilevel problems behave much better at least on the level of feasible solutions.}, language = {en} } @unpublished{BeckLjubicSchmidt2021, author = {Beck, Yasmine and Ljubic, Ivana and Schmidt, Martin}, title = {Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem}, pages = {39}, year = {2021}, abstract = {Developing solution methods for discrete bilevel problems is known to be a challenging task - even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty. We study discrete min-max problems with a follower who faces uncertainties regarding the parameters of the lower-level problem. Adopting a Γ-robust approach, we present an extended formulation and a multi-follower formulation to model this type of problem. For both settings, we provide a generic branch-and-cut framework. Specifically, we investigate interdiction problems with a monotone Γ-robust follower and we derive problem-tailored cuts, which extend existing techniques that have been proposed for the deterministic case. For the Γ-robust knapsack interdiction problem, we computationally evaluate and compare the performance of the proposed algorithms for both modeling approaches.}, language = {en} } @unpublished{HeitschHenrionKleinertetal.2021, author = {Heitsch, Holger and Henrion, Ren{\´e} and Kleinert, Thomas and Schmidt, Martin}, title = {On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints}, pages = {34}, year = {2021}, abstract = {Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this setup, we develop a cutting-plane algorithm that computes approximate bilevel-feasible points. We apply this method to a bilevel model of the European gas market in which we use a joint chance constraint to model uncertain loads. Since the chance constraint is not available in closed form, this fits into the black-box setting studied before. For the applied model, we use further problem-specific insights to derive bounds on the objective value of the bilevel problem. By doing so, we are able to show that we solve the application problem to approximate global optimality. In our numerical case study we are thus able to evaluate the welfare sensitivity in dependence of the achieved safety level of uncertain load coverage.}, language = {en} } @article{PleinThueraufLabbeetal.2021, author = {Plein, Fr{\"a}nk and Th{\"u}rauf, Johannes and Labb{\´e}, Martine and Schmidt, Martin}, title = {A Bilevel Optimization Approach to Decide the Feasibility of Bookings in the European Gas Market}, series = {Mathematical Methods of Operations Research}, journal = {Mathematical Methods of Operations Research}, doi = {10.1007/s00186-021-00752-y}, pages = {37}, year = {2021}, abstract = {The European gas market is organized as a so-called entry-exit system with the main goal to decouple transport and trading. To this end, gas traders and the transmission system operator (TSO) sign so-called booking contracts that grant capacity rights to traders to inject or withdraw gas at certain nodes up to this capacity. On a day-ahead basis, traders then nominate the actual amount of gas within the previously booked capacities. By signing a booking contract, the TSO guarantees that all nominations within the booking bounds can be transported through the network. This results in a highly challenging mathematical problem. Using potential-based flows to model stationary gas physics, feasible bookings on passive networks, i.e., networks without controllable elements, have been characterized in the recent literature. In this paper, we consider networks with linearly modeled active elements such as compressors or control valves. Since these active elements allow the TSO to control the gas flow, the single-level approaches for passive networks from the literature are no longer applicable. We thus present a bilevel model to decide the feasibility of bookings in networks with active elements. While this model is well-defined for general active networks, we focus on the class of networks for which active elements do not lie on cycles. This assumption allows us to reformulate the original bilevel model such that the lower-level problem is linear for every given upper-level decision. Consequently, we derive several single-level reformulations for this case. Besides the classic Karush-Kuhn-Tucker reformulation, we obtain three problem-specific optimal-value-function reformulations. The latter also lead to novel characterizations of feasible bookings in networks with active elements that do not lie on cycles. We compare the performance of our methods by a case study based on data from the GasLib.}, language = {en} } @article{BeckSchmidt2021, author = {Beck, Yasmine and Schmidt, Martin}, title = {A Robust Approach for Modeling Limited Observability in Bilevel Optimization}, series = {Operations Research Letters}, journal = {Operations Research Letters}, number = {49(5)}, pages = {752 -- 758}, year = {2021}, abstract = {Many applications of bilevel optimization contain a leader facing a follower whose reaction deviates from the one expected by the leader due to some kind of bounded rationality. We consider bilinear bilevel problems with follower's response uncertainty due to limited observability regarding the leader's decision and exploit robust optimization to model the decision making of the follower. We show that the robust counterpart of the lower level allows to tackle the problem via the lower level's KKT conditions.}, language = {en} } @article{KleinertLabbeLjubićetal.2021, author = {Kleinert, Thomas and Labb{\´e}, Martine and Ljubić, Ivana and Schmidt, Martin}, title = {A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization}, series = {EURO Journal on Computational Optimization}, journal = {EURO Journal on Computational Optimization}, pages = {47}, year = {2021}, abstract = {Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980's but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.}, language = {en} }